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Abstract

A modified A-hypergeometric system is a system of differential equatifor the func-
tion f(t* - =) where f(y) is a solution of anA-hypergeometric system im variables andv
is ann dimensional integer vector, which is called the weight eciWe study the irregu-
larity of modified systems by adapting to this case the notibunmbrella introduced by M.
Schulze and U. Walther. Especially, we study slopes and&yeseries solutions. We develop
some applications of this study. Under some conditions we gaplace integral represen-
tations of divergent series solutions of the modified syséewh we show that certain Gevrey
series solutions of the original-hypergeometric system along coordinate varieties areggev
asymptotic expansions of holomorphic solutions of thypergeometric system.
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1 Introduction

A-Hypergeometric systems (or GKZ-systems or simply hypargeric systems) are systems of
linear partial differential equations on the complex affspaceC”. Although they were already
considered in works by J. Hrabowski [19] and by |. M. Gelfakd,. Graev and A. V. Zelevinsky
[13], the systematic study of hypergeometric systemsestanith the paper by I. M. Gel'fand,
M. M. Kapranov and A. V. Zelevinsky [14]. Each of these systemlenoted by 4(3), is de-
termined by a paifA, 3) where A = (a;;) is an integerd x n matrix of rankd and 3 € C*

is a parameter vector. AA-hypergeometric systerfi 4(3) is defined by thel Euler operators
E, — B; = 2?21 a,-jyjaiyj — p; fori = 1,...,d and the toric operator8* — 9" associated with
each pair(u,v) € N* x N such thatdu = Av. Hereg" stands for the monomial differential
operatord;” - - - i andd; = -

For generic parameters € C?, the holomorphic solutions off 4(3) at nonsingular points
can be described by using the so-calledhypergeometric series (se€e[138],][14]; see dlso [26] and
Subsection 3]2). We are interested in divergértypergeometric series solutions. To study them
we use the notion of slopes defined in the general setting yalttent [21]. If the matrixA is
pointed (which means that the column vectorsldie in an open half-space with boundary passing
through the origin ik?), M. Schulze and U. Walther [27] have described the slopés,df3) with
respect to coordinates varieties, generalizing previaukn [7], [16] and [17]. These slopes are
closely related to the irregularity of the systéml|[22] and éxistence of non convergent Gevrey
series solutions of this system. Gevrey series solutiof&f;) were studied by the second author
in [10] (see alsd[11] and [12] where the authors treat paldiccases).

Modified hypergeometric systems were introduced by thetlfioauthor [30] in order to study
solutions of hypergeometric systems along a cuiite¢ = (cit"*, ..., c,t*") forw € 72", ¢; €
C. Each of them is determined by a tupld, w, 5,«) where A and $ are as beforew =
(w1, ..., w,) € Z™ anda € C. We denote byZ(w) (or simply A) the matrix

ay -+ a0
Aw)= A= 0
Adn  * Adn O
w1 N Wy, 1

Throughout this paper, we do not always assume thiatpointed, but we assume thatis. Note
that whenA is pointed, themM also is.

Definition 1 ([30]) We call the following system of differential equati®H 4 ., (5) a modified



A-hypergeometric system

(Zaijxjﬁj—@) .f = 0, (121,,61) (1)
j=1
<Z w;x;0; — 10 — a) of = 0, (2)
j=1
(H gyt — Ha;.’ftvn+l> of =0 (3)
j=1

i=1

with u, v € N**! running over alk;, v such thatdu = Av. Here we denot%% = 0.

The modified system is defined on the spate- C"*! with coordinatesz,t) = (z1, ..., z,, t).
Let D (or D, 1) be the Weyl algebra it t). The left ideal inD generated by the operators/in (1),
(@), and [(B) is also denoted WY ., () if no confusion arises. The lefd-moduleD/H 4 ., ()
is denoted by\/4 ., »(5). By [30] the D-moduleM 4 ,, (5) is holonomic for anyA, 5, w, .

The systent 4(3) is a summand of the modified system on the spgage). More precisely,
denoteY = C"! with coordinategy, s) and consider the map

P Y =C'xC'CY — X" =C"xC"'CX (4)

defined byp(y1, ..., Yn, s) = (s y1, ..., s “"yy,, s). The pullback image of the ide&l 4 ., ()

by ¢ equals the ideal of differential operators ®ri generated by ,(5) andsds + «. Notice
that this last ideal is nothing but the hypergeometric iédesabciated with the matrii(o) and the
parameter vectai3, —a) € C4*1. As usual we denote this ideal lﬂ/g(o)(ﬁ, —a).

Let us consider the local analytic situation. Rtbe the sheaf of holomorphic differential
operators onX and.M 4, () the quotient sheaP/DH 4, .(5). By the previous observation,
the hypergeometri®-moduleM ;o\ (8, —a) = D/DH 3, (8, —«a) is the extension td” of the
pullback modulep*(M 4., .(3)) considered as @y.—module on the first spacé* = C" x
C*. Sincey is a biholomorphic map botﬁD-moduIesMg(O)(ﬂ, —a)jy= and My o (5)x+- are
isomorphic.

We can describe solutions of the original hypergeometrigtesy H 4(/3) associated to the
weight vectorw € Z" via solutions of the modified system. Series solutiongZaf(5) have
been studied in [13] and [14] where the authors construatedergent series solutions associated
to the regular triangulation induced by a generic weightmee. The construction is generalized
as follows [26]: Assume that € C¢ is very generic (this condition is essential in the construc
tion). Suppose that the initial ideal_,, .,(H4(/3)) has a solution of the form”, p € C". Then
the monomialy” can be extended to a formal series solutidn) = y* + - - - of H4(5). We call
the series)(y) a series solution off 4(3) associated to the weight vector The series is diver-
gent in general. We are interested in giving an explicit egpion of a solution off 4(/3) whose
asymptotic expansion is(y). A standard method, in the theory of ordinary differentigliations,
to construct such an expression is the Laplace integraéseptation and the Borel transformation
of divergent series. This method has been successful irtildg sf global analytic properties of
solutions of ordinary differential equations, see, elwe,liook by W. Balsef [3] and the references
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therein. Then it is a natural problem to construct a Laplategral representation correspond-
ing to the divergent series solutieriy) associated to the weight vector Our modified system,
which is a system of differential equations foft"'z,, . ..,t*"z,), is used to give an answer to
this problem.

A key ingredient of our study is the fact that the modified hgeemetric systent 4 ,, () is
transformed into the hypergeometric systéiy (53, « — 1) associated with the matri(i(w) and
paramete( 5, « — 1), by the formal inverse Fourier transform- 0,, 9, — —t, which enables us
to study the modified system using the theory of hypergeoowtstems (see Subsectionl4.1).

For example, ford = (1,2) and € C the systen 4(5) is generated by:10; + 2120, —

B andd? — J,. The modified systenti 4, .(3) for w = (—1,-1), a € C is generated by the
three operators 0, + 2120, — 3, —x10; — w205 — t0; — a, 92t — Oy, and the inverse Fourier
transformation ofd 4 ,, () is generated by, 0, + 2290, — 3, —2101 — 2205 +t0,—a+1, 970,—0s
which is equal toff 3, (8, a — 1).

We study the behavior of solutions &f4 ., () near the hyperplane= 0 in the spaceX and
we will give Laplace integral representations of its sauos.

The structure of the paper is as follows: in Secfibn 2 we tecdlaurent’s definition of the
slopes of a finitely generated-module with respect to a hypersurface.

In Sectiorl B we recall the use of umbrellas for the descripticthe slopes of a hypergeometric
system given by Schulze and Walther|[27], then we summahigeconstruction of the Gevrey
solutions given in[[10] and extend some of these results ¢octise of the Gevrey solutions at
infinity.

In Sectiori 4 we prove that the formal inverse Fourier tramsfavith respect t@”, of a modified
hypergeometric system is atrthypergeometric system and we use this fact to describddpes
of the former by using the umbrella of the latter. We condtrassociated with any slope of the
modified systemM 4., .(3), a basis of its Gevrey solutions, modulo convergent powegese
when the parametersanda are very generic, see TheorEi 6. Moreover/far C¢ very generic
we construct a basis of formal series solutions of the matiffisstem for anyy € C andw € Z™,
see Theorerh]5. If in addition is generic this basis is reduced to a single element. Later, i
Section$ b and] 6, we prove under some assumptions that thiesds an asymptotic expansion
of a Laplace integral representation of a solution by theeBemmmation method (Theoréh 8 and
Sectiori6). As an application, we give an asymptotic errahetion of finite sums of formal series
solutions of originalA-hypergeometric systems with irregular singularitiedstd in, e.qg.,[[10]
and [14] (see Theoreqi 8, the inequallfyl(17), and SeélioEgampld 4 illustrates the application
for the simplestA.

Several integral representations have been studied fati@a$ of regular holonomic hyper-
geometric systems (see, e.d../[15], [6]! [4]). They play anginent role in the study ofi-
hypergeometric functions. However, there have been fediefwof integral representations for
solutions of irregulard-hypergeometric systems. We would like to point out thaggnal rep-
resentations of holomorphic solutions of irreguldhypergeometric systems have been recently
given by A. Esterov and K. Takeuchil[9] by using the so calkguid decay homology cycles. Our
Laplace integral representation, which we propose in tagep for giving an analytic meaning to
divergent series solutions, is different from their repreation: the integrand of our representation
is an A-hypergeometric function associated to a homogenizedgunafiion ofA (Sectiorb).

In Sectiori & we illustrate how, under some conditions, theysof the irregularity oM 4 ., o (3)



alongT gives an analytic meaning to the Gevrey series solutionstaf 3), along coordinate va-
rieties, constructed in [10]. More precisely we prove (segpBsition( ) that they are asymptotic
expansions of certain holomorphic solutionshef,(3).

An interplay of algebra (slopes and formal series) and ama(Borel summation method) is a
main point of this paper. In order to make a comprehensildsgntation to readers from several
disciplines, we often review some well-known facts to expeie hope that our style is successful.

Acknowledgements: We wish to thank J. Gonzalez-Menese<Gtdnger and D. Mond for
their help, suggestions and comments. We are very gratefahtanonymous referee, whose
thoughtful suggestions have improved this article.

2 Generalities on slopes

Recall thatD = D, is the Weyl algebr& (x1, ..., z,,t, 01, ..., 0,, 0;). In this section we write
x=(x1,...,%py1), 0= (O1,...,0,41). The variable is also denoted by,,,; andod, by 0,, 1.

Let L : R***? — R be a linear formL(«, 5) = Y, u;ou + v;8; such thatu; + v; > 0 for
1 =1,...,n+ 1, inducing the so-called—filtration on the ringD. If u; + v; > 0 for all 4, the
associated graded ring* (D) is isomorphic to a polynomial ring iéin + 2 variables(xz, £) =
(x,&1, ..., &q1) With complex coefficients. This polynomial ring Is-graded, thel.-degree of a
monomialz®¢? being L(a, 8). If we need to emphasize the coefficients of the linear form we
simply write L = L, for (u,v) € R** with u; + v; > 0 foralli. If u =0 € N**! and
v=1=(1,1,...,1) € N**! then the correspondingy., ., filtration is nothing but the usual order
filtration on D (which is also called thé-filtration). If u = (0, —1) € N**! andv = —u € N**!
then the corresponding,, . filtration is nothing but the Malgrange-Kashiwara filtration D
(also known as th& -filtration) with respect ta = 0. In the remainder of this section we assume
u; + v; > 0 for all i; we say then thatu, v) is aweight vectorfor the Weyl algebraD.

All the D—modules appearing here are |&ftmodules unless stated otherwise. We denote by
T c C"*! the hyperplane defined y= 0.

Let M be a finitely generated-module. To thelL-filtration on D we associate good L-
filtration on M, by means of a finite presentation. The associgtédD)-modulegr’ (M) is then
finitely generated. The radical of the annihilating idéaln,, . ) (gr” (1)), which is independent
of thegood L—filtration on)M, defines an affine algebraic subset of the cotangent spate™ =
C?"*2. This algebraic set is called tliecharacteristic varietyf M and it is denoted by@'hl (M).
The results stated so far are well knownl/iamodule theory and generaliZe [5] which treats the
case of thef'filtration in D. The case of a generaHfiltration has been studied for example in
[20] and, with more detalils, in[21, Section 3.2] in the midifferential setting which is slightly
different from the one in this paper. See alsb [2, SectionoR]ain equivalent treatment better
adapted to effective computations for modules on the Weydlaia.

We consider a special type offiltration: For any real number € R, we denote by_, either
the linear formL, = F + rV or the filtration onD given by the(2n + 2)—dimensional weight
vector(0,...,0,—r,1,...,1,1+7r)where—r is placed in thén + 1)"*-component. Heré’ (resp.

V') stands for the order filtration oP (resp. the Malgrange-Kashiwara filtration with respect to
7).



Definition 2 [21, Section 3.4].et M be a finitely generated—module. Consider the projection
II: 7T*C"*' — T defined by

(zy, . zp, 6,80, 60, &) = (21, .o, 2, 0).

For any real number > 0, let I}.(M) be the closure of the projection bi/of the irreducible com-
ponents of the,,—characteristic varietyCht M c T*C"*! that are not(F, V)—bihomogeneous.
The real numbers = r + 1 > 1 is said to be aslopeof M along7 atp € T if and only if
p € IL(M).

As proved by Y. Laurent, see [21, Section 3.4], any slope itiamal number and the set of
slopes ofM is finite. Moreover, Y. Laurent also provéakc. cit. thats = r + 1 is a slope ofM
alongT atp € T if and only if, in a neighborhood dfi ~*(p), Ch’~ (M) is not locally constant for
r" € (r — e, r+ €) with e > 0 small enough. The irregularity of a holonomic system witbpect
to a smooth hypersurface ([24, Déf. 6.3.1]) is deeply eglatith the slopes of the system defined
with respect to the given hypersurfatel[22].

3 Onthe irregularity of A—hypergeometric systems

Recall thatA is ad x n integer matrix of ranki whose columns, ..., a, generateZ? asZ—
module. We denote by/4(5) the hypergeometric ideal associated withand the parameter
vector 3 € C? [14] and by M 4(3) the corresponding hypergeometric system (also known as
G K Z-system). This system is the quotient/of := Clxy, ..., z,[(d, ..., 0,), the Weyl algebra

of ordern, by the left idealH 4(3). In this section we denot& = C".

3.1 Slopes ofA-hypergeometric systems

We recall in this subsection some results fram| [27], whéris assumed to be pointed, i.e. the
columns ofA lie in a open half-space defined by a hyperplane passingghrthe origin inR<,
These results will not be applied to our matdxut only to the matrix4(w) (see Subsectidn 4.2),
which we assume to be pointed throughout this article.

We denote by, the i-th column of A fori = 1,...,n. The L-characteristic variety of the
hypergeometric systev/ 4 (/5) has been described, in a combinatorial way, by M. SchulzéJand
Walther [27] for any pointed matri¥l and any filtration, = (u,v) such thatu; + v; = ¢ > 0
foralli = 1,...,n. The casel. = F was first studied by A. Adolphsonl[1]. The main tool for
their description is the notion @¢f4, L)-umbrellathat we define here for the sake of completeness.
First of all, the(A, L)—umbrella only depends aA and on the coefficients; of the linear form
L = Ly

Definition 3 [27, Def. 2.7]We assume that; > 0 for all . The (A4, L)—polyhedronAf is the
convex hull inR? of the set{0, a, /vy, ..., a,/v,}. The(A, L)-umbrella®’ is the set of faces of
AL which do not contain zero. In particulad’; contains the empty face.

By &7 ¢ @/ we denote the subset of faces of dimensiorWe identify each face of &%
with the set{i : «a;/v; € o} and with{a; : a;/v; € o}. The(A, L)-umbrella is then an abstract
cell complex.



When not all thev; are strictly positive then both definitions of tie, L)-polyhedron and
the (A, L)-umbrella are a little bit more involved. We refer {0 [27, Def.7] for these precise
definitions in the general case. See also Subsection 4.2.

Theorem 1 [27,, Cor. 4.17]The L—characteristic variety of\/4(3) is given by:

Ch (Ma(8)) = | J Ca ()

TE@L

whereC7, is the closure of the conormal’, of the torus orbit07;, = {¢ € Ty X =C" : ¢ =
0ifi ¢ 7, &=y ifier,ye (C)).

Moreover, it is proved in[27, Lemma 3.14] thaf, meets; X for all 7 € ®%. Thus Theorem
[ provides a description of the slopes of a hypergeometsiesy at the origin along any coordinate
varietyY C X via considering thé—parameter family of filtrationg, = F + rV, r > 0, where
V is theV -filtratior(] alongY’:

Corollary 1 [27, Cor. 4.18]The real numbes = r + 1 > 1 is a slope ofM4(3) alongY” at the
origin if and only if<1>f(’ is not locally constant at’ = r.

Remark 1 WhenY C X is a coordinate hyperplane then the set of sloped/af 5) alongY at
the origin coincides with the set of slopesidf, (/) alongY” at any pointp € Y. This is proved in
[L0, Th. 5.9] by using the comparison result in[22, Th. 2]4.2

3.2 Gevrey solutions ofA—hypergeometric systems at infinity.

In this subsection we extend some of the results fiom [L0jeoctse of the Gevrey solutions of a
hypergeometric system at infinity in the direction of a caoate hyperplane that we may assume
to bez,, = 0. This construction is used later in the study of the Gevrdytems along?" of a
modified hypergeometric system, see Subse¢tidn 4.5.

Let us denote by x the sheaf of holomorphic functions on = C". ForY = {z,, = 0}, we
denote bw@ the formal completion oy alongY’, whose germs dp, 0) € Y are of the form
f =250 fmxy where all thef,, = f,.(z1,...,2,-1) are holomorphic functions in a common
neighborhood of. Notice that the restriction @ to Y, denoted by x|y, is a subsheaf oir')@.

For any real numbes, we also consider the she@fﬁ( s) of Gevrey series alonyy” of orders

which is defined to be the subsheaf(@h whose germg at(p,0) € Y satisfy

Z ml®~ 1'T7l < OX‘Yv(P,O)'

m>0
We denoteQy (s) := X‘Y‘ and useO (<s) for the sheaf of Gevrey series alolgof order
less thars. If f belongs toOX‘Y( s)\ OXIY(<5) for somes, we say that théndexof the Gevrey

seriesf is s. We also erth‘y(—i-oo) (’)ﬂ.

1The V—filtration with respect to the coordinate varigty= (z; = --- = x, = 0) is defined by assigning the
weight -1 (resp. the weight 1) to the variablgqresp.0;) fori = 1, ..., £ and the weigh® to the remaining variables.
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We denote byD = Dy the sheaf of linear differential operators oh with holomorphic
coefficients. If M is a coherentD-module, Z. Mebkhout has defined in_[24, Déf. 6.3.1] the
irregularity of orders of M with respect taY” to be the complex of (sheaves of) vector spaces
Irrj(;’)(/\/l) = RHomp(M, Qy(s)) and has proved that, for a$l € [1, +oc], this complex is
a perverse sheaf ori when M is holonomic[24, Th. 6.3.3]. By the comparison theorén [22,
Th.2.4.2]s is a slope ofM with respect taY” if and only if s is a gap in the fiItratiorIrrﬁ) (M)
on the irregularityl/rry (M) := Jrrgj‘”’(/w). The perversity result implies, in particular, that at
a generic poinp € Y only the first cohnomology space of previous complexes isiplysson zero
and thus it is worth studying the stetkomp (M, Qy (s)),.

Recall thatd = (a; --- a,) is a full rank matrix witha; € Z foralli = 1,...,n andd < n.
Following [14] and[26], for any vector € C" we can define a series

bo= o) = 3 [Lw 6)

% u
UENU + ]u+

wherev € C" verifiesAv = g andN, = {u € ker(A) N Z™ : nsupp(v + u) = nsupp(v)}.
Hereker(A) = {u € Q" : Au = 0}, nsupp(w) := {i € {1,...,n}: w; € Z-y} is the negative
support ofw € C", [v], = [];[vilu, @and[vi]u, = [}, (v; — j + 1) is the Pochhammer symbol for
v; € C,u; € N.

The seriesp, is annihilated by the hypergeometric idefdl () if and only if the negative
support ofv is minimal, i.e., fu € ker(A) N Z" with nsupp(v + u) C nsupp(v) (see [26, Section
3.4)).

Wheng € C?is very generigi.e., when3 is not in a locally finite countable union of Zarisky
closed sets, there is a basis of the Gevrey solution spat¢ 4f3) alongY given by serie®, for
suitable vectors € C" (see[10, Ths. 6.2 and 6.7]).

For any subsef C {1,...,n} we denote by, the submatrix ofd given by the columns ofl
indexed by and we denotg = {1,...,n} \ 7.

We say that C {1,...,n}isa(d—1)-simplexwith respect toA (or simply thatr isa(d —1)-
simplex) if the columns ofd,, determine a basis d&“. If it is so, we can reorder the variables in
order to haver = {1, ..., d} without loss of generality. Then a basislef(A) associated witlr
is given by the columns of the matrix:

—Atagy —Ajlag, - —Ajlta,
1 0 0
B, = 0 1 0
0 0 1

A vectorv € C™ satisfyingy; € N for all i ¢ o andAv =  can be written as

= (AN (B =D ki), k)

i¢o

for somek = (k;),¢, € N"~?. Sinceg is very generic then the negative supportbfs the empty
set and hence,x is annihilated byH 4 (/). Moreover, the summation index s¥« in the series
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¢« IS given by the integer vectors in an affine translate of thatpe span of the columns a@,.
The sum of the coordinates of tii¢h column of B, is 1 — | A, 'y, ;| where| | means the sum of
the coordinates. We have the following.

Theorem 2 [10, Theorem 3.11Under the above conditions the serigs is a Gevrey solution of
M(B) alongZ = {z; = 0: |A; a;| > 1} with indexs = max{|A 'a;| : j = 1,...,n} at
points in certain relatively open subset@f In particular, if | A, 'a;| < 1forall 1 < j < nthen
o,k IS convergent.

By Corollary[1, areal number> 1is a slope of\/4(5) alongY” = {z,, = 0} ifand only if%an
belongs to the hyperplang, supported on a facet of the convex hull of0, a4, ..., a,_1} such
that0 ¢ 7. In particular, for any(d — 1)-simplexo C 7 itis easy to check that = |A ', | > 1.
We say in this case thatis a(d — 1)-simplex corresponding to the slope> 1 of M 4(/3) along
Y.

The following Theorem is a summary of some of the results ffb@j. Its last statement uses
results from|[22] and in [27]. For the definition of a regulaahgulation see, e.gl, [29, Ch. 8].

Theorem 3 Assume thatp € C¢ is very generic and that > 1 is a slope ofM,(3) along

= {z, = 0}. For any(d — 1)-simplexo corresponding tos one can constructol(c) =
| det(A,)| many linearly independent Gevrey solutiofis of M4(/5) alongY with indexs by
varyingk € N"~4in a setA so that{ A,k |k € A} is a set of representatives of the gratify Z A, .
Moreover, if we repeat this construction for all tfi¢ — 1)-simplicess corresponding to which
belong to a suitable regular triangulation fot and take the classes mod%ks) we obtain
a basis for the space of solutions f4(3) in the spacg O /O s)), for pointsp € Y
in a relatively open set df".

X\Y( s) X\Y(

We have exhibited the construction of the Gevrey solutidnd/q(3) alongY = {z,, = 0}
corresponding to each slope> 1 of M 4(5) alongY for 3 very generic.

Let us construct Gevrey solutions &f4(3) at infinity. In other words, we are going to con-
struct Gevrey solutions of the projectivized hypergeomedystem treated in [28, Section 5] at a
generic point at infinity. We use the following notatiok! is C" with coordinate$x, ..., x, 1, 2)
andz = 1/xz, sothatY N X’ = C*! x C*. DenoteY’ = {z,, = o0} = {z =0} C X',

TakeL_, = F — rV whereV is theV filtration alongY. Notice that®," is not locally
constantat = s — 1 > 0 if and only |f ey ln belongs to the hyperplané, supported on a facet
7 of the convex hull of 0, ay, . .., a,— 1} such that) ¢ 7.

Theorem 4 Assume thatt € C¢ is very generic and that there exists> 1 such that(2 50n
belongs to a hyperplan#., as above. For anyd — 1)-simplexoc C 7 one can constructol(c) =
| det(A,)| many linearly independent Gevrey serigs along Y’ with indexs by varyingk €
Nnd=1 x Z.y in a setA so that{Azk : k € A} is a set of representatives of the group
Z°JZA,. The classes of these series modulo convergent séries are solutions ofd/,(3)
in OX’\Y’< >/OX'|Y"

Moreover, if we repeat this construction for all thé — 1)-simplicess as above which belong
to a suitable regular triangulation fod and take the classes moduﬂbx/\ <s) then we obtain a
basis for the space of solutions &f4 () in the space(OX,‘Y,( )/OX’\Y’( s)), for pointsp € Y’
in a relatively open set df”.



Proof.- By reordering the variables we may assume {1, ..., d} without loss of generality.
Let B! be the matrixB, but with the last column multiplied by-1.

Take a vectow € C" such thatdv = 3, v; € Nforalli ¢ ¢ U{n} andv, € Z.,. Itis
clear that such a vector can be takenas v¥, as before, for somk = (ki)igo € N"=4=1 x Zo.
Moreover, the summation index s¥t« in the serieg),« is given by the integer vectors in an affine
translate of the positive span of the columns)f Notice that the sum of the coordinates of the
i-th column of B/ is1—|A 'as;| > 0fori =1,...,n—d—1 while the sum of the coordinates of
the last columni$A;ta,| —1=2—s—1=1-s < 0. Thisimplies thaty! \ (21, ..., 2,-1,2) =
Gu(T1,...,70-1,1/2) is @ Gevrey series along’ with orders = r + 1 > 1. To prove thats is
the Gevrey index of/ . one can use a slightly modified version of Lemma 3.8 in [10].

Moreover, since’ is very generic then the negative supporwvbfis nsupp (v¥) = {n} which
is not minimal and hencé, .« is not annihilated by 4(3) (see [26, Section 3.4]). However, it
can be checked that for any differential operatore H,(/5) the seriesP(¢,x) is either zero
or a polynomial inz = x,,;' with coefficients that are convergent power series in thealbbes
x1,...,2,—1. Now we finish the proof following [10, Sec. 7] ard |28, Sec. §).E.D.

Remark 2 A slightly weaker version of the first paragraph of Theokénad also be proved with-
out the very genericity assumptionfne C?. More precisely, for alB € C¢ if <I>f{r is not locally
constantat = s — 1 > 0 we can construct a Gevrey series alorigof indexs = r + 1 which is
a solution of)M 4 () modulo the spacé . (<s) (of Gevrey series alony’ with order less than
s) by methods similar to the ones in |10, Section 4].

The following corollary is a particular case of [28, Conjeet 5.18].

Corollary 2 The real number > 1 is a slope ofA/4(5) alongY’ = {z, = oo} if and only if
@’ is not locally constant at = s — 1.

Proof.- For the only if direction of the proof we refer to [28, Sectibh Let us prove the if
direction. By Theorerhl4 and Remadrk 2 one can construct a @eemies of index = r + 1 that
is a solution ofM 4 () alongY”’ (modquOX/,‘?,(<s)). So, the result follows from the comparison
theorem for the slopes [22]. Q.E.D.

2 11
A= ( 1 21 )

and3 € C2. We have that the kernel of is generated by, = (1,1, —3) and thus the hyperge-
ometric IdealHA(ﬁ) is generatEd bﬁu = 6102 — 03?,’, FE — 51 = 21’101 + 1'202 + 1'363 — 61
and Ey — By = x101 + 2220, + 2305 — [o. Takeo = {1,2} and notice that fors = 4/3
we have thati;/(2 — s) belongs to the lineH, determined by:; and a,. By Corollary[2 we
have thats = 4/3 is a slope ofM4(5) along Y’ = {z3 = oo}. Indeed, if we consider
o8 = (261 — Bo — k)/3, (28, — B1 — k)/3,k) for k = k € Z_., we have that,« is a Gevrey
series alongY” of indexs = 4/3 if v, v5 ¢ Z_,. Moreover, we have thadtt; — 3;)(¢x) = 0
for i = 1,2. For each of the three biggest € Z_, verifying thatvf,v5 ¢ Z_, we have that
Ou(dpr) = vagle’f_lx;’g_lx’g, which is convergent at any € Y’ N {z,z, # 0}. The classes
modulo Oxy+ of these three series,« form a basis for the space of solutions bf,(3) in
(Oc5(5)/Oxryr)p, p € Y N {x125 # 0}. If 5 is very generic thed = —1, -2, —3.

Example 1 Set

XY
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4 On the irregularity of modified A-hypergeometric systems

4.1 Fourier transform and initial ideals

Let D be the Weyl algebr& (x4, ..., z,,t,01,...,0,,0;). The variable is also denoted by,, .
ando; by 0, 1.

Let L : R***? — R be a linear formL(«, 5) = Y, u;ou + v;8; such thatu; + v; > 0 for
1 = 1,...,n+ 1inducing the so-called—filtration on the ringD. If u; + v; > 0 for all 7, the
associated graded ring” (D) is isomorphic to a polynomial ring ign + 2 variables(z, £) =
(X1, ..y Tpy1, &1, - - - Enr1) With complex coefficients. This polynomial ring is-graded, thel-
degree of a monomial“¢? being L(«, 3). If we need to emphasize the coefficients of the linear
form we will simply write L = L, . for (u,v) € R*"*?with u;+v; > 0foralli. If u = 0 € N**!
andv = 1 = (1,1,...,1) € N**! then the corresponding, ., filtration is nothing but the
usual order filtration orD (which is also called thé filtration). If v = (0,—1) € N**! and
v = —u € N"! then the correspondinf,,.) filtration is nothing but the Malgrange-Kashiwara
filtration on D (we also say th& -filtration) with respect ta = 0. In the remainder of this section
we will assumeu; + v; > 0 for all 7; we will say then thatu, v) is a weight vector for the Weyl
algebra.

We define the ring isomorphisth of D byt — —0,, 9, — t. The isomorphisn¥ is called
the Fourier transformon D with respect to the variable The inverse transfornf—! is given by
t — 0y, 0, — —t. Let (u,v) be a weight vector for the Weyl algebra. The Fourier tramsfaF
and 7! induce isomorphisms igr”(D) and we denote them also by and F~! respectively.
Analogously, ifC ¢ C***2 s the affine algebraic set defined by an idéal gr®(D) we write
FC and F~1C for the algebraic set defined By.J C grf (D) andF~1J C grf(D) respectively.

We define the Fourier transform of the weight vedtory) by the formula

F(u,v) := (Ug, oy Upy Upt1, U1y« vy Upy U1 )-
We notice thatF 7 (u, v) = (u,v). We will also write FL = F(u,v) if L = L.
Proposition 1 For any operator € D, we have
ing, ) (0) = FHingg, (F0)

Proof. We prove it in the case = 0. Other cases can be reduced to this case. W€, put=
ing,.) (9;). We assume that+v > 0 and? = ¢*9}. Then, we havén,.,(¢) = t*¢", ;. SinceFl =
(=0,)%" = (=1)2(t°0¢ + abt®~10¢ ™" + - -+ ) andu + v > 0, we havein, ) (F) = (—1)4P¢2 ;.
Applying the inverse Fourier transform, we obtdin'in, ., (F¢) = (—1)*&%.  (—t)* = ing,.)(¢).

Suppose that’d} >,.,) t* 0. Then, we havé—0,)*t* >, ., (—0;)“t"". Thus, we obtain the
conclusion. Q.E.D.

Propositior 1L yields the following simple, but importanaioh for the Grobner deformation
method.

Corollary 3 For any left ideall in D, we have
in(u,v)(I) = f‘lin;(u,v) (ff)
Proof. Sincein, (1) is spanned byn, . (¢), ¢ € I as aC-vector space, the conclusion

follows from the previous proposition. Q.E.D.
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4.2 Slopes of modified4-hypergeometric systems

We retain the notations of [30], which are explained in thieoduction. We are interested in
the slopes of the modified systeid, ., .(3) at any point along” = {t = 0}. We notice that
Haw,a(B) is the Fourier transform off 7, (3) wherej = (5,0 — 1), i.e.

Mawa(B) = ]:Mg(w)(ﬁ)- (7)

Recall thatl, = F +rV = (0,...,0,—r,1,...,1,1 +r) whereV = (0,...,0,—1;0,...,0,1)
andF = (0,1). ThusFL, = (0,...,0,1+nr,1,...,1,—r).

In order to obtain the slopes of the modified systefn,, .(5), we need to study the,—initial
ideal of the modified hypergeometric idefdl, ,, .(53), for r € R-,. Therefore, applying Corollary
and[7), we have

ing, (Hawa(B) = Ftinzr, (H, (5)). (8)
Using (8), we have

OB (Mawa(B)) = FHCR (M, (B))) 9

On the other hand, sinc¥/ 5, (5) is a hypergeometric system and the maiszw) is pointed,

Theorent L gives a description of the irreducible componehnt&:” "+ (M3, (3)) in terms of the

(A(w), FL,)-umbrella. We notice here that the last coordinat&f. equals—r < 0. We recall
the definition[[27, Def. 2.7] of the umbrella in this case.sEwf all let us recalloc. cit.,that if a,
b are two points and/ is a hyperplane if**+!(IR) containing neithex nor b, then the convex hull
convy(a, b) of a andb relative toH, is the unique line segment joinigandb and not meetind/ .
Let us denote the™ column of A(w) by @;, saya; = (&) fori = 1,...,n andd,,; =
(0,...,0,1)t. For simplicity let us write( A, L) instead of(A(w), FL,). We Viewa,, . . ., dn
as points inR*! ¢ P4+(R). As A is pointed, there exists a linear forinon R*** such that
h(a;) > 0foralli. Lete € R be such thab < ¢ < h(a,) fori =1,...,nand0 < e < @1,

Definition 4 [27, Def. 2.7]The(§, E)—polyhedronﬁ% is the convex hull

_ N _a,
A% = convy, ({0,ay, .. ., @y, _J;l 1) € PATY(R)

where H, is the projective closure of the affine hyperplane (—e). The(ﬁ, Z)-umbrellacp:% is
the set of faces oiﬁ~ which do not contain the origin. In particula@% contains the empty face.

Figure 1 shows thre(aZ(w),J-“L,n)—Numbrellas forA = (1,4) andw = (—1,1). In each case

the shaded region is the polyhedrmﬁ. Forr = 3/5 the point% belongs to the line passing
througha; anda, which means that = r + 1 = 8/5 is a slope of the system along = 0.
Using Definitio 2, equatiori[9) and [27, Cor. 4.12] we getfiiowing:
Corollary 4 The real numbes =+ 1 > 1 is a slope ofM 4 ., »(5) alongT atp € T if and only
if @i‘fé;; is not locally constant at’ = r.

12
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Figure 1: The first umbrella is for = 1, the second is for = 3/5, and the third is for = 1/4.

Let us denote bwl,, the matrix with columng;, 1 < i < n, and letA 4, be the convex hull of
{a; : 1 <i < n} and the origin. With this notation, Corollaly 4 can be regledas follows.

Corollary 5 The real numbes =+ 1 > 1 is a slope ofM 4, .(5) alongT atp € T if and only

. . 1 .

if there exists a facet of A4, such thatd ¢ r and—-a,.; € H,, whereH. is the hyperplane
T

that containsr.

Remark 3 We note that thé>-modulesi 4, »(5) and M4 _,, () agree onC™ x C* under
the change of the variable— 1/t int # 0. We regard bothD-modules as extensions of each
other. In this paper, when we say the irregularity/af, _,, _.(8) along7” = {t = oo}, it means
the irregularity of M4 ., (3) alongT = {t = 0}. Using this terminology, Corollaryl5 provides
a description of the slopes of the modified sysfem,, .(3) along7” by usingA 4 , instead of
Ay, .

Until the end of this section we will denote eithéf; or <I>f1~ for the (A, L)-umbrella with
L = L,y since Definitior # does not depend érbut only onv € R™*'. Moreover, for any

subset) C {1,...,n} we denote byv, the vector with coordinates equal to the ones dfidexed
by n, i.e.,w, = (w;)icy-
In the following two lemmas we assume for simplicity that> 0,7 = 1, ..., n. In fact, this

can be assumed without loss of generality siA¢e) is pointed.
Lemma 1 For any sufficiently small real number> 0, we have that

FLrd . . Wn,d—1 F,d—1
{n'eég(w) tnt+lent={ocu{n+l1}: o€ @ ned,; }
In particular, if all the facets inb% contain exactly/ columns of4, then the set of facets drfg(f;)’d

which contaim 4+ 1is {c U {n+ 1} : o € &'},

Proof. Taken’ C {1,...,n+ 1} such that + 1 € ¥ and sev =1/ \ {n + 1}. By Definition

@, e @JAE(LJ})’C[ if and only if there is a (unique) vectar= (c, cq1) € Q% x Q (which depends

onr) such that(c,a;) = 1if i € o, (¢, —+@,41) = 1 and(c,a;) < 1if i ¢ 1. The equation for
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i = n+1is equivalentta,,; = —r and the other equalities and inequalities can then be widise
(c,a;) —rw; = 1fori € o and(c, a;) —rw; < 1fori ¢ n'. Thus, denoting, the limit of the vector
c whenr tends to zero, we have that, a;) = 1 fori € o and{cy, a;) < 1fori e {1,...,n}\ 0.
This provesthat C = {i € {1,...,n} : {(co,a;) =1} € ",

It follows for h = %(c — ¢) that(h, a;) = w; fori € o and(h,a;) < w; fori € n\ o. This
proves that € @ZZ’d_l. This proves the inclusioa in the statement. The other inclusion can
be proved in a similar way, now starting from the existenceeaftorsc, andh corresponding to
ne dando e @Z:’d‘l as above and consideriig= (¢, —r) € Q% x Q with ¢ = rh + ¢.
Q.E.D.

Lemma 2 For any sufficiently large real number> 0 we have that

@JAE(LU:)’d ={oU{n+1}:0¢€ @Zf,i_l,n/ e Uy

In particular, if all the facets ind% contain exactlyl columns of4, thenq)gé;)’d ={ocu{n+1}:
oe v,

Proof. Recall that) € <I>§(Ll;)’d if and only if there is a (unique) vectare Q¢ x Q (which could
depend om) verifying the equalitiesc, a;) = 1 for i € n and the inequalitie&’; a;) < 1 fori ¢ .
Assume to the contrary that there is a faget <I>§(Luj)’d such that, + 1 ¢ 7 for all » > r, and

ro big enough. Sincdimn = d andn + 1 ¢ n we have that the correspondifgs independent of
r > roand(c, —1a,,,) > 1 which is a contradiction. Thus, any facet@fé;)’d contains + 1.

If we write p = o U {n + 1} foro C {1,...,n} theny ¢ <I>§(Ll;‘)’d if and only if there is a

unique vector = (¢, cqy1) € Q4 x Q as above (now depending oh In particular,cy; = —r
and using the limit, of the vector%c whenr tends to infinity we get thac.., a;) = w; fori € o
and(co, a;) < w;fori ¢ o. Thus,e Cn' ={i € {1,...,n}: (cx,a;) = w;} € 4. Moreover,
we obtain that € <I>§", by using the vectoh = ¢ — rc,,. The other inclusion can be proved in

a similar way, now starting from the existence of vectegsandh corresponding tg’ € @j’d_l
ando € ®*"! as above and considering= h + rc,. Q.E.D.
n

Proposition 2 The following conditions are equivalent:
wy,d—1 Fd—1y Fd-1 4 w,d—1
@ {oecd,)”  : ned, }_{UE(I)An, S/BSK U

(b) <I>§(Ll;‘) is constant for all- > 0.

(€) M4.a(B) does not have slopes alofig

Proof. Since any umbrella is determined by its facets, Lerhina 1 amdrha prove that (a) is
equivalent to (b). Corollarlyl4 finishes the proof. Q.E.D.

Remark 4 Note that condition (a) in Propositidn 2 implies that theseed common refinement
(the one given by considering the face@cim not containingn + 1) of the polyhedral complex

subdivisions induced by the umbrelld§ and ®%. In particular, whenw is generic, condition (a)
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means thatv induces a regular triangulation ofl that refines the polyhedral complex subdivision
induced by the weight vectot, ..., 1). In other wordsw is a perturbation of(1, ..., 1) for the
matrix A. For example, this condition is satisfied if either the rovasf the matrixA contains
the vector(1,...,1) or w is the sum of a vector in the row span of the matdixand a vector
(k,...,k)withk > 0.

Remark 5 Even wheng(w)(E) is regular holonomic and/,4 ,,..(3) has no slopes along, the
latter system is irregular if\/4(3) is (see Examplel 2).

Example 2 TakeA = (1 2) and € C. The system/4(53) is irregular alongY = {x, = 0} with
unique slopes =r + 1 = 2.
If we choosev = (1, 1) and consider the matrix

f-(120)

we have that the hypergeometric systhgi(w)(B, a — 1) is regular holonomic for all3 € C¢ and
a € C by a well known result of Hotta [18]. However, the modifiedeys) 4 ., () has a slope
s =r+1=2along7” becausel/, ., () has the slope = 2 along7" (see Corollary’b and
RemarkB).

Remark 6 Lety be the map[{4) defined in the introduction. SinceZhenodulesM (53, —)
and M 4 ,..(3) are isomorphic when restricted t§* = C™ x C*, the slopes of both modules
along any coordinate subspag&enot contained irf’ coincide inZ \ T'. Moreover, the map* also
induces an isomorphism for their spaces of Gevrey soluaosy ~.

4.3 Holomorphic solutions of a modified hypergeometric sysim

We study convergent and formal power series solutions ofrtbeified A-hypergeometric module
Mawa(B). As was said before, the map(d) induces an isomorphism between fienodules
M) (B, —a) and M 4, o(5) wWhen restricted toX™, and also an isomorphism between their
corresponding spaces of holomorphic solutions. More pedgifor any germ of a holomorphic
function f(x,t) at a point(zo, to) in X*, the functionf(z,t) is a solution ofM 4, .(f) if and
only if o*(f)(y,s) = f(s™"y1,...,s "y, ) is a germ of a solution oM 5 (8, —«) at the point
(yo, s0) € Y* such thatp(yo, so) = (0, o). We can rewrite this as follows: the morphism

" ,HOmDX* (MA,w,a<B)\X*a OX*) — HOmDy* (Mg(o) (57 —Oé)|Y*, OY*)

is an isomorphism of sheaves of vector spaces. As a consegjties holonomic ranks of both
modules coincide

rank(Hauw,o(8)) = rank(H 34, (8, —a))

and this last rank equals the onef(3) for anyw, see([30, Theorem 1].
Recall that ifg is generic themank(H 4(5)) = vol(A), wherevol(A) is the normalized volume
of the matrixA [14,[1,26/ 23], while in generahnk(H 4(5)) > vol(A) [26,[23].
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4.4 Gevrey solutions of a modified hypergeometric system

We describe the solutions & 4 ., .(3) in the spac@fﬁ of formal power series with respect to
T ={t =0} Cc X = C""'. More generally, we also describe the solutions\¢f, ,, ,(/3) in the
spacez,yGA tVO)a\T for any finite set\ C C (see Theorer]5).

We will use notations in[30]. Let be the weight vectof0, —1,0,1) € Z***2 inducing the
Malgrange-Kashiwar& —filtration alongl’ = (¢t = 0) on the ringD,, ;.

Let fg(w) C C[8,1] := C[d,, ..., Dy, t] be the toric ideal associated withw), i.e., the bino-
mial ideal generated by the operators[ih (3).

Lemma 3 Forall w € Z" we have‘n(ov_l)(lg(w)) = Cl0, t]in,(14).

Proof. Recall that

I3 = (0" = 0" |Au=0,w - u=0) + (9" —=t"90" [Au=0,w-u > 0)
and we can write
Iy= (0" —0"" |Au=0,w-u=0)+ (0" — 0" |Au=0,w-u > 0).

Notice thating 1) (0" —t**0"") = 0"+ = in,,(9"+ —0"~) if Au = 0andw-u = w-uy—w-u_ >

0 and thating, 1) (0" — 9"~) = 9"+ — 0"~ = in, (0" — 9") if Au = 0andw -u = 0. The
conclusion follows by a straightforward Groebner basisuargnt because a Groebner basis of
Ig(w) with respect tq0, —1) (resp. ofl 4 with respect tav) is given by a set of binomials with the
same form as the ones defining the ideal. Q.E.D.

Recall that thendicial polynomial(also calledh-functior) of H 4 .,(/5) along7 is the polyno-
mial b(s) € Cls] such that(6;) is the monic generator af..(H 4 ,,(5)) N C[6;] whered, = t0,.
Moreover, we have by [30, Th. 3] that forandw generic, the indicial polynomial off 4 .,(3)
alongT'is

)= J[ (s —ws™) (10)
(9%,0)ET (M)
whereM = in,(I4), T (M) is the set otop-dimensional standard paicf M (seel[26, Sec. 3.2])
andv = 59 s the vector defined ag = k; € N fori ¢ o andAv = 3, which is also an
exponent ofH 4(3) with respect tav (see[[26, Lemma 4.1.3]).

Definition 5 We say that a (generic) vectar € Q" is a (generic) perturbation oy € Z", with
respect ta4, if there existsy’ € Q™ such thating(/4) = in,(in,(Z4)).

Remark 7 If w is generic thering(/4) is @ monomial ideal and it is well known that its degree
equals the cardinality of its set of top-dimensional staddazairs 7 (ingz(74)). Moreover, for very
generic € C? there are exactlyleg(ing(/4)) many exponents df 4(3) with respect tau; see
[26, Sec. 3.4] and([8, Prop. 4.10].

Lemma 4 Let3 € C? be very generic and € Z". There is a generic perturbation € Q" of w
such that for any exponente C™ of H 4(3) with respect tav the series), (z,t) = t~“¢,(t"x), for
o = (t"ay, ..., t""x,), is a solution otM 4 ,, () of the formy, (x,t) = >~ fm(2)t7T" €
10577 oy Withy = wv — a and fy(z) # 0 for somep € C". -

16



Proof. Sincef is very generic, for any generi¢ an exponent of H 4 (/) with respect taw
can be written as = 5(@) where(d%, o) is a top-dimensional standard pairiof;(1.1), seel[26,
Sec. 3.4]. In particulag € @477, k = (k;)izr € N*~¢, Av = fandv; = k; € Nforalli ¢ o.

The seriesp, () is either a holomorphic solution or a Gevrey solution/ef4(/5) along a
coordinate subspacg C C™ at any pointp in a non empty relatively open sét, in Z (see
Theoreni{®2 and [10, Th. 3.11] for the details) and sificis very generic we have that, =
(—B,k+NB,)NZ".

The expressioff (x,t) := 7"V, (" xq, ..., t""x,) = t*" Y, (z, t) (resp.u,(x, t)) formally
satisfies the equations definioéf 4 ., v (5) (resp. M ,,.o(5)). We will prove that we can write
flz,t) =", <0 fm(x)t™ and that it is a Gevrey series alofigC X. Recalling the expression of
¢, @) it is enough to prove that for all € N, \ {0} we havewu € N and that the coefficient of

t"in f, 1. e. .
fml®) = mf} “

u€E Ny, wu=m

iS a convergent series in an open neighborhood of seraeC”, both the neighborhood and
independent ofn.

We can take a generic perturbatione Q™ of w of the formw = w+eewithe = (1,...,1)+
¢'w' for e > 0 ande’ > 0 small enough and’ € Q" is generic.

Take anyu € N, \ {0} and let us prove thatu > 0. Sincev is an exponent off 4(/5) with
respect tav we have by[[26, (3.30)] thatu > 0. Hence, since last inequality holds for- 0 and
¢’ > 0 small enough we have thatu > 0. Thus we have thabu > 0 for all w € N,. Notice
that whenwu > 0 for all w € N, \ {0} then the sefu € N,,wu = m} is finite and hence
fm(x) is clearly convergent. In generdly € N,,wu = m} is not finite, but we will see that
fm(x) is still convergent at some poipte C". SinceN, = (—B,k + NB,) N Z" the set{u €
Ny, wu = m} is a finite union of shifted copies of the formi(i) = u(i) + (32 ¢,.up, -0 Nbj) N Z"
where{b; : j ¢ o} is the set of columns aB, andu(i) € N, satisfieswu(i) = m. The series

[V
(v + ul,,
Sincef is very genericnsupp(v) = (), and the convergence of each sefes is equivalent to
the convergence of the Seri;e@‘“(i) Zue—u(i)—i-N(i) %{L’u Thus, itis enough to see that for any
columnu of B, such thatvu = 0 we have thaju| = |u,| — |u_| > 0. Notice thatvu = 0 implies
0 < wu = €(|u| + €w'u) and sgu| + €w'v > 0. Hence, since this holds fef > 0 small enough,
we have thatu| > 0. We have proved that is a formal solution of\ 4 ., ..,(3) along7" and it is
clear thatfy(z) = =¥ + - - - # 0. From the expression of thg,,, and [10, Th. 3.11] any,,(z) is
convergent at any point ifiv € C" |0 # [[,., @i, |z;] < R|xf"1“j| for j ¢ o and|wb;| = 0} for
someR > 0. Q.E.D.

Letw € Q™ be a generic perturbation af € Z™ as in the proof of Lemmia 4.

fm(z) is convergent if and only if all the serigs,.(z) = >_,c v xVT™ are convergent.

1€0

Lemmas If f(z,t) = > o fn(z)t7*™ € 0%z, is a solution ofM 4 ,, () for somey € C,
p € T, with fo(x) # 0, then:

(@) t*f(x,t)is asolution ofM 4 ,(3).
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(b) Forall m > 0, f,,(x) is a holomorphic solution aM 4, (3, « + v + m), where this last
module is the hypergeometric system associated with theaxmai, and the parameter
(B,a+v+m).

(€) b(a + ) = 0, whereb(s) is the indicial polynomial ot/ 4 ,,(5) alongT'.
(d) If 5is very generic then + v = wv for some exponentof H (/) with respect tav.

Proof. The proof of (a) and (b) are straightforward. Let us prove @Y (a) and using [26,
Theorem 2.5.5] we have that, ) (t* f(z,t)) = fo(z)t*™ is a solution ofin, (H 4., (3)).

Recall by definition ofb(s) that (b(6;)) = in,(Ha.,(8)) N C[6:] wheref, = td,. Thus, the
differential operatob(6,) annihilatesing ) (t* f(z,t)) = fo(x)t**. This implies, using for ex-
ample [26, Lemma 1.3.2], th@t= b(0;)(fo(x)t*™) = b(a + 7) fo(x)t*"7 and this implies that
b(a+7) =0.

Let us prove (d). By (b) we have th#(z) is a holomorphic solution off 4, (3, « + 7) and
thus it can be written as a Nilsson series at the origin wisheet to a vectaf that is a perturbation
ofe = (1,...,1) (seel[26],[25],[[8]) and, in particular, it makes sense tosider the initial form
of fo(x) with respect t@. On the other hand, using Lemia 3, we have thatl,) + (A6 — ) C
in-(Ha,(3)) annihilatesfy(z). Sincef is very genericin, (14) + (A0 — B) = in_y ) Ha(B)
[26, Th. 3.1.3]. This implies thafy(z) is a solution ofin(_,, ., H4(5) and henceing(fy(x)) is
a solution ofin_g 4 Ha(B) for w = w + ee. Thus, since? is very generidng(fo(z)) = ca”
for ¢ € C andv an exponent off 4(/3) with respect tow. Hence, using (b), we also have that
wv=a+7y. Q.E.D.

Remark 8 Although we assume in this paper th@(tw) is pointed it turns out that in this section
this fact is only used in the proof of (d) in Lemida 5. Howeadruk notice that iﬂ(w) is not
pointed andw is generic thern,, (14) = C[0J], in.(Ha,(8)) = D and sob(s) = 1. Thus, by (c)
in Lemmd_b the modified systed 4 ,, () does not have any solution iﬁOﬁ\T’p forallv € C
andp € T.

Remark 9 Sincew = w + ee withe = (1,...,1) + ¢’ for sufficiently smalk > 0 andé¢ > 0
we have thaing(74) = in, (in.(in,(74))) for e=(1,...,1). In particular,ing(74) andin,, (1)
have the same degree.

Let us denote byim¢ (M, F), the dimension of the space #fsolutions of aD-module)M at
a pointp.

Theorem 5 Assumes € C?is very genericw € Z" anda € C. Thendime(M 4.,.0(8), (’)ﬁ)p =

0 if wv — o ¢ N for all the exponents of H4(3) with respect tav. We also have that

dim(C(MA,w,CE(B)u Z t’yo)qT) = deg<1nw<IA>>

b(a+v)=0

In particular, if w is generic we also have
dim(C(MA,w,uw—m<ﬁ>7 Oﬁ)p =1

for all genericp € T, m € N and any exponent of H 4 (/) with respect tav.
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Proof. The first statement follows from Lemrh 5, (d).

The inequalitydimc(Ma.uw,a(53), Sz {7 Os7)p = deg(in,(14)) follows from Lemma
[, Remark and Remalrk 9. On the other hand, since the diffateperators defining\1 4 ,, ()
belong to the Weyl Algebra we have that any solutipne 3, t’YOﬁ of M4 wa(f)
decomposes as a finite sum of solutions, each of them in a ﬂﬂ%&p Recall by the proof of
LemmdD that any solutiofi tVOX‘T of M 4,w,a() verifies thatn g o) (in1)(f)) = ca’t*~
for an exponent off 4(3) with respect tow. This last fact, Remarkl 7, Remdrk 9 and a slightly
modified version of([26, Proposition 2.5.7] prove thititne(Maw.a(5), Yyasy)zo ' Osilp <
deg(ing,(14)).

Finally, the last statement follows from the second statérard from the fact that if is very
genericw € Z" is generic and andv’ are two different exponents @f 4(/3) with respect taw,
thenw(v — ') ¢ Z. Q.E.D.

Remark 10 Let,(z,t) be the series constructed in Lemma 4 and used in Thedrembislin
the row span ofd then f(x,t) = t*~""4, does not depend anand thus it is a convergent series.
If w is not in the row span ofl then f(x, t) is Gevrey alond” with indexs = r + 1 where

r= max{—— Nu C N, wu > 0}
wu

where|u| = > .u;. On the other hand, as mentioned in the proof of Leriima 4 sinisevery
generic andv is an exponent off,(3) with respect tow thenv is associated with a simplex
o € ®2%7" and there is a basi§b; : i ¢ o} of the kernel ofd such that for alli ¢ o, (b;); = 0
forall j ¢ o U{i} and(b;); = 1. The sefb; : i ¢ o} is the set of columns a8, (if we reorder
the variables so that = {1,...,d}) and in this case we have that, = (-B,k + NB,) N Z".
Thus, more explicitlyy = max{—|bi|/(wbi) . i ¢ o,wb; > 0} where{b; : i ¢ o} is the set
of columns ofB,, |b;| = 1 — |A;a;| andwb; = w; — w, A a; > 0. The proof of this formula
is technical and follows from standard estimates on Gammatfons similar to the ones used in
[L0] to compute the index of Gevrey solutions for hypergadmsystems. In particular, ifv is
a perturbation of(1, ..., 1) thenr is close to—1 and if A is homogeneous then= 0 because
|u| = 0 for anyu € N, and hence in both cases the series is convergent.

4.5 Gevrey solutions modulo convergent series

By Theoren{b, if both € C and3 € C? are very generic theM 4, .(3) does not have any
nonzero solution 'rO)?Ep for all p € T. This is in contrast with the case of the irregularity of
hypergeometric systems along coordinate hyperplaneggvibeany slopes = r + 1 of M 4(5)
alongY = {z,, = 0} and for very generi@ € C? one can construct a formal solutignc OX Vo
of M 4(8) alongY’, such that) has Gevrey index equal to the slope ($eé [10] and Thelorem 3).
However, by the comparison theorem for the slopes [22] aagéversity of the irregularity
complex of a holonomi@-module along a smooth hypersurfacel[24], one knows thatéch
slopes = r + 1 of M, ,..(5) alongT at a generigp € T there must exist a formal series
¢ € Oz, with Gevrey indexs = r + 1 such thatP(¢) is convergent gt for all P € H ., ().
The purpose of this section is to describe Gevrey solutiooduto convergent series of the
modified systenoV1 4 ., (3) alongT whena € C andg € C¢ are very generic. To this end, we use
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the construction of the Gevrey solutions at infinity of thgpggeometric system/ z, (ﬁ, a—1)
as performed in Theorehi 4.

Take X' = C™™! with coordinategz,...,7,,z) andz = 1/t so thatX N X’ = C" x C*.
DenoteT” = {t = o0} = {z = 0} C X'. We can consider for any € C theC—linear map

. . 1—
TW.tVO)ﬂT’p — - VOX,T,,

f= ZmZO fm(2)F™ — T (f) = ZmZO fm(2)[=7 — 1]mt_1—v—m
Wherep = (p17 s 7p77,7 0) 6 T andp/ — (pl’ P 7p77/7 OO) 6 T/.

Remark 11 Notice thatY, is an isomorphism if and only if ¢ Z.,. In such a case we also have

that T (tVOX|T( 1)) _t = 7(9@( s) for all s. Itis also clear thatlo(}",,oq fum (2)t* ) =

[~ 1k Tk(3,m0 fr ()t ™) forall k € N.

Theorem 6 Assumen € C and 3 € C¢ to be very generic. I§ = r +1 > 1 is a slope of

M 4.w.0(B3) alongT then we can construct_vol(conv(0,a; : i € 7)) Gevrey series that are
linearly independent solutions 8# 4 ., () modulo convergent series and whose Gevrey index is
equal tos = r + 1. Herer runs over all the facets ah 4,, such that—%a'nﬂ € H,and0 ¢ 7.
Moreover, the classes module +(<s) of these Gevrey series form a basis of the solution space

of MAw.a(B) N (Og(s )/OXlT( s)), for pointsp € T in a relatively open set of.

Proof. The existence of such facetsis given by Corollaryb. Since%a“nﬂ € H. and
—r =2-—sfors = s+ 1 > 2we have that’ > 2 is a slope Of./\/lg(w)(ﬁ,oz — 1) along
T'" = {t = oco}. Thus, by Theorerl4 we can constrQct vol(conv(0,a; : i € 7) Gevrey series
along7” = {t = oo} with indexs’. Moreover, the classes (ﬁX,|T,( )/(’)X,|T,( s') are linearly
independent solutions o¥1 5, (3, o — 1).

More precisely, for anyl-simplexo C 7 the series constructed are of the fotmfor v =
(v,—1 —k)with Av = g,wv—1—k=a—-1(. e. wv—a =k € N)andvy; € N for all
ie{l,...,n}\o.

Using Remarkl1 we can take (z, t) as the unique Gevrey series aldhgvith indexs = r+1
verifying Yo (v, (z,t)) = ¢5 forv = (v, —1 — k).

We conclude by Remaik L1 that th€_vol(conv(0,a; : i € 7) seriesy,(x,t) constructed
are Gevrey series with index= s’ — 1 = r + 1 whose classes modu(@iﬁ(<s) are linearly
independent. Moreover, it can be checked that they areigofubf the modified system modulo
Ox/r by using the fact that their images by the morphi$gnare solutions OJ'MA(w (B,a—1).

Last statement follows froni 7], [22] and [27]. Q.E.D.

Example 3 TakeA = (1 35), w = (0,1,1) and3,« € C. We have thafg(w) = (0y — 103,05 —
td}) and H 4 ,0(8) = DI + D(2101 + 31905 + 52303 — B, 2205 + 303 — t9; — ). Note here
that /3, is the binomial ideal generated by the operatorsih (3). Thigue slope of\/ 4 ., ()
alongTiss=r+1=5 since—i’cﬁ belongs to the line passing through a; ando = {1,3} is
a facet O@%) if and only ifr > 4.
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The volume ofr is one and following the proofs of Theoréin 6 and Thedrem 4 netalee
v = (B — ba, 0, @) which satisfies the conditionsy —a =k =0 € N,v, =0 € NandAv = .
We get that the series

%(93, t) — Z [5 - 5(1]3m2+5m'3 xf—Ba—Smg—EJmaxgnz x§¢+m3tm2+m3
ma,ma+m3>0 [Oé + mg]mBmz'

is a Gevrey solution (modulo convergent series)of,, () alongT with indexs = r + 1 = 5.

5 Borel transformation and asymptotic expansion

We assume that th®-row span of the matrixd does not contain the vectdt, ..., 1), but the
one of A,, does, whered,, is the matrix with columngi;, 1 < 7 < n (see Subsection 4.2).
This case holds if and only if the weight vectoris in the image ofA” where A is the matrix

1 . 1
intersection of the set of the secondary conedofee[29, Ch. 8].

Solutions of this case can be analyzed by utilizing the Boegisformation and the Laplace
transformation.

We review here some basics of the Borel summation methodwircrequire in the following
(seel[3] for the details). Let us consider the formal expogss

( ar ot dn ) and it is not in the row span of. In other words, the weight vectar lies in the

- f: [t e vC[)] (11)
(=0

wheref, # 0 and~ € C. Solutions constructed in Theorérn 5 are of this form. If defficients
satisfy

|fe| <CKT(1+((+7)/rk)  (£=0,1,2,---) (12)
with some positive constants, K, x, andRy > —« (in (I9) this last condition will be relaxed),
then the formal Borel transform (with indes} defined by

£+~/

ZF 1+ ( f+7)/1—z)

(=0
is the product of-” and a convergent power seriesrat 0. In addition to [(I2), if

(i) the functions, [f] can be analytically continued to a sector
S(6,6) = {re"; 0/ — 0| <é/2,r >0}
of infinite radius in a directioff € R with an opening anglé > 0, and

(ii) the analytic continuation OBR[ f] satisfies the growth estimate

Bﬂ[f](T)) < ¢ exp [CQ‘TW (13)

in S(#, 9) with some positive constants, c; > 0,
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then we sayf is k-summable in the directiofy and define the-sum (or the Borel sum with index
k) of f by the Laplace transformation

0

SII(E) = LB.A(E) = / T e B (e ), (14)
where o
d(/t)" = ’Wtﬁ dr.

Remark 12 Because of the growth condition (ii) BL[f], the Laplace integraf14) converges if

satisfies
-

R [(;H — el > 0. (15)

Since

R [GH — ol = H { cos k(6 — argt) — calt|")}

(note thatarg 7 = #), the Laplace integrafl4) converges in
{t; cos [r(argt — 0)] > cat]"}. (16)

The region(@18) has infinitely many connected components. Here and in wHatvi®we specify
one of them by imposingargt — 0| < 7/(2x). Since we can varyrg 7 in (14) slightly, we
conclude thatS[f] defines a holomorphic function in

U {t; cos[r(argt — 0)] > caft]”, |argt — '] < 7w/(2r)}.
|07 —0|<5/2

Therefore we can find > 0 andw > 7/x such that theS[f] is holomorphic inS(6, @, p) :=
S(0,w) N{t; 0 < |t| < p} (cf. [3 the first paragraph 0§2.1]).

Theorem 7 If f is r-summable in a directiod, then f is a Gevrey asymptotic expansion of its
Borel sumS|f|(t): For any closed subsectdt of S(¢, w, p), there exist€”, K’ > 0 for which the
inequality

=2

S = ) fet!

4

< C'(K)N|¢|" T (1 + N/k) (17)

Il
o

holds inS for N € N.

Proof. Here we give a sketch of the proof. Sek [3, Th. 1] for the tetai
It follows from the relation

6

€00 Vi Kk—1
thr = / e~ (/0" m M ar (= LBt
0 L1+ {+~)/k) tr
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that the remainder of the expansion becomes

N-1
S =) fet™ (18)
(=0
ei9.00 N-1 HTH_I
_ —(r/t) L4y dr.
/0 { ZT(1+ f+7)//—€)7 } T

Since

] A N-1 £ .
TN+ {B“[f](T) B ZZ:; D1+ (+7)/kK) a }

is holomorphic in some neighborhood §f(which includes the origin) and satisfies the growth
condition [I3) inS with appropriate constants andc,, the righthand side of (18) can be estimated
by the righthand side of (17) multiplied b”. Q.E.D.

Inequality [17) is also known to be equivalent to conditi¢ipand (ii) stated abovel(]3, Theo-
rem 1 (p. 23)]).

The Borel summation method may be also applied to the case whe

v¢€kZ and (+~v¢& —kNyy for (e N. (29)

We can define the Borel transforify[f] in the same manner as before. In this last case, however,
the Laplace integral (14) may not convergerat 0. Therefore we modify the definition of the
Borel sum to

1 — e—2miv/k e

~ 1 K 5 d
SO = LB = 1 [ BN (20)
Fri@
with a path of integratior',,, which runs fromoo alongarg { = k6 — 27 to some point near the
origin, takes & radian turn along a circle with the center at the origin, aodggback to infinity
in the directionarg ( = x#. When condition[(19) is satisfied afith > —x, then [20) coincides
with (I4). The Borel suni(20) also satisfies the same pragseas previously defined (14).

We apply the Borel summation method to the Gevrey solutiorstacted in Theoreid 5. Our
main result of this section is

Theorem 8 We assume that tifg-row span of the matrixl does not contain the vect¢r, 1, ..., 1)
but that the one ofi,, does. We also assumigo be very generic.
Let
Z Cy()t™ (21)

be one of the formal solutions of the mOdIerd hypergeomsegrstemH 4 ,,(/5) constructed in
Theorenib and + 1 be the Gevrey index af(z,¢) alongT. We also assumey ¢ Z. Then the
formal solutiony(z,t) is 1/r-summable (as a formal power seriestnin all but finitely many
directions for eache € U whereU is a non-empty open set in thespaceC™. Furthermore its
Borel sum determines a solution of the modified hypergedersststenyd 4 ., (5).
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Remark 13 Under the assumption of Theorém 8,

Sp— (22)

holds for any: ¢ o, where{b; : i ¢ o} is the basis oKer A given in Remark10. Therefore if
u € Ker ANZ", thenrw - u is an integer.

Remark 14 The condition thatA4,, contains(1,1,...,1) is assumed so that the Borel trans-
formed series satisfies a regular holonomic sysfg&). Hence, the growth condition (ii) of the
Borel summability is satisfied because solutions of regatdonomic systems satisfy a polynomial
growth condition. Without this assumption, things becorneemomplicated. See also Sectidn 6.

Proof.(of TheoreniB) First of all, the open sdt in the theorem can be chosen as follows.
There exist constants;, ¢;, p;, m such that the seriesg(z, ¢), which will be defined in the proof
below, converges whefr, . .., z,,, () belongs to the non empty open $€t= W' N (N}_, (z; #
0)) wherelV’ is defined by the inequalitiegj ¢ijlog |x;| +¢;log [C| < p;, fori=1,..., m. Such
constants exist becausg;(z, ¢) is a hypergeometric series which satisfies a regular holamom
A-hypergeometric system ([14], [26, Section 2.5]); see &sthcoming Lemmal7. Since only
non-negative powers af modulo an exponent appear iz, we may assume that > 0 for
1 = 1,...,m. We may choose a non empty domé&inC C" with compact closure such that
Ux{CeC|0<]|¢| <e} ¢ W forsomee > 0.

To study the analytic properties Bﬁ/r [¢], it is convenient to use

Z T(f-w (23)
t=2z"
=0

Sincet 7y (x,t) is a formal power series %, »~"p(x, z) does not contain any fractional
powers inz (cf. RemarKIB). Then we have

o(z,2) =

A N C (ZIZ') +7) r
[]$<::%;r1+rw+7»<é = By (@, ¢"). (24)

In what follows we simply writep 5 (z, ¢) (resp./z(z, 7)) instead o3, [¢] (, ¢) (resp.Bi . [V] (z, 7).

Lemma 6 Assume conditiold) holds forx = 1/r. For the power series given in(23), we
have

R 0 R
Ocon = Bil0.g] and 22 = B[y,

¢
Proof. The first relation follows from
8@ B = r(l+y
;:F1+r ))(“7)C
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We also have

9¢5

22 (w.0)

- C (‘T) r(l+v)—1
; T(1+ i(ﬁ + 7))7‘(54-7)( o

Cg(l’)
< T(r(£+ 7))

Z C«é(x)zr(é—i-'y)—l
=0

Cr(f—i—’y)— 1

NE

o~
Il

~

=B [z_lap] : Q.E.D.

(5N

1

Lemma 7 The formal power seriegz(z, ¢) given in(24) formally satisfies the hypergeometric

systemH 4, (55 ), where
_ (A O (B
Ap = (w —1/7“) , Bp= (0) :

When the matrixAz contains a rational entry, we regard thanodule generated by the col-
umn vectors as the lattice to define tHehypergeometric system. For example, whép =

( 1 i) _5/2 ) , Be = (B,0), the lattice isZ x Z/2 and the hypergeometric system is nothing
13 0

2 2 -1
Proof. It follows from Lemmd_6 and relatiortsy = 0;1)|,—.», 0.¢(z, z) = r(0:1)) 1. that

(oo (Bn-):

j=1 7j=1

=B (Zn:%@j—5>w ] =0

but that forAz = ) andgg = (3, 0) for the latticeZ?.

i=1

and
zn:we-—}e =B - zn:w-&—le
Vi r ¢ | ¥YB = P1 - A%} r z | P
= Bl (Z w;bt; — 9t> P
L \i=1

Now we take vectorss = (uy,...,uni1)7,v = (vi,...,0,51)7 € N* satisfyingAgu =
Apgv. By its definition, we obtain

=0.

t=2z"

1 n
;(Un+1 — Upy1) = lei(ui —v;) € Z.
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Without loss of generality we may assume one.@f; andv,,,; is zero. Under this assumption,
un+1/7 @andv, 1 /r are non-negative integers. Furthermore

1
Wiy + A Wplly — —Upyl = W1V + 00+ Wyplp — —VUnyl
r r

< WU+ F Wplly + —VUpg1 = W1V + -+ -+ WpUpy + —Upy
T T

holds. Therefore

Uy U1 Uy U1
: eN""' and A =A
Up Un Up Un
Vps1/7 Upy1/7 Uny1/T Upy1/T

Hence
(31“ X ~8;j”82‘”“ — o .577;7182)%1)@3
=B [(6?1 Y R o _aznz—vnﬂ)go]
= [;’1 [z_(un+1+vn+1) (8111 .. .a;LLnZUnJrl _ 31)1 - a;in Zunﬂ)(p]

— Bl [Z—(U7L+1+Un+l) (8111 . azntvn+l/7' _ 81)1 R a;}lntu”Jrl/T)w
0

t:z"]

Here we have used the second relation of Lerhima 6. This coesptle¢ proof. Q.E.D.

Under the assumption of Theordmh B, (05) is regular holonomic[18]. Therefore, up to
an non zero constanis(z, ¢) is nothing but a GKZ series solution &f 4, (55), andyg(z, ()
converges neaf = 0 if z € U. It also follows that the restriction op(x, () to {z = 2°},
which is a function of¢, satisfies some linear ordinary differential equatiof’) of Fuchsian
type. LetSing (2°) be the set of singular points @f(z°) except the origin and infinity and define
O(2°) = {argu; u € Sing (2°)}. For anyd € R with 6 ¢ ©(x) we have,

(i) ¢r(2° <) can be analytically continued to a secfiy), §) with some smald > 0 since there
is no singular points 0f(; arg ( = 0}.

(i) The Borel transformpp (2, ¢) has polynomial growth with respect toin S(6, ) since a
singular point ofE(z°) is a regular singular point.

Hence we conclude that(z°, z) is Borel summable (i.e., 1-summable) in the directioBince
O(2?) is a finite set for each fixed’ € U, p(2Y, 2) is Borel summable in all but finitely many
directions for each fixed” € U. We can consider a non empty open suliget. U such that the
closure ofU’ is compact and included i&i. Then the complement iR of the unionU,.c;»O(z)
contains an open interval. So for afyn this complement we can defiddy](x, t) using|0, )
as a path of integration for any € U’. We may also avoid if necessary the discriminant of the
leading term of the linear ordinary differential operatdfr). We still write U’ = U.

Because of the relatio (R4, is 1/r-summable if and only ifp is 1-summable. Therefore
¥ (x,t) is 1/r-summable in all the directions in an open interval for alih®z € U.
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Finally we show that the Borel sum eaf(x,t) is a solution of the modified hypergeometric
systemH 4 ,,(/3) to finish the proof of Theorei 8. Because of the relation

S[Y]

Lemmd® and Lemnid 7, it is enough to prove (we omit the diracijo in the following.)

= L9, By = £ Ble] = Slel,

t=2z" t=z

Lemma 8
9 dop

a5 Lilps] = L1 [ a—g} . 2 Lilps] = L {— :

Proof. To begin with, we give a proof in the case whefr~) > 0 ory = 0. By differentiating
under the integral sign we obtain
L d<

0 _ [T </
clenl = [ S onn 0% - [ e Fonn 0T

__ [T 2 ey dc

—— [ ) enle. 0%
By integral by parts, this equals

_ —Uz.‘PB(var A dc

I ] ot

z z

Since the boundary terms vanish (the boundary term comamy infinity vanishes because of the
growth estimate o ), the first relation follows. In a similar manner, we obtain

Opp| _ [T 2008 00
El[ac}‘/oe ac @97

_ [e—azMr 1 [T e enno)
0

z =0 %

dg
o
The growth estimate ops at infinity and the behavior apz near the origin guarantee that the
boundary terms vanish. This proves the second relation.

WhenR(rv) < 0 and~ satisfies[(I9), we usé (R0) as the definition of the Borel sumd the
same argument works. In this case all of the boundary termmedoom infinity and they vanish.
Q.E.D. This finish the proof of Theoremh 8. Q.E.D.

In the preceding proof, we have shown that(x, 7) is of polynomial growth inr for z € U.
Therefore, for an arbitrarily small positive we can find:; > 0 for which (13) holds withf = 1,

r = 1/rfor all x € U after eventually replacingy by a smaller open set. Therefore, the condition
(@8) guarantees the following Corollary.

Corollary 6 The Laplace integra{l4) of the Borel transform)z(x, 7) converges inS(6, rr) if
0 ¢ O(x). In particular, we can set = 1 in the expressio|[¢](z, t) of the Borel sum of(x, t)
if ©(x) does not contail. The seriesS[¢)|(x, 1) gives a holomorphic solution df 4(3) and the
formal series)(x, 1) also expresses the asymptotic expansion of the sol§tiof{z, 1)) along a
curvez(t) = (tv1a? ... t*r2%) ast — 0 forz® € U. That is

S (t),1) = dn(x(t), DI < CKNEYT(1+7N)

for all N > 0 for some constant§' > 0, K > 0, whereyy (z,t) := >,y Co(z)t".
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Remark 15 A comment on the statement of previous Corollary. A pricei tbnstants:, ¢, of
the estimateI3) for ¢ (z,t) andx = 1/r depend on: € U. Sincepp(2, ¢) is holomorphic at
(2°,0) for 2° € U, we can find uniform constants, ¢, for x in a small neighborhood of each
2% in U with § ¢ ©(2°). Notice also that, from Lemma 4,(z,t) = ¢,(t“z) = ¥(t*x,1) and
thaty(x, 1) = ¢,(x) is a (possibly Gevrey) solution éf 4(5). We also have the following formal
equalities:yp(x, 7) = Yp(t™z, 1) andS[y|(z, t) = S[¥|(t*x, 1).

Then, fixingz? € U, the estimatdl7) evaluated at point$t“2°, 1) proves that the formal
expression)(t“z?, 1) is an asymptotic expansion of'S[¢](t*z°, 1) whent — 0.

Remark 16 Since the singular pointSing (x) of E(z) depend onz, one of them may meets the
path of integration of the Borel sum if moves. In that case we obtain the analytic continua-
tion of the Borel sum by deforming the path of integrationisTi& closely related to the Stokes
phenomenon.

Example 4 Put A = (1,2). Then, the image ofi” is R?. Let us takew = (0,1). A formal
solution of the modified systeifi 4 ,,(3) is

:xﬁi [ﬁm]z'm (i—%)mtm
=0

If 3 ¢ N, the Gevrey index = r + 1 of ¢(z,t) alongt = 0iss = 2. We setz = ¢ and
oz, z) = U(x, ) The Borel transfornyp s is

i S0 e (B0 R /2 (-5 )21 ).
The domaan may be defined by (x,zs) | — 2log|z1| + log |z2| < —1,|z1] < 1}. The series
pp satisfies thed-hypergeometric system witdg = ( (1) i _01 ) and 3z = (5,0)T. The
equationE(x) = E(xy, ) in the proof is

[(4$2C2 - xﬁ() (%) + ((—45 + 6)$2C - 9312)% + (52 - ﬁ)%] SOB(% C) =0,

and
Sing (z) = {21%/(422)}, O(z) = {2argz; — argas}.
The Borel sum of)(z, t) is
eie-oo
B[ R (2, (<84 1) /2, L A o)
0

and, for eache € U, ¢ (and hence)) is Borel summable in all directions except the angjle
2argry — arg xs.

The serieg)(z, 1) can be regarded as an asymptotic expansion of a solutioreddribinal
A-hypergeometric system fot = (1,2) and 3 from (I17) and Corollary16. In other words, we
have

60

o -3 —B+1  4dzeT
xf/o e Ty Fy (;, BQ 1 xj )dT (x, 1),

which is a well-known asymptotic expansion.
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Example 5 PutA = (1,3,5,6). Then, the image ofi” is
{(’LUl, Wwo, W3, w4) | Wo — 31113 -+ 21114 = 0,’&U1 — 51113 -+ 4w4 = 0}

Let us takew = (—4,—2,0,1) in theIm A”. Then, the initial idealn _,,.,,(H4(3)) is generated
by {0.,, s, 0r, } @andb; + 36y + 503 + 66, — 3. The rank of this system isand the solution of
this system is spanned hy/. We extend this solution to a series solutionfbf(3). The solution
can be written as

Vo vt —1 —-2) _
o= ¥ e =l O e ) )

u€Ny

wherev = (3, 0,0,0). The corresponding series solution of the modified system is

BB-1)(5-2)
1!

The Gevrey index + 1 = 1/x + 1 of the series), (z, t) with respectta = 0is1/5+ 1if gis
very generic, see Remdrk]13. Apply the Borel transforma@dh). The transformed series

Uy (2, 1) = ¢o(t 1, t 220, 25, try) = x?t‘ﬁ‘ﬁ(l + o 3wt - -)(26)

ooy BB-1)(B-2) _ ¢?
e S(F(l— %5) + 1 xl%zF( — §B+2) (27)
—1)---(B-5 —1)---(f—4 4
. (6(5 )9, ay, BE=D-- >x1_5$§) m )

satisfies thed-hypergeometric system associated to the matrix

1 3 56 0
AB_<—4 -2 01 —5) (28)

and g = (B,0). It follows from the condition on the weight vectar that thisH4,(5g) is
a regular holonomic system. The series| (27) can be obtaipedking the(—u, u)-initial ideal
of H,,(/p) with respect to the weight vectdw, 0) and (0,0, 1,2,0) as the tie breaking weight
vector [26, Chapters 2,3].

The kernel elementof Az as a map fronR® to R? is parametrized as

3 3 b}

1
El = 63 + 564 — §€5,€2 = —2€3 — 564 + 565

Since we sum the series dn > 0, i = 2,3,4,5 and/ € Z°, these lattice elementscan be
parametrized as

65:2m+ep,€4:2n+ep,€3:k,€2:—2/{:—5n+m—2ep,€1:k+3n—3m

m,n € Nand2k + 5n + 2e, <m
wheree, = 0 or 1. Let us introduce the following hypergeometric series

Lk _2n+ep Z2m+ep

Z <324 5
0.k o Zep (0)kt-3n—3m (—2k — dn +m — 2e,) k(21 + €,)!(@) 2m+e,
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depending on an integey. We denote it by,a4(a, b; 23, 24, 25) Whene, = 1 and byFiye, (a, b; 23, 24, 25)
whene, = 0. Then, the serie§ (27) is expressed as

B ,—48/5
216 — 3/2 —5/2 -3/2_1/2
17}7(1’13722373,371/ T /x4,x1 /xz/ ()

L(1-358)

where A A
F(Z) - Fodd(l - gﬁaﬁ_‘_ 1,2’) + Fjeven(1 - 5675 + 172)

It follows from (17) that the serie§ (26) is an asymptoticaxgion of

e¥oo B._—48/5 4
_(r/8)5 1T _ 3/2 —5/2 —3/2 1/2 \OT
/0 e~ (/) 71"(11 — %5)F(x1x2 2x3,xl/ T /x4,x1 /xQ/ T)—t5 dr.

6 Borel transformation revisited

In this section we assume that t@erow span of the matrixl does not contain the vectr, . .., 1)
and we see that by studying the irregularity of the modifiettypergeometric system alorig
we can give an analytic meaning to the Gevrey series sokibbihe A-hypergeometric system
M 4(3) along coordinate varieties constructed(in/ [10]. More welgi we prove (Remafk 20 and
Theoreni D) that these Gevrey solutions\df, () are asymptotic expansions of certain holomor-
phic solutions ofM 4 (/5) when some conditions are satisfied.

Let us start with an observation about the assumption of feme@ that the-row span of the
matrix A does not contain the vect(r, . . ., 1), but the one of4,, does. Since adding to a linear
combination of the rows afl does not change the ide&l, ,, (/) if we accordingly change, we

can assume without loss of generality that A(1, ..., 1) for some non zera € Z. On the other
hand, for\ > 0 the modified systemM 4 ., »(5) is regular along” by Propositioh R and Remark
2. Thus, we may further assume that= (—=x, ..., —x) for somex € Z-,. For thisw each

of the formal series constructed in the proof of Theokém 5@esrey series alon@ with order
s =r+1=1+1/x multiplied by aterm”, v € C. This sort of formal series solutions alofigpf
the modified systenM 4 ., () includes series of the formm ¢ (t“ x4, . . ., t*“ x,) whereg(x) is
a Gevrey solution ofM 4(/3) along a coordinate variety of low dimension which is not Gevrey
along a coordinate variety of greater dimension (see thef mfoPropositior B).

Recall that a vectar is said to be associated with a simpteit v = v* is such that; = k; € N
foralli ¢ o andAv = (. Let us also recall thah 4 is the convex hull of the columns of and the
origin while conv(A) is the convex hull of the columns of. We have the following

Proposition 3 Takew = (—«x, ..., —k) with x € Z-, and assume that is very generic. Let be

a (d — 1)-simplex ofA andv a vector associated with. Then, up to multiplication by a term,

for somey € C, the serieg ¢, (t"*'xy, ..., t" x,) is a formal power series along (and in such
a case, it is a Gevrey solution @# 4 ,, .(3) with indexs’ = ' +1 = 1 + 1/x) if and only if 7 is

contained in a facet afonv(A) that is not a facet of\ 4.

Proof. From [10, Theorem 3.11}), is a Gevrey solution of\ 4(3) alongY = {z; = 0 :
|A ;| > 1} with orders = r + 1 = max;{|A'a;|}. In fact, for any simplex of A we can
constructvol(o) linearly independent Gevrey solutions as before [Bhark 3.6]).
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When g is very generic these series have Gevrey indexr + 1 = max;{| A, 'q;|} and they
are of the formy, for v associated witlr.
The serieg™ ¢, (t" xy, ..., t""x,) is annihilated byH 4 ,, () becausep, is annihilated by
H 4(B). Moreover, monomials appearingdn are of the form:*** for v integer vectors in an affine
translate of the positive span of the columns of the magjx Thust=*¢, ("' x4, ...t x,) is a
formal series alond’ (up to multiplication byt*~™?) if and only if all the exponents dfbelong to
a—wv+N. This happens ifand only ifu € N for all the columns: of B,. Forw = (—k, ..., —k)
with x € Z-, the scalar product af and a column of3, is given byx(|A 'a;| — 1) fori ¢ o and
this product is nonnegative for alkt ¢ if and only if |[A'a;| > 1 for all i ¢ o. This is equivalent
to say thats is a simplex ofA such that all the columns ot are either in the hyperplang,
passing through the columns dfindexed byo or in the corresponding single open half space not
containing the origin. Equivalently; is contained in a facet afonv(A) that is not a facet of\ 4.
Q.E.D.
The Gevrey series solutions constructed_ in [10] are of the e, for v associated with a suit-
able simplex of A. In order to interpret some of these Gevrey series as an dsfimgxpansion
of a solution ofM 4 (/) via the modifiedA-hypergeometric system, we consider a veator 7"
with the following coordinates:
_ [ [ det(A)[(JAS sl = 1) if (AT ey > 1
W= { 0 otherwise (29)
up to addition with a linear combination of the rows 4f Notice that whenr is contained in a
facet ofconv(A) that is not a facet of\ 4, this vectorw verifies the assumptions of Theorém 8.
More precisely| det(A4,)|(1,...,1) +w is a linear combination of the rows ¢f.

Remark 17 Notice that forw given by [2B) all the columng; of the matrixﬁ(w) except for
a,+1 are contained in the union of at most two hyperplanes. If vke @oordinatesy, y,.1) in
R? x R, then the hyperplangy,,; = 0} contains all the columng; such that A 'a;| < 1 and
the hyperplang(|A;'y| — mydﬂ = 1} contains—|det(A,)[a,+1 and all the columng;
such that|A>'a;| > 1. In particular, the intersection of these two hyperplanestains all the
columnsz; such that A a;| = 1 (for example, all the columng for i € o). We also notice that
the points{a; : i = 1,...,n} U {—|det(A,)|a,+1} belong to the same hyperplane if and only if
o is contained in a facet afonv(A) that is not a facet of\ 4. Notice that ifo is contained in a
facet of A, andv is associated witlr, then the corresponding given by [(29) i®) and ¢,(z) is

convergent.
In particular, Remark 17 proves the following:

Lemma 9 If o is a(d — 1)-simplex ofA not contained in a facet ak 4 andw is given by[(ZP) then
s =1 +1=1+1/|det(A4,)| is a slope 0fM 4, .(3) alongT, for anya.

Proposition 4 Leto be a(d—1)-simplex ofA not contained in a facet ak 4 and considetw given
by (29) and3 very generic. For any vectar associated witlr we have that, up to multiplication
by t*~*v, the series)(x,t) = t~“¢,(t" x1, ..., t"x,) is a Gevrey solution oM 4, (3) with
indexs’" = "+ 1 = 1+ 1/| det(A,)| alongT at any point ofl’ N U, r for someR > 0, where

Uy = {(x,t) € C* x C: |z;t%] < Rlza" “|if j ¢ o and|A ' a;| > 1} N {z; #0: i € o} .
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Proof. By [10, Theorem 3.11] we have that(x) is a Gevrey solution oM 4(/3) with index
s =r+1=max;{|A'q;|}) alongY = {z; = 0: |A'a;| > 1} atany pointofy’ N {z € C" :
|z;| < R|xf"1“j| if j ¢ cand|A'a;| =1} N{x; #0: i € o}, for someR > 0.

It is clear from [29) thatv € N™ andw; = 0 for all j € . Hence, for any exponent+ «
in the seriesy, (x) the corresponding exponent ofn the series)(z,t) is —a + w(v + u) =
—a+ > e, wi(vj +u;) € —a+ Nbecause; € Nforall j ¢ o andu € N,. We conclude the
proof by using Remark10. Q.E.D.

In analogy with Sectiohl5 we denote;(z, 7) = 5’1/7«, [¥](z, T), which defines a holomorphic
function at any point i/, ; for someR > 0 by Propositioi4. We also denotér, 2) = 1(xz, 2™)
and henceos(z, ) = Bi[p](z, () = ¥p(x, ") is convergent at points in the open set

;’R ={(z,() eC"xC: (= ldet(4o)] (x,7) € Uyr} (30)

Moreover, the seriegz(z, ¢) is a holomorphic solution off 4, (85) (in the variablegz, ¢)),

where
Ap— (A 0 ) By (5) with 5 = | det(A,)].

w —K (0%

Remark 18 For w given by [(29) the hypergeometric systém,(55), can have slopes along
¢ = oo for all 3,a € C (see Examplé]6). However, see Proposifibn 5 where we poina ou
property of the solutiog(z, ().

Example 6 Let us consider the matrix
2 01 3
A= ( 01 1 2 ) ’

B € C? a € C,the simplex = {1,3} andw = (0, 0, 0, 3) given by[(ZD). Notice thatet(A,) = 2

and hence
0
Ap = 0
-2

Using Corollary(2 we have that=1+r =1+ 1/3is a slope of\M 4, (55) along( = cc.

O O N
O = O

1
1
0

W DN W

Lemma 10 Assumed; ™" C @47 wheren = {i : [A;'a;| > 1}. Lets C 7 € @, be
a simplex,y € C"*! a vector associated with U {n + 1} (i.e. Agv = Sz andv; € N for all
i ¢ o U{n+ 1}). The series);(x, () converges at pointgr,() € U x {( : |¢| > R'} and for
arbitrarily small ¢, > 0 we can choose, > 0 such that¢z(z, ()| < ¢1 exp(cz|C]).

Remark 19 The previous condition on the4, £')-umbrella holds for anyl x n matrix A with
d=1lorn—1=d.

Proof. Notice thaty U {n + 1} is a facet of thé Az, F')-umbrellaandr U {n + 1} is a simplex
of Ap contained i U {n + 1}. In particular we know thad; is convergent in certain open set.
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Let us denote: = |det(A,)|. If {b;: i ¢ d U{n + 1}}is the basis oker(Ap) associated with
o U {n + 1} then the coordinate sum bfis

] = 0 ifien\o
T —lAS a] + 1 - twsAZte, ifid

Let us denote byb;) 4 the vector given by the firstentries ob,. SincesU{n+1} C nU{n+1} €
o"%! we have thafh;| > 0 for all i ¢ 7 and that the series; defines a multivalued holomorphic
function in the open sef(x,() : |ztda¢lbinr] < R G e n\c}N{z; #0: j € g} for
someR > 0. The fact that C 7 € @47 € @{*"" guarantees that|A;"a;| + 1 > 0 for
alli € pand—|AZ'a;| +1 > 0 foralli ¢ n. Thus, ifi € n\ & the last coordinate of; is
(bi)nt1 = |bi] = (i) a] = =1+ |AZ'a;] < 0whileif i ¢ 7 the last coordinate df can be positive.

However, if(b;),.1 > 0 for somei ¢ n, we still have thatb;| > (b;),.1 = —%ngglai. In
this case there exigt, K, > 0 such that:

> (mh)

m>0

x(bi)AC(bi)nJrl ™ < K, eXp(K2|x(bi)A|

¢ (bz‘)n+1/|bz‘|)

where(b;),+1/|bi] < 1.

On the other hand, if; = k; fori ¢ o U {n + 1}, it can be shown by using standard estimates
on I'-functions (see e.g[ [14, Proposition 1, Section 1[1], [25nma 1] and[[10, Lemma 3.8.]),
that there exist§);, Cy > 0 such that

C’?kﬁmi xzi(kﬁmi)(bi)ACZ(ki-Fmi)(bz‘)nH| B

I Ligsugnsny (Ki + ma) !l

. o
|65(, Q)| < Cylatts Agmotuwads Dln 3"

k+meNn—d
= 5 B(-atwsdz ” Z (C’2\x(bi)A§(bi)n+1D(k’ﬂrmi)
Cl|ﬂf Elﬁc( aTWs 515)/“‘ (
-+ N\ 1bi
igoU{n+1} \k;+m;eN (kz ml)| |

and for alli ¢ o U {n + 1} we have:

(bi)n+1/|bi|) if (b;)ns1 >0
if (bi)nt1 <0

(31)
TakeU = {z € C" : |2®)4| < R;, i = 1,...,n} whereR; > 0 can be chosen arbitrarily large
except wherb;),+1 = |(b:)a| = 0in which case we tak&; < 1/C5. Then, sincéb;),..1/|b;| < 1
if (b;)nt1 > 0, we have the result for for arbitrarily small > 0 if we takec, > 0 and R’ > 0 big
enough. Q.E.D.

Z (Coa)agbolnsa])thitms) - K eXp({{2|02[)j(bi)A|

k;i-+m;eN 1—|Coz i) acbint1

Proposition 5 ¢5(x, () has an analytic continuation to an open set of the féfm S (6, §), where
U is certain open set of™ and S(#,0) is a sector with bisecting directiofi and small enough
openings > 0. Moreover, if®7*" € ®4“" then for arbitrarily smallc, > 0 we can chose
¢1 > 0 suchthalpp(z, Q)| < ¢ exp(c2\§|) for (z,{) € U x S(6,9).
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Proof. To simplify the exposition we will first assume thais very generic.

Notice thatyu{n+1} is the set of (indices of) columns dfz belonging to the hyperplané =
{|AZYy| — mydﬂ = 1} (see Remark17) and we denoteAythe submatrix ofd z consisting
of these columns. Letbe the cardinality of). Recall thatoz (1, () defines a holomorphic function
at each point o/} ;, (see Proposition4 and (30)) and notice that= 0 for all j ¢ 1.

We can write .
aj‘,

_ n

e(@.Q)= D ¢m

meN?—4
wherep,, = ¢n(zy, () is a holomorphic solution ot/ (5 — 3,4, mia;, ), which is regular
holonomic because all the columns 4f belong to the hyperplan# [18]. Let W c C¢*! be
the open set such thal, , = W x C"7 (see [(3D)), so that for ath = (m;)ig, € N"7%, ¢, is
holomorphic iniV.

TakeZ = {x; = 0: i ¢ n} and notice that we can identif§ with a relative open subset of
Z,ie.withiW x {0} = U, N Z.

Recall that the singular locus of a hypergeometric systess dot depend on the parameter but
only on the matrix (seé [1] and [L4]). In particular, singg is convergent iV for all m, we can
consider the analytic continuation of all thg, along the same path starting at a pointihand
avoiding the singular locus of the hypergeometric systeso@ated withA’. Letc = (¢;)ie, €
C? be such that the complex liner; = ¢; : @ € n} N Z (with coordinate() intersectsiV at
nonsingular points off 4. (/3, «). Notice that this intersection is a relative open set in thaglex
line. LetSing(c) be the set of pointg, € C \ {0} such that(z,, () = (c, ) is a singular point
of Ha(B — > ¢, miai, o). Sing(c) is a finite set and thu®(c) = {arg(u) : u € Sing(c)} is
also finite. As we vary: in a small open sdt’’ C C9, ©(c) is contained in a finite union of small
intervals and we can takkesuch that fo® > 0 small enough(f — /2,0 + §/2) N ©(x) = ( for
all x € W’. Hence we can consider the analytic continuation of eggto an open set containing
W’ x S5(0,9).

We have extendedy as a formal solution o}/, , (3, o) alongZ, which is convergent in some
relative open set of/. Thus, by the constructibility of the solutions of a holorioraystem in
the shea’(’))a\z/(’)x‘z (see[24]) we have that the formal solution constructed ivergent at any
point of W' x S(6,0) x {0}, thuspg(z, () can be analytically continued to an open set containing
W’ x 5(0,0) x {0}.

Let us see that the analytic continuationf(z, () satisfies a growth estimate near=
oo. Eachyp,, has polynomial growth since it is a solution of the regulapérgeometric system
Ma (5 — Em m;a;, ). Sinceq, [ are very generic, each,, can be written as a Nilsson series
that converges in certain open set (see €.g. [26, Propo8i#o4]) which is a linear combination of
series of the forng,,,,,) (x,,, ¢) (for some set of exponent$m) associated with simplices in certain
regular triangulation of the matrix®’) with support\V, ., given by integer vectors iker(A’) with
coordinates sum equal to zero. The open set where the Nitsstes converge depends on the
regular triangulation ofi’ that the simplices belong to. We need to use a Nilsson seqEession
of ¢,, that converges in points:,, () = (¢, ¢) with |¢| > R for a sufficiently largeR > 0. Itis
enough to consider a regular triangulatibrof A, and takel” = {c U {n+ 1} : o € T} as
the regular triangulation oft’. By properties of regular triangulations, there is one tagtrian-
gulationT" of A,, such that there existsas above so that |f| > R for a sufficiently largek > 0
then(c, ¢) belongs to the domain of convergence of the sefiefor any vectorv associated with
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cUu{n+1}eT.

The series expression g@fz via substitution of eackp,, by its Nilsson series expansion is a
formal Nilsson series (see e.g. [10, Lemma 6.15]). We knatrithis Nilsson series converges to
pp at points inW”’ x S(6,0) x {0} close to¢ = oco. By Lemmd_10 it verifies the desired growth
estimate.

Notice that the Nilsson series expansionsgf near( = oo also provides an analytic continu-
ation to points with (| big enough and: varying in certain open set " that containgc, 0).

We have considered analytic continuations along pathsagwed inZ. We can also extendpg
by analytic continuation along paths from a pointiin x C"~¢ to a point neat = oo avoiding
the singular locus of\/4, (5, «). If the starting point of the path is close {o,0) the analytic
continuation coincides with the Nilsson series closeé te oo and thus it satisfies the same growth
estimate.

Finally, the paramete$ being very generic, the rank df/4,(55) equalsvol(Ag) since the
set of exceptional parameters has codimension at least, Pf#&m 9.5]. So, we can reduce the
general case (when is not necessarily generic) to the previous one following itteas of the
proof of [26, Theorem 3.5.1] (see also the proofiof [10, Teevb.2. ]). Q.E.D.

Remark 20 Using Propositio b, the results in Sectign 5 also holddoas in (29) instead ofv
satisfying the assumption in Theorgi 8 if we assume theiaoalicondition®’; ™ € &7~ to
hold. In particular, we obtain an analogous version of Ctao}[G. Lets € C" be very generic
and lety, be a Gevrey solution df 4(/3) of indexs = 1+ 1/k > 1 with respect to some coordinate
subspaceZ C C". Leto be the simplex which is associated with, so we have that is also

a Gevrey series of index= 1+ 1/k > 1 with respecttot” = {z; = 0: |A'a;| > 1} D Z.
Note that if we takev associated withr as in (29) thenw(v + u) € N for all w € N,. By
Proposition 4 we have that'y(x,t) = ¢,(t" xy,...,t""x,) is a Gevrey series along= 0 of
Gevrey indexs’ = 1+ 1/k with k = |det(A,)|. LetS[¢](z,t) be thex-sum ofy(z,t) with
respect tot in a directiond ¢ O(x) for x in certain open sel/ small enough with compact
closure. For any closed subsecisiof S(6, o, p) (see notations in Sectidn 5) there exist constants
C > 0,K > 0 such that the inequalityt*S[y](c,t) — t*Yy(c,t)| < CKNT(1 + N/k)[t|NY
holds fort € S, ¢ = (c1,...,c,) € U and anyN € N. Thus, considering parametric curve
x(t) = (e1t™, ..., c,t™) then

Un(x(t),1) = Z Lz A R SN ()

U+ u
UEN, ,w(v+u)<N—1 [ Jus

andS[y](x(t), 1) = t*S[Y](c, t). Note thatr tends to the point’ € Y, with 2, = x; if | A a;] <
1, ast tends ta0.

Theorem 9 Let 3 € C" be very generic and let, be a Gevrey solution off 4(/3) of orders =
1+ 1/k > 1 with respect to a coordinate hyperplané = {z; = 0}. Leto be the simplex
which v is associated with and take associated withr as well. [f®7“"" C &' then for

k = |det(A,)| we have thatS[¢|(x, 1) is a holomorphic solution of\/4(5) and that for each
(r1,..., i 1,Tis1, ..., T,) IN Certain open set a€™1, ¢, () is a Gevrey asymptotic expansion
of orders of S[¢](z, 1) with respect tac; = 0 in all but finitely many directions.
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Proof.- Assume for simplicity that the hyperplanelis= {z,, = 0} andsor C {1,...,n—1}.
We have thaty; = 0fori = 1,...,n — 1 andw, = |det(4,)|(s —1) > 0 wheres = |A 'a,| > 1
is the Gevrey index o, alongY'.

By Remark 20D forr(t) = (ci, ..., cn_1,cat™) Witht € S andc € U, we have the inequality

[S[((t), 1) — ¥ (x(t), D] < CKVT(1+ N/w)|t]

forall N > 0.

Here we writey) (z,1) = anmd\, fm(z1, ..., zy_1)x". Forintegers of the forrV = w, M
with M € N we have that" = (z,(t)/c,)™ andN/k = M(s — 1) = M/k wheres = 1 + 1/k.
Then we get the inequality

S ((t), 1) — ¥ ((t), DI < CUK™ /ea )T (1 + M)l (t)[

for all M > 0. This finishes the proof since we can assume by taken a snogkar set/ that
¢, # 0 and thatc,| > C’ for some constar@” > 0. Q.E.D.

Example 7 PutA = (12 3), f € Candw = (0,0, 1). The vectow = (0, 5/2,0) is an exponent
of the A-hypergeometric systefi, (/3) with respect to a perturbation af and so the series

O(x,t) = du(T1, T2, t13) = Z [ﬁ/%]}irln;n-;?;ra)/? xgnlxéﬁ—m1—3m3)/2xg"bstm3
m1,m3>0,(m1+3m3)E2Z
is one of the series considered in the proof of Thedrem 5 asdiGevrey solution of the modified
systemM 4 ,,(3) alongT" with orders = r + 1 = 3/2. Notice thats = r + 1 = 3/2 is the Gevrey
index ofy(z,t) along T if and only if 5 ¢ 2N (otherwisey(x,t) is a polynomial). Following
Sectiorl b but with our vectar (which does not satisfy the assumptions in Se¢fion 5 buttseof
form (29) for o = {2}) we consider the Borel transform gfwith indexx = 1/r = 2:

o [5/2](m1+3m3)/2 mi _(B—m1—3m3)/2 ms3 _ms
wB(SC,T)— Z ml'mg'F(1+m3/2) ! 2 «Tg 7 )

m1,m3>0,(m1+3m3)€2Z

This series defines a holomorphic function{i:, 7) € C* : |%7%| < €,a1,22 # 0} fore > 0
Ty

small enough and it has an analytic continuation with respee to certain sectorS(6, ). Let us

see that this analytic continuation has polynomial growth.i If p(z, 2) := ¢ (x,t)|,_,1/2 then its

Borel transform (with index)

Z [5/2](”11""37”3)/2 xm1x(5—m1 —3m3)/2xmrs<mrs/2
ml‘mg‘F(l +m3/2) ! 2 3

@B(xa C) =

m1,m3>0,(m1+3m3)e2Z

is a solution of the hypergeometric system associatedAvitand (3, 0) defined orC* with coor-
dinates(z, ¢) = (=1, z2, x3, (). Notice thatpp has fractional powers ig but defines a multivalued

holomorphic function if (z,¢) € C* : |%C| < €,( # 0} for e > 0 small enough.

It is clear thatyp(x, ) is a linear combination of series, (z, ¢) with v € C* associated with
the simpleX 2,4} of Ag (i.e.,Agv = B, v; € Nfori = 1, 3). We have an analytic continuation of
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op(x,¢)toapointinthe open sdix, () € C*: |%<| > R} for R > 0 big enough, which must be
a linear combination of series;(z, ¢) withv € C* associated with the simplég, 4} (this simplex

alone determines a regular triangulation of the 4§ and the set of serieg; with v associated
with {3, 4} generates the space of holomorphic solution$/f, (55) at any point in the open set

{(z,¢) e C*: |%| > R}). We have that the columns Bf; 4 areb, = (1,0,—-1/3, -1/6),by =
(0,1,—2/3,—1/3) and we notice thatb,), = —1/6, (b2)s = —1/3 < 0. This implies that a
series¢s(x, ¢) with v associated witH{ 3, 4} has polynomial growth ag tends to infinity. Thus,

the analytic continuation opz(z, {) close to( = oo also does.
As a consequence, the Borel sumpakith index2 given by

e'?.00

S[)(z, t) = LB (. 1) = / e 0z, 7)d(r 1)

is a holomorphic solution af/,4 ,,(5) and S[](x, 1) is a holomorphic solution o 4 () which
has an asymptotic expansignz, 1) that is Gevrey of ordes = 3/2 alongz; = 0.

Example 8 This example shows that the hypothesis in Propodifion 5 @nithbrella is necessary
and that the bound there is sharp. Take

110 ¢
A= ( 0120 )
wherel > 1 is a rational number. We can considee Q by changing the lattic&? by the lattice
(3Z) x Z. Then, the weight vectar = (0,0, 0, ¢ — 1) is associated wite = {1,2} by the formula
(29) andx = |det A,| = 1. Leta € C and € C? be very generic and let € C* be a vector
associated witlr so that the series, () is a Gevrey solution a¥/4(3) alongz, = 0 with Gevrey
indexs = 1 +r = ¢ > 1. Then fory,(z,t) = t=%¢,(z1, 12, 23, "124) the Borel transform
op(r, ) is convergent in the open s, ¢) : |¢“7Y| < €|z!/x4|} for somee > 0 small enough.
Moreover, it defines a holomorphic solution/f, , (55) and then it is a linear combination of
the set of serieg, (x, ¢) with v’ € C® associated with the simplgx, 2, 5}. Its analytic continua-
tion to points in the open sé¢tz, ¢) : [¢“!| > R|z{/z4|} for some sufficiently larg& > 0is alin-
ear combination of the set of serigswith v € C® associated with the simpl€®, 4,5} of Az. The
column vectors 0By, 4 5, areby = (1,0,0,—1/¢,(1 — £)/¢) andbs = (0, —2,1,2/¢,2(¢ — 1)/¢).
Elements in the suppo¥; of ¢ are of the formm b, + msbs € Z° with m;, ms € N. Thus
any of these serieg;(x, () is convergent in the open sgtr, () : |¢*7Y > R|z{/x4|} for some
sufficiently largeR > 0 and since the last coordinate 6f is2(¢ — 1) /¢ > 0 there is a subseries
of ¢5 (the one with monomials:, ¢)?+™s%, 2m3(¢ — 1) /¢ € N) such that the set of exponents(of
in its monomials is contained iy + N. The fact thatbs| = 1 > 0 guarantees that the coefficients
of this subseries has the same type of growth d:,)! and thus the growth of this series, éas
tends tooo in certain sector, is equivalent to the growth Kfexp(Casa>/ ¢2¢=1/¢ /22) for some
K,C > 0. Notice that for¢ > 1, we have that) = {1,2,4} and the hypothesi®’;*~" C /"™
(required in Lemm&_10 and Propositidh 5) is satisfied if antydhl < ¢ < 2. Thus, the bound

|d5(z, Q)| < 1 exp(ca|C]) is satisfied for somey, ¢, > 0 if and only ifl < ¢ < 2 but for/ = 2 we
cannot choose, to be arbitrarily small.
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