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Abstract

Let K → L be an algebraic field extension and ν a valuation of K. The purpose
of this paper is to describe the totality of extensions {ν ′} of ν to L using a refined
version of MacLane’s key polynomials. In the basic case when L is a finite separable
extension and rk ν = 1, we give an explicit description of the limit key polynomials
(which can be viewed as a generalization of the Artin–Schreier polynomials). We
also give a realistic upper bound on the order type of the set of key polynomials.
Namely, we show that if char K = 0 then the set of key polynomials has order type
at most N, while in the case char K = p > 0 this order type is bounded above by
([

logp n
]

+ 1
)

ω, where n = [L : K]. Our results provide a new point of view of the

the well known formula
s
∑

j=1
ejfjdj = n and the notion of defect.
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1 Introduction

All the rings in this paper will be commutative with 1.

This paper grew out of the authors’ joint work [3] with B. Teissier, which is
devoted to classifying the extensions ν̂ of a given valuation ν, centered in a
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local domain R, to rings of the form R̂
P

, where R̂ is the formal completion of

R and P is a prime ideal of R̂ such that P ∩ R = (0). In particular, in [3] we
are interested in characterizing situations in which the valuation ν̂ (or one of
its composed valuations) is unique. This naturally led us to the following

Question. Given a field extension K →֒ L and a finite rank valuation ν of
K, when is the extension of ν to L unique?

An obvious necessary condition for uniqueness is that L be algebraic over K.

In the present paper, we give an algorithm for describing the totality of exten-
sions ν ′ of ν to L in terms of (a refined version of) MacLane’s key polynomials,
assuming L is algebraic over K. The case of purely inseparable extensions be-
ing trivial, we will assume that L is separable over K. Since an arbitrary
algebraic field extension is a direct limit of finite extensions, we may assume
that L is finite over K. In particular, L is simple by the primitive element
theorem; write L = K[x].

It is sufficient to solve the problem in the case rk ν = 1: the case of a valuation
of an arbitrary finite rank will then follow by induction on rk ν. Indeed, if
ν is the composition of two lower rank valuations ν1 and ν2, then ν ′ is the
composition of ν ′1 and ν ′2, where ν ′1 is an extension of ν1 to L and ν ′2 is a
valuation of the residue field kν′

1
of the valuation ring Rν′

1
, extending ν2. Since

the field kν′

1
is an algebraic extension of kν1 ([13], Chapter VI, §11), it is enough

to describe the extensions ν ′1 of ν1 to L and the extensions of ν2 to kν′

1
.

Two main techniques used in this paper are higher Newton polygons and
a version of MacLane’s key polynomials, similar to those considered by M.
Vaquié ([9], [10], [11], and [12]), and reminiscent of related objects studied
by Abhyankar and Moh (approximate roots [1], [2]) and T.C. Kuo ([4], [5]).
When L = K[x] is a simple extension of K, our algorithm is phrased in terms
of the slopes of higher Newton polygons of the minimal polynomial f of x,
the first one being the usual Newton polygon of x; the algorithm amounts to
successively constructing key polynomials of ν ′. At each step of the algorithm
there are finitely many possibilities to choose from. Namely, at the i-th step
we have to choose a non-vertical side L of the i-th Newton polygon, consider
the polynomial g over the graded algebra of ν determined by L and choose an
irreducible factor of g. The number of steps itself can be countable (in fact,
the number of steps has order type at most ω in characteristic zero and is
bounded above by the ordinal (

[

logp n
]

+ 1)ω in characteristic p > 0, where n

is the degree of x over K and ω stands for the first infinite ordinal). Thus our
algorithm can be viewed as providing an answer to the above question about
uniqueness: the extension ν ′ is unique if and only if the choice of both L and
g is unique at every step of the algorithm. A simple sufficient condition for
the extension ν ′ to be unique is that the image inν′x in the graded algebra Gν′
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have the same degree n over the graded algebra Gν of ν as x does over K; this
condition is valid whether or not ν has rank 1 and has a very explicit charac-
terizaiton in terms of the (first) Newton polygon of f (namely, it is equivalent
to saying that the Newton polygon has only one non-vertical side L and the
polynomial over the graded algebra of ν, determined by L, is irreducible).

This paper is organized as follows. In §2 we summarize some basic definitions
and results about algebras without zero divisors, graded by ordered semi-
groups. §3–§7 are devoted to the main construction of the paper — that of
key polynomials. Namely, we suppose given an extension ν ′ of ν to L. We
define a well ordered set Q = {Qi}i∈Λ of key polynomials of ν ′, which may
be finite or countable. If char K = 0, the set Λ has order type at most ω; if
char K = p > 0 then Λ has order type strictly less than (

[

logp n
]

+1)ω, where
n is the degree of x over K.

Notation. N will denote the set of non-negative integers. For an element
l ∈ Λ, we will denote by l+1 the immediate successor of l in Λ. The immediate
predecessor, when it exists, will be denoted by l − 1. For a positive integer t,
l + t will denote the immediate successor of l + (t− 1). For an element l ∈ Λ,
the initial segment {Qi}i<l of the set of key polynomials will be denoted by
Ql. Throughout this paper, we let

p=1 if char K = 0 (1)

= char K if char K > 0. (2)

In §3, we will fix an ordinal l and assume that the key polynomials Ql+1 are
already defined. We will define the notion of the l-th Newton polygon and the
l-standard expansion of an element of K[X] with respect to Ql+1. We will then
define the next key polynomial Ql+1. Roughly speaking, Ql+1 will be defined
to be the lifting to L of the monic minimal polynomial, satisfied by inν′Ql over
the graded algebra Gν [inν′Ql].

In §4 we study the situation when the above recursive algorithm does not stop
after finitely many steps, that is, when it gives rise to an infinite sequence
{Ql+t}t∈N of key polynomials. We define a pair (δi(f), ǫi(f)) of basic positive
integer invariants of the Newton polygon ∆i(f) (where i runs over the set of
all ordinals for which Qi is defined). We prove that the pair (δi(f), ǫi(f)) is
non-increasing in the lexicographical ordering. We deduce that if char K = 0
and rk ν = 1 then iterating this construction at most ω times, we obtain a
sequence {Qi} of key polynomials such that

lim
i→∞

ν ′(Qi) = ∞. (3)

In §5 we study the effect of the differential operators 1
pb!

∂pb

∂xpb on key polynomials

and on f in the case the above invariant δi(f) stabilizes.
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In §6 we use the results of §5 to show that δi(f) can stabilize only if it is of
the form δi(f) = pe for some e ∈ N.

In §7 we assume that char K = p > 0 and consider an ordinal l which does
not have an immediate predecessor. We assume that the key polynomials Ql

are already defined and then define the next key polynomial Ql. We show that
this case can occur at most [logp n] times. A set of key polynomials is said
to be complete if every ν ′-ideal of Rν′ is generated by products of powers
of the Qi (in other words, the valuation ν ′ is completely determined by the
data {Qi, ν

′(Qi)}). In §8 we prove the main property of key polynomials {Qi},
constructed in §§3–7: they form a complete set of key polynomials.

An algorithm for describing the totality of extensions ν ′ can be read off from
this data. This algorithm will be described in §9. As a corollary, we deduce

the well known formula
s
∑

j=1
eifidi = n, where {ν1, . . . , νs} is the set of all the

extensions of ν to L, fi is the index of the value group of ν viewed as a subgroup
of the value group of νi, ei is the degree of the reside field extension kν →֒ kνi

and di is the defect of νi (a much more complete and detailed treatment of
this formula can be found in M. Vaquié’s paper [12]).

In case char K = p > 0 our algorithm is less satisfactory than in characteristic
zero in that at certain junctures it depends on non-constructive considerations
such as a given subset of Γ having a maximum or an upper bound.

The idea of using key polynomials and Newton polygons in this context is not
new. What we believe to be new in this paper is the explicit description of
the totality of key polynomials and the definition and an explicit construction
of limit key polynomials, rather intricate in the case of positive characteristic.
In particular, we believe that our bound on the order type of the set of key
polynomials required is new and is the first realistic bound of its kind.

We want to acknowledge the fact that there is some intersection of our results
with those obtained independently and simultaneously by Michel Vaquié [12].
We thank him for helpful conversations and, in particular, for sharing his
insights into the notion of defect.

2 Algebras graded by ordered semigroups.

Graded algebras associated to valuations will play a crucial role in this paper.
In this section, we give some basic definitions and prove several easy results
about graded algebras. Throughout this paper, a “graded algebra” will mean
“an algebra without zero divisors, graded by an ordered semigroup”. As usual,
for a graded algebra G, ord will denote the natural valuation of G, given by
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the grading.

Definition 1 Let G be a graded algebra without zero divisors. The saturation
of G, denoted by G∗, is the graded algebra

G∗ =
{

g

h

∣

∣

∣

∣

g, h ∈ G, h homogeneous, h 6= 0
}

.

The algebra G is said to be saturated if G = G∗.

Of course, we have G∗ = (G∗)∗ for any graded algebra G, so G∗ is always
saturated.

The main example of saturated graded algebras appearing in this paper is the
following.

Example 2 Let ν : K∗ → Γ be a valuation. Let (Rν ,Mν , kν) denote the
valuation ring of ν. For β ∈ Γ, consider the following Rν-submodules of K:

Pβ = {x ∈ K∗ | ν(x) ≥ β} ∪ {0},

Pβ+ = {x ∈ K∗ | ν(x) > β} ∪ {0}.

We define

Gν =
⊕

β∈Γ

Pβ

Pβ+
.

The kν-algebra Gν is an integral domain. For any element x ∈ K∗ with ν(x) =

β, the natural image of x in
Pβ

Pβ+
⊂ Gν is a homogeneous element of Gν of

degree β, which we will denote by inνx. The algebra Gν is saturated.

Let ν ′ be an extension of ν to L. For an element β ∈ Γ, let

P′
β = {y ∈ L | ν ′(x) ≥ β} ∪ {0} (4)

P′
β+ = {y ∈ L | ν ′(x) > β } ∪ {0}. (5)

Put Gν′ =
⊕

β∈Γ

P
′

β

P
′

β+
. The extension Gν → Gν′ of graded algebras is finite of

degree bounded by [L : K] (cf. [13], Chapter VI, §11). In the present paper, we
do not use this result of Zariski–Samuel but rather give another proof of it.

Remark 3 Let G,G′ be two graded algebras without zero divisors, with G ⊂
G′. Let x be a homogeneous element of G′, satisfying an algebraic dependence
relation

a0x
α + a1x

α−1 + · · · + aα = 0 (6)

over G (here aj ∈ G for 0 ≤ j ≤ α). Without loss of generality, we may
assume that (6) is homogeneous (that is, the quantity j ord x + ord aj is
constant for 0 ≤ j ≤ α; this is achieved by replacing (6) by the sum of those
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terms ajx
j for which the quantity j ord x + ord aj is minimal), and that the

integer α is the smallest possible. Dividing (6) by a0, we see that x satisfies an
integral homogeneous relation over G∗ of degree α and no algebraic relation
of degree less than α. In other words, x is algebraic over G if and only if it
is integral over G∗; the conditions of being “algebraic over G∗” and “integral
over G∗” are one and the same thing.

Let G ⊂ G′, let x be as above and let G[x] denote the graded subalgebra of G′,
generated by x over G. By the above Remark, we may assume that x satisfies
a homogeneous integral relation

xα + a1x
α−1 + · · ·+ aα = 0 (7)

over G∗ and no algebraic relations over G∗ of degree less than α.

Proposition 4 Every element of (G[x])∗ can be written uniquely as a poly-
nomial in x with coefficients in G∗, of degree strictly less than α.

PROOF. Let y be a homogeneous element of G[x]. Since x is integral over
G∗, so is y. Let

yγ + b1y
γ−1 + · · ·+ bγ = 0 (8)

with bj ∈ G∗, be a homogeneous integral dependence relation of y over G∗,
with bγ 6= 0. By (8),

1

y
= −

1

bγ
(yγ−1 + b1y

γ−2 + · · · + bγ−1).

Thus, for any z ∈ G[x], we have

z

y
∈ G∗[x]. (9)

Since y was an arbitrary homogeneous element of G[x], we have proved that

(G[x])∗ = G∗[x].

Now, for every element y ∈ G∗[x] we can add a multiple of (7) to y so as to
express y as a polynomial in x of degree less than α. Moreover, this expression
is unique because x does not satisfy any algebraic relation over G∗ of degree
less than α. 2

The following result is an immediate consequence of definitions:

Proposition 5 Let Gν be the graded algebra associated to a valuation ν :

K → Γ, as above. Consider a sum of the form y =
s
∑

i=1
yi, with yi ∈ K. Let
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β = min
1≤i≤s

ν(yi) and

S = {i ∈ {1, . . . , n} | ν(yi) = β} .

The following two conditions are equivalent:

(1) ν(y) = β

(2)
∑

i∈S
inνyi 6= 0.

3 Key polynomials and higher Newton polygons

Let K →֒ L be a finite separable field extension and ν : K∗ → Γ a valuation
of K of real rank 1, where Γ is a Q-divisible group and ν(K∗) is a subgroup
of Γ. The extension L is simple by the primitive element theorem. Pick and
fix a generator x of L over K; write L = K[x].

In this section we begin the main construction of the paper — that of key
polynomials. Namely, we suppose given an extension ν ′ of ν to L.

Definition 6 A complete set of key polynomials for ν ′ is a well or-
dered collection Q = {Qi}i∈Λ of elements of L such that for each β ∈ Γ the

Rν-module P′
β is generated by all the products of the form

s
∏

j=1
Q

γj

ij
such that

s
∑

j=1
γjν

′(Qij ) ≥ β.

Note, in particular, that if Q is a complete set of key polynomials then their
images inν′Qi ∈ Gν′ induce a set of generators of Gν′ over Gν . Furthermore,
we want to make the set Λ as small as possible, that is, to minimize the order
type of Λ.

Our algorithm for constructing all the possible extensions ν ′ of ν to L amounts
to successively constructing key polynomials until the resulting set of key
polynomials becomes complete for ν ′.

We will fix an ordinal l and assume that the key polynomials Ql+1 are already
defined (the notation Ql+1 is defined in the Introduction). We will then define
the next key polynomial Ql+1. If Ql+1 = 0, the algorithm stops. In §4 we will
study what happens when this algorithm does not stop after finitely many
steps and will show that if char K = 0 then iterating this construction at
most ω times, we obtain a sequence {Qi}i∈N of elements of L such that

lim
i→∞

ν ′(Qi) = ∞. (10)
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This will end the construction of key polynomials in characteristic zero; in §8
we will show that the resulting set of key polynomials is complete.

For each l ∈ Λ, we will define the notion of the l-th Newton polygon and
the l-standard expansion of an element of K[x] with respect to Ql+1. Roughly
speaking, Ql+1 will be defined to be the lifting to L of the monic minimal poly-
nomial, satisfied by inν′Ql over the graded algebra Gν [inν′Ql]. An algorithm
for describing the totality of extensions ν ′ can be read off from this data. This
algorithm will be described in §9.

Put Q1 = x and α1 = 1.

Let X be an independent variable and let f =
n
∑

i=0
aiX

i denote the minimal

polynomial of x over K. Making a change of variables of the form x → ax
with a ∈ K, if necessary, we may assume that

ν(an) < ν(ai) for 0 ≤ i < n; (11)

furthermore, dividing f by an we may assume f to be monic with ν(ai) > 0
for 0 ≤ i < n. The condition (11) is needed to ensure that

ν ′(x) > 0 (12)

for any extension ν ′ of ν to L. Let Γ+ (resp. Q+) denote the semigroup of
non-negative elements of Γ (resp. Q).

Take an element h =
s
∑

i=0
diX

i ∈ K[X].

Definition 7 The first Newton polygon of h with respect to ν is the convex

hull ∆1(h) of the set
s
⋃

i=0
((ν(di), i) + (Γ+ ⊕ Q+)) in Γ ⊕ Q.

To an element β1 ∈ Γ+, we associate the following valuation ν1 of K(X): for

a polynomial h =
s
∑

i=0
diX

i, we put

ν1(h) = min {ν(di) + iβ1 | 0 ≤ i ≤ s} .

In what follows, for an element y ∈ L, we will write informally ν1(y) for
ν1(y(X)), where y(X) is the unique representative of y in K[X] of degree
strictly less than n. Similarly, for a polynomial h ∈ K[X] we will sometimes
write ν ′(h) to mean ν ′(h mod (f)).

Consider an element β1 ∈ Γ+.

Definition 8 We say that β1 determines a side of ∆1(h) if the following
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condition holds. Let

S1(h, β1) = {i ∈ {0, . . . , s} | iβ1 + ν(di) = ν1(h)} .

We require that #S1(h, β1) ≥ 2.

Let β1 = ν ′(x). Then for any h ∈ K[X] we have ν1(h) ≤ ν ′(h); furthermore,
ν1(f) <∞ = ν ′(f).

Proposition 9 Take a polynomial h =
s
∑

i=0
diX

i ∈ K[X] such that

ν1(h) < ν′(h) (13)

(for example, we may take h = f). Then

∑

i∈S(h,β1)

inνdiinν′xi = 0. (14)

PROOF. We have

∑

i∈S(h,β1)

dix
i = h(x) −

∑

i∈{0,...,s}\S(h,β1)

dix
i,

hence

ν ′





∑

i∈S(h,β1)

dix
i



 > ν1(h).

Then
∑

i∈S1(h,β1)
inνdiinν′xi = 0 in

P
′

ν1(h)

P
′

ν1(h)
+
⊂ Gν′ by Proposition 5. 2

Corollary 10 Take a polynomial h ∈ K[X] such that ν1(h) < ν′(h). Then β1

determines a side of ∆1(h).

PROOF. If S1(h, β1) consisted of a single element i, we would have

inνdiinν′xi 6= 0,

contradicting Proposition 9. 2

Letting h = f , we see from (11) that β1 > 0 (geometrically, this corresponds to
the fact that the side of ∆1(f) determined by β1 has strictly negative slope).

Notation. Let X̄ be a new variable. Take a polynomial h as above. We denote

in1h :=
∑

i∈S1(h,β1)

inνdiX̄
i.

9



The polynomial in1h is quasi-homogeneous in Gν [X̄], where the weight as-
signed to X̄ is β1. Let

in1h = v
t
∏

j=1

g
γj

j (15)

be the factorization of in1h into irreducible factors in Gν [X̄]. Here v ∈ Gν

and the gj are monic polynomials in Gν [X̄] (to be precise, we first factor
in1h over the field of fractions of Gν and then observe that all the factors are
quasi-homogeneous and therefore lie in Gν [X̄]).

Proposition 11 (1) The element inν′x is integral over Gν.

(2) The minimal polynomial of inν′x over Gν is one of the irreducible factors
gj of (15).

PROOF. Both (1) and (2) of the Proposition follow from the fact that inν′x
is a root of the polynomial in1h (Proposition 9). 2

Now take h = f . Renumbering the factors in (15), if necessary, we may assume
that g1 is the minimal polynomial of inν′x over Gν . Let α2 = degX̄ g1. Write

g1 =
α2
∑

i=0
b̄iX̄

i, where b̄α2 = 1. For each i, 0 ≤ i ≤ α2, choose a representative

bi of b̄i in Rν (that is, an element of Rν such that inνbi = b̄i; in particular, we

take bα2 = 1). Put Q2 =
α2
∑

i=0
bix

i.

Definition 12 The elements Q1 and Q2 are called, respectively, the first
and second key polynomials of ν ′.

Now, every element y of L can be written uniquely as a finite sum of the form

y =
∑

0 ≤ γ1 < α2

γ1 + γ2α2 < n

bγ1γ2Q
γ1
1 Q

γ2
2 (16)

where bγ1γ2 ∈ K (this is proved by Euclidean division by the monic polynomial
Q2). The expression (16) is called the second standard expansion of y.

Now, take an ordinal number l ≥ 2 which has an immediate predecessor;
denote this ordinal by l + 1. If char K = 0, assume that l ∈ N. Assume,
inductively, that key polynomials Ql+1, and positive integers αl+1 = {αi}i≤l

are already constructed, and that all but finitely many of the αi are equal to
1. We want to define the key polynomial Ql+1.

10



We will use the following multi-index notation: γl+1 = {γi}i≤l, where all but

finitely many γi are equal to 0, Q
γ

l+1

l+1 =
∏

i≤l
Qγi

i . Let βi = ν ′(Qi).

Definition 13 An index i < l is said to be l-essential if there exists a posi-
tive integer t such that either i+ t = l or i + t < l and αi+t > 1; otherwise i
is called l-inessential.

In other words, i is l-inessential if and only if i + ω ≤ l and αi+t = 1 for all
t ∈ N.

Notation. For i < l, let

i+ = i+ 1 if i is l-essential (17)

= i+ ω otherwise. (18)

Definition 14 A multiindex γ l+1 is said to be standard with respect to
αl+1 if

0 ≤ γi < αi+ for i ≤ l, (19)

∑

i≤l

γi

∏

j≤i

αj ≤ n, (20)

and if i is l-inessential then the set {j < i + | j+ = i + and γj 6= 0}
has cardinality at most one. An l-standard monomial in Ql+1 (resp. an

l-standard monomial in inν′Ql+1) is a product of the form cγ
l+1

Q
γ

l+1

l+1 ,

(resp. cγ
l+1

inν′Q
γ

l+1

l+1 ) where cγ
l+1

∈ K (resp. cγ
l+1

∈ Gν) and the multiindex
γl+1 is standard with respect to αl+1.

Remark 15 In the case when i admits an immediate predecessor, the condi-
tion (19) amounts to saying that γi−1 < αi.

Definition 16 An l-standard expansion not involving Ql is a finite sum
S of l-standard monomials, not involving Ql, having the following property.
Write S =

∑

β
Sβ, where β ranges over a certain finite subset of Γ+ and

Sβ =
∑

j

dβj (21)

is a sum of standard monomials dβj of value β. We require that

∑

j

inν′dβj 6= 0 (22)

for each β appearing in (21).

11



In the special case when l ∈ N, (22) holds automatically for any sum of l-
standard monomials not involving Ql (this follows from Proposition 36 below
by induction on l).

Proposition 17 Let l be an ordinal and t a positive integer. Assume that
the key polynomials Ql+t+1 are defined and that αl = · · · = αl+t = 1. Then
any (l + t)-standard expansion does not involve any Qi with l ≤ i < l + t. In
particular, an l-standard expansion not involving Ql is the same thing as an
(l + t)-standard expansion, not involving Ql+t.

PROOF. (19) implies that for l ≤ i ≤ l + t, Qi cannot appear in an (l + t)-
standard expansion with a positive exponent. 2

We will frequently use this fact in the sequel without mentioning it explicitly.

Definition 18 For an element g ∈ K[X], an expression of the form g =
s
∑

j=0
cjQ

j
l , where each cj is an l-standard expansion not involving Ql, will be

called an l-standard expansion of g. For a non-zero element y ∈ L, an
l-standard expansion of y is an l-standard expansion of the representative
y(X) of y in K[X] of degree strictly less than n.

In what follows, we will be mostly interested in standard expansions of non-
zero elements of L and of the polynomial f(X).

Definition 19 Let
∑

γ
c̄γ inν′Q

γ
l+1 be an l-standard expansion, where c̄γ ∈ Gν.

A lifting of
∑

γ
c̄γ inν′Q

γ
l+1 to L is an l-standard expansion

∑

γ
cγQ

γ
l+1, where

cγ is a representative of c̄γ in K.

Definition 20 Assume that char K = p > 0. An l-standard expansion
∑

j
cjQ

j
l , where each cj is an l-standard expansion not involving Ql, is said

to be weakly affine if cj = 0 whenever j > 0 and j is not of the form pe for
some e ∈ N.

Assume, inductively, that for each ordinal i ≤ l, every element h of L and the
polynomial f(X) admit an i-standard expansion. Furthermore, assume that
for each i ≤ l, the i-th key polynomial Qi admits an i-standard expansion,
having the following additional properties.

If i has an immediate predecessor i − 1 in Λ (such is always the case in
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characteristic 0), the i-th standard expansion of Qi has the form

Qi = Qαi

i−1 +
αi−1
∑

j=0





∑

γ
i−1

cjiγ
i−1

Q
γ

i−1

i−1



Qj
i−1, (23)

where:

(1) each cjiγ
i−1

Q
γ

i−1

i−1 is an (i− 1)-standard monomial, not involving Qi−1

(2) the quantity jβi−1 +
∑

q<i−1
γqβq is constant for all the monomials

(

cjiγ
i−1

Q
γ

i−1

i−1

)

Qj
i−1

appearing on the right hand side of (23)

(3) the equation

inν′Qαi

i−1 +
αi−1
∑

j=0





∑

γ
i−1

inνcjiγ
i−1

inν′Q
γ

i−1

i−1



 inν′Qj
i−1 = 0 (24)

is the minimal algebraic relation satisfied by inν′Qi−1 over the subalgebra
Gν [inν′Qi−1]

∗ ⊂ Gν′ .

Finally, if char K = p > 0 and i does not have an immediate predecessor in
Λ then there exist an i-inessential index i0 and a strictly positive integer ei

such that i = i0+ and Qi =
ei
∑

j=0
cji0Q

pj

i0
is a weakly affine monic i0-standard

expansion of degree αi = pei in Qi0 , where each cji0 is an i0-standard expansion
not involving Qi0 . Moreover, there exists a positive element β̄i ∈ Γ such that

β̄i >βq for all q < i, (25)

βi ≥ peiβ̄i and (26)

pj β̄i + ν(ci0j) = peiβ̄i for 0 ≤ j ≤ ei. (27)

If i ∈ N, we assume, inductively, that the i-standard expansion is unique. If

char K > 0, and h =
si
∑

j=0
djiQ

j
i is an i-standard expansion of h (where h is

either f(X) or an element of L), we assume that the elements dji ∈ L are
uniquely determined by h (strictly speaking, this does not mean that the i-
standard expansion is unique: for example, if i is a limit ordinal, dji admits
an i0-standard expansion for each i0 < i such that i = i0+, but there may be
countably many choices of i0 for which such an i0-standard expansion is an
i0-standard expansion, not involving Qi−1 in the sense of Definition 16).
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Proposition 21 (1) The polynomial Qi is monic in x; we have

degxQi =
∏

j≤i

αj . (28)

(2) Let z be an i-standard expansion, not involving Qi. Then

degx z < degxQi. (29)

PROOF. (28) and (29) are proved simultaneously by transfinite induction
on i, using (23) and (19) repeatedly to calculate and bound the degree in x
of any standard monomial (recall that by assumption all but finitely many of
the αi are equal to 1). 2

The rest of this section is devoted to the definition of Ql+1. In what follows,
we will sometimes not distinguish between the elements Qi and their represen-
tatives in K[X] in order to simplify the notation. When we do wish to make
such a distinction, we will denote the representative of Qi in K[X] by Qi(X).

Write

f =
nl
∑

i=0

ajlQ
j
l , (30)

where each ajl is a homogeneous l-standard expansion not involving Ql, such
that

degx ajl + j
l
∏

q=1

αq ≤ n,

with strict inequality for j < nl.

Take any element h ∈ K[X] and let h =
s
∑

i=0
diQ

i
l be an l-standard expansion

of h, where each di is an l-standard expansion, not involving Ql.

Definition 22 The l-th Newton polygon of h with respect to ν is the convex

hull ∆l(h) of the set
s
⋃

i=0
((ν ′(di), i) + (Γ+ ⊕ Q+)) in Γ ⊕ Q.

To an element βl ∈ Γ+, we associate a valuation νl of K(X) as follows. Given

an l-standard expansion h =
s
∑

i=0
diQ

i
l as above, put νl(h) = min

0≤i≤s
{iβl +ν ′(di)}.

Note that even though in the case of positive characteristic the standard ex-
pansions of the elements di are not, in general, unique, the elements di ∈ L
themselves are unique by Euclidean division, so νl is well defined. That νl is, in
fact, a valuation, rather than a pseudo-valuation, follows from the definition
of standard expansion, particularly, from (22). We always have νl(h) ≤ ν ′(h)
and νl(f) <∞ = ν ′(f).
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Notation. Let Q̄l be a new variable and let h be as above. We denote

Sl(h, βl) := {j ∈ {0, . . . , s} | jβl + ν ′(dj) = νl(h)} . (31)

inlh : =
∑

j∈Sl(h,βl)

inν′djQ̄
j
l ; (32)

The polynomial inlh is quasi-homogeneous in G
[

inν′Ql, Q̄l

]

, where the weight

assigned to Q̄l is βl.

Take a polynomial h such that

νl(h) < ν′(h) (33)

(for example, we may take h = f).

Proposition 23 We have
∑

j∈Sl(h,βl)
inν′

(

djQ
j
l

)

= 0 in
P

′

νl(h)

P
′

νl(h)+
⊂ Gν′.

PROOF. This follows immediately from (33), the fact that

∑

j∈Sl(h,βl)

djQ
j
l = h−

∑

j∈Sl(h,βl)\{0,...,s}

djQ
j
l

and Proposition 5. 2

Let βl be a non-negative element of Γ.

Definition 24 We say that βl determines a side of ∆l(h) if #Sl(h, βl) ≥ 2.

Corollary 25 Let βl = ν ′(Ql). Then:

(1) βl determines a side of ∆l(h).

(2)

βl >αlβl−1 if (l − 1) exists (34)

βl ≥ pelβ̄l otherwise. (35)

PROOF. (1) Suppose not. Then the sum 0 =
∑

j∈Sl(h,βl)
inν′

(

djQ
j
l

)

consists of

only one term and hence cannot be 0. This contradicts Proposition 23; (1) is
proved.
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(2) follows immediately from (24) and (26). This completes the proof of Corol-
lary 25. 2

Let

inlh = vl

t
∏

j=1

g
γjl

jl (36)

be the factorization of inlh into (monic) irreducible factors in Gν [inν′Ql]
[

Q̄l

]

(to be precise, we first factor inlh over the field of fractions of Gν [inν′Ql] and
then observe that all the factors are quasi-homogeneous and therefore lie in
Gν [inν′Ql]

[

Q̄l

]

).

Corollary 26 The element inν′Ql is integral over Gν. Its minimal polynomial
over Gν is one of the irreducible factors gjl of (36).

Put h = f in (36). Renumbering the factors in (36), if necessary, we may
assume that g1l is the minimal polynomial of inν′Ql over Gν [inν′Ql]. Let

αl+1 = degQ̄l
g1l. (37)

Write

g1l = Q̄
αl+1

l +
αl+1−1
∑

j=0





∑

γ
l

c̄l+1,jγ
l
inν′Q

γ
l

l



 Q̄j
l , (38)

Define the (l + 1)-st key polynomial of ν ′ to be a lifting

Ql+1 = Q
αl+1

l +
αl+1−1
∑

j=0





∑

γ
l

cl+1,jγ
l
Q

γ
l

l



Qj
l (39)

(38) to L. In the special case when t = αl+1 = 1 in (36) and (37), some
additional (and rather intricate) conditions must be imposed on the lifting
(39). In fact, in this case we will define several consecutive key polynomials
at the same time. We will now explain what these additional conditions are,
after making one general remark:

Remark 27 Since g1l is an irreducible polynomial in Q̄l by definition, the
key polynomial Ql+1(X) is also irreducible (for a non-trivial factorization of
Ql+1(X) would give rise to a non-trivial factorization of g1l).

To define Ql+1 in the case t = αl+1 = 1, we first introduce two numerical
characters of the situation which will play a crucial role in the rest of the
paper. Let δl(h) = degQ̄l

inlh.

Definition 28 The vertex
(

ν ′
(

aδl(h),l

)

, δl(h)
)

of the Newton polygon ∆(h) is

called the pivotal vertex of ∆(h).
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Let

ν+
l (h) = min

{

ν ′
(

djQ
j
l

) ∣

∣

∣ δl(h) < j ≤ s
}

(40)

and

S ′
l(h) =

{

j ∈ {δl(h) + 1, . . . , s}
∣

∣

∣ ν ′
(

djQ
j
l

)

= ν+
l (h)

}

.

Let ǫl(h) = max S ′
l(h) (if the set on the right hand side of (40) is empty, we

adopt the convention that ν+
l (h) = ǫl(h) = ∞). The quantities δl(h) and ǫl(h)

are strictly positive by definition. It follows from definitions that ǫl(h) > δl(h).
Below, we will see that that the pair (δl(h), ǫl(h)) is non-increasing with l (in
the lexicographical ordering), that the equality δl+1(h) = δl(h) imposes strong
restrictions on inlh and that decreasing (δl(f), ǫl(h)) strictly ensures that the
algorithm stops after a finite number of steps.

Assume that t = αl+1 = 1 in (36) and (37). Let δ = δl(f). We have vl = inν′aδl

and (36) rewrites as

inlf = inν′aδlg
δ
1l. (41)

In what follows, we will consider l-standard expansions of the form

Q′ = Ql + zl + · · ·+ zi, (42)

where each zj is a homogeneous l-standard expansion, not involving Ql, such
that

βl = ν ′(zl) < ν′(zl+1) < · · · < ν′(zi). (43)

Remark 29 Note that by (29), we have degx zq < degxQl for all q.

Definition 30 Let Q′ be as above. A standard expansion of f with respect

to Q′ is an expression of the form f =
nl
∑

j=0
a′jQ

′j, where each a′j is an l-standard

expansion, not involving Ql. The Newton polygon ∆(f,Q′) of f with respect

to Q′ is the convex hull in Γ+ ⊕ Q+ of the set
nl
⋃

i=0
((ν ′(a′i), i) + (Γ+ ⊕ Q+)).

Substituting Q′ − zl − · · · − zi for Ql in (30), writing

nl
∑

i=0

ail(Q
′ − zl − · · · − zi)

i =
nl
∑

j=0

a′jQ
′j,

and using (43), we see that ν ′(a′δ) = ν ′(aδl) and that (ν ′ (aδl) , δ) is a vertex of
∆(f,Q′) (though it might not be the pivotal one).

Definition 31 The characteristic side of ∆(f,Q′) is the side A(f,Q′)
whose upper endpoint is (ν ′(aδl), δ).

Let β(Q′) denote the element of Γ+ which determines the side A(f,Q′).
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For l ≤ j ≤ i, put Q′
j = Ql + zl + · · ·+ zj−1, let ∆(f,Q′

j) be the corresponding
Newton polygon and A(f,Q′

j) the characteristic side of ∆(f,Q′
j).

Let T denote the set of all the l-standard expansions of the form (42), where
each zj is a homogeneous l-standard expansion, not involving Ql, such that
the inequalities (43) hold, ν ′(zi) < β(Q′) and

in
A(f,Q′

j)
f = inν′a′δ

(

Q̄+ inν′zj

)δ
(44)

whenever l ≤ j < i.

We impose the following partial ordering on T . Given an element Q′ = Ql +
zl + · · ·+zi ∈ T with i > l, we declare its immediate predecessor in T to be the
element Ql + zl + · · ·+ zi−1. By definition, our partial ordering is the coarsest
one among those in which Ql + zl + · · · + zi−1 precedes Ql + zl + · · · + zi for
all the elements Q′ as above.

Take an element Q′ := Ql + zl + · · · + zi ∈ T . Let A′ = A(f,Q′).

Remark 32 Assume that

inA′f = inν′a′δ(Q̄+ inν′z′)δ

for some l-standard expansion z′, not involving Ql. Then

inν′(Q′) = −inν′z′; (45)

in particular, ν ′(Q′) = ν ′(z′). In other words, ν ′(Q′), ν ′(z′) and the slope of
the side A′ are all equivalent sets of data. In the sequel, we prefer to talk about
ν ′(z′) rather than ν ′(Q′) for the following reason. In §9, rather than working
with a fixed valuation ν ′, we will use the same algorithm to construct all the
possible extensions ν ′. Therefore it will be important to describe the next step
in the algorithm using only the data known at this stage of the construction,
rather than the entire data of ν ′ itself. Since we are assuming that the key
polynomials Ql and their values are already known, we may consider ν ′(z′) as
being known as well.

Notation. In what follows, for an element b ∈ L, b(X) will denote the repre-
sentative of b in K[X] of degree less than n.

Proposition 33 Consider an l-standard expansion w of the form wl +wl+1 +
· · ·+wi, where wl, . . . , wi are homogeneous l-standard expansions and wl is an
l-standard expansions, not involving Ql, such that βl = ν ′(wl) < · · · < ν′(wi).
Fix an element β ∈ Γ+,

β > βl. (46)
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Then w(X) can be written in the form

w(X) = wl(X) + w̃l+1(X) + · · ·+ w̃j(X) +w†(X)((Ql(X) +w(X))) +ψβ(X),
(47)

where ψβ is an l-standard expansion, wl, w̃l+1, . . . , w̃j are homogeneous l-
standard expansions, not involving Ql, such that

βl = ν ′(wl) < ν′(w̃l+1) < . . . < ν′(w̃j), (48)

νl(ψβ(X))≥β, and (49)

νl(w
†(X))> 0 (50)

PROOF. Let µ = νl(wl+1). By definitions, the Proposition is true for β =
µ. Assume that the Proposition holds for a certain β. We will show that it
holds for β replaced by β + µ, and that will complete the proof. Consider an
expression (47) satisfying (48)–(50). Write ψβ in the form ψβ = ψβ+µ + ψ̃,
where νl(ψβ+µ(X)) ≥ β+µ and ψ̃ consists of monomials of value greater than
or equal to β but strictly less than β + µ. By assumptions and Remark 29,
degX wl(X) < degX Ql(X). Divide the polynomial ψ̃(X) by Ql(X) + wl(X):

ψ̃(X) = q(X)(Ql(X) + wl(X)) + r(X),

where degX r(X) < degX Ql(X). Then

ψ̃(X) = q(X)(Ql(X) + w(X)) + r(X) + ψ̃β+µ(X),

where νl

(

ψ̃β+µ

)

≥ β+µ. Absorb the quotient q(X) into w†(X) and ψ̃β+µ into
ψβ+µ. Let

r(X) = w̃j+1(X) + · · ·+ w̃j̃(X) (51)

be the l-standard expansion of r(X). Since the remainder r(X) is of degree
strictly less than degX Ql(X), its standard expansion (51) does not involve
any monomials divisible by Ql(X). We obtain the desired decomposition

w(X) = wl(X) + w̃l+1(X) + · · · + w̃j̃(X)+

+(w†(X) + q(X))(Ql(X) + w(X)) + ψβ+µ(X).

Condition (46) implies that νl(w
†(X) + q(X)) > 0, as desired. 2

Proposition 34 Consider two elements Q′ := Ql + z′l + · · ·+ z′i′ , Q
′′ := Ql +

z′′l + · · ·+z′′i′′ ∈ T . Let ∆′(f) and ∆′′(f) be the corresponding Newton polyhedra
and A′ (resp. A′′) the characteristic side of ∆′(f) (resp. ∆′′(f)). Assume that

inA′f = inν′aδl(Q̄+ inν′w′)δ and (52)

inA′′f = inν′aδl(Q̄+ inν′w′′)δ (53)
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for some l-standard expansions w′ and w′′, not involving Ql. Furthermore,
assume that

ν ′(Q′) < ν′(Q′′).

Then there exists a third element

Q′′′ := Ql + z′′′l + · · ·+ z′′′i′′′ ∈ T, Q′′′ > Q′,

having the following property. Let ∆′′′(f) denote the Newton polygon deter-
mined by Q′′′ and A′′′ the characteristic side of ∆′′′(f). Then A′′′ = A′′ and
inA′′′f = inA′′f .

PROOF. Let w = Q′′ − Q′ and fix an element β ∈ Γ, β > ν′(Q′′). Apply
Proposition 33 with Ql replaced by Q′. The hypotheses of Proposition 33 are
satisfied because

ν ′(w′) = ν ′(Q′) < ν′(Q′′) = ν ′(w′′)

and inν′w′ = −inν′Q′ by assumptions, hence inν′w = −inν′Q′ = inν′w′, in
particular, inν′w does not involve inν′Ql. By Proposition 33 we can write

w = zi′+1 + · · · + zi′′′ + w†Q′′ + ψβ (54)

such that

νl(w
†)> 0, (55)

νl(ψβ)>ν′(Q′′) (56)

and zi′+1, . . . , zi′′′ are l-standard expansions, not involving Ql. Put

Q′′′ = Ql + z′l + · · ·+ z′i′ + zi′+1 + · · ·+ zi′′′ .

Then (54), (55) and (56) show that

ν ′(Q′′′) = ν ′(Q′′)

and
inν′Q′′′ = inν′Q′′;

the Proposition follows immediately. 2

To define Ql+1 in the special case when

t = αl+1 = 1 (57)

in (36) and (37), first assume that char K = 0. Equations (41) and (57) imply
that aδ−1,l 6= 0 and

g1l = Q̄l + inν′

aδ−1,l

δ aδl

. (58)
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Consider the l-standard expansion of
aδ−1,l

δaδl
and write it in the form

aδ−1,l

δ aδl

= zl + zl+1 + · · ·+ zl1−1 + φ+ w, (59)

where l1 is an integer strictly greater than l, each zi is a homogeneous l-
standard expansion, not involving Ql, such that

ν ′
(

aδ−1,l

δ aδl

)

= ν ′(zl) < ν′(zl+1) < · · · < ν′(zl1−1) < ν+
l (h) − νl(h) + βl, (60)

φ is a sum of standard monomials of value greater than or equal to ν+
l (h) −

νl(h) + βl and w is divisible by Ql +
aδ−1,l

δaδl
(such an expression (59) exists by

Proposition 33). Let

s = max{i | l ≤ i ≤ l1 and Ql + zl + · · · + zi−1 ∈ T}. (61)

For l ≤ i ≤ s, define Qi = Ql + zl · · · + zi−1.

Next, assume char K = p > 0. Two cases are possible:

Case 1. The set T contains a maximal element. Let z = zl+zl+1+· · ·+zs−1 be
this maximal element, where each zi is a homogeneous l-standard expansion,
not involving Ql, and s is an ordinal of the form s = l + t, t ∈ N. Define

Qi = Ql + zl + · · · + zi−1 for l + 1 ≤ i ≤ s.

Case 2. The set T does not contain a maximal element. Let

β̄ = sup{ν(Q′) | Q′ ∈ T}

(here we allow the possibility β̄ = ∞). In this case, Proposition 34 (together
with Remark 32) shows that there exists an infinite sequence zl, zl+1, . . . of
homogeneous l-standard expansions, not involving Ql, such that for each t ∈ N

we have
Ql + zl + · · ·+ zl+t ∈ T (62)

and lim
t→∞

ν(Ql + zl + · · · + zl+t) = β̄; pick and fix one such sequence. Define

Ql+t = Ql + zl + zl+1 + · · ·+ zl+t−1 for t ∈ N.

Note that (62), (44) and Remark 32 imply that the sequence {ν(Ql +zl + · · ·+
zl+t)}t∈N is strictly increasing.

For future reference, it will be convenient to distinguish two subcases of Case
2:

Case 2a. β̄ = ∞, that is, the sequence {βl+t}t∈N is unbounded in Γ. In this
case, the definition of the key polynomials Qi is complete. In §4, we will use
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differential operators to show that in this case δ is necessarily of the form pe

for some e ∈ N.

Case 2b. The set {ν(Q′) | Q′ ∈ T} has a least upper bound β̄ < ∞ (but no
maximum) in Γ. In this case, we must continue the construction and define
Ql+ω, Ql+ω+1, etc. This will be accomplished in §7.

Remark 35 Note that the definition of Ql+1 depends only on the key polyno-
mials Ql+1 defined so far, their values βl+1 and the resulting Newton polygons
∆i(f), i ≤ l. This will be important in §9 where we will use the Qi to construct
all the possible extensions ν ′.

Proposition 36 Let y be an element of L, represented by a polynomial in

K[X] of degree strictly less than degxQl+1 =
l+1
∏

i=0
αi. Then ν ′(y) = νl(y).

PROOF. Let y =
s
∑

j=0
cjQ

j
l be an l-standard expansion of y, where each cj is

an l-standard expansion not involving Ql. Let

S =
{

j ∈ {0, . . . , s}
∣

∣

∣ ν ′
(

cjQ
j
l

)

= νl(y)
}

.

Let c̄j := inν′cj. Since the degree of inν′Ql over Gν [inν′Ql]
∗ is αl+1, we see,

using the assumption on degx y, that
s
∑

j=0
c̄jinν′Qj

l 6= 0 in Gν′. The result now

follows from Proposition 5. 2

Now, take any polynomial h ∈ K[X]. The (l + 1)-st standard expansion

h =
s
∑

j=0
cjQ

j
l+1 is constructed from the l-th one by Euclidean division by

the polynomial Ql+1. Condition νl(cj) = ν ′(cj) required in the definition of
standard expansion (cf. Definition 18 and (22)) follows immediately from the
above Proposition and Proposition 21 (2).

By induction on t, this defines key polynomials Ql+t for t ∈ N. If for some
t ∈ N we obtain Ql+t = 0 in L, stop. In §8, we will show that Ql+t is a complete
set of key polynomials for ν ′, and, in particular, that the data Ql+t and βl+t

completely determines ν ′.

If Ql+t 6= 0 for all t ∈ N, we obtain an infinite sequence {Ql+t} of key polyno-
mials. If

char K = 0 or (63)

lim
t→∞

βl+t =∞, (64)
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stop (in fact, in the next section we will see that (63) implies (64) and also that
in this case δ has the form pe, e ∈ N). In §8, we will show that the {Ql+t} is a
complete set of key polynomials for ν ′. If charK = p > 0 and lim

t→∞
βl+t < ∞,

the construction of the next key polynomial Ql+ω will be described in §7.

In the next three sections, we analyze the case when infinitely many such
iterations give rise to an infinite sequence {Ql+i} of key polynomials.

4 Infinite sequences of key polynomials.

Keep the assumption rk ν = 1. In this section, we analyze the case when
iterating the recursive construction of the previous section produces an infinite
sequence {Ql+t}t∈N. If char K = 0, we show that if the above algorithm
produces an infinite sequence of key polynomials then

lim
i→∞

βi = ∞. (65)

In §8 we will show that (65) implies that the valuation ν ′ is completely deter-
mined by the resulting data {Qi} and {βi}, that is, that the resulting set {Qi}
is, indeed, a complete set of key polynomials. The case when char K = p > 0
and the values βi are bounded above in Γ is studied in detail in §7.

Take an ordinal i such that Qi and Qi+1 are defined. Take a polynomial h
such that νi(h) < ν′(h) (for example, we may take h = f). Consider the i-th
Newton polygon of h. Let Si(h, βi) be as in (31). Recall the definition of δi(h):

δi(h) := max{Si(h, βi)}. (66)

Let h =
si
∑

j=0
djiQ

j
i denote the i-standard expansion of h, where each dji is an l-

standard expansion, not involving Ql. Recall the definition (40) of ν+
i (h). The

next Proposition shows that the pair (δi(h), ǫi(h)) is non-increasing with i (in
the lexicographical ordering) and that the equality δi+1(h) = δi(h) imposes
strong restrictions on inih.

Proposition 37 (1) We have

αi+1δi+1(h) ≤ δi(h). (67)

(2) If δi+1(h) = δi(h) then

ǫi+1(h) ≤ ǫi(h), (68)

inih = inν′dδi(h)i

(

Q̄i + inν′zi

)δi(h)
, (69)
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where zi is some i-standard expansion not involving Qi, and ini+1h contains

a monomial of the form inν′dδi(h)iQ̄
δi(h)
i+1 ; in particular,

inν′dδi(h)i = inν′dδi(h),i+1 (70)

(3) If
(δi(h), ǫi(h)) = (δi+1(h), ǫi+1(h)) (71)

then
inν′dǫi(h)i = inν′dǫi(h),i+1. (72)

PROOF. We start with three Lemmas. First, consider the (i + 1)-standard
expansion of h:

h =
s
∑

j=0

dj,i+1Q
j
i+1, (73)

where the dj,i+1 are (i+ 1)-standard expansions, not involving Qi+1.

Lemma 38 (1) We have

νi(h) = min
0≤j≤s

νi

(

dj,i+1Q
j
i+1

)

= min
0≤j≤s

{ν ′(dj,i+1) + jαi+1βi}.

(2) Let

Si,i+1 =
{

j ∈ {0, . . . , s}
∣

∣

∣ νi

(

dj,i+1Q
j
i+1

)

= νi(h)
}

and j0 = max Si,i+1. Then δi(h) = αi+1j0 + degQi
dj0,i+1.

PROOF. (1) Provisionally, let

µ = min
0≤j≤s

νi

(

dj,i+1Q
j
i+1

)

= min
0≤j≤s

{ν ′(dj,i+1) + jαi+1βi},

S ′
i,i+1 =

{

j ∈ {0, . . . , s}
∣

∣

∣ νi

(

dj,i+1Q
j
i+1

)

= µ
}

,

j′ = max S ′
i,i+1 and δ′ = αi+1j

′+degQi
dj′,i+1. We want to show that µ = νi(h),

S ′
i,i+1 = Si,i+1, j

′ = j0 and δi(h) = δ′.

Let h̄ =
∑

j∈S′(i,i+1)
dj,i+1Q

j
i+1. Then νi(h− h̄) > µ by definition, so to prove that

νi(h) = µ it is sufficient to prove that νi(h̄) = µ.

Now, degx h̄ = degx dδ′,i+1Q
δ′

i by definition of δ′ and Proposition 21 (2). Hence

the i-standard expansion of h̄ contains the monomial dδ′,i+1Q
αi+1δ′

i and all

the other monomials have degree in x strictly smaller than degx dδ′,i+1Q
αi+1δ′

i .

Thus νi

(

h̄
)

≤ νi

(

dδ′,i+1Q
αi+1δ′

i

)

= µ, so νi(h) ≤ µ. The opposite inequality is

trivial and (1) is proved. (2) follows immediately from this. 2
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Lemma 39 Consider two terms of the form dQj
i+1 and d′Qj′

i+1 (where j, j′ ∈ N

and d and d′ are i-standard expansions not involving Qi). Assume that

νi

(

dQj
i+1

)

≤ νi

(

d′Qj′

i+1

)

(74)

and

ν ′
(

dQj
i+1

)

≥ ν ′
(

d′Qj′

i+1

)

. (75)

Then j ≥ j′. If at least one of the inequalities (74),(75) is strict then j > j′.

PROOF. Subtract (74) from (75) and use the definition of νi and the facts
that νi(Qi+1) = βi and αi+1βi < βi+1. 2

In the notation of Lemma 38, let θi+1(h) = min Si,i+1.

Definition 40 The vertex (ν(dθi+1(h),i+1), θi+1(h)) is called the characteris-
tic vertex of ∆i+1(h). By convention, θ1(f) = n, so the characteristic vertex
of ∆1(f) is also defined.

The notion of characteristic vertex will be needed in §9 when we discuss the
totality of the extensions ν ′ of ν and the formula

∑

j
fjejdj = n. It is important

that the characteristic vertex of ∆i+1(f) is determined by Qi+2 and βi+1: it
does not depend on βi+1.

Let

inih = inν′dδi

t
∏

j=1

g
γji

ji (76)

be the factorization of inih into (monic) irreducible factors in Gν [inν′Qi]
[

Q̄i

]

,

where g1i is the minimal polynomial of inν′Qi over Gν [inν′Qi].

Lemma 41 We have

γ1i = θi+1(h) (77)

(in particular, dγ1i,i+1 6= 0) and

inν′dθi+1(h),i+1 = inν′dδi

t
∏

j=2

g
γji

ji (inν′Qi). (78)

PROOF. Write

h =
∑

q∈Si,i+1

dq,i+1Q
q
i+1 +

∑

q∈{0,...,ni+1}\Si,i+1

dq,i+1Q
q
i+1.
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By Lemma 38,

inih =
∑

q∈Si,i+1

inidq,i+1iniQ
q
i+1. (79)

By definition of θi+1(h), iniQ
θi+1(h)
i+1 is the highest power of iniQi+1 dividing

∑

q∈Si,i+1

inidq,i+1iniQ
q
i+1. Also by definition, we have

iniQi+1 = g1i. (80)

Now (77) follows from (79). Also from (79), we see that inν′dθi+1(h),i+1 is ob-
tained by substituting inν′Qi in inih, and (78) follows. 2

Now, apply Lemma 39 to the monomials dθi+1(h),i+1Q
θi+1(h)
i+1 and

dδi+1(h),i+1Q
δi+1(h)
i+1 . We have

ν ′
(

dδi+1(h),i+1Q
δi+1(h)
i+1

)

≤ ν ′
(

dθi+1(h),i+1Q
θi+1(h)
i+1

)

(81)

by definition of δi+1 and

νi

(

dθi+1(h),i+1Q
θi+1(h)
i+1

)

= νi(h) ≤ νi

(

dδi+1(h),i+1Q
δi+1(h)
i+1

)

(82)

by Lemma 38, so the hypotheses of Lemma 39 are satisfied. By Lemma 39,

θi+1(h) ≥ δi+1(h). (83)

Since

αi+1γ1i = αi+1θi+1(h) ≤ degQ̄i
inih = δi(h) (84)

by (76), (1) of the Proposition follows.

(2) Assume that δi+1(h) = δi(h). Then the above two monomials coincide and

αi+1 = 1. (85)

Furthermore, we have equality in (84), so inih = inν′dδi(h)ig
δi(h)
1i . Combined

with (85), this proves (2) of the Proposition.

Finally, (68) (assuming (67)) is proved by exactly the same reasoning as (67).
(72) (assuming (71)) is proved by the same reasoning as (70). This completes
the proof of the Proposition. 2

Remark 42 One way of interpreting Lemma 39, together with the inequal-
ities (81), (82) and (83) is to say that the characteristic vertex
(ν ′(dθi+1(h),i+1), θi+1(h)) of ∆i+1(h) always lies above its pivotal vertex
(ν ′(dδi+1(h),i+1), δi+1(h)). This fact will be important in §9.
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For the rest of this section, assume that Ql+1 is defined for a certain ordinal
number l and that N iterations of the algorithm of the previous section produce
an infinite sequence {Ql+t}t∈N.

Take an ordinal i of the form l + t, t ∈ N.

Corollary 43 (of Proposition 37) We have αl+i = 1 for i≫ 0.

This fact can also be easily seen without using Proposition 37. Indeed, equa-
tions (28), (32) and (36) show that

∏

j≤i

αj ≤ n

for all i. The Corollary follows immediately. 2

Choose the ordinal l above so that αl+t = 1 for all (strictly) positive integers
t. By definition, for t ∈ N, we have

Ql+t+1 = Ql+t + zl+t, (86)

where zl+t is a homogeneous l-standard expansion of value βl+t, not involving
Ql (cf. Proposition 17). By Proposition 21 (2), we have

degx zl+t < degxQl+t. (87)

Finally,
inν′Ql+t = −inν′zl+t (88)

by (45).

As before, let h =
si
∑

j=0
djiQ

j
i be an i-standard expansion of h for i ≥ l, where

each dji is an l-standard expansion, not involving Ql. Note that since αl+t = 1

for t ∈ N, we have degxQi =
αi
∏

j=2
αj =

αl
∏

j=2
αj = degxQl and so

si =

[

degx h

degxQi

]

=

[

degx h

degxQl

]

= sl. (89)

By Proposition 37 (1), δi(h) is constant for all i ≫ l. Let δ = δi(h) for i ≫ l.
Write δ = peu, where if p > 1 then p 6 |u. Then, according to Proposition 37
(2) and using the notation of (32), we see that for i≫ l

δ − pe ∈ Si(h, βi) (90)

(in particular, dδ−pe,i 6= 0) and that

inizi =

(

inidδ−pe,i

u inidδi

) 1
pe

(91)
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In what follows, the ordinal i will run over the sequence {l + t}t∈N.

Next, we prove a comparison result which expresses the coefficients dji in terms
of djl for δ − pe ≤ j ≤ δ, modulo terms of sufficiently high value.

Proposition 44 Assume that

δi+1(h) = δl(h) = δ. (92)

Take an integer v ∈ {δ − pe, δ − pe + 1, . . . , δ}. We have

dvi ≡
δ−v
∑

j=0
(−1)j

(

v+j

j

)

dv+j,l(zl + · · ·+ zi−1)
j

mod P′
(νl(h)−vβl)+min{ν+

l
(h)−νl(h),βi−βl}

.
(93)

In particular, letting v = δ − pe and v = δ in (93) we obtain

dδ−pe,i ≡
pe
∑

j=0
(−1)j

(

δ−pe+j

j

)

dδ−pe+j,l(zl + · · ·+ zi−1)
j

mod P′
ν′(dδ−pe,l)+min{ν+

l
(h)−νl(h),βi−βl}

.

(94)

and
dδi ≡ dδl mod P′

ν′(dδl)+min{ν+
l

(h)−νl(h),βi−βl}
, (95)

respectively. If pe = 1 (in particular, whenever char K = 0), (94) reduces to

dδ−1,i ≡ dδ−1,l − δ dδl(zl + · · ·+ zi−1) mod P′
ν′(dδ−1,l)+min{ν+

l
(h)−νl(h),βi−βl}

.

(96)

PROOF. By definitions, we have Qi = Ql + zl + · · · + zi−1. First, we will
compare the l-standard expansion of h with the i-standard one. To this end,
we substitute Ql = Qi − zl − · · ·− zi−1 into the l-standard expansion of h. We
obtain

h =
sl
∑

j=0

djl(Qi − zl − · · · − zi−1)
j =

sl
∑

j=0

djiQ
j
i . (97)

We want to derive information about inih from (97). First note that for each

q ∈ {0, . . . , sl − 1} we have degx

q
∑

j=0
djl(Qi − zl − · · ·− zi−1)

j < (q+ 1) degxQi.

Hence dq+1,i is completely determined by dq+1,l, dq+2,l, . . . , dsll. Next, for δ−v <
j ≤ sl − v and l ≤ s ≤ i− 1, note that

ν ′
(

dv+j,lz
j
s

)

≥ jβl + ν ′(dv+j,l) ≥ ν+
l (h) − vβl, (98)

so for δ − v < j ≤ sl − v the terms dv+j,lQ
v+j
l in (97) contribute nothing to

dvi mod P′
(νl(h)−vβl)+min{ν+

l
(h)−νl(h),βi−βl}

.
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Now, the coefficients dvi in (97) are obtained from
sl
∑

j=0
djl(Qi − zl −· · ·− zi−1)

j

by opening the parentheses and then applying Euclidean division by Qi; such
a Euclidean division may change the coefficients dvi by adding terms of value
at least ν ′(Qi) − νl(Qi) = βi − αl+1βl = βi − βl. Finally, using (69) (which
holds thanks to the hypothesis (92)) we observe that for v and j as in (93) we
have ν ′(dv+j,l) ≥ ν ′(dδl)+ (δ− v− j)βl = νl(h)− (v+ j)βl. This completes the
proof of (93).

(94) and (95) follow from (93), after observing that

νl(h) = ν ′(dδl) + δβl = ν ′(dδ−pe,l) + (δ − pe)βl

by (69). (96) obtained from (94) by substituting pe = 1. The Proposition is
proved. 2

Now let f = h and let f =
ni
∑

j=0
ajiQ

j
i be the i-standard expansion of f . We

have ni = nl (this is a special case of (89)).

Proposition 45 Assume that the sequence {Qi} is infinite. There are two
mutually exclusive possibilities: either

lim
i→∞

βi = ∞ (99)

or char K = p > 0 and there exists t0 ∈ N such that, letting i0 = l + t0, we
have

lim
−→

i

βi < βi0 +
1

pe

(

ν+
i0

(f) − νi0(f)
)

(100)

(recall that we are assuming rk ν = 1).

PROOF. We start with a few lemmas.

Lemma 46 Assume that either char K = 0 and s < l1 in (61) or the set T
contains a maximal element Qs = Ql + zl + · · · + zs−1. Then δs+1(f) < δ. In
particular, this case can occur at most finitely many times.

PROOF. We give a proof by contradiction. Suppose δs+1(f) = δ. By Propo-
sition 37 (2),

insf = inν′aδs(Q̄s + inν′w)δ, (101)

for some l-standard expansion w, not involving Ql. This shows that Qs is not
maximal in T : the element Qs + w is greater than Qs. It remains to consider
the case char K = 0 and s < l1. In this case, (59), (95) and (96) imply that
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inν′aδs = inν′aδl and (102)

inν′aδ−1,s = inν′(aδ−1,l − δaδl
(zl + · · ·+ zs−1)) = inν′(δaδzs). (103)

Combining this with (101), we see that inν′w = inν′zs. Then Qs+1 ∈ T , which
contradicts the maximality of s in (61) (since s + 1 belongs to the set on the
right hand side of (61)). This completes the proof of the Lemma. 2

If char K = 0 and s = l1 then, by definition, βs = βl1 ≥ βl+ν
+
l (f)−νl(f). Take

q ≥ l such that δi = δ for all i ≥ q. Thus Lemma 46 implies that if char K = 0
and i0 ≥ q then there exists i > i0 with βi > βi0 + ν+

i0
(f) − νi0(f). Thus to

complete the proof of the Proposition, it remains to show (99) assuming that
there is no i0 satisfying (100).

To do that, we will define a sequence of integers l0, l1, . . . recursively as follows.
Let l0 = l, where we choose l sufficiently large so that δi(f) and ǫi(f) stabilize
for all i ≥ l. Let δ = δi(f) and ǫ = ǫi(f). By assumption, there exists l1
of the form l + t, t ∈ N, such that βl1 ≥ βl + 1

pe (ν
+
l (f) − νl(f)). We iterate

this procedure. In other words, assume that the ordinal lq is already defined.
Choose lq+1 of the form l + t, t ∈ N, such that

βlq+1 ≥ βlq +
1

pe

(

ν+
lq

(f) − νlq(f)
)

. (104)

Lemma 47 We have

ν+
l1

(f) − νl1(f) ≥ ν+
l (f) − νl(f). (105)

PROOF. By Proposition 37, ν ′(aδl1) = ν ′(aδl0) and ν ′(aǫl1) = ν ′(aǫl0). Hence

ν+
l1

(f) − νl1(f) = ν ′(aǫl1) − ν ′(aδl1) − (ǫ− δ)βl1 ≥

≥ ν ′(aǫl) − ν ′(aδl) − (ǫ− δ)βl ≥ ν+
l (f) − νl(f),

and the Lemma is proved. 2

We are now in the position to finish the proof of Proposition 45. Lemma 47
shows that ν+

lj
(f)−νlj(f) is an increasing function of j, so, by (104), βlj+1

−βlj

is bounded below by an increasing function of j. This proves that lim
q→∞

βq = ∞,

as desired. 2

Two things remain to be accomplished in our study of infinite sequences
{Ql+t}t∈N of key polynomials. First, we must show that if lim

t→∞
βl+t = ∞ and
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δ = δl+t(f) for t sufficiently large then δ is of the form δ = pe for some e ∈ N.
Secondly, we must investigate the case when the sequence βl+t is bounded and
define the next key polynomial Ql+ω. Our main technique for dealing with
the first of these problems will be differential operators. As for the second
problem, we will use Proposition 44 (particularly, equation (94)). There we
will not use differential operators as such, however, we will apply to f what
could intuitively be termed “differentiation of order pe with respect to Qi”.
We now make a digression devoted to differential operators and their effect on
key polynomials.

5 Key polynomials and differential operators

As we saw in the previous section, the most difficult situation to handle is one
in which t = αi+1 = 1 in (36) and (37): it is the only one which can give rise
to infinite sequences of key polynomials. Then inih has the form

inih = inν′dδi(Q̄+ inν′zi)
δ = iniQ

δ
i+1. (106)

This section is devoted to proving some basic results about the effect of dif-
ferential operators on key polynomials, needed to study equations h of the
above form. Here and below, for a non-negative integer b, ∂b will denote the
differential operator 1

b!
∂b

∂xb . We are interested in proving lower bounds on the
quantity ν ′(∂pbh) and also in giving sufficient conditions under which ∂pbh is
not identically zero.

Fix an ordinal l and a natural number t such that

δl+1(h) = δl+2(h) = · · · = δl+t(h)

By Proposition 37, this implies that

αl+2 = · · · = αl+t = 1 (107)

and that h satisfies (106) for l+ 1 ≤ i < l+ t. Let δ = δl+1(h). Write δ = peu,
where if char K > 0 then p 6 | u. If char K = 0, let e = 0.

Take an ordinal i having an immediate predecessor and such that the key
polynomials Qi+1 are defined. If char K > 0, let

ei = min
{

e′
∣

∣

∣ ∂pe′Qi 6≡ 0
}

. (108)

If char K = 0, let ei = 0. Let

b = e+ ei. (109)
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In the next section we will use our results on differential operators to prove that
if lim

t∈N

βl+t = ∞ then δ is of the form δ = pe, that is, u > 1. This will be proved

by contradiction: we will assume that u > 1 and show that lim
t∈N

ν ′(∂pbf) = ∞

but ∂pbf 6≡ 0.

Let Q
γ

i+1

i+1 be an i-standard monomial. One of our main tasks in this section is

to study the quantity ν ′
(

∂pbQ
γ

i+1

i+1

)

. Since an exact formula for ν ′
(

∂pbQ
γ

i+1

i+1

)

seems too complicated to compute, we are only able to give an approximate
lower bound, except under the additional assumption that βi ≫ βl (a precise
form of this inequality is (111) below).

Let b be any non-negative integer such that b ≥ ei.

Proposition 48 (1) We have

ν ′
(

Q
γ

i+1

i+1

)

− νi

(

∂pbQ
γ

i+1

i+1

)

≤ max
{

pb−ei (βi − νi (∂peiQi)) , p
bβl

}

. (110)

(2) Assume that

pb−ei (βi − νi (∂peiQi)) > pbβl. (111)

Then equality holds in (110) if and only if

(

γi

pb−ei

)

6= 0. (112)

In particular, ∂pbQ
γ

i+1

i+1 6≡ 0.

(3) Assume that both (111) and (112) hold. Then

ini∂pbQ
γ

i+1

i+1 = ini

Q
γ

i+1

i+1 (∂peiQi)
pb−ei

Qpb−ei

i

.

PROOF. Direct calculation, using induction on i and the fact that, by (107)

and Proposition 17, the i-standard monomial Q
γ

i+1

i+1 does not involve any of
Ql+1, . . . , Qi−1. 2

Remark 49 The following is a well known characterization of the inequation
(112). Let γi = k0 + pk1 + · · · + pqkq, with k0, . . . , kq ∈ {0, 1, . . . , p − 1},
denote the p-adic expansion of γi. Then (112) holds if and only if kb−ei

> 0.
In particular, (112) holds whenever γi is of the form γi = pb−eiu, with p 6 | u.
This is the only situation in which Proposition 48 will be applied in this paper.
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Corollary 50 Let h be any element of K[X], not necessarily satisfying (106).
(1) We have

νi

(

∂pbh
)

≥ νi(h) − max
{

pb−ei

(

βi − νi

(

∂pb−eiQi

))

, pbβl

}

. (113)

(2) Write inih =
∑

j∈Si

ini

(

djiQ
j
i

)

. Let Sbi =
{

j ∈ Si

∣

∣

∣

(

j

pb−ei

)

6= 0
}

. Assume

that the inequality (111) holds and that Sbi 6= ∅. Then equality holds in (113)

and ini∂pbh =
∑

j∈Sbi

ini

(

djiQ
j−pb−ei

i (∂peiQi)
pb−ei

)

. In particular, ∂pbh 6≡ 0.

Corollary 51 Assume that h satisfies (106). Let b be as in (109). Then
∂pbh 6≡ 0.

PROOF. This is a special case of Corollary 50. 2

Corollary 52 Assume that h and b satisfy the hypotheses of Corollary 50 (or,
more specifically, those of Corollary 51). Then

h /∈ K
[

Xpb+1
]

. (114)

6 Sequences of key polynomials whose values tend to infinity

Let the notation be as above. Let l be an ordinal and assume that the above
construction of key polynomials gives rise to a sequence {Ql+t}t∈N of key poly-
nomials such that

lim
t→∞

βl+t = ∞. (115)

Let δ = δl+t(f) for t sufficiently large. The purpose of this section is to prove

Theorem 53 The integer δ is of the form δ = pe for some e ∈ N.

PROOF. We give a proof by contradiction. Suppose that (115) holds but δ
is of the form δ = peu with u > 1. Let b be as in (109) and let g = ∂pbf .
The quantity pbβl is independent of t, hence, by (115), the inequality (111)
holds for t sufficiently large. By Proposition 37 (2), inl+tf has the form (106)
for i = l + t, as t runs over N. Hence h = f satisfies the hypotheses of
Corollary 51. By Corollary 51, g 6≡ 0. Moreover, by Corollary 50 (1), we have
ν ′(g) ≥ νl+t(g) ≥ δβl+t − peβl+t = pe(u− 1)βl+t. Since u > 1, this shows that
ν ′(g) = ∞, which contradicts the fact that g is given by a polynomial in x of
degree strictly less than n. 2

The following Proposition will come in useful in the remaining sections.
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Proposition 54 Take an element h of L and an ordinal i such that the key
polynomials Qi+1 are defined. Assume that

ν ′(h) < βi (116)

and that h admits an i-standard expansion

h =
s
∑

j=0

cjQ
j
i , (117)

such that ν ′(cj) ≥ 0 for all j. Then ν ′(h) = νi(h).

PROOF. By definition of standard expansion, each ci in (117) is an
i-standard expansion not involving Qi. Then cj is a sum of monomials in
Qi, which does not vanish in Gν′ (22), hence all the monomials appearing in
cj have value at least ν ′(cj). By (116),

ν ′
(

cjQ
j
i

)

= νi

(

cjQ
j
i

)

> ν′(h) for j > 0 (118)

(117) and (118) imply that ν ′(h) = ν ′(c0). Thus h is a sum of monomials in
Qi of value at least ν ′(h), as desired. 2

7 Sequences of key polynomials with bounded values in fields of
positive characteristic

In this section, we assume that char K = p > 0. Let l be an ordinal number
and assume that the key polynomials Ql∪{Ql+t}t∈N are already defined. More-
over, assume that we are in Case 2b of §3 (in particular, the sequence {βl+t}t∈N

has a upper bound β̄ but no maximum in Γ; this is the only case which re-
mains to be treated to complete the definition of the Qi). By Proposition 43,
there exists t0 ∈ N such that

αl+t = 1 and δl+t = δl+t0 for all t ≥ t0. (119)

Replacing l by l + s for a suitable positive integer s, we may assume that
αl+t = 1 for all strictly positive t. In what follows, the index i will run over
the set {l + t}t∈N. As usual, let δ denote the common value of all the δi(f).

Proposition 55 Assume we are in Case 2b. There exist i ∈ {l + t}t∈N, a
strictly positive integer e0 ≤ e and a weakly affine i-standard expansion Ql+ω,
monic of degree pe0 in Qi, such that

β̄ ≤
1

pe0
ν (Ql+ω) . (120)
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Of course, the inequality (120) is equivalent to saying that

ν ′ (Ql+ω) > pe0ν (Ql + zl + · · ·+ zl+t) (121)

for all t ∈ N.

PROOF. The idea is to start with the inequality ν ′(f) > νl+t(f) for all
t ∈ N and to gradually construct polynomials g of the smallest possible degree
satisfying

ν ′(g) > νi(g) (122)

until we arrive at g = Ql+ω satisfying the conclusion of the Proposition.

First, let a∗ be an l-standard expansion, not involving Ql, such that

inν′(a∗aδl) = 1 (123)

and let a∗(X) be the representative of a∗ in K[X] of degree less than n. Note
that

inν′aδl = inν′aδi for all i ≥ l (124)

by Proposition 37 (2).

Let f̃ = a∗(X)f̄ . By Proposition 37 (2), for all i ≥ l we have

inif̃ = inif = inν′aδi(Q̄i + inν′zi)
δ,

hence in view of (124) we have inif̃ = (Q̄i + inν′zi)
δ. In particular,

ν ′(f̃) > νi(f̃) for all i. (125)

Let f̃ =
ñl
∑

j=0
ãjiQ

j
i be the i-standard expansion of f̃ . We have inν′ ãδi = 1 for

all i.

As noted in the previous section, since αi = 1 for all i, all the i-standard
expansions of f̃ have the same degree ñl in Qi.

By Lemma 47 the quantity ν+
i (f̃) − νi(f̃) is increasing with i. Taking into

account the fact that β̄ = lim
i→∞

βi, we have, for i sufficiently large,

ν ′(ãiδ) + δβ̄ − νi(f̃) = δ(β̄ − βi) < ν+
i (f̃) − νi(f̃). (126)

By choosing l sufficiently large, we may assume that (126) holds for i ≥ l.

Next, write ãδl = 1 + ã† with ν ′(ã†) > 0. Let ˜̃f = (1 − ã†(X))f̃ and let

˜̃f =
˜̃
ln
∑

j=0

˜̃ajlQ
j
l be the l-standard expansion of ˜̃f . By (126) terms of the form
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(1−ã†(X))ãjl with j > δ contribute terms of negligibly high value to ˜̃aδl. Terms
(1−ã†(X))ãjl with j < δ contribute terms of value at least ν ′(ã†)+(βl−αlβl−1)
to ˜̃aδl. Thus ν ′(˜̃a†) ≥ ν ′(ã†) + min{ν ′(ã†), βl − αlβl−1}, so multiplying f̃ by
(1−ã†(X)) increases ν ′(ã†) by a fixed amount. Iterating this procedure finitely
many times, we may assume that ν ′(ã†) > δβ̄ > νi(f̃) for all i. Then replacing
aδl by 1 does not affect the inequality (125), hence we may assume that ãδl = 1.

Let

f̄ =
δ
∑

j=0

ãjlQ
j
l .

(126) implies that for all j, δ < j ≤ ñl,

ν ′
(

ãjlQ
l
j

)

≥ ν+
l (f̃) > δβ̄ > δβi = νi(f̃).

Hence inif̃ = inif̄ ; in particular, ν
(

f̄
)

> νi

(

f̄
)

for all i.

The polynomial f̄ is monic of degree δ; the expression f̄ =
δ
∑

j=0
ãjiQ

j
i is the

i-standard expansion of f̄ . None of the subsequent transformations Qi = Ql +
zl + · · ·+ zi−1 affect the coefficient aδl = 1, so aδi = 1 for all i.

Write δ = peu, as in the previous section. Let g =
pe
∑

j=0

(

δ−pe+j

j

)

ãδ−pe+jQ
j
l

(roughly speaking, the reader should think of the process of constructing g
from f̄ as applying a differential operator of order δ− pe with respect to Qi0).
By construction,

inif̄ = (Q̄i + inν′zi)
δ for i ≥ l. (127)

On the other hand, let wi−1 = zl + · · ·+ zi−1. Then

f̄ =
δ
∑

j=0

ãjl(Qi − wi−1)
j. (128)

The terms in (128) with j < δ − pe give rise to polynomials of degree strictly
less than (δ − pe) degxQl. Thus (128) can be rewritten as

f̄ =
pe
∑

j=0

ãδ−pe+j,l(Qi − wi−1)
δ−pe+j + φ (129)

=Qδ−pe

i

pe
∑

j=0

pe
∑

v=j

(−1)v−j

(

δ − pe + v

δ − pe + j

)

ãδ−pe+v,lw
v−j
i−1Q

j
i + ψ (130)

=Qδ
i +Qδ−pe

i

pe−1
∑

j=0

pe
∑

v=j

(−1)v−j

(

δ − pe + v

δ − pe + j

)

ãδ−pe+v,lw
v−j
i−1Q

j
i + ψ (131)
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where degx φ, degx ψ < (δ − pe) degxQl. On the other hand, we have

g=
pe
∑

j=0

(

δ − pe + j

j

)

ãδ−pe+j,lQ
j
l (132)

=
pe
∑

j=0

(

δ − pe + j

j

)

ãδ−pe+j,l(Qi − wi−1)
j (133)

=
pe
∑

j=0

pe
∑

v=j

(−1)v−j

(

δ − pe + v

v

)(

v

j

)

ãδ−pe+v,lw
v−j
i−1Q

j
i (134)

= uQpe

i +
pe−1
∑

j=0

pe
∑

v=j

(−1)v−j

(

δ − pe + v

v

)(

v

j

)

ãδ−pe+v,lw
v−j
i−1Q

j
i . (135)

Now,
(

δ−pe+v

v

)(

v

j

)

=
(

δ−pe+v

δ−pe+j

)(

δ−pe+j

j

)

whenever j ≤ v; moreover,

(

δ − pe + j

j

)

=1 if 0 ≤ j < pe (136)

=u if j = pe. (137)

Thus the double sums in (131) and (135) are identical; note also that ev-
erything in these double sums has degree strictly less than pe degxQl. Thus
rewriting the double sum as an i-standard expansion and comparing (135)
with (127) shows that inig = uQ̄pe

i + uinν′zpe

i = u(Q̄i + inν′zi)
pe

; in particular,
g satisfies (122). Dividing g by the non-zero integer u does not change the
problem, so we may assume that g is a monic polynomial in Qi of degree pe.
Write

g =
pe
∑

j=0

cjiQ
j
i . (138)

Choose i0 ≥ l sufficiently large so that

βi0 − αlβl−1 > pe(β̄ − βi0). (139)

Remark 56 Assume that there exist i ≥ i0 and j, 1 ≤ j < pe, such that
ν ′(cji) + jβ̄ > 2peβ̄− peβi. Then for any i′ > i we have ini′(g− cjiQ

j
i ) = ini′g;

in particular, νi′(g − cjiQ
j
i ) < ν′(g − cjiQ

j
i ). Thus we are free to replace g by

g − cjiQ
j
i .

Assume that there exist j ∈ {1, ..., pe − 1} and i1 ≥ i0 such that cji1 6= 0 and

peβ̄ < ν(cji1) + jβ̄ < (pe + 1)βi1 − αlβl−1. (140)

Take the greatest such j.
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Lemma 57 (1) We have ν ′(cji) + jβ̄ > peβ̄ for all i ≥ i1.

(2) The element inν′cji is constant for all i ≥ i1.

(3) There exists i2 ≥ i1 such that for all i ≥ i2 we have

νi

(

g − cji2Q
j
i2

)

< ν′
(

g − cji2Q
j
i2

)

.

PROOF. (2) follows the maximality of j and the inequalities (139) and (140):
inν′cji2 cannot affected by any subsequent coordinate changes of the form
Qi = Qi1 + zi1 + · · ·+ zi−1. (1) follows immediately from (2).

By (1) and (2), taking i2 sufficiently large, we can ensure that

ν ′
(

cji2Q
j
i2

)

> peβ̄.

Since peβ̄ > peβi = νi(g), we have

νi

(

g − cji2Q
j
i2

)

= νi(g) < min
{

ν ′(g), ν ′
(

cji2Q
j
i2

)}

≤ ν ′
(

g − cji2Q
j
i2

)

for all i ∈ i2+N, and (3) is proved. This completes the proof of Lemma 57. 2

If there exists j ∈ {1, . . . , pe − 1} satisfying the hypotheses of Lemma 57,
replace g by g − cji2Q

j
i2
; Lemma 57 (3) says that strict inequality (122) is

satisfied with g replaced by g − ci2jQ
j
i2
. This procedure strictly decreases the

integer j appearing in Lemma 57. Hence after finitely many repetitions of this
procedure we obtain a polynomial g such that there do not exist j and i1
satisfying (140). By the second inequality in (140), the non-existence of such
j and i1 is preserved as we pass from i to i + 1; hence, after finitely many
steps we may assume that no j and i1 satisfying (140) exist. We will make
this assumption from now on.

Remark 58 Now, by the same reasoning as in Lemma 57, the sets

S :=
{

j ∈ {1, ..., pe}
∣

∣

∣ cji 6= 0 and ν(cji) = (pe − j)β̄
}

and { inν′cji| j ∈ S} are independent of i for i ≥ i0.

Lemma 59 Consider an index j ∈ {1, ..., pe − 1} and an ordinal i ≥ i0 of the
form i = i0 + t, t ∈ N, as above. Assume that cji 6= 0. We have

ν ′(cji) + jβ̄ ≥ peβ̄ (141)

and j is a power of p whenever equality holds in (141).
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PROOF. We give a proof by contradiction. Assume that for a certain i1 ≥ i0
there exists j ∈ {1, ..., pe − 1} such that cji1 6= 0, and either

ν(cji1) < (pe − j)β̄ (142)

or j is not a p-power (or both). Let j(g) denote the greatest such j. Let
j = j(g). Then the element inν′cji1 is not affected by the subsequent coordinate
changes Qi1 = Qi − zi1 − · · · − zi−1, so inν′cji = inν′cji1 for all i ≥ i1.

First assume that (142) holds. (142) can be rewritten as ν(cji) + jβ̄ < peβ̄.
Now, taking i sufficiently large, the difference β̄ − βi can be made arbitrarily
small, so ν(cji) + jβi < peβi. This inequality shows that

ν
(

cjiQ
j
i

)

< ν
(

Qpe

i

)

,

so inig does not contain the monomial Qpe

i , which is a contradiction.

From now on assume that

ν ′(cji) + jβ̄ = peβ̄ for all i ≥ i1. (143)

Then, by definition of j, j is not a p-power. Write j = pe′u′ and Qi+1 =
Qi +zi. Then the (i+1)-standard expansion of g contains a monomial of value

ν ′
(

cjiz
j−pe′

i Qpe′

i+1

)

. We have

ν ′
(

cjiz
j−pe′

i

)

+ pe′β̄ = ν ′(cji) +
(

j − pe′
)

βi + pe′β̄ < ν′(cji) + jβ̄ = peβ̄.

Thus the appearance of a monomial of value ν ′
(

cjiz
j−pe′

i Qpe′

i+1

)

in the standard

expansion of g contradicts (143) with i replaced by i+ 1. This completes the
proof of Lemma 59. 2

If Ql+ω = g satisfies the conclusion of Proposition 55 there is nothing more
to prove. Otherwise, by Lemma 59 and since no j and i1 satisfy (140), there
exist j ∈ {1, . . . , pe − 1} and i1 ≥ i0 such that for all i ≥ i1 we have

ν(cji) + jβ̄ > (pe + 1)βi − αlβl−1 ≥ (pe + 1)βi1 − αlβl−1 > peβ̄. (144)

Let A denote the set of all such j. Replace g by g−
∑

j∈A
cji1Q

j
i1
. Remark 56 says

that strict inequality (122) is satisfied for this new g. In this way, we obtain
a polynomial g such that Ql+ω = g satisfies the conclusion of Proposition 55.
This completes the proof of Proposition 55. 2

Remark 60 We are not claiming that the property that g is a weakly affine
expansion in Qi1 is preserved when we pass from i1 to some other ordinal

39



i > i1. However, the above results show that for any i ≥ i1 of the form i = l+t,
t ∈ N, g is a sum of a weakly affine expansion in Qi all of whose monomials
cjiQ

j
i lie on the critical line ν ′(cji) = (pe−j)β̄ and another standard expansion

of degree strictly less than pe in Qi, all of whose monomials have value greater
than or equal to (pe + 1)βi1 − αlβl−1 > peβ̄.

We define Ql+ω to be a weakly affine standard expansion satisfying the con-
clusion of Proposition 55, which minimizes the integer e0 (so that αl+ω = pe0).
This completes the definition of the Qi.

Let θl+ω(f) = δ
αl+ω

. It is easy to see, by the same argument as in Lemma 38,

that the Newton polygon ∆l+ω(f) contains a vertex (ν ′(aθl+ω(f)), θl+ω(f)), and
that this vertex lies above the pivotal vertex (ν ′(aδl+ω(f)), δl+ω(f)). The vertex
(ν ′(aθl+ω(f)), θl+ω(f)) will be called the characteristic vertex of ∆l+ω(f).
The notion of characteristic vertex will be used in §9 when we study the
totality of extensions of ν to L. It is important that the characteristic vertex
is determined by Ql+ω+1 and βl+ω; it does not depend on βl+ω.

Remark 61 By construction, we have αl+ω = pe0 ≥ p. Then the fact that
degxQl+ω ≤ n and Proposition 21 show that the situation considered in this
section can arise at most [logp n] times, so the set Q := {Qi} thus defined has
order type of at most [logp n]ω + t, where t ∈ N.

8 Proof that {Qi} is a complete set of key polynomials

This section is devoted to proving

Theorem 62 The well ordered set Q := {Qi} defined in the previous sections
is a complete set of key polynomials. In other words, for any element β ∈ Γ+

the corresponding ν ′-ideal P′
β is generated by all the monomials in the Qi of

value β or higher. In particular, we have Gν′ = Gν [inν′Q]∗.

Corollary 63 The valuation ν ′ is completely determined by the data Q, {βi}.

PROOF. Let λ be the ordinal number which represents the order type of the
set Q, so that Q = Qλ. Let l denote the smallest ordinal such that 0 ≤ l < λ
and αi = 1 whenever l < i < λ (note, in particular, that if λ admits an
immediate predecessor and αλ−1 > 1 then l = λ − 1; at the other end of the
spectrum is the possibility that αi = 1 for all i < λ and l = 0). To prove the
Theorem, it is sufficient to show that for every positive β ∈ Γ and every h ∈ L
such that ν ′(h) = β, h belongs to the ideal generated by all the monomials

cQγ such that ν ′
(

cQγ
)

≥ β.
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Take any element h ∈ L. Without loss of generality, we may assume that,

writing h =
s
∑

j=0
djx

j , we have ν(dj) ≥ 0 for all j (otherwise, multiply h by a

suitable element of K).

Claim 64 There exists i < λ of the form i = l + t, t ∈ N, such that

βi > ν′(h). (145)

PROOF. There are two possibilities: either λ has an immediate predecessor
or it does not. By construction, for any i such that l < i < λ we have i = l+ t
for some t ∈ N. The ordinal λ admits an immediate predecessor if and only
if λ = l + t for some t ∈ N and does not admit an immediate predecessor if
and only if λ > l + t for all t ∈ N. If λ has an immediate predecessor then
Qλ−1 = f(x) = 0, so ν ′(Qλ−1) = ∞ > ν′(h). If λ does not have an immediate
predecessor then by construction lim

t→∞
βl+t = ∞, so there exists i = l+ t, t ∈ N

such that (145) holds. The Claim is proved. 2

Now, Lemma 54 says that νi(h) = ν ′(h). This means, by definition, that h
can be written as a sum of monomials in Qi+1 of value at least ν ′(h), hence
it belongs to the ideal generated by all such monomials. This completes the
proof. 2

9 A description of the algorithm.

Let K →֒ L be a finite separable field extension and ν : K∗ → Γ a valuation
of K. In this section we describe an algorithm for constructing all the possible
extensions ν ′ of ν to L. Pick and fix a generator x of L over K once and for

all. Let f =
n
∑

i=0
aix

i denote the minimal polynomial of x over K.

First, we reduce the problem to the case rk ν = 1. Let r = rk ν. Write ν as a
composition of r rank 1 valuations: ν = ν1◦· · ·◦νr, where ν1 is the valuation of
K, centered at the smallest non-zero prime ideal of Rν . Assume the problem is
already solved for rank 1 valuations. Then any extension ν ′ of ν to L is of the
form ν ′ = ν ′1 ◦ · · · ◦ ν

′
r, where ν ′1 is an extension of ν1 to L, ν ′2 is an extension

of ν2 to kν′

1
, and so on. The valuation ν ′i is an extension of the valuation νi of

the field kνi−1
to its algebraic extension kν′

i−1
. Thus, it is sufficient to solve the

problem in the case rk ν = 1.

From now on, we assume that rk ν = 1.
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Step 1.1 of the algorithm. Choose an element β1 ∈ Γ+ which determines
a side of ∆(f) and put ν ′(x) = β1.

Step 1.2 of the algorithm. Let

in1f = v
s
∏

j=1

g
γj

j (146)

be the factorization of in1f into (monic) irreducible factors in Gν [x̄]. Since for
any extension ν ′ of ν we have in1f(inν′x) = 0, one of the irreducible factors in
(146) is the minimal polynomial of inν′x over Gν . Choose one of the irreducible
factors in (146) (other than x̄), say g1. Write

g1 =
α1
∑

i=0

b̄ix̄
i,

where b̄α1 = 1. For each i, 0 ≤ i ≤ α1, let bi be a representative of b̄i in Rν

(that is, an element of Rν such that inνbi = b̄i). Put Q1 = x and Q2 =
α1
∑

i=1
bix

i.

Assume, inductively, that key polynomials Q1, . . . , Ql and positive integers
α1, . . . , αl−1 are already constructed for a certain ordinal l, where l < ω if
char K = 0 and l < ([logp n] + 1)ω if char K = p > 0.

Assume, inductively, that for each i, 1 ≤ i < l, the (i + 1)-st key polynomial
Qi+1 admits an i-th standard expansion of the form

Qi+1 = Qαi

i +
i−1
∑

j=0

(

∑

γ

cjiγQ
γ
j

)

Qj
i , (147)

where each of cjiγQ
γ
j is an i-standard monomial. Assume that the standard

expansions (147) satisfy all the conditions described in §3.

Write f =
nl
∑

j=0
ajlQ

j
l , where each ajl is a homogeneous l-standard expansion

not involving Ql. The next two steps of the algorithm are a generalization of
the first two steps, with 1 replaced by l.

Step l.1 of the algorithm. If l does not have an immediate predecessor
(that is, l is of the form l = l0 +ω), let β̄l = sup{βl0+t}t∈N. Choose an element
βl which determines a side Al of ∆l(f) and satisfies the following condition:

Condition (*). If l has an immediate predecessor then βl > αlβl−1; if l does
not have an immediate predecessor then βl > αlβ̄l.

Put ν ′(Ql) = βl.
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Remark 65 We know from §3 and §7 that Condition (*) must hold for any
extension ν ′ of ν; it is a consequence of the proof of Proposition 37 (see (83))
that the pivotal vertex of ∆l(f) lies below its characteristic vertex. Conversely,
if Ql+1 and βl are given, any side of ∆l(f) lying below its characteristic vertex
can be chosen to be the characteristic side; the choice of βl which determines
such a characteristic side will automatically satisfy Condition (*).

Step l.2 of the algorithm. By Proposition 36 the value ν ′(ajl), where 1 ≤
i ≤ nl, is completely determined by the l-standard expansion of ail; in particu-
lar, it is completely determined at this stage of the algorithm. Similarly, inlf :=

∑

(ν′(ail),i)∈Al

inν′ailQ̄
i
l is a well-defined element of Gν [inν′Q1, . . . , inν′Ql−1]

[

Q̄l

]

.

Let inlf = vl

tl
∏

j=1
g

γjl

jl be the factorization of inlf into (monic) irreducible

factors in Gν [inν′Q1, . . . , inν′Ql−1]
[

Q̄l

]

. Choose one of these factors (other

than Q̄l), say g1l (then g1l will be the minimal polynomial of inν′Ql over
Gν [inν′Q1, . . . , inν′Ql−1] for the valuation ν ′ we are about to construct). Let
αl+1 = degQ̄l

g1l. Write

g1l = Q̄
αl+1

l +
αl+1−1
∑

j=0





∑

γ
l

c̄l+1,jγ
l
inν′Q

γ
l

l



 Q̄j
l , (148)

If tl > 1 or αl+1 > 1, define the (l + 1)-st key polynomial of ν ′ to be a
lifting

Ql+1 = Q
αl+1

l +
αl+1−1
∑

j=0





∑

γ
l

cl+1,jγ
l
Q

γ
l

l



Qj
l

(148) to L. If tl = αl+1 = 1, the (l + 1)-st key polynomial Ql+1 will also be
a lifting of (148) to L, but we require it to satisfy additional conditions, as
in §3. Let δl(f) be defined as in (66). Define the next key polynomials Ql+1,
Ql+2, . . . , as in §3. More precisely, we define finitely many polynomials Ql+1,
. . . , Qs if either char K = 0 or char K = p > 0 and we are in Case 1 of §3.

In Case 2, there exists an infinite sequence zl, zl+1, . . . of homogeneous stan-
dard expansions in Ql, not involving Ql, such that the sequence {ν ′(Ql + zl +
· · · + zl+t)}t∈N is strictly increasing; pick and fix one such sequence. Define
Ql+t = Ql +zl +zl+1 + · · ·+zl+t−1 for t ∈ N. For each key polynomial Qi, write

f =
nl
∑

j=0
ajiQ

j
i and consider the corresponding Newton polygon ∆i(f). By defi-

nition of δi(f), the Newton polygon ∆i(f) contains a vertex (ν ′(aδi(f)i), δi(f)).
Since δi(f) = δi+1(f), the characteristic side Ai of ∆i(f) is uniquely deter-
mined, that is, there exists a unique element βi ∈ Γ ∪ {∞} such that βi ≥ βi′

for all i′ < i, βi determines a side Ai of ∆i(f) and (ν ′(aδi), δi(f)) is the leftmost
endpoint of Ai. This defines an infinite sequence {Ql+t}t∈N of key polynomials,
such that for each i = l + t, t ∈ N, we have inif = inν′aδi(Q̄i + inν′zi)

δl(f).
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Let β̄ = lim
t→∞

ν ′(Ql + zl + · · ·+ zl+t). By definition, we are in Case 2a if β̄ = ∞

and in Case 2b if β̄ <∞.

In Case 2b, define the next key polynomial to be a polynomial Ql+ω satisfying
the conclusion of Proposition 55. Note that in all the cases both the slope
of the characteristic side Li and the irreducible factor of inif which is the
minimal polynomial of inν′Qi over Gν [inν′Qi]

∗ are uniquely determined.

The algorithm stops if one of the following occurs: either Qi = 0 or

sup
i
{βi} = ∞,

where βi ranges over the values of key polynomials defined so far. In both
cases, the valuation ν ′ is completely determined by the data {Qi, βi}.

This completes our construction of the extensions ν ′. Note that every choice
described in the algorithm above leads to an extension ν ′. Indeed, such a choice
defines, in particular, the well ordered set {νi}i∈Λ of valuations of K[X] and
their graded algebras; whenever i < i′, we have a natural homomorphism of
graded algebras Gνi

→ Gνi′
. The proof of Theorem 62 applies verbatim to

show that for each h ∈ L, the value νi(h(X)) stabilizes for i sufficiently large.
Setting ν ′(h) to be that stable value of νi(h(X)) defines a valuation ν ′ of L.

Corollary 66 The extension ν ′ is unique if and only if, for each i in the above
algorithm, the following two conditions hold:

(1) The i-th Newton polygon ∆i(f) has only one face Li (other than the two
axes).

(2) The corresponding initial form inif does not have two distinct irreducible
factors (in other words, inif is a power of an irreducible polynomial).

The next Corollary is valid for valuations of arbitrary rank (and not only for
those of rank 1).

Corollary 67 Assume that inν′x has degree n over Gν. Then ν admits a
unique extension ν ′ to L.

PROOF. By writing ν as a composition of several rank 1 valuations, it is
sufficient to prove the Corollary under the assumption rk ν = 1. Now, the
hypotheses imply that (1) and (2) of Corollary 66 hold for i = 1. Moreover,
we may take f = Q2, so the algorithm consists of only one step, and the
Corollary follows. 2
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We end this paper with a discussion of the well known formula

t
∑

j=1

fjejdj = n, (149)

where {ν ′1, . . . , ν
′
t} is the set of all the extensions of ν to L, fj is the index

of the value group of ν inside the value group of ν ′j, ej is the degree of the
residue field extension kν → kν′

j
and dj is the defect of ν ′j . Of course, for each

j we have fjej = [Gν′

j
: Gν ]. We associate to the above algorithm the following

finite, oriented, weighted tree U . The set of vertices of U is partially ordered. In
each vertex, we have a key polynomial Ql appearing at some step in one of the
branches of the above algorithm. The important data associated to this vertex
is the data δl(f), as well as the data Ql of all the key polynomials preceding
Ql in the given branch of the algorithm. The set of vertices has a unique
minimal element and the key polynomial associated to this minimal vertex
is x = Q1. Each vertex is adjacent to exactly one vertex smaller than itself
and, possibly, to finitely many vertices greater than itself. Let us denote each
vertex by the key polynomial Ql associated to it. Not every key polynomial
will be associated to a vertex of U . If l admits an immediate predecessor then
the unique vertex adjacent to Ql, preceding Ql, is Ql−1. Consider a vertex Ql.
We will now describe all the vertices following Ql. There are two possibilities:

(a) There is a unique βl satisfying Condition (*) and Case 2b of §3 holds in
the definition of Ql.

(b) Condition (a) does not hold.

In case (a), the unique vertex following Ql is Ql+ω. In case (b), Ql is followed
by all the possible key polynomials Ql+1, appearing in the above algorithm.

This information determines the tree U completely. It is obvious that U is
finite.

Proposition 68 Fix a vertex Ql of U . Assume that Case (b) holds for Ql and

let Q
(1)
l+1, . . . , Q

(s)
l+1 denote all the vertices of U , adjacent to Ql and following

it. Let θl(f), θ
(1)
l+1(f), . . . , θ

(s)
l+1(f), and α

(1)
l+1, . . . , α

(s)
l+1 denote the numerical

characters corresponding to the s resulting branches of the above algorithm.
Then

s
∑

j=1

α
(j)
l+1θ

(j)
l+1(f) = θl(f). (150)

PROOF. Let A
(1)
l , . . . , A

(t)
l denote the sides of ∆l(f) lying below the char-

acteristic vertex (ν ′(aθl(f)l), θl(f)). For 1 ≤ j ≤ t, let β
(j)
l denote the element

of Γ+ which determines the side A
(j)
l and let in

(j)
l f denote the corresponding
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initial form of f . By construction, renumbering the vertices Q
(j)
l+1, if necessary,

we can find indices 1 ≤ s1 < · · · < st = s such that the factorization of

in
(j)
l f into irreducible factors has the form in

(j)
l f = Q̄uj

sj
∏

q=sj−1+1
in

(j)
l (Q

(q)
l+1)

θ
(q)
l+1 ,

where the exponent uj may or may not be zero (cf. Lemma 41 and (80)).
Since θl(f) equals the sum of the heights of sides of ∆l(f) lying below the

characteristic vertex, we have θl =
t
∑

j=1
degQ̄

sj
∏

q=sj−1+1
in

(j)
l

(

Q
(q)
l+1

)θ
(q)
l+1

. Recalling

that degQ̄ inlQ
(q)
l+1 = α

(q)
l+1 completes the proof of the Proposition. 2

If Case (a) holds for Ql then the pivotal vertex of ∆l is uniquely determined
and coincides with the characteristic vertex. There is only one choice for the
key polynomial Ql+ω and, by definition,

θl = αl+ωθl+ω. (151)

Thus, the analogue of the formula (150) holds also in the Case (a).

For each vertex Ql of U , let αl(Ql) denote the integer αl corresponding to
Ql in the above algorithm, and similarly for θl(Ql). Fix a vertex Ql of U and
consider a subtree U ′ ⊂ U , having the following properties:

(1) Ql is the unique minimal element of U ′.

(2) For each vertex Qi of U ′, if U ′ contains one vertex immediately following
Qi then it contains all of them.

Let {Ql1 , . . . , Qlt} be the set of maximal elements among the vertices of U ′.

Corollary 69 We have

θl =
t
∑

j=1







∏

Ql′≤Qlj

αl′(Ql′)





 θlj (Qlj ). (152)

PROOF. This follows immediately from Proposition 68 and equation (151)
by induction on the size of U ′. 2

Let {ν ′1, . . . , ν
′
s} be the set of all the extensions of ν to L and take U ′ = U in

the above Corollary. Let {Ql1, . . . , Qls} be the set of maximal elements among
the vertices of U . For each j ∈ {1, . . . , s}, consider the following partition of
the set of all vertices Ql of U such that Ql ≤ Qlj . We will say that such a Ql

belongs to the set Dj if Case (a) holds for the vertex immediately preceding
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Ql, and belongs to the set Ej otherwise. Noting that θ1 = n, we can now

rewrite (152) as n =
t
∑

j=1

(

∏

Ql′∈Dj

αl′(Ql′)

)(

∏

Ql′∈Ej

αl′(Ql′)

)

θlj (Qlj ).

Now, if Ql′ ∈ Ej then the graded algebra extension

Gν [inν′Ql′ ] →֒ Gν [inν′Ql′ ][inν′Ql′ ]

has degree αl′(Ql′). We can now interpret the formula (149) by observing that
(

∏

Ql′∈Ej

αl′(Ql′)

)

equals the degree of the graded algebra extension

[Gν′

j
: Gν ] = ejfj ,

whereas the quantity

(

∏

Ql′∈Dj

αl′(Ql′)

)

θlj (Qlj ) is nothing but the defect of the

extension ν ′j .

We refer the reader to Michel Vaquié’s paper [12] for a detailed treatment of
defect.
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[12] M. Vaquié, Défaut, preprint.

[13] O. Zariski, P. Samuel Commutative Algebra, Vol. II, Springer-Verlag (1960).

48


	Introduction
	Algebras graded by ordered semigroups.
	Key polynomials and higher Newton polygons
	Infinite sequences of key polynomials.
	Key polynomials and differential operators
	Sequences of key polynomials whose values tend to infinity
	Sequences of key polynomials with bounded values in fields of positive characteristic
	Proof that {Qi} is a complete set of key polynomials
	A description of the algorithm.
	References

