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Abstract

We give a purity result for exponential sums of the type
P

x∈kn ψ(f(x)),
where k is a finite field of characteristic p, ψ : k → C? is a non-trivial addi-
tive character and f ∈ k[x1, . . . , xn] is a polynomial whose highest degree
homogeneous form splits as a product of factors defining a divisor with
normal crossings in Pn−1.

1 Introduction

Let k be a finite field of characteristic p and cardinality q, let f ∈ k[x1, . . . , xn]
be a polynomial of degree d and ψ : k → C? a non-trivial additive character. We
are interested in the sum the

∑
x∈kn ψ(f(x)). Under various different regularity

conditions on f (cf. [4] Théorème 8.4, [10] Theorem 0.4, [1] Theorem 1.4, [20]
Theorems 2 and 4) the sum is known to be pure of weight n and rank ≤ (d−1)n.
In particular, we have the estimate

∣∣∣∣∣
∑

x∈kn

ψ(f(x))

∣∣∣∣∣ ≤ (d− 1)n · qn/2.

In this article we consider the case where the highest degree homogeneous form
of f is reducible, and the hypersurface defined in Pn−1 by the product of its
distinct factors is a divisor with normal crossings.

More precisely, let f = fd + fd′ + f ′, with fi homogeneous of degree i and
f ′ of degree < d′, and suppose that fd = gα1

1 · · · gαr
r in k̄[x1, . . . , xn], where

gi1 = . . . = gik
= 0 and gi1 = . . . = gik

= fd′ = 0 define smooth subvarieties of
codimension k and k + 1 respectively in Pn−1

k̄
for all {i1, . . . , ik} ⊆ {1, . . . , r}.

These hypotheses appear for the first time in [2], where Adolphson and Sperber
show that for d, d′, α1, . . . , αr prime to p the L-function associated to the expo-
nential sum

∑
x∈kn ψ(f(x)) is a polynomial or the reciprocal of a polynomial,

depending on the parity of n. This suggest that the cohomology of the sum is
∗Partially supported by MTM2004-07203-C02-01 and FEDER
12000 AMS Mathematics Subject Classification: 11L07, 11T23.
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concentrated in degree n. Our main result (Theorem 1) will show that, under
these hypotheses, the sum is indeed cohomologically pure of weight n.

The proof consists of two parts. First we will show that, for a fixed k,
the property of being pure and the rank of the sum do not depend on the
particular f chosen, but only on the combinatorial data: d, d′, the αi’s and
the degrees of the gi’s. For this we use an argument similar to the one in ([5],
3.7.3). In order to finish the proof it would then be enough to find a particular
f for which the result is true. In loc.cit., Deligne uses the diagonal polynomial∑n

i=1 xd
i . Unfortunately, in general we will not have such an explicit example

for all possible choices of combinatorial data. Instead, we use the theory of
perverse sheaves to show that the sum is pure for a certain subfamily of the
family of all polynomials of a given type.

This will prove the purity of the sum, but still will not give the value of the
rank. In Section 3 we will give some bounds for this rank that will allow us to
effectively estimate the absolute value of the sum (cf. Corollary 9). Then in
Section 4 we will give en explicit formula for it in terms of the well known for-
mulas for the Euler characteristic of complete intersections in projective space.
In particular, this will show that the rank is also independent of the base field
k.

In the last section we will give some examples of sums that can be bounded
using these results. We will find that several previously known estimates, like the
ones for non-singular polynomials and for Kloosterman sums, arise as particular
cases of this more general purity theorem.

Notice that, in this case, the general results in [15] about exponential sums
where the highest degree form of f is singular do not give good estimates for
the sum, due to the high dimension of the singular locus of the hypersurface
fd = 0 (n− 3 if αi = 1 for all i = 1, . . . , r and n− 2 otherwise).

2 Purity of the sums

Throughout this section we will fix a prime p, a finite field k of characteristic p
and cardinality q and an integer n ≥ 1. An admissible type will consist of the
following data:

- a positive integer d prime to p
- a positive integer d′ < d prime to p
- a positive integer r
- two r-tuples of positive integers e = (e1, . . . , en) and α = (α1, . . . , αn) such

that αi is prime to p for all i and d =
∑

i eiαi.

Given an admissible type (d, d′, r, e, α), we will say that a polynomial f ∈
k[x1, . . . , xn] is admissible of type (d, d′, r, e, α) if we can write f = fd +fd′ +f ′,
where fd (respectively fd′) is homogeneous of degree d (resp. d′), f ′ has degree
less than d′ and:

- fd factors in k̄[x1, . . . , xn] as gα1
1 · · · gαr

r , where gi is homogeneous of degree
ei.
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- For every subset {i1, . . . , ik} ⊆ {1, . . . , r}, the subscheme of Pn−1
k̄

defined
by the homogeneous ideal (gi1 , . . . , gik

) is smooth of codimension k (empty if
k ≥ n).

- For every subset {i1, . . . , ik} ⊆ {1, . . . , r}, the subscheme of Pn−1
k̄

defined by
the homogeneous ideal (fd′ , gi1 , . . . , gik

) is smooth of codimension k + 1 (empty
if k ≥ n− 1).

Our main result is the following:

Theorem 1 Let (d, d′, r, e, α) be an admissible type. There is a constant M =
M(p, n, d, d′, r, e, α) such that, for every admissible polynomial f ∈ k[x1, . . . , xn]
of type (d, d′, r, e, α) and every non-trivial additive character ψ : k → C?, the
exponential sum ∑

x∈kn

ψ(f(x))

is pure of weight n and rank M . In particular we have the estimate
∣∣∣∣∣
∑

x∈kn

ψ(f(x))

∣∣∣∣∣ ≤ M · qn/2.

We will translate the result to cohomological language. Fix a prime ` 6= p
and an isomorphism ι : Q̄` → C. Consider the smooth Artin-Schreier Q̄`-sheaf
Lψ on A1

k associated to the non-trivial additive character ψ : k → C? ∼→ Q̄?
` (cf.

[6], 1.7) and, for every f ∈ k[x1, . . . , xn], let Lψ(f) be its pull-back to An
k . The

cohomology groups with compact support Hi
c(An

k̄
,Lψ(f)) are endowed with an

action of the absolute Galois group Gal(k̄/k) and, in particular, of the geometric
Frobenius element F ∈ Gal(k̄/k). By the Grothendieck trace formula we have

∑

x∈kn

ψ(f(x)) =
2n∑

i=0

(−1)i Trace(F |Hi
c(An

k̄ ,Lψ(f))).

Then Theorem 1 is a consequence of the following cohomological result:

Theorem 2 Let (d, d′, r, e, α) be an admissible type. There is a constant M =
M(p, n, d, d′, r, e, α) such that, for every admissible polynomial f ∈ k[x1, . . . , xn]
of type (d, d′, r, e, α) and every non-trivial additive character ψ : k → C?, the
cohomology groups Hi

c(An
k̄
,Lψ(f)) vanish for i 6= n, and Hn

c (An
k̄
,Lψ(f)) has di-

mension M and is pure of weight n.

The remainder of this section will be devoted to the proof of Theorem 2.
For every positive integer m, let Sm (respectively Sh

m) be the affine k-space
parameterizing all polynomials (resp. all homogeneous polynomials) of degree
≤ m (resp. of degree m) in n variables. Given an admissible type (d, d′, r, e, α),
let U ⊂ Sh

e1
× · · · × Sh

er
× Sd′ be the dense open set parameterizing all (r + 1)-

tuples (g1, . . . , gr, h) such that gα1
1 · · · gαr

r +h is admissible of type (d, d′, r, e, α)
(Notice that this is not a parametrization of the set of admissible polynomials
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of type (d, d′, r, e, α) if there are i 6= j such that ei = ej and αi = αj , since in
that case the same polynomial can appear more than once).

On the affine n-space X = An
U over U we have the universal polynomial

F ∈ Γ(X,OX) such that, for every u = (g1, . . . , gr, h) ∈ U(k), the restriction of
F to the fiber Xu

∼= An
k is fu := gα1

1 · · · gαr
r + h, and the corresponding Artin-

Schreier sheaf Lψ(F ) whose restriction to Xu is Lψ(fu). Write F = Fd +Fd′ +F ′

where Fd (respectively Fd′) is the homogeneous component of degree d (resp.
of degree d′) and F ′ = F − Fd − Fd′ .

Let X̄ = Pn
U be the projective n-space over U , j : X ↪→ X̄ the inclusion,

H = X̄ −X, π : X → U and π̄ : X̄ → U the projections and F = j!Lψ(F ). By
the proper base change theorem, the fiber of Rπ!Lψ(F ) = Rπ̄?F at a geometric
point ū over u ∈ U(k) is RΓc(An

k̄
,Lψ(fu)). Since U is connected, Theorem 2 will

then be a consequence of the following

Proposition 3 The sheaves Riπ!Lψ(F ) vanish on U for i 6= n, and Rnπ!Lψ(F )

is smooth and punctually pure of weight n on U .

We will first show that the Riπ!Lψ(F ) are all smooth on U . Recall (cf.
[7], 2.12) that a morphism g : Z → S is said to be locally acyclic for a con-
structible sheaf G on Z if, for every geometric point z of Z and every ge-
ometric point s of Sg(z) (the henselization of S at g(z)), the induced map
RΓ(Zz,G) → RΓ((Zz)s,G) is an isomorphism, where Zz is the henselization
of Z at z and (Zz)s the fiber at s of the canonical map Zz → Sg(z).

Lemma 4 The projection π̄ : X̄ → U is locally acyclic for F .

Proof. Following ([5], 3.7.3) we will show that, locally for the étale topology on
X̄, the pair (X̄,F) is U -isomorphic to the product of U and a scheme endowed
with a Q̄`-sheaf. Let x ∈ X̄ be a closed point, we have to distinguish several
cases:

a) If x ∈ X, then F is smooth in a neighborhood of x, and in fact it is
trivialized by the étale neighborhood (Y, y) of x, where Y is defined by the
equation td − t− F = 0 and y ∈ Y is any point mapping to x, so the assertion
is clear in this case.

b) Let x ∈ H such that Fd(x) 6= 0. Let Fh be the homogenization of F with
respect to the variable x0, where x0 = 0 defines the hyperplane at infinity H.
Then F is given by Fh/xd

0. Pick j ∈ {1, . . . , n} such that the j-th coordinate of
x is non-zero, then a = Fh/xd

j and z = x0/xj are well defined regular functions
around x, and a(x) 6= 0. Take the étale neighborhood (Y, y) of x defined by the
equation vd = a, y ∈ Y mapping to x. Pick a system of parameters t1, . . . , tn at
y such that t1 = z/v, they define an étale U -map φ from a Zariski neighborhood
of y in Y to An×U with F|Y = F̂ ◦φ, where F̂ (t1, . . . , tn, u) = t−d

1 is independent
of u.

c) Let x ∈ H such that Fd(x) = 0 but Fd′(x) 6= 0. For simplicity, we can
assume without loss of generality that there is some k ∈ {1, . . . , r} such that
gi(x) = 0 for i ≤ k and gi(x) 6= 0 for i > k. Let j and z be as in the previous
case, Fh′ = (Fh − Fd)/xd−d′

0 the homogenization of Fd′ + F ′ with respect to
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x0, a = Fh′/xd′
j and bi = gi/xei

j for i = 1, . . . , r. Then a and the bi’s are
regular in a neighborhood of x, a(x) 6= 0, bi(x) 6= 0 for i > k and b1, . . . , bk, z
are part of a system of parameters at x. Let (Y, y) be the étale neighborhood
of x defined by the equations vd′ = a and wαk = v−db

αk+1
k+1 · · · bαr

r , and y ∈ Y
mapping to x. Pick a system of parameters t1, . . . , tn at y such that tn = z/v,
ti = bi for i = 1, . . . , k − 1 and tk = bkw. They define an étale U -map φ
from a Zariski neighborhood of y in Y to An × U with F|Y = F̂ ◦ φ, where
F̂ (t1, . . . , tn, u) = t−d

n tα1
1 tα2

2 . . . tαk

k + t−d′
n is independent of u.

d) Finally, let x ∈ H such that Fd(x) = Fd′(x) = 0 and assume, as in
case (c), that there is some k ∈ {1, . . . , r} such that gi(x) = 0 for i ≤ k and
gi(x) 6= 0 for i > k. Let j, z, Fh′, a and bi be as above. Then a and the bi

are regular in a neighborhood of x, bi(x) 6= 0 for i > k and b1, . . . , bk, a, z are
part of a system of parameters at x. Let (Y, y) be the étale neighborhood of
x defined by the equation vαk = b

αk+1
k+1 · · · bαr

r and y ∈ Y mapping to x. Pick
a system of parameters t1, . . . , tn at y such that tn = z, tn−1 = a, ti = bi for
i = 1, . . . , k − 1 and tk = bkv. They define an étale U -map φ from a Zariski
neighborhood of y in Y to An × U with F|Y = F̂ ◦ φ, where F̂ (t1, . . . , tn, u) =
t−d
n tα1

1 tα2
2 . . . tαk

k + t−d′
n tn−1 is independent of u.

So in either case we find that F is locally isomorphic, for the étale topology,
to a sheaf of the form Lψ(g) on An × U , where g ∈ Γ(U,OU )(t1, . . . , tn) (and
hence Lψ(g)) does not depend on U , therefore being the product of U and a
scheme endowed with a sheaf. ¤

Corollary 5 The sheaves Riπ!Lψ(F ) are smooth on U .

Proof. By ([7], A.2.2), for every geometric point u of U the specialization
map (Rπ̄?F)u = RΓ(X̄u,F) → RΓ(X̄η̄,F) = (Rπ̄?F)η̄ is a quasi-isomorphism,
where η̄ is a geometric generic point of U . Therefore the cohomology sheaves
Riπ!Lψ(F ) = Riπ̄?F of Rπ̄?F are smooth. ¤

In particular, it suffices to prove Theorem 2 for one particular admissible
polynomial of type (d, d′, r, e, α). This will show that the stalk of Riπ!Lψ(F ) at
one geometric point of U vanishes for i 6= n and is pure of weight n for i = n.
Since the sheaves are smooth on U , the same will be true at any other geometric
point of U .

Replacing k by a finite extension if necessary, assume that U(k) 6= ∅, and
pick any u = (g1, . . . , gr, h) ∈ U(k). Let V ⊂ Ân be the dense open set of all
linear forms l such that (g1, . . . , gr, h+ l) ∈ U (which is the entire Ân if d′ > 1).
Then V is a closed subset of U via the embedding l 7→ (g1, . . . , gr, h + l).

Proposition 6 The object K = Rπ!Lψ(F )[2n] ∈ Db
c(V, Q̄`) is perverse and pure

of weight 2n.

Proof. This is a particular case of the results in [18] and [14]. The object K
is just the restriction to V of the Fourier transform of Lψ(fu)[n] with respect
to the character ψ (cf. [18], 2.1). Since Lψ(fu) is smooth and punctually pure
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of weight 0 and An is smooth, Lψ(fu)[n] is perverse and pure of weight n (cf.
loc.cit., 1.2.2(iii) and 1.3.2(iii)). But the Fourier transform preserves perversity
and purity and shifts weights by n (cf. loc.cit., 2.1.5(iii) and 2.2.1), therefore K
is perverse and pure of weight 2n. ¤

We can now finish the proof of Proposition 3. The object K is perverse by
Proposition 6 and has smooth cohomology sheaves by Corollary 5. Therefore
all of them must vanish except for H−n(K) = Rnπ!Lψ(F ), which is smooth and
punctually pure of weight n, since K is pure of weight 2n (cf. [18], 1.4.1). This
proves the proposition (and consequently Theorems 1 and 2) for a particular
ψ, but it is clear that M does not depend on the additive character chosen,
since any other non-trivial character would be given by t → ψ(at) for some
a ∈ k?, and multiplying an admissible polynomial by a non-zero constant does
not change its type.

Remark. The following examples show that it is essential to consider the com-
ponents of lower degree of f in the purity theorem, and therefore it is not pos-
sible to give a similar result depending only on the highest degree homogeneous
component of f .

First, suppose that n is prime to p and let f(x) =
∏n

x=1 xi = x1 · · ·xn, which
clearly defines a divisor with normal crossings in Pn−1. Then

∑

x∈kn

ψ(f(x)) =
∑

a∈k

∑
x1···xn−1=a

∑

xn∈k

ψ(axn).

But
∑

xn∈k ψ(axn) = 0 for a 6= 0 and q for a = 0, so

∑

x∈kn

ψ(f(x)) =
∑

x1···xn−1=0

q = q ·#{(x1, . . . , xn−1) ∈ kn−1 : x1 · · ·xn−1 = 0} =

= q(qn−1 − (q − 1)n−1) = O(qn−1).

As a second example, take f(x) = xd
1, with d prime to p. Then, on An =

A1 × An−1 we have
Lψ(f) = Lψ(xd) £ Q̄`

and therefore, since Hi
c(A

n−1
k̄

, Q̄`) = 0 for i 6= 2n− 2, we deduce that

H2n−1
c (An

k̄ ,Lψ(f)) = H1
c(A1

k̄,Lψ(xd))⊗H2n−2
c (An−1

k̄
, Q̄`) =

= H1
c(A1

k̄,Lψ(xd))⊗ Q̄`(1− n)

has dimension d − 1 and is pure of weight 2n − 1, since H1
c(A1

k̄
,Lψ(xd)) has

dimension d− 1 and is pure of weight 1 (cf. [4], 8.11). So in this case we get
∣∣∣∣∣
∑

x∈kn

ψ(f(x))

∣∣∣∣∣ = O(qn− 1
2 ).
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3 First estimates for the rank

In the next section we will prove a closed formula for M in terms of the type
(d, d′, r, e, α). For now, we will give some easier bounds for it using the follow-
ing ”degeneration principle”: Suppose that we have a family of polynomials of
degree d in n variables whose coefficients are parameterized by the points of
an irreducible variety, and suppose that the exponential sum associated to a
generic element of the family is pure (in the sense of Theorem 2). Then, for
every polynomial in the family whose associated exponential sum is pure, the
rank of this sum is bounded above by the rank of the sum corresponding to a
generic element of the family. This assertion is justified by the following theorem
of Katz:

Theorem 7 (cf. [16], Proposition 12) Let G be a Q̄`-sheaf on a smooth variety
S of dimension r, and suppose that there is a perverse object K ∈ Db

c(S, Q̄`)
such that G = H−r(K). Then the integer valued function defined by s 7→ rank Gs̄

on S (where s̄ is a geometric point over s) is lower semicontinuous. In other
words, the rank of G can never increase under specialization.

We will apply this result to the following situation: S is the affine k-space
parameterizing all polynomials of degree ≤ d in n variables, π : S × An

k → S
is the projection, F ∈ Γ(S × An

k ,OS×An
k
) is the universal polynomial, K =

Rπ!Lψ(F )[n + dim S] and G = Rnπ!Lψ(F ). By ([17], Part (1) of Theorem 3.1.2)
K is perverse, so the theorem applies to this case and we conclude that the rank
of Rnπ!Lψ(F ) is a lower semicontinuous function on S. As a first application of
this, we can show

Proposition 8 For every admissible type (d, d′, r, e, α) we have the upper bound

M(p, n, d, d′, r, e, α) ≤ (d− 1)n.

Proof. It is well known (cf. [4], Lemme 8.5) that the generic rank of Rnπ!Lψ(F )

on S is (d− 1)n. Therefore this is a direct consequence of the semicontinuity of
the rank. ¤

Corollary 9 For every admissible polynomial f ∈ k[x1, . . . , xn] of degree d and
every non-trivial additive character ψ : k → C? we have the estimate

∣∣∣∣∣
∑

x∈kn

ψ(f(x))

∣∣∣∣∣ ≤ (d− 1)n · qn/2.

We will now give a few inequalities that can be deduced from the degenera-
tion principle. In all cases, the proof is the same: the subvariety of S parame-
terizing all admissible polynomials of a given type is a subset of the closure of
the subvariety of S parameterizing the admissible polynomials of another type.
From the degeneration principle we conclude that the rank corresponding to the
former type is bounded above by the rank corresponding to the latter.
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Notice that applying the same permutation to the ei’s and the αi’s does not
change M . Therefore in the following examples we will always modify the first
factors of fd, but the same inequalities will hold if we modify any of the other
factors the same way.

1. Suppose that e1 =
∑s

j=1 hjβj with all βj ’s prime to p. Then

M(p, n, d, d′, r, (e1, e2, . . . , er), (α1, α2, . . . , αr)) ≥
≥ M(p, n, d, d′, r+s−1, (h1, . . . , hs, e2, . . . , er), (α1β1, . . . , α1βs, α2, . . . , αr))

(g1 ”becomes reducible”).

2. If r ≥ 2 and e1 = e2, then

M(p, n, d, d′, r, (e2, e2, e3, . . . , er), (α1, α2, α3, . . . , αr)) ≥
≥ M(p, n, d, d′, r − 1, (e2, . . . , er), (α1 + α2, α3, . . . , αr))

(g1 and g2 ”become equal”).

3. If d > d′ > d′′ ≥ 1 are all prime to p, then

M(p, n, d, d′, r, (e1, e2, . . . , er), (α1, α2, . . . , αr)) ≥
≥ M(p, n, d, d′′, r, (e1, e2, . . . , er), (α1, α2, . . . , αr))

(fd′ ”degenerates to 0”).

We can use these inequalities to give a lower bound for M . First of all, let
us compute an easy case:

Lemma 10 M(p, n, d, d′, 1, (1), (d)) = (d− 1)(d′ − 1)n−1.

Proof. We will use the polynomial f(x1, . . . , xn) = xd
1 +

∑n
i=1 xd′

i , which is
clearly admissible of type (d, d′, 1, (1), (d)). Since

ψ(f(x)) = ψ(xd
1 + xd′

1 )ψ(xd′
2 ) · · ·ψ(xd′

n ),

we have, as sheaves on An
k ,

Lψ(f) = Lψ(xd+xd′ ) £ Lψ(xd′ ) £ · · ·£ Lψ(xd′ ).

But Lψ(xd+xd′ ) (respectively Lψ(xd′ )) has rank d−1 (resp. d′−1) (cf. [4], 8.11),
so Lψ(f) has rank (d− 1)(d′ − 1)n−1. ¤

Corollary 11 For any admissible type (d, d′, r, e, α) we have the lower bound

M(p, n, d, d′, r, e, α) ≥ (d− 1)(d′ − 1)n−1.

Proof. By repeated application of the first two inequalities, one shows that

M(p, n, d, d′, r, (e1, . . . , er), (α1, . . . , αr)) ≥ M(p, n, d, d′, 1, (1), (d)).

¤
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4 An explicit formula for the rank

This section will be entirely devoted to the proof of the following

Theorem 12 For all positive integers r ≤ n and d1, . . . , dr let χ(n; d1, . . . , dr)
denote the Euler characteristic of a non-singular complete intersection of mul-
tidegree (d1, . . . , dr) in Pn. Then for every prime p and every admissible type
(d, d′, r, e, α) we have

M(p, n, d, d′, r, e, α) = (−1)n + d
(d′ − 1)n − (−1)n

d′
+ (−1)n(d− d′)χ (1)

where

χ :=
∑

I⊆{1,...,r}
1≤|I|≤n−1

(−1)|I|−1χ(n− 1; eI)−
∑

I⊆{1,...,r}
1≤|I|≤n−2

(−1)|I|−1χ(n− 1; d′, eI)

and eI stands for ei1 , . . . , eij
if I = {i1, . . . , ij}.

Corollary 13 M(p, n, d, d′, r, e, α) is independent of p and of α.

We will denote this number by M(n, d, d′, r, e). Of course, given d and e,
there are only a finite number of possible choices for α, namely the solutions in
positive integers (x1, . . . , xn) of e1x1 + . . . + enxn = d.

Fix a finite field k of characteristic p and let f ∈ k[x1, . . . , xn] be an ad-
missible polynomial of type (d, d′, r, e, α). We already know that the rank does
not depend on the polynomial chosen, so we can assume that f does not have
any terms of degree < d′. Therefore f = fd + fd′ , where fd = gα1

1 · · · gαr
r , gi is

homogeneous of degree ei, fd′ is homogeneous of degree d′ and g1 · · · grfd′ = 0
defines a divisor with normal crossings in Pn−1

k̄
.

By Theorem 2, the cohomology sheaves Hi
c(An

k̄
,Lψ(f)) vanish for i 6= n, so

M(p, n, d, d′, r, e, α) = (−1)nχc(An
k̄ ,Lψ(f)).

We need to compute this Euler characteristic. The idea is to reduce this to
computing the Euler characteristics of some sheaves in A1

k̄
, which can be done

by studying their local properties. Consider the object Rfd!Lψ(f) in Db
c(A1

k̄
, Q̄`),

we have χc(An
k̄
,Lψ(f)) = χc(A1

k̄
, Rfd!Lψ(f)). By the projection formula,

Rfd!Lψ(f) = Rfd!Lψ(fd+fd′ ) = Rfd!(Lψ(fd) ⊗ Lψ(fd′ )) = Lψ ⊗ Rfd!Lψ(fd′ )

We will now study the object Rfd!Lψ(fd′ ) in detail. By abuse of language,
we will say that an object K ∈ Db

c(A1
k̄
, Q̄`) is smooth (resp. unramified, tamely

ramified, totally wild) at a point t ∈ A1
k̄

(resp. t ∈ P1
k̄
) if so are all its cohomology

sheaves. The dimension of the fiber of K at a point t ∈ A1
k̄

(resp. its generic
rank, its Swan conductor at t ∈ P1

k̄
) will be the alternating sum of the dimensions

of the fibers of the cohomology sheaves at t (resp. of their generic ranks, of their

9



Swan conductors at t ∈ P1
k̄
). With these conventions, the Grothendieck-Néron-

Ogg-Shafarevic formula for the Euler characteristic of a sheaf on A1
k̄

(cf. [11],
Exposé X, Corollaire 7.12) is also true for derived category objects, by additivity:

χc(A1
k̄,K) = dim(Kη̄)−

∑

t∈k̄

dropt(K)−
∑

t∈P1(k̄)

Swant(K)

where dim(Kη̄) is the generic rank of K and dropt(K) = dim(Kη̄)− dim(Kt).

The main properties of the object K ′ := Rfd!Lψ(fd′ ) are summarized in the
following result:

Proposition 14 The object K ′ ∈ Db
c(A1

k̄
, Q̄`) is smooth on Gm,k̄. At 0 it is

tamely ramified. At ∞ it is totally wild, and as a representation of the wild
inertia group P∞ it has a unique break equal to d′/d. Its Euler characteristic is
(1− d′)n.

Proof. The Euler characteristic is easy to compute:

χc(A1
k̄, Rfd!Lψ(fd′ )) = χc(An

k̄ ,Lψ(fd′ )) = (1− d′)n

by [4], Lemme 8.5, since fd′ = 0 defines a non-singular hypersurface in Pn−1.
The rest of the properties concern only the restriction of K ′ to Gm,k̄. Let
U = f−1

d (Gm,k̄) ⊂ An
k̄
, then K ′

|Gm,k̄
= Rfd!(Lψ(fd′ )|U ). It will be convenient to

modify K ′ slightly as follows.
Let X be the hypersurface defined in An

k̄
by fd(x) = 1. On X ×A1

k̄
consider

the sheaf Lψ(tfd′ (x)) (where t is the coordinate in A1). Let π : X × A1
k̄
→ A1

k̄

be the projection, and K ∈ Db
c(A1

k̄
, Q̄`) the object Rπ!(Lψ(tfd′ (x))). For every

positive integer b, let [b] : Gm,k̄ → Gm,k̄ denote the b-th power map.

Lemma 15 The objects [d]?K ′ and [d′]?K are isomorphic on Gm,k̄.

Proof. By proper base change, the object [d′]?K is just Rπ!(Lψ(td′fd′ (x))). Since
fd′ is homogeneous of degree d′, td

′
fd′(x) = fd′(tx), so this can also be written

as Rπ!(Lψ(fd′ (tx))).
Let φ be the Gm,k̄-automorphism of An

k̄
× Gm,k̄ given by φ(x, t) = (tx, t).

The image of X ×Gm,k̄ under this automorphism is the set Y of (x, t) ∈ An
k̄
×

Gm,k̄ such that fd(x/t) = 1. Since fd is homogeneous of degree d, this is
equivalent to fd(x) = td. And Lψ(fd′ (tx)) is just the pull-back φ?Lψ(fd′ (x)) of the
sheaf Lψ(fd′ (x)) on Y , so [d′]?K = Rπ!(Lψ(fd′ (tx))) = R($ ◦ φ)!(φ?Lψ(fd′ (x))) =
R$!(Lψ(fd′ (x))) where $ : Y → Gm,k̄ is the projection.

We have the following cartesian diagram

Y
1×[d]−−−−→ Z

y$

yπ′

Gm,k̄

[d]−−−−→ Gm,k̄

10



where Z ⊂ An
k̄
×Gm,k̄ is defined by fd(x) = t, π′ : Z → Gm,k̄ is the projection

and 1×[d] takes (x, t) to (x, td). Using again proper base change, we deduce that
[d′]?K = R$!(Lψ(fd′ (x))) = [d]?Rπ′!(Lψ(fd′ (x))) (where, in the last expression,
Lψ(fd′ (x)) is regarded as a sheaf on Z). But Z is just the graph of fd : U → Gm,k̄

and therefore isomorphic to U :

U
(1,fd)−−−−→ Z

yfd

yπ′

Gm,k̄
1−−−−→ Gm,k̄

so [d]?Rπ′!(Lψ(fd′ (x))) = [d]?Rfd!(Lψ(fd′ (x))|U ) = [d]?K ′
|Gm,k̄

. ¤

The isomorphism is easier to see at the level of traces. The trace of the
geometric Frobenius element acting on the stalk of K ′ at t ∈ k̄? is

∑

fd(x)=t

ψ(fd′(x)).

After taking the pull-back with respect to [d] and making the change of variables
x → tx, the trace becomes

∑

fd(x)=td

ψ(fd′(x)) =
∑

fd(x)=1

ψ(fd′(tx)) =
∑

fd(x)=1

ψ(td
′
fd′(x))

and this is the pull-back with respect to [d′] of
∑

fd(x)=1

ψ(tfd′(x)),

which is the trace of Frobenius acting on the stalk of K at t.

Since d and d′ are prime to p, pulling back with respect to the d-th or d′-th
power maps does not affect tame ramification. As for the breaks, pulling back
with respect to the d-th power map multiplies all breaks by d (cf. [12], 1.13.1).
Therefore, proving the remainder of Proposition 14 is equivalent to proving

Proposition 16 The object K ∈ Db
c(A1

k̄
, Q̄`) is smooth on Gm,k̄. At 0 it is

tamely ramified. At ∞ it is totally wild, and as a representation of P∞ it has a
unique break equal to 1.

For the proof we will use Laumon’s local Fourier transform theory (cf. [19],
[13] 7.4). It will be convenient to work in the perverse category. The truth of the
proposition is invariant under semisimplification, so we will assume that K is
already semisimple (i.e. it is the direct sum of its (shifted) perverse cohomology
sheaves, which are all semisimple). First of all let us give an explicit description
of the Fourier transform of K. Let X ⊂ An

k̄
be the hypersurface defined by

fd(x) = 1, and L := Rfd′!(Q̄`,X) the direct image with compact supports of the
constant sheaf on X.

11



Lemma 17 The object K is the Fourier transform of L[−1] with respect to the
additive character ψ.

Proof. Straightforward from the definitions. If πi : A1
k̄
× A1

k̄
→ A1

k̄
(i = 1, 2)

are the projections and s, t the coordinates in A1
k̄
× A1

k̄
, the Fourier transform

of L[−1] is
Rπ2!(π?

1(Rfd′!(Q̄`,X))⊗ Lψ(st)) =

= Rπ2!R(fd′ , 1)!((fd′ , 1)?(Lψ(st)) = Rπ!(Lψ(tfd′ (x))) = K

by the projection formula, where π : X × A1
k̄
→ A1

k̄
is the projection and

(fd′ , 1) : X × A1
k̄
→ A1

k̄
× A1

k̄
is the product map of fd′ and the identity. ¤

Recall that on a smooth curve over k̄, an irreducible perverse object is either
punctual or it is (a shift of) the extension by direct image of a smooth sheaf
on a dense open subset (cf. [3], 4.3). Grouping similar perverse irreducible
components together, we can decompose K as a direct sum

K = K0 ⊕Kpct ⊕Kcons ⊕KAS ⊕KF

Where K0 is punctual supported at 0, Kpct is punctual supported outside 0,
Kcons is constant, KAS is a direct sum of shifted Artin-Schreier sheaves Lψ(ax)

with a 6= 0 and KF is a direct sum of shifted irreducible Fourier sheaves in
the sense of [13], 7.3.5 (i.e. extensions by direct image to A1

k̄
of irreducible

smooth sheaves on open subsets of A1
k̄
, which are not constant or isomorphic to

an Artin-Schreier sheaf). Similarly, write

L = L0 ⊕ Lpct ⊕ Lcons ⊕ LAS ⊕ LF .

Since the Fourier transform interchanges objects supported at 0 with constant
objects, punctual objects supported outside 0 with direct sums of Artin-Schreier
sheaves and takes Fourier sheaves to Fourier sheaves (cf. [13], 7.3.8), we have

K0 = FTψ(Lcons)[−1]
Kpct = FTψ(LAS)[−1]
Kcons = FTψ(L0)[−1]
KAS = FTψ(Lpct)[−1]
KF = FTψ(LF )[−1]

What does Proposition 16 say in terms of L? The fact that K is smooth
on Gm,k̄ means that Kpct = 0 and KF is smooth on Gm,k̄. Taking Fourier
transform, this is equivalent to LAS = 0 and the fact that 1 is not a break of
LF at ∞ (cf. [12], 8.5.8). Equivalently, since all breaks of LAS at ∞ are 1, we
want 1 not to be a break of L at ∞.

The only piece of K that can possibly not be tame at 0 is KF . And KF

being tame at 0 is equivalent to LF not having any ∞-break strictly between
0 and 1 (cf. [13], 7.4.5). Since this is the only piece of L that can have an
∞-break different than 0 or 1, this is equivalent to L not having any ∞-break
in the interval (0, 1).
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Finally, we want 1 to be the only break of K at infinity. This implies that
Kcons must vanish, or equivalently, that L0 = 0. The only other piece that can
have an ∞-break different than 1 is KF . So we must also require that the only
∞-break of KF is 1.

The Fourier transform interchanges the ∞-breaks greater then 1 of KF and
LF (cf. [13], 7.5.4). Therefore, KF not having any ∞-break greater than 1
is equivalent to LF (and therefore L) not having any ∞-break greater than 1.
On the other hand, by [12], 8.5.8, KF not having any break smaller than 1 is
equivalent to LF (and therefore L, since L0 = 0) being smooth at 0.

We have shown that Proposition 16 is equivalent to

Proposition 18 The object L ∈ Db
c(A1

k̄
, Q̄`) is smooth at 0 and tamely ramified

at ∞.

Proof: Take the standard compactification of fd′ : An
k̄
→ A1

k̄
: Z is defined in

Pn
k̄
× A1

k̄
by the equation fd′(x)− λxd′

0 = 0, and f̃d′ : Z → A1
k̄

is the projection.
Its restriction to the closure X̄ of X in Z is a compactification f̃d′ : X̄ → A1

k̄
of

fd′ : X → A1
k̄
. Let j : X → X̄ be the inclusion, then fd′ = f̃d′ ◦ j.

To show that L is smooth at 0 we will show, as in the proof of Lemma 4,
that the map f̃d′ is locally acyclic in a neighborhood of f̃−1

d′ (0) in X̄ for the
sheaf j!(Q̄`) by showing that, locally for the étale topology, it is isomorphic
to a projection Y × A1

k̄
→ A1

k̄
, with the sheaf j!(Q̄`) correspoding under this

isomorphism to the inverse image of a sheaf on Y .
So let (x, 0) ∈ f̃−1

d′ (0). If x ∈ X, we claim that f̃d′ (or, equivalently, fd′) is
smooth at (x, 0) (resp. at x). Otherwise, the Jacobian matrix

(
∂fd/∂x1 · · · ∂fd/∂xn

∂fd′/∂x1 · · · ∂fd′/∂xn

)

would have rank at most 1 at x. Since the partial derivatives of fd can not
vanish simultaneously at x (by the Euler relation, since fd(x) = 1) this implies
that there is a ∈ k̄ with ∂fd′/∂xi = a · ∂fd/∂xi for all i. Again by the Euler
relation, we deduce that 0 = d′fd′(x) = adfd(x) = ad. So a must be 0, and
therefore all partial derivatives of fd′ vanish at x. Since fd′ is non-singular, this
can only happen if x = 0, which is not in X. This shows that f̃d′ is smooth at
(x, 0), and therefore locally acyclic with respect to j!(Q̄`), which is constant in
a neighborhood of (x, 0).

Now let (x, 0) ∈ f̃−1
d′ (0) ∩ (X̄ − X). Then x0 = 0 and fd(x) = fd′(x) = 0

(where fd(0, x1, . . . , xn) := fd(x1, . . . , xn) and similarly for fd′). Without loss
of generality, suppose that there is some k = 1, . . . , r such that gi(x) = 0 for
i ≤ k and gi(x) 6= 0 for i > k. Pick j = 1, . . . , n such that xj 6= 0 and let
z = x0/xj , a = fd′/xd′

j and bi = gi/xei
j , then λ, z, a, b1, . . . , bk form a regular

sequence in the local ring of Pn
k̄
× A1

k̄
at (x, 0). Take the étale neighborhood

(Y, y) of (x, 0) defined by vαk = b
αk+1
k+1 · · · bαr

r with y mapping to (x, 0). The
maps λ, z, a− λzd′ , b1, . . . , bk−1, bkv form a regular sequence in the local ring of
Y at y, which can be extended to a complete system of parameters t0, t1, . . . , tn
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at y. With respect to this system of parameters the inverse image of X̄ in
Y is defined by the equations t2 = 0 and tα1

3 · · · tαk

k+2 = td1, the restriction of
the map f̃d′ is given by t0 and the inverse image of the sheaf j!(Q̄`) is the
extension by zero of the constant sheaf on the open set defined by t1 6= 0. If
we map Y to An+1

k̄
using the étale map φ given by this system of parameters,

the triplet (X̄, f̃d′ , j!(Q̄`)) on Y is just the pull-back with respect to φ of the
triplet ({t2 = 0, tα1

3 · · · tαk

k+2 = td1}, t0, Q̄`|{t1 6=0}), which is just the projection to
A1

k̄
of the product of A1

k̄
and a scheme endowed with a sheaf. So f̃d′ is locally

isomorphic (for the étale topology) to a projection in a neighborhood of (x, 0)
and therefore locally acyclic at (x, 0).

This shows that L is smooth at 0. The reason why it is tamely ramified at
infinity is, roughly speaking, that the map f̃d′ can be lifted to characteristic zero.
More precisely, let R be a characteristic 0 discrete valuation ring with residue
field k̄. Lift g1, . . . , gr and fd′ to non-singular homogeneous forms ĝ1, . . . , ĝr

and f̂d′ in R[x1, . . . , xn] such that ĝ1 · · · ĝrf̂d′ = 0 defines a divisor with normal
crossings on Pn−1

R (which is possible since smoothness is generic), and let f̂d =
ĝα1
1 · · · ĝαr

r . Let X̂ ⊂ An
R be the subscheme defined by f̂d = 1. Take the

compactification ˜̂
fd′ : ¯̂

X → A1
R of f̂d′ : X̂ → A1

R defined as above. Then, exactly

as we did over k̄, one shows that ˜̂
fd′ is locally isomorphic to a projection with

respect to the étale topology in a neighborhood of ˜̂
f−1

d′ (0) in ¯̂
X, and the sheaf

ĵ!(Q̄`) (where ĵ : X̂ ↪→ ¯̂
X is the inclusion) corresponds under this isomorphism

to the pull-back of a sheaf on the other factor, so ˜̂
fd′ is locally acyclic for the

sheaf ĵ!(Q̄`). Therefore L := Rf̂d′!(Q̄`,X̂) is smooth in a neighborhood U of 0 in
A1

R, and in particular outside a closed subscheme S ⊂ A1
R proper over R. By

[9], Proposition 4.1, we conclude that L = LA1
k̄

is tamely ramified at infinity. ¤

This completes the proof of Proposition 18, and therefore also of Propositions
16 and 14.

Since the only ∞-break of K ′ is d′/d < 1 and the only ∞-break of Lψ is 1,
by [12], Lemma 1.3, we deduce that all ∞-breaks of Lψ⊗K ′ are equal to 1, and
therefore Swan∞(Lψ ⊗K ′) = dim K ′

η̄. Applying the Grothendieck-Néron-Ogg-
Shafarevic formula to both K ′ and Lψ ⊗K ′ we get

(1− d′)n = χc(A1
k̄,K ′) =

= dim(K ′
η̄)− drop0(K

′)− Swan∞(K ′) = dim(K ′
0)−

d′

d
dim(K ′

η̄)

and
χc(An

k̄ ,Lψ(f)) = χc(A1
k̄,Lψ ⊗K ′) =

= dim(K ′
η̄)− drop0(K

′)− Swan∞(Lψ ⊗K ′) = dim(K ′
0)− dim(K ′

η̄),

so
d′ · χc(An

k̄ ,Lψ(f)) = d(1− d′)n − (d− d′) dim(K ′
0). (2)
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It only remains to compute dim(K ′
0) = χc(Y,Lψ(fd′ )), where Y ⊂ An

k̄
is the

cone defined by the equation fd(x) = 0. We have

χc(Y,Lψ(fd′ )) = 1 + χc(Y − {0},Lψ(fd′ )).

Let π : An
k̄
− {0} → Pn−1

k̄
be the canonical projection, Z := π(Y − {0}) the

hypersurface defined by fd(x) = 0 and P := Rπ!(Lψ(fd′ )) ∈ Db
c(P

n−1
k̄

, Q̄`). Let
D ⊂ Z be the divisor with normal crossings defined by fd′ = 0.

Proposition 19 The object P is smooth of rank −d′ on Z − D and tamely
ramified along D. Its restriction to D is constant of rank 0.

Proof. The assertion is local on Z, so we can check it on each affine chart. Let
U for instance be the subset defined by xn 6= 0 (the proof is identical for any
other affine chart). Then (x1, . . . , xn−1, xn) → (x1/xn, . . . , xn−1/xn, 1) defines
a section of the map π : π−1(U) → U and gives an isomorphism π−1(U) ∼= U ×
Gm,k̄ under which π corresponds to the first projection and Lψ(fd′ ) corresponds
to Lψ(λd′ ·fd′ (x)/xd′

n ). We claim that the Galois cover V of U − D defined on
A1

k̄
× (U −D) by the equation td

′
= fd′(x)/xd′

n trivializes P . This implies that
P is smooth on U −D and tamely ramified along D, since the cover has degree
d′ prime to p.

By proper base change, the restriction of the object P to V is given by
Rπ′!(Lψ(λd′ ·fd′ (x)/xd′

n )), where π′ : V ×Gm,k̄ → V is the projection. But on V

Lψ(λd′ ·fd′ (x)/xd′
n ) = Lψ(λd′ td′ ) = Lψ((λt)d′ ).

Now consider the V -automorphism φ of V×Gm,k̄ given by φ((t, x), λ) = ((t, x), λ/t).
We have

Rπ′!(Lψ((λt)d′ )) = R(π′ ◦ φ)!(φ?Lψ((λt)d′ )) = Rπ′!Lψ(λd′ )

which is clearly constant of rank χc(Gm,k̄,Lψ(λd′ )) = χc(A1
k̄
,Lψ(λd′ )) − 1 =

(1− d′)− 1 = −d′.
On D, the object P is Rπ!(Lψ(fd′ )|{fd′=0}) = Rπ!(Q̄`|π−1(D)). Again by

restricting to the affine charts, one checks that π is locally isomorphic to a
projection U × Gm,k̄ → U , and therefore P restricted to D is constant of rank
χc(Gm,k̄, Q̄`) = 0. ¤

Since P is tamely ramified along D, we get

χc(Y − {0},Lψ(fd′ )) = χc(Z, P ) = χc(Z −D, P ) + χc(D,P ) =

= rank(P|Z−D) · χc(Z −D) + rank(P|D) · χc(D) = −d′ · χc(Z −D)

Substituting this value in (2), we conclude that

d′ · χc(An
k̄ ,Lψ(f)) = d(1− d′)n − (d− d′)(1− d′ · χc(Z −D)),
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so

χc(An
k̄ ,Lψ(f)) = 1 + (−1)nd

(d′ − 1)n − (−1)n

d′
+ (d− d′)χc(Z −D).

Theorem 12 follows by excision and the inclusion-exclusion principle, since

χc(Z −D) = χc(Z)− χc(D) =

= χc({g1 · · · gr = 0})− χc({g1 · · · gr = 0, fd′ = 0}) =

= χc(
⋃

i=1,...,r

{gi = 0})− χc(
⋃

i=1,...,r

{gi = 0, fd′ = 0}).

5 Examples

In this section we will simplify the rank formula in several important particular
cases.

1) Suppose that r = 1, so fd = gα for some non-singular homogeneous form
g ∈ k[x1, . . . , xn] of degree e. We will use the following well known formulas,
which can be deduced for instance from [8], Exposé XVII, 5.7.5:

χ(n; d) = n + 1 +
(1− d)n+1 − 1

d

χ(n; d1, d2) = n + 1 +
1

d1 − d2

(
d1

(1− d2)n+1 − 1
d2

− d2
(1− d1)n+1 − 1

d1

)

if d1 6= d2, and

χ(n; d, d) = n + 1 + (n + 1)(1− d)n + 2
(1− d)n+1 − 1

d
.

Then formula (1) for the rank becomes in this case

M(n, d, d′, 1, (e), (α)) =

= (−1)n + d
(d′ − 1)n − (−1)n

d′
+ (−1)n(d− d′)(χ(n− 1; e)− χ(n− 1; d′, e)) =

= (−1)n + d
(d′ − 1)n − (−1)n

d′
+

+(d−d′)
[
(e− 1)n − (−1)n

e
− 1

d′ − e

(
d′

(e− 1)n − (−1)n

e
− e

(d′ − 1)n − (−1)n

d′

)]
=

= (−1)n + d′
d− e

d′ − e

(d′ − 1)n − (−1)n

d′
− e

d− d′

d′ − e

(e− 1)n − (−1)n

e
=

16



=
1

d′ − e
[(d− e)(d′ − 1)n − (d− d′)(e− 1)n]

if d′ 6= e. If d′ = e, a similar computation gives

M(n, d, e, 1, (e), (α)) = n(d− e)(e− 1)n−1 + (e− 1)n.

In particular, when d = e we are in the classical non-singular case, and the
rank becomes

−(d− d′)(d− 1)n

d′ − d
= (d− 1)n

as expected. When e = 1 we are in the other extremal case studied in the
previous section and the rank is

(d− 1)(d′ − 1)n

d′ − 1
= (d− 1)(d′ − 1)n−1

as we found there.

2) Now let ei = 1 for all i = 1, . . . , r. Then χ(n− 1; eI) = n− |I| and

χ(n− 1; d′, eI) = n− |I|+ (1− d′)n−|I| − 1
d′

for all I ⊆ {1, . . . , r}. Plugging these values in formula (1) we get

χ =
∑

I⊆{1,...,r}
1≤|I|≤n−1

(−1)|I|−1(n−|I|)−
∑

I⊆{1,...,r}
1≤|I|≤n−2

(−1)|I|−1

(
n− |I|+ (1− d′)n−|I| − 1

d′

)
=

=
n−1∑

k=1

(
r

k

)
(−1)k−1(n− k)−

n−2∑

k=1

(
r

k

)
(−1)k−1

(
n− k +

(1− d′)n−k − 1
d′

)
=

= (−1)n

(
r

n− 1

)
−

n−2∑

k=1

(
r

k

)
(−1)k−1 (1− d′)n−k − 1

d′
=

= −
n∑

k=1

(
r

k

)
(−1)k−1 (1− d′)n−k − 1

d′

so the rank is

(−1)n + d
(d′ − 1)n − (−1)n

d′
+ (d− d′)

n∑

k=1

(
r

k

)
(d′ − 1)n−k − (−1)n−k

d′
=

= (d′ − 1)n + (d− d′)
n∑

k=0

(
r

k

)
(d′ − 1)n−k − (−1)n−k

d′
.
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In order to further simplify it, we need to assume r ≤ n. Then the sum becomes
a complete binomial expansion:

n∑

k=0

(
r

k

)
(d′ − 1)n−k − (−1)n−k

d′
=

=
(d′ − 1)n−r

d′

n∑

k=0

(
r

k

)
(d′ − 1)r−k − (−1)n−r

d′

n∑

k=0

(
r

k

)
(−1)r−k =

=
(d′ − 1)n−r

d′
(d′ − 1 + 1)r − (−1)n−r

d′
(1− 1)r = (d′ − 1)n−rd′r−1

and the rank becomes

(d′ − 1)n + (d− d′)(d′ − 1)n−rd′r−1 =

= (d′ − 1)n−r(dd′r−1 − d′r + (d′ − 1)r).

If r = n, all αi = 1 and d′ = 1, one particular example of admissible sum is
∑

x∈kn

ψ(x1 · · ·xn + x1 + · · ·+ xn−1 − axn)

for any a 6= 0 in k. But
∑

x∈kn

ψ(x1 · · ·xn + x1 + · · ·+ xn−1 − axn) =

=
∑

x1,...,xn−1

ψ(x1 + · · ·+ xn−1)
∑
xn

ψ(xn(x1 · · ·xn−1 − a)) =

= q
∑

x1···xn−1=a

ψ(x1 + · · ·+ xn−1)

which is just a Tate-twisted Kloosterman sum. So Theorem 1 gives a new proof
of the purity of Kloosterman sums, at least in the case where the number of
variables is not congruent to −1 mod p. The formula for the rank gives in this
case M = d− 1 = n− 1, which agrees with the previously known result (cf. [6],
Théorème 7.4).

Similarly, if r = n, αn = 1 and d′ = 1, we have the sum
∑

x∈kn

ψ(xα1
1 · · ·xαn−1

n−1 xn + x1 + · · ·+ xn−1 − axn) =

=
∑

x1,...,xn−1

ψ(x1 + · · ·+ xn−1)
∑
xn

ψ(xn(xα1
1 · · ·xαn−1

n−1 − a)) =

= q
∑

x
α1
1 ···xαn−1

n−1 =a

ψ(x1 + · · ·+ xn−1)

which is a Tate twist of the more general kind of Kloosterman sum considered
in [12]. The rank in this case is d − 1 which again agrees with the previously
known value (cf. [12], Theorem 4.1.1). Therefore we can view the case r = n as
a natural generalization of a Kloosterman sum:
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Theorem 20 For any a1, . . . , an ∈ k? and any prime to p positive integers
α1, . . . , αn and d′ < α1 + · · ·+αn such that α1 + . . .+αn is prime to p, the sum

∑

x∈kn

ψ(xα1
1 · · ·xαn

n + a1x
d′
1 + · · ·+ anxd′

n )

is cohomologically pure of weight n and rank d′n−1(
∑

αi − d′) + (d′ − 1)n.

3) The previous example includes all admissible polynomials in two variables,
since every homogeneous form in two variables splits as a product of linear fac-
tors in the algebraic closure of the base field k. The condition for a polynomial
to be admissible becomes much simpler in this case, it means that we can write
f = fd + fd′ + f ′ with fd homogeneous of degree d prime to p, fd′ homoge-
neous and square-free of degree d′ < d prime to p and f ′ of degree < d′, and
gcd(fd, fd′) = 1. In that case, the rank of the sum

∑
x∈kn ψ(f(x)) is

(−1)2 + d(d′ − 2) + (d− d′)
r∑

i=1

χ(1; 1) = 1 + d(d′ − 2) + r(d− d′).

The highest homogeneous form fd will be non-singular precisely when it has d
distinct linear factors, i.e. when r = d, and then the rank becomes 1 + d(d′ −
2) + d(d− d′) = d2 − 2d + 1 = (d− 1)2, as expected.
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(SGA 7 II). Lecture Notes in Mathematics 340, Springer-Verlag (1973).

[9] Denef, J. and Loeser, F. Weights of exponential sums, intersection cohomol-
ogy, and Newton polyhedra. Invent. math. 106 (1991), 275–294.
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