KATZ-RADON TRANSFORM OF ℓ-ADIC REPRESENTATIONS

ANTONIO ROJAS-LEÓN

Abstract

We prove a simple explicit formula for the local Katz-Radon transform of an ℓ-adic representation of the Galois group of the fraction field of a strictly henselian discrete valuation ring with positive residual characteristic, which can be defined as the local additive convolution with a fixed tame character. The formula is similar to one proved by D . Arinkin in the \mathcal{D}-module setting, and answers a question posed by N. Katz.

1. Introduction

In [10, 3.4.1], N. Katz defines some functors on the category of continuous ℓ-adic representations of the inertia groups I_{0} and I_{∞} of the projective line over \bar{k} at 0 and infinity, where \bar{k} is the algebraic closure of a finite field of characteristic p and ℓ is a prime different from p. These functors arise during his study of middle convolution of sheaves on the affine line and, roughly speaking, correspond to locally convolving a representation with a fixed tame character \mathcal{L}_{χ} of I_{0} or I_{∞}. They are defined using G. Laumon's local Fourier transform functors, and in fact correspond to taking the tensor product with the conjugate tame character $\mathcal{L}_{\bar{\chi}}$ on the other side of the equivalence of categories given by these functors. Katz asks [10, 3.4.1] whether there is a simple expression for the functors defined in this way.

Recently, D. Arinkin [1] has studied the analog of Katz's functor in \mathcal{D}-module theory: if K is a field of characteristic $0, K((x))$ is the field of Laurent series over K and \mathcal{D}_{x} the ring of differential operators with coefficients in $K((x))$, the local Katz-Radon transform for a given $\lambda \in K-\mathbb{Z}$ is an equivalence of categories $\rho_{\lambda}: \mathcal{D}_{x}-\bmod \rightarrow \mathcal{D}_{x}-\bmod$, originally defined in [3]. Arinkin proves the simple formula [1, Theorem C]

$$
\rho_{\lambda}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{K}^{\lambda(a+1)}
$$

for any $\mathcal{F} \in \mathcal{D}_{x}$-mod with a single slope a, where \mathcal{K}^{μ} is the Kummer \mathcal{D}_{x}-module of rank 1 generated by \mathbf{e}, on which the derivative acts by

$$
\frac{d}{d x} \mathbf{e}=\frac{\mu}{x} \mathbf{e}
$$

In this article we will prove a similar formula in the ℓ-adic case. More precisely, for a fixed tame ℓ-adic character \mathcal{L}_{χ} and an ℓ-adic representation \mathcal{F} of I_{0}, let

$$
\rho_{\chi}(\mathcal{F}):=\mathrm{FT}_{(0, \infty)}^{\psi,-1}\left(\mathcal{L}_{\bar{\chi}} \otimes \mathrm{FT}_{(0, \infty)}^{\psi} \mathcal{F}\right)
$$

where $\mathrm{FT}_{(0, \infty)}^{\psi}$ denotes Laumon's local Fourier transform functor. If \mathcal{F} has a single slope $a=c / d$ (with c, d relatively prime positive integers), we will prove that there is an isomorphism of I_{0}-representations

$$
\rho_{\chi}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\chi}^{\otimes(a+1)}
$$

Mathematics Subject Classification: 14F20,11F85,11S99
Partially supported by P08-FQM-03894 (Junta de Andalucía), MTM2010-19298 and FEDER.
where $\mathcal{L}_{\chi}^{\otimes(a+1)}$ is any d-th root of the character $\mathcal{L}_{\chi}^{\otimes(c+d)}$.
For a large class of representations \mathcal{F} of I_{0} (in particular for many of those who appear in applications), the isomorphism can be proven via the explicit formulas for the local Fourier transforms given by L. Fu [5] and A. Abbes and T. Saito [2]. In this article we take a different approach that works for any \mathcal{F}, and is independent of any explicit expression for the local Fourier transforms.

2. The Katz-Radon transform

Fix a finite field k of characteristic $p>0$ and an algebraic closure \bar{k}. Let $\mathbb{P}_{\bar{k}}^{1}$ be the projective line over \bar{k} and, for every $t \in \mathbb{P}^{1}(\bar{k})=\bar{k} \cup\{\infty\}$, denote by I_{t} its inertia group at t : for $t \neq \infty$, if $x-t$ denotes a local coordinate at t, it is the Galois group of the fraction field of the henselization of the local ring $\bar{k}[x]_{(x-t)}$. We have an exact sequence [8, 1.0]

$$
0 \rightarrow P_{t} \rightarrow I_{t} \rightarrow \prod_{\ell \neq p} \mathbb{Z}_{\ell}(1) \rightarrow 0
$$

for every $t \in \mathbb{P}^{1}(\bar{k})$, where P_{t} is the only p-Sylow subgroup of I_{t}. Moreover, there is a canonical filtration of I_{t} by the higher ramification groups

$$
I_{t}^{(r)} \supseteq I_{t}^{(s)} \text { for } 0 \leq r<s \in \mathbb{R}
$$

which are normal in I_{t}.
Fix a prime $\ell \neq p$, and denote by \mathcal{R}_{t} the abelian category of continuous ℓ-adic representations of I_{t} (i.e. continuous representations $\mathcal{F}: I_{t} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{\ell}\right)$, whose image is in $\mathrm{GL}_{n}\left(E_{\lambda}\right)$ for some finite extension E_{λ} of $\left.\mathbb{Q}_{\ell}\right)$. For every irreducible $\mathcal{F} \in \mathcal{R}_{t}$, the slope of \mathcal{F} is $\inf \left\{r \geq 0 \mid \mathcal{F}_{\mid I_{t}^{(r)}}\right.$ is trivial $\}$. It is a non-negative rational number. In general, the slopes of \mathcal{F} are the slopes of the irreducible components of \mathcal{F}. For every \mathcal{F} there is a canonical direct sum decomposition [8, Lemma 1.8]

$$
\begin{equation*}
\mathcal{F} \cong \bigoplus_{r \geq 0} \mathcal{F}^{r} \tag{1}
\end{equation*}
$$

with \mathcal{F}^{r} having a single slope r. The slope 0 (tame) part will be denoted by \mathcal{F}^{t}. \mathcal{F} is said to be tame (respectively totally wild) if $\mathcal{F}=\mathcal{F}^{t}$ (resp. $\mathcal{F}^{t}=0$).

For every $r \geq 0$ let \mathcal{R}_{t}^{r} denote the full subcategory of \mathcal{R}_{t} consisting of representations with a single slope r. We have a decomposition

$$
\mathcal{R}_{t}=\bigoplus_{r \geq 0} \mathcal{R}_{t}^{r}
$$

in the sense that every $\mathcal{F} \in \mathcal{R}_{t}$ has a decomposition (1) and $\operatorname{Hom}_{\mathcal{R}_{t}}(\mathcal{F}, \mathcal{G})=0$ if $\mathcal{F} \in \mathcal{R}_{t}^{r}, \mathcal{G} \in \mathcal{R}_{t}^{s}$ and $r \neq s$ [8, Proposition 1.1].

Let $k^{\prime} \subseteq \bar{k}$ be a finite extension of k, and $\chi: k^{*} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ a multiplicative character. By [4, 1.4-1.8] there is an associated smooth Kummer sheaf \mathcal{L}_{χ} on $\mathbb{G}_{m, \bar{k}}$, which is a tame character of I_{0} (and of I_{∞}) of the same order as χ. If $k^{\prime} \subseteq k^{\prime \prime}$ is another extension, the sheaves defined by χ and $\chi \circ \mathrm{Nm}_{k^{\prime \prime} / k^{\prime}}: k^{\prime \prime *} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ are isomorphic. Moreover, every tame character of I_{0} (and of I_{∞}) can be obtained in this way. Whenever we speak about a tame character of I_{0}, we will implicitly assume that we have made a choice of such a finite extension of k and of a character.

Fix a non-trivial additive character $\psi: k \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$. The local Fourier transform functors, defined by G. Laumon in [11], give equivalences of categories

$$
\begin{gathered}
\mathrm{FT}_{(0, \infty)}^{\psi}: \mathcal{R}_{0} \rightarrow \mathcal{R}_{\infty}^{<1}, \\
\mathrm{FT}_{(\infty, \infty)}^{\psi}: \mathcal{R}_{\infty}^{>1} \rightarrow \mathcal{R}_{\infty}^{>1}
\end{gathered}
$$

and

$$
\mathrm{FT}_{(\infty, 0)}^{\psi}: \mathcal{R}_{\infty}^{<1} \rightarrow \mathcal{R}_{0}
$$

(where $\mathcal{R}_{\infty}^{<1}=\bigoplus_{r<1} \mathcal{R}_{\infty}^{r}$ and $\mathcal{R}_{\infty}^{>1}=\bigoplus_{r>1} \mathcal{R}_{\infty}^{r}$) that describe the relationship between the local monodromies of an ℓ-adic sheaf on $\mathbb{A} \frac{1}{k}$ and its Fourier transform with respect to ψ. The Katz-Radon transform is defined in terms of them.

Definition 2.1. Fix a tame character \mathcal{L}_{χ} of I_{0}. The (local) Katz-Radon transform (with respect to \mathcal{L}_{χ}) is the functor $\rho_{\chi}: \mathcal{R}_{0} \rightarrow \mathcal{R}_{0}$ given by

$$
\rho_{\chi}(\mathcal{F})=\mathrm{FT}_{(0, \infty)}^{\psi,-1}\left(\mathrm{FT}_{(0, \infty)}^{\psi} \mathcal{L}_{\chi} \otimes \mathrm{FT}_{(0, \infty)}^{\psi} \mathcal{F}\right)=\mathrm{FT}_{(0, \infty)}^{\psi,-1}\left(\mathcal{L}_{\bar{\chi}} \otimes \mathrm{FT}_{(0, \infty)}^{\psi} \mathcal{F}\right)
$$

The Katz-Radon transform is an auto-equivalence of the category \mathcal{R}_{0} (since it is a composition of three equivalences of categories). It preserves dimensions and slopes, and for tame \mathcal{F} it is given by $\rho_{\chi}(\mathcal{F})=\mathcal{F} \otimes \mathcal{L}_{\chi}$ [10, 3.4.1]. For totally wild \mathcal{F}, it can be interpreted as the "local additive convolution" of \mathcal{F} and \mathcal{L}_{χ} [10, 3.4.3]: if we extend \mathcal{F} to a smooth sheaf on $\mathbb{G}_{m, \bar{k}}$, tamely ramified at infinity, then $\rho_{\chi}(\mathcal{F})$ is the wild part of the local monodromy at 0 of $\mathcal{F} * \mathcal{L}_{\chi}$, where

$$
\mathcal{F} * \mathcal{L}_{\chi}=\mathrm{R}^{1} \sigma_{!}\left(\mathcal{F} \boxtimes \mathcal{L}_{\chi}\right)
$$

and $\sigma: \mathbb{A}_{\bar{k}}^{2} \rightarrow \mathbb{A}_{\bar{k}} \frac{1}{}$ denotes the addition map (in [10], the "middle convolution" is used instead, but that one differs from the one used here only by Artin-Shreier components, which are smooth at 0 and therefore do not affect the local monodromy). Notice that, in particular, ρ_{χ} is independent of the choice of the additive character ψ.

More intrinsically, it can be described in terms of vanishing cycles functors 11, 2.7.2]: If $X=\mathbb{A}_{(0,0)}^{2}$ (respectively $\left.S=\mathbb{A}_{(0)}^{1}\right)$ denotes the henselization of $\mathbb{A}_{\bar{k}}^{2}$ at $(0,0)$ (resp. the henselization of $\mathbb{A} \frac{1}{\bar{k}}$ at 0) then $\rho_{\chi}(\mathcal{F}) \cong \mathrm{R}^{1} \Phi\left(\sigma, \mathcal{F} \boxtimes \mathcal{L}_{\chi}\right)_{(0,0)}$, where $\mathrm{R} \Phi\left(\sigma, \mathcal{F} \boxtimes \mathcal{L}_{\chi}\right)$ is the vanishing cycles complex for the addition map $\sigma: X \rightarrow S$ with respect to the sheaf $\mathcal{F} \boxtimes \mathcal{L}_{\chi}$ on X.

Similarly, it also has an interpretation as a "local multiplicative convolution" [12, Corollary 5.6]: If $X=\mathbb{G}_{m,(1,1)}^{2}$ (respectively $S=\mathbb{G}_{m,(1)}$) denotes the henselization of $\mathbb{G}_{m, \bar{k}}$ at $(1,1)$ (resp. the henselization of $\mathbb{G}_{m, \bar{k}}$ at 1) then $\rho_{\chi}(\mathcal{F}) \cong \mathrm{R}^{1} \Phi(\mu, \mathcal{F} \boxtimes$ $\left.\mathcal{L}_{\chi}\right)_{(1,1)}$, where $\mathrm{R} \Phi\left(\mu, \mathcal{F} \boxtimes \mathcal{L}_{\chi}\right)$ is the vanishing cycles complex for the multiplication map $\mu: X \rightarrow S$ with respect to the sheaf $\mathcal{F} \boxtimes \mathcal{L}_{\chi}$ on X, and \mathcal{F} and \mathcal{L}_{χ} are viewed as representations of I_{1} via the isomorphism $I_{0} \cong I_{1}$ that maps the uniformizer x at 0 to the uniformizer $x-1$ at 1 .

The main result of this article is the following simple expression for ρ_{χ} :
Theorem 2.2. Let $\mathcal{F} \in \mathcal{R}_{0}$ be totally wild with a single slope $a>0$. Write $a=c / d$, where c and d are relatively prime positive integers. Let \mathcal{L}_{η} be any tame character of I_{0} such that $\mathcal{L}_{\eta}^{\otimes d}=\mathcal{L}_{\chi}^{\otimes(c+d)}$. Then

$$
\rho_{\chi}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta} .
$$

In other words, we have the formula

$$
\begin{equation*}
\rho_{\chi}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\chi}^{\otimes(a+1)} \tag{2}
\end{equation*}
$$

where $\mathcal{L}_{\chi}^{\otimes(a+1)}$ stands for "any character that can reasonably be called $\mathcal{L}_{\chi}^{\otimes(a+1)}$ ".
By the decomposition $\mathcal{R}_{0}=\bigoplus_{r \geq 0} \mathcal{R}_{0}^{r}$, this determines $\rho_{\chi}(\mathcal{F})$ for any $\mathcal{F} \in \mathcal{R}_{0}$, thus answering the question posed by N. Katz in [10, 3.4.1].

A question that remains open is the following: in the article we prove that $\rho_{\chi}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta}$, independently for any \mathcal{F} with slope a. So the functors $\mathcal{R}_{0}^{a} \rightarrow \mathcal{R}_{0}^{a}$ given by ρ_{χ} and $(-) \otimes \mathcal{L}_{\eta}$ map any \mathcal{F} to isomorphic objects. Is there an actual isomorphism of functors between them? In the affirmative case, is there a simple way to construct it?

3. Proof of the main theorem

In this section we will prove theorem 2.2 . We will start with the case where $\mathcal{F} \in \mathcal{R}_{0}$ is irreducible.

Lemma 3.1. Let $\mathcal{F} \in \mathcal{R}_{0}$. Then $\mathcal{F}^{t} \neq 0$ if and only if there exists $\epsilon>0$ such that for every $\mathcal{G} \in \mathcal{R}_{0}$ with a single slope $b \in(0, \epsilon)$ we have

$$
\operatorname{Swan}(\mathcal{F} \otimes \mathcal{G})>\operatorname{Swan}(\mathcal{F}) \operatorname{dim}(\mathcal{G})
$$

Proof. Suppose that $\mathcal{F}^{t} \neq 0$, and let $a_{0}=0<a_{1}<\cdots<a_{r}$ be the slopes of \mathcal{F}, with multiplicities $n_{0}, n_{1}, \ldots, n_{r}$. Then $\operatorname{Swan}(\mathcal{F})=\sum n_{i} a_{i}$. Let $\epsilon=a_{1}$. Then for every $\mathcal{G} \in \mathcal{R}_{0}$ with a single slope $b \in(0, \epsilon)$ the tensor product $\mathcal{F} \otimes \mathcal{G}$ has slopes $b<a_{1}<\cdots<a_{r}$ with multiplicities $n_{0} m, n_{1} m, \ldots, n_{r} m$ where $m=\operatorname{dim}(\mathcal{G})$ by [8, Lemma 1.3]. Therefore

$$
\operatorname{Swan}(\mathcal{F} \otimes \mathcal{G})=n_{0} m b+\sum_{i=1}^{r} n_{i} m a_{i}>\sum_{i=1}^{r} n_{i} m a_{i}=\operatorname{Swan}(\mathcal{F}) \operatorname{dim}(\mathcal{G})
$$

Conversely, suppose that $\mathcal{F}^{t}=0$, and let $a_{1}<\cdots<a_{r}$ be the slopes of \mathcal{F}. Then for every $\mathcal{G} \in \mathcal{R}_{0}$ with a single slope $b \in\left(0, a_{1}\right)$ the tensor product $\mathcal{F} \otimes \mathcal{G}$ has the same slopes as \mathcal{F} by [8, Lemma 1.3], and in particular $\operatorname{Swan}(\mathcal{F} \otimes \mathcal{G})=\operatorname{Swan}(\mathcal{F}) \operatorname{dim}(\mathcal{G})$. This proves the lemma, since for every $\epsilon>0$ there exist representations in \mathcal{R}_{0} with slope $b \in(0, \epsilon)$ (for instance, one may take $[n]_{*} \mathcal{H}$, where $\mathcal{H} \in \mathcal{R}_{0}$ has slope $a>0$ and n is a prime to p integer greater than $a / \epsilon[8,1.13 .2])$.

For any two objects $K, L \in \mathcal{D}_{c}^{b}\left(\mathbb{A}_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right)$, we will denote by $K * L \in \mathcal{D}_{c}^{b}\left(\mathbb{A}_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right)$ their additive convolution:

$$
K * L=\mathrm{R} \sigma_{!}(K \boxtimes L)
$$

where $\sigma: \mathbb{A}_{\bar{k}}^{2} \rightarrow \mathbb{A} \frac{1}{\bar{k}}$ is the addition map.
Lemma 3.2. Let $K, L, M \in \mathcal{D}_{c}^{b}\left(\mathbb{A}_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right)$. Then

$$
\mathrm{R} \Gamma_{c}\left(\mathbb{A}_{\bar{k}},(K * L) \otimes M\right) \cong \mathrm{R}_{c}\left(\mathbb{A}_{\bar{k}}, K \otimes\left(\left(\tau_{-1}^{*} L\right) * M\right)\right)
$$

where $\tau_{-1}: \mathbb{A} \frac{1}{k} \rightarrow \mathbb{A} \frac{1}{k}$ is the additive inversion.
Proof. We have

$$
\begin{aligned}
& \mathrm{R} \Gamma_{c}\left(\mathbb{A}_{\frac{1}{k}},(K * L) \otimes M\right)=\mathrm{R} \Gamma_{c}\left(\mathbb{A}_{\bar{k}}, \mathrm{R} \sigma_{!}(K \boxtimes L) \otimes M\right)= \\
& =\mathrm{R} \Gamma_{c}\left(\mathbb{A}_{\frac{1}{k}}, \mathrm{R} \sigma_{!}\left((K \boxtimes L) \otimes \sigma^{*} M\right)\right)=\mathrm{R}_{c}\left(\mathbb{A}_{\bar{k}}^{2},(K \boxtimes L) \otimes \sigma^{*} M\right)
\end{aligned}
$$

by the projection formula. If $\pi_{1}, \pi_{2}: \mathbb{A} \frac{2}{\bar{k}} \rightarrow \mathbb{A} \frac{1}{k}$ are the projections then

$$
\mathrm{R} \Gamma_{c}\left(\mathbb{A}_{\frac{2}{k}}^{2},(K \boxtimes L) \otimes \sigma^{*} M\right)=\mathrm{R} \Gamma_{c}\left(\mathbb{A}_{\bar{k}}^{2}, \pi_{1}^{*} K \otimes \pi_{2}^{*} L \otimes \sigma^{*} M\right)
$$

Consider the automorphism $\phi: \mathbb{A}_{\bar{k}}^{2} \rightarrow \mathbb{A}_{\bar{k}}^{2}$ given by $(x, y) \mapsto(x+y,-y)$. Then $\sigma=\pi_{1} \circ \phi, \pi_{1}=\sigma \circ \phi$ and $\tau_{-1} \circ \pi_{2}=\pi_{2} \circ \phi$. It follows that

$$
\begin{aligned}
& \mathrm{R} \Gamma_{c}\left(\mathbb{A}_{\frac{2}{k}}^{2}, \pi_{1}^{*} K \otimes \pi_{2}^{*} L \otimes \sigma^{*} M\right) \cong \mathrm{R} \Gamma_{c}\left(\mathbb{A}_{\bar{k}}^{2}, \phi^{*} \pi_{1}^{*} K \otimes \phi^{*} \pi_{2}^{*} L \otimes \phi^{*} \sigma^{*} M\right)= \\
& =\mathrm{R} \Gamma_{c}\left(\mathbb{A}_{\frac{2}{k}}, \sigma^{*} K \otimes \pi_{2}^{*} \tau_{-1}^{*} L \otimes \pi_{1}^{*} M\right)=\operatorname{R} \Gamma_{c}\left(\mathbb{A} \frac{1}{k}, \mathrm{R} \sigma_{!}\left(\sigma^{*} K \otimes \pi_{2}^{*} \tau_{-1}^{*} L \otimes \pi_{1}^{*} M\right)\right) \cong \\
& \cong \mathrm{R} \Gamma_{c}\left(\mathbb{A}_{\frac{1}{k}}, K \otimes \mathrm{R} \sigma_{!}\left(\left(\tau_{-1}^{*} L\right) \boxtimes M\right)\right)=\mathrm{R} \Gamma_{c}\left(\mathbb{A} \frac{1}{k}, K \otimes\left(\left(\tau_{-1}^{*} L\right) * M\right)\right)
\end{aligned}
$$

If \mathcal{F} is a smooth $\overline{\mathbb{Q}}_{\ell}$-sheaf on $\mathbb{G}_{m, \bar{k}}$ which is totally wild at 0 , then for every $t \in \bar{k}$ the sheaf $\mathcal{F} \otimes \mathcal{L}_{\chi(t-x)}$ (extended by zero to $\mathbb{A} \frac{1}{k}$) is totally wild at 0 and has no punctual sections (where $\mathcal{L}_{\chi(t-x)}$ is the pull-back of the Kummer sheaf \mathcal{L}_{χ} under the $\operatorname{map} x \mapsto t-x)$, so its only non-zero cohomology group with compact support is H_{c}^{1}. We conclude that the only non-zero cohomology sheaf of $\mathcal{F}[0] * \mathcal{L}_{\chi}[0] \in \mathcal{D}_{c}^{b}\left(\mathbb{A}_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right)$ is $\mathcal{H}^{1}=\mathrm{R}^{1} \sigma_{!}\left(\mathcal{F} \otimes \mathcal{L}_{\chi}\right)$. We will denote this sheaf by $\mathcal{F} * \mathcal{L}_{\chi}$.

Lemma 3.3. Let $\mathcal{F}, \mathcal{G} \in \mathcal{R}_{0}$. Then

$$
\operatorname{Swan}\left(\rho_{\chi}(\mathcal{F}) \otimes \mathcal{G}\right)=\operatorname{Swan}(\mathcal{F} \otimes \mathcal{G})
$$

Proof. By additivity of the Swan conductor, we may assume that \mathcal{F} is irreducible, and in particular that it has a single slope $a \geq 0$. If $a=0$ then $\rho_{\chi}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\chi}$, so the equality is clear. Suppose that $a>0$. By [7, Theorem 1.5.6], \mathcal{F} and \mathcal{G} can be extended to smooth sheaves on $\mathbb{G}_{m, \bar{k}}$, tamely ramified at infinity, which we will also denote by \mathcal{F} and \mathcal{G}. Let \mathcal{F} and \mathcal{G} be also their extensions by zero to $\mathbb{A} \frac{1}{k}$.

Using the compatibility between Fourier transform with respect to ψ and convolution [11, Proposition 1.2.2.7], we have

$$
\mathcal{F} * \mathcal{L}_{\chi}=\mathrm{FT}^{\bar{\psi}}\left(\mathrm{FT}^{\psi} \mathcal{F} \otimes \mathrm{FT}^{\psi} \mathcal{L}_{\chi}\right)=\mathrm{FT}^{\bar{\psi}}\left(\mathrm{FT}^{\psi} \mathcal{F} \otimes \mathcal{L}_{\bar{\chi}}\right)
$$

where $\mathrm{FT}^{\psi} \mathcal{F}$ denotes the "naive" Fourier transform in the sense of [8, 8.2], that is, the (-1)-th cohomology sheaf of the Fourier transform of $\mathcal{F}[1] \in \mathcal{D}_{c}^{b}\left(\mathbb{A}_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right)$ (which is its only non-zero cohomology sheaf, since \mathcal{F} is totally wild at zero and therefore it is Fourier [8, Lemma 8.3.1]).

Let n be the rank of \mathcal{F}, and denote by $\mathcal{F}_{(\infty)} \in \mathcal{R}_{\infty}$ its local monodromy at infinity, which is a tame representation of I_{∞}. By Ogg-Shafarevic [6, Exposé X, Corollaire 7.12], $\mathrm{FT}^{\psi} \mathcal{F}$ is smooth on $\mathbb{G}_{m, \bar{k}}$ of rank $n a+n=n(a+1)$. By Laumon's local Fourier transform theory [9, Theorem 13], $\mathrm{FT}^{\psi} \mathcal{F}$ has a single slope $\frac{a}{a+1}$ at infinity, with multiplicity $n(a+1)$, and its monodromy at 0 has a trivial part of dimension $n a$ and its quotient is the dual $\widehat{\mathcal{F}_{(\infty)}}$ of $\mathcal{F}_{(\infty)}$. Then $\mathrm{FT}^{\psi} \mathcal{F} \otimes \mathcal{L}_{\bar{\chi}}$ also has a single slope $\frac{a}{a+1}$ at infinity with multiplicity $n(a+1)$, and its monodromy \mathcal{M} at 0 sits in an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{L}_{\bar{\chi}}^{\oplus n a} \rightarrow \mathcal{M} \rightarrow \widehat{\mathcal{F}_{(\infty)}} \otimes \mathcal{L}_{\bar{\chi}} \rightarrow 0 \tag{3}
\end{equation*}
$$

Its inverse Fourier transform, by Ogg-Shafarevic, is smooth of $\operatorname{rank} n(a+1)$ on $\mathbb{G}_{m, \bar{k}}$, and by local Fourier transform its wild part at 0 has slope a with multiplicity n.

In fact, this wild part is simply $\rho_{\chi}(\mathcal{F})$ by the additive convolution interpretation of ρ_{χ}. Its monodromy at infinity sits in an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{L}_{\chi}^{\oplus n a} \rightarrow\left(\mathcal{F} * \mathcal{L}_{\chi}\right)_{(\infty)} \rightarrow \mathcal{F}_{(\infty)} \otimes \mathcal{L}_{\chi} \rightarrow 0 \tag{4}
\end{equation*}
$$

obtained from (3) by local Fourier transform.
So $\mathcal{F} * \mathcal{L}_{\chi}$ has rank $n(a+1)$ on $\mathbb{G}_{m, \bar{k}}$, and its monodromy at 0 is the direct sum of $\rho_{\chi}(\mathcal{F})$ and a constant part of dimension $n a=\operatorname{Swan}(\mathcal{F})$. So

$$
\operatorname{Swan}_{0}\left(\left(\mathcal{F} * \mathcal{L}_{\chi}\right) \otimes \mathcal{G}\right)=\operatorname{Swan}\left(\rho_{\chi}(\mathcal{F}) \otimes \mathcal{G}\right)+\operatorname{Swan}(\mathcal{F}) \operatorname{Swan}(\mathcal{G})
$$

In particular, by Ogg-Shafarevic, the Euler characteristic of the sheaf $\left(\mathcal{F} * \mathcal{L}_{\chi}\right) \otimes \mathcal{G}$ (extended by zero to $\mathbb{A} \frac{1}{k}$) is $-\operatorname{Swan}\left(\rho_{\chi}(\mathcal{F}) \otimes \mathcal{G}\right)-\operatorname{Swan}(\mathcal{F}) \operatorname{Swan}(\mathcal{G})$. Using lemma 3.2 , proper base change, and the fact that $\chi\left(\mathbb{G}_{m, \bar{k}}, K \otimes \mathcal{L}_{\chi}\right)=\chi\left(\mathbb{G}_{m, \bar{k}}, K\right)$ for any object $K \in \mathcal{D}_{c}^{b}\left(\mathbb{G}_{m, \bar{k}}, \overline{\mathbb{Q}}_{\ell}\right)$, we get

$$
\begin{aligned}
& \operatorname{Swan}\left(\rho_{\chi}(\mathcal{F}) \otimes \mathcal{G}\right)+\operatorname{Swan}(\mathcal{F}) \operatorname{Swan}(\mathcal{G})=\chi\left(\mathbb{A}_{\bar{k}},\left(\mathcal{F}[1] * \mathcal{L}_{\chi}[1]\right) \otimes \mathcal{G}\right)= \\
& =\chi\left(\mathbb{A}_{\bar{k}}, \mathcal{L}_{\chi} \otimes\left(\tau_{-1}^{*} \mathcal{F}[1] * \mathcal{G}[1]\right)\right)=\chi\left(\mathbb{G}_{m, \bar{k}}, \tau_{-1}^{*} \mathcal{F}[1] * \mathcal{G}[1]\right)= \\
& =\chi\left(\mathbb{A} \frac{1}{k}, \tau_{-1}^{*} \mathcal{F}[1] * \mathcal{G}[1]\right)-\operatorname{rank}_{0}\left(\tau_{-1}^{*} \mathcal{F}[1] * \mathcal{G}[1]\right)= \\
& =\chi\left(\mathbb{A} \frac{1}{k}, \mathcal{F}[1]\right) \chi\left(\mathbb{A} \frac{1}{k}, \mathcal{G}[1]\right)-\chi\left(\mathbb{A} \frac{1}{k}, \mathcal{F}[1] \otimes \mathcal{G}[1]\right)= \\
& =\operatorname{Swan}(\mathcal{F}) \operatorname{Swan}(\mathcal{G})+\operatorname{Swan}(\mathcal{F} \otimes \mathcal{G})
\end{aligned}
$$

where rank_{0} of a derived category object denotes the alternating sum of the ranks at 0 of its cohomology sheaves, so $\operatorname{Swan}\left(\rho_{\chi}(\mathcal{F}) \otimes \mathcal{G}\right)=\operatorname{Swan}(\mathcal{F} \otimes \mathcal{G})$.

Proposition 3.4. Let $\mathcal{F} \in \mathcal{R}_{0}$ be totally wild and irreducible. Then there exists a tame character \mathcal{L}_{η} of I_{0} such that $\rho_{\chi}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta}$.

Proof. Let $\widehat{\mathcal{F}}$ be the dual representation. We claim that the tame part of $\rho_{\chi}(\mathcal{F}) \otimes \widehat{\mathcal{F}}$ is non-zero. By lemma 3.1, it suffices to show that there is an $\epsilon>0$ such that, for any $\mathcal{G} \in \mathcal{R}_{0}$ with slope $b \in(0, \epsilon), \operatorname{Swan}\left(\rho_{\chi}(\mathcal{F}) \otimes \widehat{\mathcal{F}} \otimes \mathcal{G}\right)>\operatorname{Swan}\left(\rho_{\chi}(\mathcal{F}) \otimes \widehat{\mathcal{F}}\right) \operatorname{dim}(\mathcal{G})$. But by lemma 3.3, we have

$$
\operatorname{Swan}\left(\rho_{\chi}(\mathcal{F}) \otimes \widehat{\mathcal{F}} \otimes \mathcal{G}\right)=\operatorname{Swan}(\mathcal{F} \otimes \widehat{\mathcal{F}} \otimes \mathcal{G})
$$

and

$$
\operatorname{Swan}\left(\rho_{\chi}(\mathcal{F}) \otimes \widehat{\mathcal{F}}\right)=\operatorname{Swan}(\mathcal{F} \otimes \widehat{\mathcal{F}})
$$

and, since $\widehat{\mathcal{F}}$ is the dual of \mathcal{F}, the tensor product $\mathcal{F} \otimes \widehat{\mathcal{F}}$ has a trivial quotient and, in particular, has non-trivial tame part. By lemma 3.1, there exists $\epsilon>0$ such that, for any $\mathcal{G} \in \mathcal{R}_{0}$ with slope $b \in(0, \epsilon)$, $\operatorname{Swan}(\mathcal{F} \otimes \widehat{\mathcal{F}} \otimes \mathcal{G})>\operatorname{Swan}(\mathcal{F} \otimes \widehat{\mathcal{F}}) \operatorname{dim}(\mathcal{G})$.

Since the tame part of $\rho_{\chi}(\mathcal{F}) \otimes \widehat{\mathcal{F}}$ is non-zero and it is a direct summand, it contains a tame character \mathcal{L}_{η} of I_{0} as a subrepresentation. Then

$$
\rho_{\chi}(\mathcal{F}) \otimes \widehat{\mathcal{F}} \otimes \mathcal{L}_{\bar{\eta}}=\rho_{\chi}(\mathcal{F}) \otimes \widehat{\mathcal{F} \otimes \mathcal{L}_{\eta}}=\operatorname{Hom}\left(\mathcal{F} \otimes \mathcal{L}_{\eta}, \rho_{\chi}(\mathcal{F})\right)
$$

contains a trivial subrepresentation, so $\operatorname{Hom}_{I_{0}}\left(\mathcal{F} \otimes \mathcal{L}_{\eta}, \rho_{\chi}(\mathcal{F})\right) \neq 0$. Since both $\rho_{\chi}(\mathcal{F})$ and $\mathcal{F} \otimes \mathcal{L}_{\eta}$ are irreducible, any non-zero I_{0}-equivariant map $\mathcal{F} \otimes \mathcal{L}_{\eta} \rightarrow \rho_{\chi}(\mathcal{F})$ must be an isomorphism.

Proposition 3.5. Let $\mathcal{F} \in \mathcal{R}_{0}$ be totally wild and irreducible of dimension n and slope a, and let \mathcal{L}_{η} be a tame character of I_{0} such that $\rho_{\chi}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta}$. Then $\mathcal{L}_{\eta}^{\otimes n} \cong \mathcal{L}_{\chi}^{\otimes n(a+1)}$.

Proof. Extend \mathcal{F} to a smooth ℓ-adic sheaf on $\mathbb{G}_{m, \bar{k}}$, tamely ramified at infinity, also denoted by \mathcal{F}. Let \mathcal{F} also denote its extension by zero to $\mathbb{A} \frac{1}{k}$. By the proof of lemma 3.3, the sheaf $\mathcal{F} * \mathcal{L}_{\chi}$ is smooth on $\mathbb{G}_{m, \bar{k}}$, its monodromy at 0 is the direct sum of $\rho_{\chi}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta}$ and a trivial part of dimension $n a$, and its monodromy at infinity sits in the exact sequence (4). Its determinant is then a smooth sheaf of rank 1 on $\mathbb{G}_{m, \bar{k}}$, whose monodromy at 0 is $\operatorname{det}(\mathcal{F}) \otimes \mathcal{L}_{\eta}^{\otimes n}$, and whose monodromy at ∞ is $\operatorname{det}\left(\mathcal{F}_{(\infty)}\right) \otimes \mathcal{L}_{\chi}^{\otimes n(a+1)}$.

Then $\widehat{\operatorname{det}(\mathcal{F})} \otimes \mathcal{L}_{\bar{\eta}}^{\otimes n} \otimes \operatorname{det}\left(\mathcal{F} * \mathcal{L}_{\chi}\right)$ is a rank 1 smooth sheaf on $\mathbb{G}_{m, \bar{k}}$, with trivial monodromy at 0 and tamely ramified at infinity. Since the tame fundamental group of $\mathbb{A} \frac{1}{k}$ is trivial, we conclude that

$$
\operatorname{det}\left(\mathcal{F} * \mathcal{L}_{\chi}\right) \cong \operatorname{det}(\mathcal{F}) \otimes \mathcal{L}_{\eta}^{\otimes n}
$$

as sheaves on $\mathbb{G}_{m, \bar{k}}$. Comparing their monodromies at infinity gives the desired isomorphism.

It remains to show that any such \mathcal{L}_{η} works.
Lemma 3.6. Let $\mathcal{F} \in \mathcal{R}_{0}$ be irreducible of dimension n, and let \mathcal{L}_{η} be a tame character of I_{0} such that $\mathcal{L}_{\eta}^{\otimes n}$ is trivial. Then $\mathcal{F} \otimes \mathcal{L}_{\eta} \cong \mathcal{F}$.

Proof. Write $n=n_{0} p^{\alpha}$, where $\alpha \geq 0$ and n_{0} is prime to p. Since the p-th power operation permutes the tame characters of I_{0} preserving their order, $\mathcal{L}_{\eta}^{\otimes n_{0}}$ must be the trivial character. Now by [8, 1.14.2], \mathcal{F} is induced from a p^{α}-dimensional representation \mathcal{G} of $I_{0}\left(n_{0}\right)$, the unique open subgroup of I_{0} of index n_{0}. Then

$$
\mathcal{F} \otimes \mathcal{L}_{\eta}=\left(\operatorname{Ind}_{I_{0}\left(n_{0}\right)}^{I_{0}} \mathcal{G}\right) \otimes \mathcal{L}_{\eta} \cong \operatorname{Ind}_{I_{0}\left(n_{0}\right)}^{I_{0}}\left(\mathcal{G} \otimes \operatorname{Res}_{I_{0}\left(n_{0}\right)}^{I_{0}} \mathcal{L}_{\eta}\right)=\operatorname{Ind}_{I_{0}\left(n_{0}\right)}^{I_{0}}(\mathcal{G})=\mathcal{F}
$$

since the restriction of \mathcal{L}_{η} to $I_{0}\left(n_{0}\right)$ is trivial.
We can now finish the proof of theorem 2.2 for irreducible representations
Proposition 3.7. Let $\mathcal{F} \in \mathcal{R}_{0}$ be irreducible of slope $a>0$. Write $a=c / d$, where c and d are relatively prime positive integers. Let \mathcal{L}_{η} be any tame character of I_{0} such that $\mathcal{L}_{\eta}^{\otimes d}=\mathcal{L}_{\chi}^{\otimes(c+d)}$. Then

$$
\rho_{\chi}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta}
$$

Proof. Let n be the dimension of \mathcal{F}. By propositions 3.4 and 3.5, there exists a tame character $\mathcal{L}_{\eta^{\prime}}$ of I_{0} such that $\rho_{\chi}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta^{\prime}}$, and $\mathcal{L}_{\eta^{\prime}}^{\otimes n} \cong \mathcal{L}_{\chi}^{\otimes n(a+1)}$. Since the Swan conductor $n a=n c / d$ of \mathcal{F} is an integer, n must be divisible by d. Then

$$
\begin{aligned}
\left(\mathcal{L}_{\bar{\eta}^{\prime}} \otimes \mathcal{L}_{\eta}\right)^{\otimes n} & =\mathcal{L}_{\bar{\eta}^{\prime}}^{\otimes n} \otimes \mathcal{L}_{\eta}^{\otimes d(n / d)}= \\
& \mathcal{L}_{\bar{\chi}}^{\otimes n(a+1)} \otimes \mathcal{L}_{\chi}^{\otimes(c+d) n / d}=\mathcal{L}_{\bar{\chi}}^{\otimes n(a+1)} \otimes \mathcal{L}_{\chi}^{\otimes n(a+1)}=\mathbf{1}
\end{aligned}
$$

so, by lemma 3.6 ,

$$
\rho_{\chi}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta^{\prime}} \cong\left(\mathcal{F} \otimes \mathcal{L}_{\eta^{\prime}}\right) \otimes\left(\mathcal{L}_{\bar{\eta}^{\prime}} \otimes \mathcal{L}_{\eta}\right)=\mathcal{F} \otimes \mathcal{L}_{\eta}
$$

Proof of theorem 2.2. The functors $\mathcal{R}_{0}^{a} \rightarrow \mathcal{R}_{0}^{a}$ given by $\mathcal{F} \mapsto \rho_{\chi}(\mathcal{F})$ and $\mathcal{F} \mapsto$ $\mathcal{F} \otimes \mathcal{L}_{\eta}$ are equivalences of categories, so they preserve direct sums. It is enough then to prove the isomorphism for indecomposable representations.

So let $\mathcal{F} \in \mathcal{R}_{0}^{a}$ be indecomposable of length m. Then by [10, Lemma 3.1.6, Lemma 3.1.7(3)] there exist an irreducible $\mathcal{F}_{0} \in \mathcal{R}_{0}^{a}$ and a (necessarily tame) indecomposable unipotent $\mathcal{U}_{m} \in \mathcal{R}_{0}$ of dimension m such that $\mathcal{F}=\mathcal{F}_{0} \otimes \mathcal{U}_{m}$. Since \mathcal{F} is a succesive extension of m copies of \mathcal{F}_{0}, by exactness $\rho_{\chi}(\mathcal{F})$ is a succesive extension of m copies of $\rho_{\chi}\left(\mathcal{F}_{0}\right) \cong \mathcal{F}_{0} \otimes \mathcal{L}_{\eta}$, which is irreducible. By [10, Lemma 3.1.7(2)], there is a unipotent $\mathcal{U} \in \mathcal{R}_{0}$ of dimension m such that $\rho_{\chi}(\mathcal{F}) \cong \mathcal{F}_{0} \otimes \mathcal{L}_{\eta} \otimes \mathcal{U}$.

Since ρ_{χ} is an equivalence of categories, $\rho_{\chi}(\mathcal{F})$ must be indecomposable, so \mathcal{U} itself must be indecomposable. Therefore $\mathcal{U} \cong \mathcal{U}_{m}$ and

$$
\rho_{\chi}(\mathcal{F}) \cong \mathcal{F}_{0} \otimes \mathcal{L}_{\eta} \otimes \mathcal{U}_{m} \cong \mathcal{F} \otimes \mathcal{L}_{\eta}
$$

4. Some variants

We will consider now representations of the inertia group I_{∞} at infinity. For any $\mathcal{F} \in \mathcal{R}_{\infty}$ of slope >1, we can take its local Fourier transform $\mathrm{FT}_{(\infty, \infty)}^{\psi} \mathcal{F}$, which is again in the same category. In [10, 3.4.4], N. Katz asks about a simple formula for

$$
\rho_{\chi}^{\prime}(\mathcal{F}):=\operatorname{FT}_{(\infty, \infty)}^{\psi,-1}\left(\mathcal{L}_{\bar{\chi}} \otimes \operatorname{FT}_{(\infty, \infty)}^{\psi} \mathcal{F}\right)
$$

which is an auto-equivalence of the category of continuous ℓ-adic representations of \mathcal{R}_{∞} with slopes >1. It can be interpreted as the wild part of the monodromy at infinity of the (additive) convolution $\mathcal{F} * \mathcal{L}_{\chi}$ [10, 3.4.6], where \mathcal{F} is any extension of the representation \mathcal{F} to a smooth sheaf on $\mathbb{G}_{m, \bar{k}}$ tamely ramified at 0 . In this section we will prove
Theorem 4.1. Let $\mathcal{F} \in \mathcal{R}_{\infty}$ be totally wild with a single slope $a>1$. Write $a=c / d$, where c and d are relatively prime positive integers. Let \mathcal{L}_{η} be any tame character of I_{∞} such that $\mathcal{L}_{\eta}^{\otimes d}=\mathcal{L}_{\bar{\chi}}^{\otimes(c-d)}$. Then

$$
\rho_{\chi}^{\prime}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta}
$$

In other words, we have the formula

$$
\begin{equation*}
\rho_{\chi}^{\prime}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\bar{\chi}}^{\otimes(a-1)} \tag{5}
\end{equation*}
$$

where $\mathcal{L}_{\bar{\chi}}^{\otimes(a-1)}$ stands for "any character that can reasonably be called $\mathcal{L}_{\bar{\chi}}^{\otimes(a-1) " \text { ". }}$
The proof is very similar to the one for ρ_{χ}. Since every representation in \mathcal{R}_{∞} is a direct sum of representations with single slopes, we can assume that \mathcal{F} has a single slope a.

Lemma 4.2. Let $\mathcal{F}, \mathcal{G} \in \mathcal{R}_{\infty}$ be totally wild, with \mathcal{F} having all slopes >1. Then

$$
\operatorname{Swan}\left(\rho_{\chi}^{\prime}(\mathcal{F}) \otimes \mathcal{G}\right)=\operatorname{Swan}(\mathcal{F} \otimes \mathcal{G})
$$

Proof. We can assume that \mathcal{F} has a single slope $a>1$. Extend \mathcal{F} and \mathcal{G} to smooth sheaves on $\mathbb{G}_{m, \bar{k}}$, tamely ramified at 0 , which we will also denote by \mathcal{F} and \mathcal{G} (as well as their extensions by zero to $\mathbb{A} \frac{1}{\bar{k}}$).

Let n be the rank of \mathcal{F}, and denote by $\mathcal{F}_{(0)}$ its local monodromy at 0 , which is a tame representation of I_{0}. Since all slopes of \mathcal{F} at infinity are >1, it is a Fourier sheaf [8, Lemma 8.3.1], so its Fourier transform is a single sheaf that we will denote by $\mathrm{FT}^{\psi} \mathcal{F}$. By Ogg-Shafarevic, $\mathrm{FT}^{\psi} \mathcal{F}$ is smooth on $\mathbb{G}_{m, \bar{k}}$ of rank $n a$. By Laumon's local Fourier transform theory [9, Remark 9], it has a single positive slope $\frac{a}{a-1}$ at infinity with multiplicity $n(a-1)$ and tame part isomorphic to $\widehat{\mathcal{F}_{(0)}}$,
and it is unramified at 0 . Then $\mathrm{FT}^{\psi} \mathcal{F} \otimes \mathcal{L}_{\bar{\chi}}$ also has a single slope $\frac{a}{a-1}$ at infinity with multiplicity $n(a-1)$, tame part isomorphic to $\mathcal{L}_{\bar{\chi}} \otimes \widehat{\mathcal{F}_{(0)}}$, and its monodromy at 0 is a direct sum of $n a$ copies of $\mathcal{L}_{\bar{\chi}}$.

Its inverse Fourier transform, by Ogg-Shafarevic, is smooth of rank $n(a-1) \frac{a}{a-1}+$ $n=n(a+1)$ on $\mathbb{G}_{m, \bar{k}}$, and by local Fourier transform its monodromy at infinity is the direct sum of $\rho_{\chi}^{\prime}(\mathcal{F})$ and $n a=\operatorname{Swan}(\mathcal{F})$ copies of \mathcal{L}_{χ}. At 0 is has trivial part of rank $n a$, whith quotient isomorphic to $\mathcal{L}_{\chi} \otimes \mathcal{F}_{(0)}$. So

$$
\operatorname{Swan}_{\infty}\left(\left(\mathcal{F} * \mathcal{L}_{\chi}\right) \otimes \mathcal{G}\right)=\operatorname{Swan}\left(\rho_{\chi}^{\prime}(\mathcal{F}) \otimes \mathcal{G}\right)+\operatorname{Swan}(\mathcal{F}) \operatorname{Swan}(\mathcal{G})
$$

We conclude exactly as in lemma 3.3 .
Using lemma 3.1 as in proposition 3.4 we deduce
Proposition 4.3. Let $\mathcal{F} \in \mathcal{R}_{\infty}$ be irreducible with slope >1. Then there exists a tame character \mathcal{L}_{η} of I_{∞} such that $\rho_{\chi}^{\prime}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta}$.

Proposition 4.4. Let $\mathcal{F} \in \mathcal{R}_{\infty}$ be irreducible of dimension n and slope $a>1$, and let \mathcal{L}_{η} be a tame character of I_{∞} such that $\rho_{\chi}^{\prime}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta}$. Then $\mathcal{L}_{\eta}^{\otimes n} \cong \mathcal{L}_{\bar{\chi}}^{\otimes n(a-1)}$.
Proof. Extend \mathcal{F} to a smooth ℓ-adic sheaf on $\mathbb{G}_{m, \bar{k}}$, tamely ramified at 0 , also denoted by \mathcal{F}, and let \mathcal{F} also denote its extension by zero to $\mathbb{A} \frac{1}{\bar{k}}$. By the proof of lemma 4.2, the sheaf $\mathcal{F} * \mathcal{L}_{\chi}$ is smooth on $\mathbb{G}_{m, \bar{k}}$, its monodromy at infinity is the direct sum of $\rho_{\chi}^{\prime}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta}$ and $n a$ copies of \mathcal{L}_{χ}, and its monodromy at 0 has trivial part of dimension $n a$ with quotient isomorphic to $\mathcal{L}_{\chi} \otimes \mathcal{F}_{(0)}$. Its determinant is then a smooth sheaf of rank 1 on $\mathbb{G}_{m, \bar{k}}$, whose monodromy at ∞ is $\operatorname{det}(\mathcal{F}) \otimes \mathcal{L}_{\eta}^{\otimes n} \otimes \mathcal{L}_{\chi}^{\otimes n a}$, and whose monodromy at 0 is $\operatorname{det}\left(\mathcal{F}_{(0)}\right) \otimes \mathcal{L}_{\chi}^{\otimes n}$.

We conclude, as in proposition 3.5, that

$$
\operatorname{det}\left(\mathcal{F} * \mathcal{L}_{\chi}\right) \cong \operatorname{det}(\mathcal{F}) \otimes \mathcal{L}_{\eta}^{\otimes n} \otimes \mathcal{L}_{\chi}^{\otimes n a}
$$

as sheaves on $\mathbb{G}_{m, \bar{k}}$. Comparing their monodromies at 0 gives the desired isomorphism.

The remainder of the proof of theorem 4.1 is identical to the one for ρ_{χ}.
We have a third variant, for representations $\mathcal{F} \in \mathcal{R}_{\infty}$ with slopes <1 :

$$
\rho_{\chi}^{\prime \prime}(\mathcal{F}):=\mathrm{FT}_{(\infty, 0)}^{\psi,-1}\left(\mathcal{L}_{\bar{\chi}} \otimes \mathrm{FT}_{(\infty, 0)}^{\psi}(\mathcal{F})\right),
$$

which is again an auto-equivalence of the category of continuous ℓ-adic representations of \mathcal{R}_{∞} with slopes <1. As in the ρ_{χ} case we have $\rho_{\chi}^{\prime \prime}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\chi}$ for \mathcal{F} tame. The corresponding formula for wild \mathcal{F} is

Theorem 4.5. Let $\mathcal{F} \in \mathcal{R}_{\infty}$ be totally wild with a single slope $a<1$. Write $a=c / d$, where c and d are relatively prime positive integers. Let \mathcal{L}_{η} be any tame character of I_{∞} such that $\mathcal{L}_{\eta}^{\otimes d}=\mathcal{L}_{\chi}^{\otimes(d-c)}$. Then

$$
\rho_{\chi}^{\prime \prime}(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_{\eta}
$$

Proof. Let $\mathcal{G}:=\mathrm{FT}_{(\infty, 0)}^{\psi}(\mathcal{F}) \in \mathcal{R}_{0}$, which has slope $\frac{a}{1-a}=\frac{c}{d-c}$ [9, Theorem 13]. The statement is then equivalent to

$$
\mathrm{FT}_{(\infty, 0)}^{\psi,-1}\left(\mathcal{L}_{\bar{\chi}} \otimes \mathcal{G}\right) \cong \mathcal{L}_{\eta} \otimes \mathrm{FT}_{(\infty, 0)}^{\psi,-1}(\mathcal{G})
$$

or

$$
\operatorname{FT}_{(\infty, 0)}^{\psi}\left(\mathcal{L}_{\eta} \otimes \mathrm{FT}_{(\infty, 0)}^{\psi,-1}(\mathcal{G})\right) \cong \mathcal{G} \otimes \mathcal{L}_{\bar{\chi}}
$$

But the left hand side is just $\rho_{\bar{\eta}}(\mathcal{G})$, since the inverse of $\mathrm{FT}_{(\infty, 0)}^{\psi}$ is $\mathrm{FT}_{(0, \infty)}^{\bar{\psi}}$ with respect to the conjugate additive character, and ρ_{χ} does not depend on the choice of the non-trivial additive character ψ. So the isomorphism follows from theorem 2.2 .

Funding

This work was partially supported by P08-FQM-03894 (Junta de Andalucía), MTM2010-19298 and FEDER

References

[1] D. Arinkin, Fourier transform and middle convolution for irregular D-modules, Preprint, http://arxiv.org/abs/0808.0699 (2008).
[2] Ahmed Abbes and Takeshi Saito, Local Fourier transform and epsilon factors, Compos. Math. 146 (2010), no. 6, 1507-1551.
[3] Andrea D'Agnolo and Michael Eastwood, Radon and Fourier transforms for D-modules, Advances in Mathematics 180 (2003), 452-485.
[4] P. Deligne, Application de la formule des traces aux sommes trigonométriques, iv +312 pp , Cohomologie Étale, Séminaire de Géométrie Algébrique du Bois-Marie SGA $4 \frac{1}{2}$.
[5] Lei Fu, Calculation of ℓ-adic local Fourier transformations, Manuscripta Math. 133 (2010), no. 3-4, 409-464.
[6] A. Grothendieck et al., Cohomologie ℓ-adique et Fonctions L (SGA V), Lecture Notes in Mathematics 589, Springer-Verlag 1977.
[7] Nicholas M. Katz, Local-to-global extensions of representations of fundamental groups, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 69-106.
[8] Nicholas M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies, vol. 116, Princeton University Press, Princeton, NJ, 1988.
[9] Nicholas M. Katz, Travaux de Laumon, Astérisque (1988), no. 161-162, Exp. No. 691, 4, 105-132 (1989), Séminaire Bourbaki, Vol. 1987/88.
[10] Nicholas M. Katz, Rigid local systems, Annals of Mathematics Studies, vol. 139, Princeton University Press, Princeton, NJ, 1996.
[11] G. Laumon, Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. (1987), no. 65, 131-210.
[12] A. Rojas-León, Local convolution of ℓ-adic sheaves on the torus, Preprint, http://arxiv. org/abs/1106. 1398 (2011).

Departamanto de Álgebra, Universidad de Sevilla, Apdo 1160, 41080 Sevilla, Spain., E-MAIL: AROJAS@US.ES

