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Abstract

We give some estimates for multiplicative character sums on quasi-
projective varieties over finite fields depending on the severity of the
singularities of the variety at infinity. We also remove the hypothesis
of non-divisibility by the characteristic of the base field in the known
estimates for the non-singular case.

1 Introduction

In [Kad], Katz proved the following estimate for multiplicative char-
acter sums. Let k be a finite field of characteristic p and cardinality
q, and X/k a projective smooth scheme of dimension n endowed with
a k-embedding in PY. Let Z (resp. H) be a hyperplane (resp. a
hypersurface of degree d) in IP)kN , and suppose that X N H, X N Z
and X N H N Z are all smooth of the right codimension. Then, if
V=X-XNZand f:V — Al denotes the map f(z) = H(x)/Z(x)?,
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for any non-trivial multiplicative character x : k* — C* we have the
estimate

S (@) <02

zeV (k)

where C' depends only on d, n and the total Chern class of X.

This article extends this result to the singular case, in the same
way that [Ka2| extended the results in [Kal] for additive character
sums. Let X be a scheme which is projective over k and purely of
dimension n > 2, embedded in IP’{CV as the closed subscheme defined
by r homogeneous forms Fi,..., F, of degrees ai,...,a,. Let H and
Z be homogeneous forms in k[Xyp,..., Xy] of degrees d and e. We
will also denote by H and Z the hypersurfaces they define in IP’,]CV .
Assume that (H,Z) is a regular sequence in the graded coordinate
ring ®;>ol'(X, Ox (7)) of X (If X is Cohen-Macaulay, this just means
that X N H N Z has pure codimension 2 in X). For simplicity we will
also assume that d and e are coprime. See the remarks at the end of
section 3 for the case where they are not.

Following [Ka2], we define 0 to be the dimension of the singular
locus of X N H N Z, and € to be that of the singular locus of X N Z.
We also define ¢’ as the dimension of the singular locus of X N H. We
have the a priori inequalities (cf. [Ka2], Lemma 3)

e<d+1,¢<5+1.

since the singular locus of X N H N Z contains the intersection of Z
and the singular locus of X N H and the intersection of H and the
singular locus of X N Z.

Fix a non-trivial multiplicative character x : k* — C*. Let V =
X —-(HUZ)and f :V — Gy, be the map defined by f(z) =
H(z)¢/Z(x)?. Our main result is:

Theorem 1. Denote by S the sum 3 oy ) X(f (7).

a) Suppose that e is prime to p and x¢ is non-trivial (for instance
e=1). Let C = 3(3+sup(ai,...,are)+d) N2 We have the
estimate

S| < 0 gt

Furthermore, if €’ < §, we have the sharper estimate

’5’ <C. q(n+5+1)/2.



b) Suppose that d is prime to p and x? is non-trivial. Let C' =
3(3 +sup(ai,...,a,,d) +e)Nt2. We have the estimate

’5’ < C . q(n+5+2)/2.
Furthermore, if € < §, we have the sharper estimate

’S| <C- q(n+5+1)/2'

¢) Suppose that ged(d, p) = ged(e,p) = 1. Let
C = 3(3+suplay,...,ar,d,e) +sup(d,e)) N T+2.
We have the estimate
S| <C- q("+5+2)/2,
Furthermore, if € < § and € < §, we have the sharper estimate

|S| <C- q(n+5+1)/2'

Part (b) of the theorem is deduced from part (a) by just switching
the roles of H and Z and replacing x by ¥, since

X(Z(x)!/H(x)%) = x(H(2)*/Z(x)").

Part (c) follows immediately from (a) and (b). It remains to prove

(a).

2 Cohomological interpretation of the
sums

Fix a prime £ # p, we will work with ¢-adic cohomology. We will pick
an isomorphism ¢ : Q; — C so that we can freely speak of absolute
values of element of Q, and weights. This also gives a way to look at a
C*-valued character as a Q;—Valued character and viceversa. Given a
non-trivial multiplicative character x : k* — C*, there is an associated
Kummer Qy-sheaf £, on Gy, i, (cf. [De2], 1.7) such that for every finite
extension k'/k and every t € G,, (k") = k™, the trace of the geometric
Frobenius element in Gal(k/k’) acting on the stalk of £, at a geometric
point ¢ over ¢ is (N /(t)). In particular, £, is pure of weight zero.
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If we denote by L, () the pull-back of £y to V' by f, it follows from
Grothendieck trace formula that

2n
D x(f(@) =D (1) Trace(FIHL(V @ k, Ly(p)))
zeV (k) =0

where F' € Gal(k/k) is the geometric Frobenius element. Further-
more, Deligne’s theorem (cf. [Del], Corollaire 3.3.4) implies that all

eigenvalues of F' acting on H.(V @k, L, (5)) have absolute value at most
¢*/2. Therefore, Theorem 1 will be a consequence of the following two
cohomological results:

Theorem 2. With the previous notation, suppose that e is prime to
p and X is non-trivial. Then the cohomology group HL(V ® l_ﬂ,ﬁx(f))
vanishes for i > n+ 0§+ 2. Furthermore, if €' <6, it also vanishes for
i=n+0+2.

Theorem 3. Suppose that e is prime to p and x¢ is non-trivial. Then
we have the bound

S dmHLV @k, Lyp) < 3(3+sup(ar,.. ., ar,€) + )N
Consider the finite étale covering 7 : W — V given by

W ={(z,s) €V xGpp:s°= f(x)}

mapping to V' via the first projection, and let g : W — G, 1 be the
restriction of the second projection. We have a cartesian diagram

where [e] is the e-th power map A — A°. Since 7 is finite, we have
Rm, = me = m. Combining that with proper base change and the
projection formula we get

HLW @ k, Lye(g) = HUW @ k, g*[e]*Ly) = HUW @ k,7* f*L,) =
=H{(V @k, ma* Ly py) = H(V @ &, (1.Q0) ® Ly(p) =
=H(V @k, (1.g"Q0) © Ly() = He(V @ &, (/[eQ0) © Ly(p) =
=HL(V @k (f*@pe1Lp) ® Ly(p) =
=H{(V ®k, D1 Lor) © Ly(p) = @pelei(V@)E’pr(f))
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where the direct sum is taken over the set of characters of k* whose e-
th power is trivial. In particular, H.(V ®k, £, (f)) is a direct summand
of HL(W @ k, Lye(g)); 80 in order to prove Theorems 2 and 3 it suffices
to show

Theorem 4. With the previous notation, suppose that e is prime to
p and x¢ is non-trivial. Then the cohomology group HL(W @k, ﬁxe(g))
vanishes for i > n+ 0§+ 2. Furthermore, if €' <6, it also vanishes for
i=n+0+2.

Theorem 5. Suppose that e is prime to p and x¢ is non-trivial. Then
we have the bound

Z dim HZC(W ® E’ EXE(H)) S 3(3 + Sup(a1> ceey Ap, 6) + d)N+7"+2.

We will now construct a new scheme Y as the closed subscheme
of P]kv +2 (with coordinates Xy, ..., Xn,T,U) defined by the homoge-
neous forms Fi, ..., F.,T¢—Z and H —UT? . Roughly speaking, we
are adding two more variables to X, one representing the e-th root of
7 and the other one the e-th root of the value of f. Then, define the
incidence variety Y as the divisor in Y x P} (with coordinates A, A1
for the second factor) given by the vanishing of \gU — A\ T, thus

V(&) = {(z0,-...xn,t,u), Mo, A1) € V(E) x PL(E) : Adgu = Ait}.

Let §: YV — IP’}C be the restriction of the projection Y x ]P’,lg — }P’,é,
it is a proper map. We can embed W as a dense open subset of Y
in the following way: first pick «,3 € 7Z such that ad + fe = 1.
We map the point (z,s) € W (where x = (zo,...,zy)) to the pair

T(z,8) := ((zo,...,xN,t,u),s) €Y, where
H(z)*Z(x)? H(z)*Z(x)?
t= e , U= o .

Notice that H*Z” is a rational function of total degree 1 defined at
every point of V', therefore the map is well defined. This gives an
isomorphism between W and the dense open subset of Y where T' #0
and U # 0, the inverse map being given by ((zo,...,xn,t,u),s) —
(x,s). We have a commutative diagram



where the horizontal arrows are open embeddings. We extend by zero
the sheaf £, to all of P}, and take its pull-back to Y by §, which
we will denote by L,e(,). Notice that its restriction to W' is just the
previously defined L, y).

Lemma 6. There is a quasi-isomorphism
RT(W @k, Lye(g)) = RE(Y ® k, Lye(y))-

Proof. By excision, it suffices to show that RT.((Y —W)®k, Lye(g)) =
0. We have a decomposition of Y — W as the disjoint union of Wy, W;
and Wo, where (identifying T and U with the divisors they define)

mpqymTHWxP;
Wy =(YNT)-U
Wo=(YNnU)-T.

Since W1 maps to infinity under g, the sheaf £, ¢,y vanishes on Wj.
Similarly, W maps to zero under g, so L e(,) vanishes on Wa too.
Again by excision we deduce

RI((Y = W) ®k, Lye(y) = RE((Y NTNU) x Py, Lye(y))-

Now on (YNTNU) x P! the sheaf £, ¢, is the external tensor product
Q¢ X Ly, so by Kiinneth we conclude that

RL((YNTNU) X P}, Lyerg) =
=RI((YNTNU)®k, Q) @ RT(PL, Lye) =0

since RIe(P}, Lye) = RI(G
[De2], Théoreme 2.7%)

mks £xe) = 0 when x© is non-trivial (cf.

O]
By the projection formula, we have
RT(Y @k, Lye(g)) = RLc(Pr, RGu§* Lye) = RT(PL, (RgxQr) ® Lye).
Furthermore, there is a spectral sequence
HY(PL, (R3,:Qp) ® Lye) = HY(PL, (RG.Qy) ® Lye).

In particular, in order to prove Theorem 4 it suffices to show that
HY (P, (R3,Q¢) ® L) vanishes when a +b > n + § + 2, and when
at+b=n+d+2if ' <4.



Lemma 7. The map §:Y — IE”}C 1s flat.

Proof. Following ([Ka2], Lemma 9) we will show that all geometric
fibers of g have the same Hilbert polynomial. Let C(X) C ]P’fcv 1 he
the cone over X, i.e. the subscheme defined in ijv +1 (with coordinates
Xo, ..., Xn,T) by the same ideal that defines X in IP’{X. First of all,
notice that 7" is not a zero divisor in (the homogeneous coordinate
ring of ) C'(X), and the section of C(X) it defines is isomorphic to X.
Since (H, Z) is a regular sequence for X by hypothesis, we conclude
that (T, H,Z) in a regular sequence for C'(X). Recall that the prop-
erty of a sequence of homogeneous elements in a graded ring being a
regular sequence is invariant under permutation of the elements of the
sequence (cf. [BT], Lemma 23.5).

The fiber of § over a finite point A € k is defined in }P’g +2 (with co-
ordinates Xy, ..., Xy, T, U) by the vanishing of F, ..., F., Z—T¢, H—
AT and U — AT So in PY'*! (which we identify with the hyperplane
U—-XI=0in IP”%VH) it is obtained from C'(X) by taking the hyper-
surface sections Z —T¢ = 0 and H — \T?% = 0. But (Z —T¢, H — \T%)
is a regular sequence in C(X) for every A (because it is if we add T'),
so the Hilbert polynomial of any such fiber is given by

P(m) =Q(m) = Q(m —d) —Q(m —e)+Q(m —d—e),

where @ is the Hilbert polynomial of C(X).
Similarly, the fiber over infinity is defined in Pg *2 by the vanishing

of Fi,...,F.,Z,H and T, so in IP’kNJr1 (identified with the hyperplane

T =0in IP’;-CV *2) it is obtained from C(X) by taking the hypersurface
sections Z = 0 and H = 0. Again (Z, H) is a regular sequence in
C(X), so the Hilbert polynomial of this fiber is also given by

P(m) = Q(m) — Q(m — d) — Q(m — ) + Q(m — d — ).
O

The proof of the previous lemma, shows that the intersection of the
fiber of § over a finite point A € k with the hyperplane T" = 0 is just
X N H N Z, which has singular locus of dimension §. Therefore, the
fiber itself has singular locus of dimension at most § + 1. Similarly,
the fiber over infinity is the cone over X N H N Z, so it has singular
locus of dimension § + 1. From ([SGATI], Exposé I, Cor. 4.3) we
deduce that for every A € P!(k) the Iy-invariant specialization map



(R3.Q¢)x — (R*3.Qp); (where 7 is a geometric generic point of IP’I%
and I the inertia group at \) is an isomorphism for b > n+ 6+ 1 and
surjective for b = n + 6 + 1. This implies that R%§,Qy is lisse on IP’I%
for b > n+ 0 + 1, and that we have an exact sequence

0—-¢g— Rn+6+1§*@@ —H —0

where H is lisse on IP’/,lC and G is punctual (cf. [Ka2], Theorem 13).
Since IP)}C is simply connected, every lisse sheaf on it is constant. In
particular, for b > n+ § + 1 and any a we get

Hg(]P)]lﬁa (Rbg*(@ﬁ) @ Exe) = (Rbg*@ﬂ)ﬁ ® H?(]P)]lgv Exe) =0

since x° is non-trivial (cf. [De2], Théoreme 2.7*). Similarly H%(P;, H®
Lye) =0, so from the exact sequence above we get isomorphisms

H?(]P)]l;;’ g & ‘CXe) = Hg(]}%, (Rn+5+1§*@£) & EXC)'

Now G is punctual, so we conclude that H (P}, (RMOHGQ) R Lye) =
0 for a > 0. Since HY of any constructible sheaf on IP’}€ vanishes for all
a > 2, this covers all possible cases where a +b > n+ d + 2. The only
case with a +b = n + J + 2 that has not yet been considered is a = 2,
b=n+4d. So it remains to show that HZ (P}, (R"5,Qr) @ Lye) =0
when &' < 4.

Lemma 8. The sheaf F := R"19§,Qy is lisse at 0 € P

Proof. Let I = Iy C Gal(k(t)**?/k(t)) be the inertia group at zero.
If i is a geometric generic point of IP’}C, the lemma states that I acts
trivially on Fj;. Therefore, it suffices to show that the I-invariant
specialization map Fo — Fj is surjective. By ([SGATI], Exposé I,
Cor. 4.3), this will happen if the fiber of § at zero has singular locus
of dimension at most 4.

Such fiber Yj is given in IP’]—CNJr2 (with coordinates Xy, ..., Xn,T,U)
by the vanishing of Fi,..., F.,T° — Z, H and U. We have an obvious
finite projection map 7 : Yo — XN H, which is étale outside Yo —T.
In particular, the singularities of Yy — T map to singularities of X N H.
But the singular locus of X N H has dimension ¢/ < § and 7 is finite,
so the singular locus of Yy outside T' has dimension at most 4.

On the other hand, a singular point of Y in Yy N7 must also be a
singular point of YyNT (cf. [Ka2], Lemma 3). But YoNT is isomorphic
to X N H N Z, so its singular locus has dimension §. Therefore, the
singular locus of Yy in T also has dimension at most §. This proves
the lemma. O



Let U C G,,, ; be a dense open subset on which F is lisse. By the
birational invariance of HZ it suffices to show that H2(U, F @ Lye) = 0.
By Lemma 8 F is lisse at zero. Therefore if I = Iy C Gal(k(t)%?/k(t))
is the inertia group at zero, I acts trivially on the stalk F; of F at
a geometric generic point 7 of IP’]%. On the other hand, since x° is
non-trivial, £ e is totally ramified at zero, so (LXC)% = 0. Hence

(f® ﬁxﬁ)% = ('7:77 ® (Exﬁ)ﬁ)l = ]:ﬁ ® (ﬁxﬁ){j =0.
In particular the coinvariants ((F ® Lye)5)r also vanish and a fortiori
H2(U,F @ Lye) = (F @ Lye)g)my w,7)(—1) = 0.

This completes the proof of Theorem 4.

3 An upper bound for the sum of the
Betti numbers

In this section we will prove Theorem 5. The main tool will be the
following bound of Katz:

Theorem 9. ([Ka3], Theorem 12) Let V. C AY be a closed sub-
scheme, defined by the vanishing of r polynomials f1, ..., fr of degrees
ai,...,ap. Let hyhyi,... hs € k[x1,...,2N], s > 0, be polynomials of
degrees e, e1, ..., es. Fix a non-trivial additive character ¢ : k — C*
and s non-trivial multiplicative characters x1,...,xs : k¥ — C*. Let
Ly and Ly, be the corresponding Artin-Schreier and (estension by
zero of ) Kummer Qq-sheaves on A}, and denote by Lopny and Ly ;)
their pull-backs to V' by h and h; respectively. Then we have the upper

bound ) . - s
> dmH(V @k, Ly © (Qj=1 Ly, ny)) <

<3(s+1+supile, 1 +a;) +>; ej) NI

In order to optimize the bound, we will not embed W in Y, but
in a new projective scheme Y’ defined in P]kv +1 (with coordinates
Xo,...,Xn,T) by the homogeneous forms Fy,...,F, and T¢ — Z.
We now embed W as a dense open subscheme of Y’ by mapping
(x,s), where z = (xo,...,2N), to (20,...,2N,t) € Y/ with t =
s7*H(x)*Z(x)” (Recall that o and 3 are integers such that ad+ Ge =



1). This gives an isomorphism between W and the open subset of Y’
where T' # 0 and H # 0, the inverse map being

(x(], PN ,LL‘N,t) = ((.ZL'(), NN ,xN),t_dH(ac)).

Take the ambient space Aiv *1 to be the projective space Pff 1 mi-
nus the hyperplane T' = 0. So we have coordinates zg = Xo /T, ..., 2Ny =
X /T. With this notation, the closure W of W is defined by the van-
ishing of Fj(xq,...,xn) fori=1,...,r and Z(xg,...,xn)—1, and g is
given by the polynomial H(zy,...,zx) on W. If we apply Theorem 9
to this data, with s =1, h = 0 and h; = g, we get the desired bound,
since HZCLW Qk, Lye(g) =HL(W® k,LC ) (where we extended g by
zero to W).

x¢(g)

Remarks. 1) The following example, multiplicative analogue of the
one given in [Ka2], will show that the exponent of ¢ is optimal in these
estimates and that the sharper estimate does not hold without some
extra hypothesis. Let N = n + 1, and let X be the hypersurface in
PZ“ (with coordinates Xy, ..., X,,+1) defined by the equation ng -
Xng_2 = 0. Let Z be the hyperplane defined by Xy = 0, H the one
defined by X; = 0. Henced = e =1, X NZ (resp. X N H) is the
everywhere singular (n—1)-dimensional linear subspace X = X4 -l
0 (resp. X1 = Xgil =0) of IP’ZH, and X N H N Z is the everywhere
singular (n — 2)-dimensional linear subspace X = X = Xg_l = 0.
Soe=¢ =n—1land 6 =n—2.

Then V is defined in AZH (with coordinates z; = X;/ Xy, i =
1,...,n+1) byz; = xg_l, z1 # 0;and f: V — Gy, 1 is the map given
by f(z1,...,Zp+1) = x1. So in this case, for every finite extension
km/k of degree m the sum is

Z X(Nkm/k(x1>) = Z X(Nkm/k(xg_l)) =

(#1500 sTn41)EV (km) wo €k,
$37.~-,$n+lekm

= > XMy (@) = ¢ (g™ = 1) # O0(g™7?)

z9 €k,
Z3,..,Tn+1E€km

forany a < 2n=n-+9 + 2.

2) What if d and e are not coprime? In that case, let a be their
greatest common divisor, d = d/a and €' = e/a. Let f be the map
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defined on V by H(z)¢/Z(x)¥. Consider the a-uple embedding ¢, :
PN < PN, where N/ = (N:a) — 1. Denote by X’ the image of X
under this embedding. Let H' and Z’' be forms of degrees d’ and
¢ in k[Yp,...,Yns] such that fH' = H and (}Z' = Z. Then V =
Vi=X-(HUZ), XNnH=2X'NH,XNZ > X' NZ and
XNHNZ=X'NH' NZ'. Let f': V' — Gy, i be the map defined by
f'(x) = H'(2)¢ /2" (x)¥. Clearly f = f'o Lafy- Since tq)y 2 V — V' is

an isomorphism we deduce
HZ(V & ];‘, ‘CX(f)) = HZ(V/ & ];3, ‘CX(f'))‘

Hence Theorems 2 and 3 still hold in this case for the map f defined
above, after replacing d by d’ and e by €.

4 The smooth case

Here we take e = 1, so Z is now a linear form. Suppose that X |,
X NHand XN HNZ are all smooth. Then Theorem 2 implies

Theorem 10. Under these hypotheses, HL(V @ k, Lyy)) vanishes for
Proof. For i > n, H.(V ® E,_Lx(f)) = 0 by Theorem 2, since ¢’ = § =
—1 here. Fori < n, H.(V ®k, L.(p)) = 0 by Poincaré duality, since V/
is smooth and affine and L, ;) is lisse on V. U

In this case
> dimH’;(V Rk, ﬁx(f)) =
= dimH(V @k, Lyy5) = (—=1)"xe(V @ k, Ly(p)

where x(V @k, Lyp)) = >;(=1)" dimHL(V ®k, L,(5)) is the compact
Euler characteristic. Theorem 10 is proved in [Ka4] under the addi-
tional hypotheses that X N Z is also smooth and either d is prime to
p or x? is trivial, and an exact formula for the Euler characteristic is
given (Theorem 5.1), namely

_ c(X
Xe(V @k, Lyp)) = /X (1+L§(1)+ dL) (1)

where ¢(X) is the total Chern class of X and L is the class of a
hyperplane. But in fact the formula is still valid when p divides d:

11



Lemma 11. The compact Euler characteristic of Ly sy on V & k is
given by (1) for any d.

Proof. Since Ly is lisse of rank 1 on G,, ; and tame at both 0 and
00, by the Grothendieck-Neron-Ogg-Shafarevic formula (cf. [SGA5],
Exposé X, Théoreme 7.1) we have

XC(Gm,Eu ij!@f ® »Cx) = Xc(GmJ’w ij!Qg>
for every 57 > 0. In particular, using the spectral sequences
Hi(GmJ}a ij!@f & ‘CX) = HZC—H(V ® ]2‘, ﬁX(f))

HL(G,, 5 R fiQr) = HY (V @ k,Qp)
we deduce that

Xe(V &k, Ly(p) = xe(VOF) :=> (~1)' dimHUV @ k, Q).
Furthermore, by excision we have
XC(V@%) = XC(X®E)—XC((XQH)®E)—Xc((XﬁL)@E)—i—XC((XﬂHﬂL)@]%)

and we conclude by using the formulas (cf. [SGATII], Exposé XVII)

(X & k) = / o(X)

X
W(Xnmeh = [
Wxnneh = [ (7

2
Xc((XﬁHﬁL)@k:):/)(c(X)(1+LC§(Ll+dL).

In particular we get

Corollary 12. Let C = (—1)" [y ¢(X)/((1 4+ L)(1 4 dL)). Then we
have the estimate

Y x(f@)|<c-q

zeV (k)
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When X is a complete intersection of r = N — n hypersurfaces of
degrees ay, ..., a, we can compute x.(V ® k, L, (5)) explicitly:

/ (X)) _ / ar - arLe(PY) _
x T+ D) +dL) ~ Jpy O+ al)--- (1 +a L)1+ L)1 +dL)

_ al"'arLT(].—l—L)N B
_/PN (1+aL)---(14+aL)(1+dL)

, ceap L"(14+ L)Y
— coeff. of LV b -
coefl. o in (I +al)( +aL)(1+dD)

_ ar---a.(1+ L)N
— coeff. of L” -
o O M T L) (Ut e L)(1 + dL)
= coeff. of L™ in

aj--- ar(z (i:;) Lm)(Z(_al)blLbl) L. (Z(_ar)brLbr)(Z(_d)ch) _

b1 by c

—aea X () e o -

m+bi+-+br+c=n
N
= (=1)"ay---a, Z <m> (_1)ma1i1 "'a?fdc.
m+by+-+br+c=n
For instance, if » = 0 (i.e. X = P}) this is (—=1)"(d — 1)", and

we have the following generalization (to the case where p divides d) of
([Kad], Theorems 2.1 and 2.2):

Theorem 13. Let f € k[x1,...,z,] be a polynomial of degree d, and
fa its degree d homogeneous component. Suppose that

a) The equation f =0 defines a smooth hypersurface in AJ.
b) The equation fg =0 defines a smooth hypersurface in ]P’Z_l.

Then we have the estimate

< (d _ 1)n . qn/2.

> x(f(2)

rekn

In general we will not be able to compute the Euler characteristic
explicitly, but we can always use the bound given by Theorem 9. Thus
we always have
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Corollary 14. Suppose that X, XNH and X NHNZ are all smooth,
and let C = 3(3 + d + sup; a;)V". Then we have the estimate

S (@) < C-q2

zeV (k)
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