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Abstract
This paper looks at the L-function of the k-th symmetric power of the Q,-sheaf Ai; over the affine line
Ahlvq associated to the generalized Airy family of exponential sums. Using ¢-adic techniques, we compute the
degree of this rational function as well as the local factors at infinity. Using p-adic techniques, we study the
g-adic Newton polygon of these L-function.

1 Introduction

In this paper we study the L-function attached to the k-th symmetric power of the Q,-sheaf Ai; associated to
the generalized Airy family of exponential sums. Symmetric powers appear in the proofs of many arithmetic
problems. For instance, Deligne’s proof [6] of the Ramanujan-Petersson conjecture relies on the construction of
a Galois module coming from the k-th symmetric power of a certain ¢-adic sheaf. The Sato-Tate conjecture [5]
[16] [27] relies on the analytic continuation of the L-function attached to the k-th symmetric power of an (-adic
representation coming from an elliptic curve. Another equidistribution result concerning Kloosterman angles was
proven by Adolphson [4] using results of Robba’s [23] on the L-function of the k-th symmetric power of the ¢-adic
Kloosterman sheaf Kly. Symmetric powers also arise in the proof of Dwork’s conjecture [29] [30] [3I]. To begin,
let us recall the general setup of an L-function of an f-adic representation.

Let F, be the finite field of ¢ elements and characteristic p. Let Y be a smooth, geometrically connected, open
variety defined over Fy; for instance, take Y to be affine s-space Aj}q or the torus G;,. Denote its function field
by K, and its corresponding absolute Galois group by G := Gal(K*®?/K). Let V be a finite dimensional vector
space over a finite extension field of Qg, where ¢ # p. Let p : Gx — GL(V) be a continuous ¢-adic representation
unramified on Y, and let F be the corresponding lisse sheaf on Y. Define the L-function of p on Y by

1
L(Y,p,T) := .
Yo, T) Tg/ det(1 — p(Frob, )Tdes(®))

(1)

By the Lefschetz trace formula, this is a rational function whose zeros and poles may be described using étale
cohomology with compact support:
2dim(Y')
LY,p,T)= [] det(1—Frob,T|H(Y @F,,F))"
i=0

)i+1

Given such a representation, we may construct new L-functions via operations such as tensor, symmetric, or
exterior products. Natural questions about these new L-functions concern the determination of their degrees
(Euler characteristic) and describing various properties about their zeros and poles. In this paper, we will focus
on the symmetric powers of a particular family of exponential sums called the generalized Airy family. Other
families whose symmetric powers have been investigated are the Legendre family of elliptic curves [3] [10] and
the hyperKloosterman family [12] [I3] [23]. We note that the former seems to have been motivated by Dwork’s
p-adic interest in the Ramanujan-Petersson conjecture.

The generalized Airy family is defined as follows. Let f be a polynomial over Fy of degree d with p { d. Let
¢ be a nontrivial additive character on F,. For each t € F, define its degree by deg(f) := [F,(f) : F,]. It is
well-known that the associated L-function of the sequence of exponential sums

S (t) == Z YoTrr i/, (f(T) +tx) form=1,2,3,...

wE]qu deg(t)
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is a polynomial of degree d — 1:

L(f’Al’{; T) := exp (Z Sm({)z;:> =1 =m(O)T)-- (L= ma1()T).

As we will describe later, the relative cohomology of this family may be represented f-adically as a lisse sheaf of
rank d — 1 over A! via Fourier transform. Let us denote this sheaf by Ai;. The L-function of the k-th symmetric
power of Aiy takes the form:

My(f,T) := L(A", Sym*(Aif), T) == [] I Q-m@- gty Ties)=t,
te|Al ar+-+aq_1=k

where |Al| denotes the set of closed points on A'. By the Lefschetz trace formula, My (f,T) is a rational function.
The ¢-adic sheaf Ai; was extensively studied by N. Katz in [I8], where its monodromy group is determined and,
as a consequence, an equidistribution result is obtained for the exponential sums in the family ([I8, Corollary
20]). From these results it follows that, for p > 2d — 1, My (f,T) is in fact a polynomial. For d = 3, a study of
the monodromy group may be avoided using Adolphson’s method [4].

Our first main result is the computation of the degree of My (f,T) for p > d. The degree of the rational
function My (f,T) equals the k-th coefficient of a generating series which is explicitly given in Corollary
Simplified formulas are given in section [f for some particularly nice values of f and p.

As an example of this theorem, consider the family generated by f(z) = x¢. Then the degree of Mj,(z?, T) may
be described as follows. Let ¢ be a primitive (d—1)-th root of unity in F,. Denote by N4_1 4 the number of (d—1)-
tuples (ag, a1, ...,aq—2) of nonnegative integers such that ag+a1+---+aq—2 = k and ag+a1(+- - -—l—ad,gﬁd_g =0
in F,.

Theorem 1.1. With the notation defined above, we have

1 k+d-2
vt [ 1457) ]

It was conjectured in [15] that My (23, T) is a polynomial for all p > 3 since it was shown, in that paper, that
My (22, T) is a polynomial for every odd integer k, and also for every k even with k < 2p. Surprisingly, for p = 5,
My (23, T) is not a polynomial for infinitely many k. This was communicated to the first author by N. Katz and
is a consequence of the geometric monodromy group of Ai,s being finite.

Theorem 1.2. Suppose p > 2d — 1. Then My(f,T) is a polynomial which may be factored into a product
Qr(f, T)P:(f,T), where Py(f,T) satisfies the functional equation

Py(f,T) = cT¥ PP (f,1/qFT)  with |c| = giesPR)(kF1)/2

and Qr(f,T) has reciprocal roots of weight < k. Furthermore, writing f(x) = E?:o c;xt, if we assume F,, contains
the 2(d — 1)-th roots of —dcq then an ezplicit description of Qi (f,T) may be given; see Corollary[{.3

Lastly, we wish to describe the p-adic behavior of the reciprocal roots of My (f,T). Motivation for such a study
comes from Wan'’s reciprocity theorem [28] of the Gouvéa-Mazur conjecture [I4] on the slopes of modular forms;
see [3] for the connection between symmetric powers of the Legendre crystal with Hecke polynomials. Now, while
we study in Section [f] the g-adic Newton polygon of the L-function for general f and k, our most precise results

occur in the cubic case f(z) = 2%

Theorem 1.3. Assume p > 7, k is odd, and k < p. Write
M3, T) =14 ;T + -+ ¢ 1.

Then .
ordg(cm) > g(m2+m—|—km) form=0,1,2,...r. (2)

Furthermore, as a consequence of the functional equation, the endpoints of the q-adic Newton polygon of My (x,T)
coincide with the lower bound @ If p =5, then the numerator of My(x3,T) satisfies

We are hopeful that the restrictions k odd and k < p may be removed from the theorem (see [15] for details).
There is also reason to believe that the lower bound may be optimal in the sense that the ¢-adic Newton
polygon will in fact equal this lower bound under certain conditions on p and k. As supporting evidence we note
two facts. First, as mentioned in the above theorem, the endpoints of the g-adic Newton polygon of My (x3,T)



and the lower bound coincide. Secondly, the lower bound has the following symmetric property. Consider the
points P,, € R? defined by the lower bound:

1
P, = (m, g(m2 +m+ km)).

The slope of the line segment joining Py, and Py, 41 is given by sp, := £(2m + 2 + k). If we set m’ := E51 —m,
then we have the symmetry
(k+1) — Sm = S

In other words, for every slope s,, there is a corresponding slope s,,. This is precisely a consequence of the
functional equation for My(x®,T). That is, if a is a reciprocal root of My(x3,T) of slope s, then p**!/a is
another reciprocal root whose slope is (k + 1) — s.

Acknowledgments. We would like to thank Nicholas Katz and Steven Sperber for their very helpful comments.

2 Cohomological interpretation of M (f,T)

In this section we will study the generalized Airy family of exponential sums from the point of view of f-adic
cohomology. We will do so by studying the sheaf Ai; that represents this family on the affine line A! over the
given finite field F,. We begin by observing that the map F, — C given by ¢t — Zmqu Y(f(x) + tx) is the
Fourier transform with respect to v, in the classical sense, of the map ¢t — (f(t)). This will translate, in the
cohomological sense, to the fact that Aiy is the Fourier transform, in the sheaf-theoretical sense, of the Q,-sheaf
that represents the latter map, which is just the pull-back of the Artin-Schreier sheaf associated to v via the map
given by f. Let us be more precise.

The polynomial f naturally defines a morphism, also denoted by f : A]}q — A]%q. Let £y be the Artin-Schreier
sheaf on A}Fq associated to ¢ (cf. [7, 1.7]). For every finite extension Fym of F,, every t € Al(Fym) = Fym and
every geometric point ¢ over ¢, we have Trace(Frob;|L 7) = Y(Traceg, . /v, (t)), where Frob; denotes a geometric
Frobenius element at ¢. Consider the pullback L) := f*Ly.

By [18, Theorem 17], for d > 2 the Fourier transform with respect to ¢ of Ly (which, in principle, is an
element of the derived category D2(A',Q,)) is in fact a (shifted) lisse sheaf on A', of rank d —1 and with d/(d—1)
as its single slope at infinity. Its Swan conductor is therefore d. Let us denote this sheaf by Aiy = Rlﬁtlﬁw( F(x)+tz)s
where 7; : A2 — Al is the projection (z,t) +— t. For every finite extension Fym of Fgy, every t € Fgm and every
geometric point t over t we have, denoting ,,, = ¥ o Tracer, ., /r,:

Trace(Frob;|(Aif)g) Z U (f(x) + tx).

z€F m

The characteristic polynomial of the action of a geometric Frobenius element Frob, at ¢ on the stalk of Aiy at a
geometric point over ¢ has the form

L(Aif,t,T) = (1 — m(t)T) - (1 — mq_1(1)T)

where m;(t) is a Weil algebraic number of weight 1 (i.e. all its complex conjugates have absolute value ¢'/2) and
Y wck,m Ym(f(@) +ta) = =32, mi(t)™ for all m > 1. Its k-th “symmetric power” is given by

Lk Ay t,T) = [ Q=m@®™ - maoa () T).
ar+--+aqg_1=k

These are the local factors of the L-function of the k-th symmetric power of Aiy, which is given by the infinite
product
My(f.T) = [ Lk Aip, ¢, 790)!

te|Al]

The Lefschetz trace formula demonstrates that the zeros and poles of My (f,T) may be described in terms of

cohomology:
2

M. (f,T) = ] det(1 — Frob T|H (Ag, , Sym”Aiy)) =

=0

1)itt



Since Sym*Ai; is a lisse sheaf on the affine line, we have HO(AL ,Sym”®Aif) = 0, and the previous formula
simplifies to
det(1 — Frob T|HL(AL , Sym”*Aiy))

My(f,T) = .
o) det(1 — Frob T[H2(AL , Sym* Aiy))

On the other hand, H? (A% ,SymkAif) is just the space of co-invariants of the sheaf Sym®Ai ¢, regarded as
q
a representation of the fundamental group ﬂl(A% ), which is the k-th symmetric power of Ai; regarded as a
q

representation of the same group. This is the same as the space of co-invariants for its monodromy group,
which is defined to be the Zariski closure of its image in the group of automorphisms of the generic stalk of
Aiy, isomorphic to GL(d — 1) := GL(d — 1,Q,). By [I8, Theorem 19], for p > 2d — 1 the geometric monodromy
group of Aiy is either SL(d — 1) for d even, or Sp(d — 1) for d odd if ¢4—1 = 0 and p, - SL(d — 1) for d even or
tp - Sp(d — 1) for d odd if cq—1 # 0 (where f(x) = Zg:() c;z'). In either case, its k-th symmetric power is still an
irreducible representation of rank (d"gfj) of the monodromy group (because it is an irreducible representation
of its subgroup SL(d — 1) or Sp(d — 1)), and in particular the space of co-invariants vanishes. More generally, it
was proven by O. Such (|26, Proposition 1.6]) that, for p > 2, either Aif has finite monodromy or its monodromy
group contains SL(d — 1) or Sp(d — 1). In order to rule out the finite monodromy case for p < 2d — 1 one may
use for instance [20, Proposition 8.14.3], which implies that Ai; has finite monodromy if and only if for every
element ¢ € F, the Newton polygon of the L-function associated to the exponential sum ¢ (f(z) + tz) has a
single slope.
Consequently, we have the following:

Theorem 2.1. If Aiy does not have finite monodromy (e.g. if p > 2d —1), the L-function of the k-th symmetric
power of Aiy is a polynomial:

My (f,T) = det(1 — Frob T/H.(AL ,Sym"Ai,))

While it is tempting to believe that My (f,T) is always a polynomial, this is not true, as mentioned in the
introduction. In fact, the monodromy group can be finite in certain cases; for instance when p = 5 and f(z) = 23,

as proven in [2I]. In such cases, HZ(A% ,Sym”Ai;) will be non-trivial for infinitely many values of k, and
q
consequently My (f,T) will have a denominator.

Remark 2.2. Arithmetic difficulties often arise when the characteristic p is small compared to d, as demonstrated
above by the link between the finiteness of the monodromy group when p < 2d — 1 and the Newton polygons of
the fibres of the family. By the functional equation, if we denote by NPy (t) the slope of the first line segment
of the Newton polygon of the fibre ¢ then NP4 (¢) < 1/2 with equality if and only if the Newton polygon is a
single line segment. If p = 1 modulo d, and in particular when p = d + 1, then by [25] Theorem 3.11] the Newton
polygon of every fibre equals the g-adic Newton polygon of the polynomial H‘j:_ll (1—¢"T). Thus, NPy (t) = 1/d
and so the monodromy group is infinite when p =d+ 1 > 3.

Let [f(z)],~ denote the coefficient of z%V in f(z). Suppose g +1<p<2d—1and f has coeflicients over Fy,.
By [24, Theorem 2], if [(f(z) + tl’)’rpT_l-l]wp—l # 0 modulo p for some 0 < ¢ < p—1, then NP (¢) < [%] /(p—1)
for those ¢. By the assumption on d and p, notice that [%W /(p—1) equals either 1/(p—1) or 2/(p—1). Hence,
the mondromy group is infinite when such a ¢ exists and p > 7. Their argument may be extended as follows.

Let d > p — 1. For a polynomial h(x), define (h(z))s := h(z)(h(z) —1)---(h(x) — s + 1). Define the linear
operator U : Fp[z] — F, by linearly extending the map which sends monomials = to 0 if (p — 1) { n and 1
otherwise. Let ¢; := U((f(z) + tx)s) € F,. Suppose ¢; = -+ = ¢;—1 = 0 modulo p and ¢; # 0 mod p for some
t, then NP (t) < p—fl. Hence, if this happens for some k < (p — 1)/2 then the mondromy group is infinite. For
example, for d > p — 1 and f(x) = ¢ + 2P~! then ¢; = 1 and hence the monodromy group is infinite for p > 5.

Lastly, we mention the case when d = 4, p = 7 and f € Fy[z] is not of the form (z + a)* + bx + c¢. Then by
[17, Theorem 4.6] the monodromy of Aiy is infinite.

3 Computation of the degree of the L-function
We will now study the degree of My (f,T) when p > d. From the formula above we have

deg(My(f,T)) = dim(H}(Ag , Sym*Aiy)) — dim(HZ (A ,Sym"Aif)) = —xc(Ag , Sym"Aiy),



where x. denotes the Euler characteristic with compact supports. Using the Grothendieck-Néron-Ogg-Shafarevic
formula, we have then

deg(My,(f,T)) = Swan, (Sym*Aif) — rank(Sym*Aiy)
k+d— 2>

= Swan,, (Sym*Aif) — ( d—9 (3)

In order to compute the Swan conductor of SymkAi + we have to study the sheaf Ai; as a representation of the
inertia group I, of A%q at infinity. Since Ly ) is lisse on A, as a representation of the decomposition group at
infinity we have Aiy 2 Fog oo (L)), Where Foo oo is the local Fourier transform as defined in [22].

Recently, Fu [I1] and, independently, Abbes and Saito [I] have given an explicit description of the different
local Fourier transforms for a wide class of f-adic sheaves. We will mainly be using the description given in
[1], which works over an arbitrary (not necessarily algebraically closed) perfect base field, and therefore gives an
explicit formula for Aiy as a representation of the decomposition group D.

If S(~) is the henselization of the local ring of P]%‘q at infinity with uniformizer 1/, the triple (Ly (), t, —f'(t))
is a Legendre triple in the sense of [I, Definition 2.16]. Therefore by [I, Theorem 3.9] we conclude that, as a
representation of D, Aiy is isomorphic to

(=L © Los—tp ) @ Lot ey © Q) = (I s (Larty-tr ) ® Lot (1) © Q)

where p is the unique character Iooc — @Z of order 2, £, the corresponding Kummer sheaf and @ is the pull-back
of the character Gal(F,/F,) — Q, mapping the geometric Frobenius to the quadratic Gauss sum g(,p) =
Yy V(D).

Write f(t) = E?:o c;t'. For simplicity, from now on we will assume that F, contains the 2(d — 1)-th roots of
—dcg (which can always be achieved by a finite extension of the base field). Following [11, Proposition 3.1] we
can find an invertible power series Y5, 7it ™" € F,[[t71]] with r§ ' = —decg such that u(t) ==t 3,5 mit ™" is a
solution to f/(t) + u(t)¥~! = 0 (the other solutions being (u(t) for every (d — 1)-th root of unity ¢). The map
¢ : 1/t — 1/u(t) defines an automorphism S(o) — S(o0), and by construction —f" = [d — 1] o ¢, where [d — 1] is
the (d — 1)-th power map. So Aiy is isomorphic to

[d = 1xdu(Loprty—tp (1)) © Lpaprayy ©® Q) = [d — (@™ (Loriry—tp7) © Loy ® Q)

= [d = (Lo +oma—) © Lo priwe)) © )

= [d = (Ly(ren+omr—) @ Lot prwiey) © Q

since [d — 1]*Q = Q, where v(t) := ¢~ 1(t) = tis0 st~

Let g(t) be the polynomial of degree d obtained from f(v(t)) + v(t)t?~! by removing the terms with neg-
ative powers of ¢t. It is important to notice that the coefficients of ¢ are polynomials in the coefficients of f.
More precisely, if we write g(t) = Zbiti, the coefficient b; is a polynomial in the coeficients a;, a;y1,...,aq
of f. Since Lyn) is trivial as a representation of Dy for any h(t) € t~'Fy[[t~!]], we have an isomorphism
Ly(ro(e))+otyei-1y) = Ly(g(t)) as representations of Do.

On the other hand, from f/(v(t)) + t¥~! = 0 we get f”(v(t))v'(t) + (d — 1)t4=2 = 0, so Lox o)) =
Ly~ a1y a2y - Since v/(t) = 35;54(1 —i)sit ™" = so(14+ 2,50 (1—4) S0t ) and 1+37,5,(1 — )55t~ is a square
in F,[[t7']], we have Ep(i%v/(t)td72) = Ep(i%s()td—z) = Ep( Ud=1) . (sot)d-2) (since si~1 = —1/dcq). So we finally
get

Ay 2 [d — 1 (Lygr) ® Lopi(sot)) © Lp(d(d—1)cq/2) © Q- (4)

We can now easily compute the Swan conductor at infinity of its symmetric powers. By [19, 1.13.1],
kA 1 * kA 1 k * Al
Swane,Sym”“Aiy = ﬁSwanOO [d —1]*Sym™Aiy = ﬁSWanmSym [d — 1]*Aiy

Lemma 3.1. Let ¢ be a primitive (d — 1)-th root of unity if Fy, 191 the unique closed subgroup of I of index

o]
d— 1. As a representation of 191, the restriction [d — 1]*Aiy of Aiy is isomorphic to the direct sum

d—2 d—2
D Loty ® Loasociny = P Lusaiciny © Loacr
=0 i=0



Proof. Since (C')*Lyg) = Lyg(city)s () Lpagsery = Lpa(sociry and [d — 1] o ¢ = [d — 1] for every i, we have
[d* 1}*(£w(g(<it)) ®£pd(30<it)) = [d - 1]*(£w(g(t)) & ‘de(sot)) and therefore by Frobenius reciprocity Homlgo—l ([d*
1]*Aif,£¢,(g(git)) ® Lpd(SOCit)) = HOmIOO(Aif, [d - 1]*(‘6%[1 (3] ® E SOC’t))) = Homy (Aif,Aif) >~ Q, since
the latter is an irreducible representation of In. So for every i, Lyy(cit)) ® Lpa(socit) 18 @ subrepresentation of
[d — 1]*Aiy.

Now Ly g(cit)) @ Lpa(socity and Ly gcity) @ Lpa(socity are isomorphic if and only if Ly g(cie)) and Ly g(cir)) are,
if and only if g(¢*t) — g(¢t) = h? — h for some h € F,[t]. Since p > d, this can only happen if g(¢'t) = g({7t).
Comparing the highest degree coefficients we conclude that ¢* and ¢ must be equal. Therefore the direct sum of
the Ly g(cit)) ® Lpa(socipy for i =0,...,d — 2 injects into [d — 1]*Ai; and we conclude that it must be isomorphic
to it, since they have the same rank. O

Consequently, we have an isomorphism of Q,[/]-modules
k * AT Ao
Sym®[d — 1]"Aiy = S Lyizz ancinn @ Loy
aot+ai+---+ag—2=k
For every finite subset I C Z and every integer k > 0 define
Sa—1(k,I) := {(CLO7 ey Qg_2) € Z%Bl‘ao +a1+--+ag_2=k,ap+ U,1<i + -+ ad_QCi(d72) =0 for every i € I}

It is clear from the definition that Sy—1(k,I) = Sq—1(k,I') if ¢(I) = ¢(I'), where ¢ : Z — Z/(d — 1)Z is
reduction modulo d — 1. Also, S;—1(k,I) = 0 if p does not divide k and I N (d—1)Z # (). The number of elements
in Sg_1(k,I) can be conveniently expressed in terms of a generating function:

Lemma 3.2. Let Fy_1(I;T) =Y 3o #Sa—1(k,I)T*. Then
P - 5 Y Tla-w e
"/E(FQ)IJ =0 i€l
where ¥ is any non-trivial additive character of Fy.

Proof. From the definition,

Fdfl(.[; T) _ Z H (5(@0 + alci 4+ ad72<i(d—2))Tao+a1+-~+ad72
(aﬂ,...,adfz)EZ‘éiol el

where §(a) = 1 if a = 0, 0 otherwise. Equivalently, 6(a) = 1 Z%Fq ¥(vya). So we get

Fya(I;T) = Z H Z U(vi(ao + a1< Lt ad_zci(d72)))Tao+a1+~~+ad—2

(ag,...,aq—_2)€ Zd 14el me]F

B 2 Z <H¢ Tido ) . (H WWMCi)) - (H ¢(%ad_gé(d2)i)> T2

(ao,‘..,ad,_2)€Z'§)1 ,Ye(]Fq)I el el el

— q% Z Z w(z %‘)%Taol/J(Z %Ci)alTal .. ¢(Z %C(d—2)i)adszad72

vE(Fg)! (ao,...,ad,g)ezgl i€l i€l iel
1 a a \a a —2)i\a a
=7 2 | 2 v | X Qw0 D (Y e e
q ’YE(]F )I a0€Z>0 i€l QIGZZO el ad_QEZZO el

LY oS

'yE(]F )1 j=0 iel
O

Write g(t) = E;l:o bjt’, and let J = {1 < j < d|b; # 0} and J>; := JN{j,j+1,...,d} for every j €
{1,...,d,d + 1}. We have

Swan,,Sym*[d — 1]*Ai; = Z Swanee L, s~a- -2 9(cit) @ L par (¢)
aotai+--+aq—2=k

d—2
= > deg(D " aig(¢'t))

aptar+-+aqg_2=k =0



and

d—2 ‘ d—2 d o d d—2 3
D aig(Ct) =D ai Y b = (b Y ()
=0 i=0  j=0 j=0  i=0

so its degree is the greatest j such that b; Z;j:_g (% #£ 0. Therefore we get

(d — 1)Swan,,Sym*Ai; = Swan, Sym*[d — 1]*Ai;
=D - #Saa(k, Tzj41) — #Sa-1(k, J>5))

jeJ

:d(k+d 2) ST h() - #8u-1(k, )

jed

where h(j) := j —sup(J — Js;) is the “gap” between the ¢/ term and the next lower degree term in g(¢). Taking
the corresponding generating function we get the formula

Corollary 3.3. Let G(f;T) := Y50, (Swano,SymFAif)T*, then

d
G(f§T)=(d71)(17Td,1 7lzh “Fa1(J>5T)

Using the previous formula for the degree, we deduce

Corollary 3.4. The degree of My(f;T) is the k-th coefficient of the power series expansion of

1
- Fy_
e =9 SRR

Corollary 3.5. For every J C {1,...,d — 1}, let Py(J) be the subspace of the affine space Py of polynomials of
degree d over k such that b; = 0 if and only if j € J. The sets {Pqa(J)|J C {1,...,d —1}} define a stratification
of Py such that the degree of My (f;T) is constant in each stratum.

4 The trivial factor

Suppose p > d and the monodromy of Ai; is not finite. We will now study the weights of the (reciprocal) roots
of the polynomial My (f,T). Let us first consider the easier case where d is even, and therefore Aiy is isomorphic
0 [d— 1, Lygt)) ® Lpd(a—1)eq/2) @ Q as a representation of Do Let DI = Gal(Fy((1/t))/Fq((1/t/(@=1))),
denote by a : DI — @Z the character corresponding to the sheaf L, and let b € I be a generator of
the cyclic group Do, /D% ! = I /191, By the explicit description of induced representations, there is a basis
{vo, - ..,v4_2} of the underlying vector space V such that a - vy = a(a)vg for every a € I&! and b-v; = v;1; for
i=0,...,d—3. Then b-vg_o = b%1 . vy = a(b?1)vy. Replacing b by a~1b, where a € I! is an element such
that a(a)?! = a(b?!) (which is always possible since the values of « are the p-th roots of unity and d — 1 is
prime to p since p > d) we may assume without loss of generality that a(b?~!) = 1.

Furthermore, for any a € 14 we have a - v; = (ab?) - vg = (b'b~tab’) - vy = b' - a(b~*ab’)vy = a(b~"ab’)v;. So
the restriction of Aiy to D41 is the direct sum of the characters a — «;(a) := a(b~ab’). But we already know
that it is the direct sum of the characters associated to the sheaves Ly (4(cit)) @ Ly(d(d—1)cqs/2) @ Q, so these two
sets of characters are identical. Replacing b by a suitable power of itself we may assume that «; is the character
associated to Lygcit)) © Lpd(d—1)cq/2) @ Q- In particular, Hl 02a is geometricaly trivial (that is, trivial on
I¢-1) if and only if Zalg(c ) is a constant in F,[t], that is, if and only if " a;(% = 0 for every j € J.

We turn now to the case d odd. Let x be a multiplicative character of F, of order 2(d — 1) (which exists,
since we are assuming that F, contains the 2(d — 1)-th roots of unity). Then by the projection formula Aiy is
isomorphic to [d — 1], (Lotoon ® Lotson) © £ pldd-1)ca/2) @ © = ([d = UiLy(ge)) ® L(sot) @ Lopa(a-1yca/2) ® -
Let a; : D& — Qg (respectively 5 : Dy — Qg) be the character corresponding to the sheaf Ly (yci¢)) (resp.
Ly (sot))- Proceeding as in the d even case, we find a generator b € I, of Doy /D! and a basis {vo, ..., va—2} of
V such that a - v; = a;(a)B(a)v; for a € DL and b - v; = B(b)viyy for i =0,...,d — 3, b-v4_o = B(b)vg. In this
case, H?:_OQ afiB% is trivial on 141 if and only if Y a;9(¢'t) is a constant in F[t] and Y a; is even (since o; has
order p and 3 restricted to 14! has order 2).



We can now compute the dimension of the invariant subspace of the action of I, on SymkAi £, in very much
the same way it is done for the Kloosterman sheaf in [I2, Lemma 2.1]. Tts underlying vector space is Sym*V. An
element w is given by a linear combination

— aop ad—2
w = § Cap--aq—2Vy """ Vg_o -
ao+tag—2=k

In the d even case we have

ao ad—2 aop ad—2 ap ad—2
a- E Cag-ag—2V0 """ Vg9 = E Cag-r-aa—z (00 g5 ) (@)ug® -+ vty
a0+ +ag_o=k ap+-+aqg—2=k

for a € 14! and

ap ag—2 ap ,,a1 ad— 2
b- E Cag-ag—2Vo """ Vq_o = E Cag---aq—2V1 V2" """ Yp
ao+-+ag_2=k ao+-taqg_2=k

So w is fixed by I if and only if the character af®---aj*,’ is trivial whenever cqy...a, , # 0 and cog.iay , =
Cay_sag--aq_s for all ag,...,aq_2. A basis for the invariant subspace is thus given by all distinct sums of the form
(setting vg—14; := vy for all { > 0):

ag . ad 2
Z“ Uit Vi e

for all ag, ..., aq_2 such that af° - --aj*,? is trivial, that is, such that Y a;¢¥ = 0 in F, for every j € J.
In the d odd case we get
k
g- Z CCLO"'adfzng v;d 22 = Z Cao-~~ad72(0480 O‘Zd 22)(9)5 (9)”80 ! Ugd 22
ao+-taqg_2=k ao+-+ag_2=k

for g € 19! and

ap | ad—2 __ k. ag, a1 aq— 2
h- E Cag-aa—2Vp " Vg_o = E Cag-aq_aB(h) V103 -+ - g
ap+-taqg_o=k ap+---t+aqg—2=k

So w is fixed by I if and only if the character ag°--- agd 22 Fof 141 is trivial whenever c,,...0, , # 0 and

Cap-ay_s = Cay_nag-ay_sB3(R)F for all ag, ..., aq_s. Since all a;’s have order p and the restriction of 3 to 12! has
order 2, ag® - - - a7 3% is trivial if and only if both af° - - - a5*? and ¥ are trivial as characters of 13!, that is,
if and only if > a;¢¥ = 0 in F, for every j € J and k is even. In particular, there are no non-zero invariants for

I if k is odd. If k is even, a generating set for the invariant subspace is given by all distinct sums of the form

d—2

k,ao,a ad 2
Zﬂ(h)J ’U]Ov‘]il _]-‘rd 2
=0

for all ag,...,aq_2 such that > a;¢¥ = 0 in F, for every j € J. Let r be the size of the orbit of (ao,...,aq—2)
under the action of Z/(d — 1)Z by cyclic permutations. If r # d — 1, we can write

d—2
a a r a—1 r aq—_
Y BhyFvougs, o, = Zﬁ RYF(L+ B(R)™* + -+ B(R) (T ) ity v
j=0 j=0
Notice that k must be a multiple of %, since k = Zf 02 i 1 a;. dTTk1 is odd we have
a-1_ 1-— ﬂ(h)(d*”’“
1 h’l“k e h(drl 1)Tk:—20
BN+ e+ B(R) g =0
so the above sum vanishes. On the other hand, if T—kl is even it is clear that the element
d—2 d—1 r—1 4
5(]1)]%;10”#1 ) 'U;i:li2 =, Z ﬁ(h)]kv?%?il o 'U;i;iQ
Jj=0 j=0

is non-zero, and to different orbits correspond different elements. To summarize, we have



Proposition 4.1. Let Ty_1(k,J) be the set of orbits of the action of Z/(d — 1)Z on the set Sq_1(k,J) by cyclic
permutations, and let Ug—_1(k, J) be the subset of orbits such that dr_kl is even, where r is their cardinality. If d is

even, the invariant subspace of the representation SymkAif of Io has dimension #T4_1(k,J). If d is odd and k
is even, it has dimension #Uq_1(k,J). If d and k are odd, the representation has no non-zero invariants.

The sequences #T4—1(k,J) and #Uy_1(k,J) can also be described by means of generating functions. By
Burnside’s lemma, the dimension of the invariant subspace for d even is given by

1 d—1 kr
H#Ty_1(k,J) Z#{ ag, a1, - ., 0d—2)|0i = G\ mod g-1} = d—1 Z ¢(T)#Sr(d7 1"])
rld—1

where S,.(k,J) = (0 if k is not an integer and ¢ is Euler’s totient function. So the generating function for the
sequence {#Ty_1(k, J)|k > 0} is

oo

Ga1(J;T) : = Z#Tdfl(k»J)Tk
k=0
—Zd T’“T%jlqs LS ()
=1 2 e Z #S (-, )T
r|d 1
7 S D s
r|ld—1
=P ¢<%>FT<J;TT>
rld—1

Next, suppose that d is odd, and let (aq,...,a4-2) € Sq—1(k,J). Let r be the number of elements in its orbit.
Then Zl 0 Ui = d . We want to count the number of orbits such that this value is even. Since k = _7'1 djl,
must always be
even. Suppose that the largest power of 2 that divides k, 2¢(F), o (k)
divides “=1, if and only if r divides 2‘{1%,}) Therefore #Uy_1(k, J) = #T4_1(k,J) if 22%) does not divide d — 1
and #T43_1(k,J) — #T a1 (QQI?M ,J) if it does. The generating function is then

kr
v d—1

if the largest power of 2 that divides d — 1 is smaller than the largest power of 2 dividing &

Z#Ud (ke T Z#Td 1(k, J)T® >y #T%(Z,J)Tz”

k=0 j>1;27|d—11 odd
=Gaa(iT) = > Haa(J;T%)

§>1;29|d—1

where

H(J;T) = 2(Go(1;T) ~ G,(J; ~T)).

_ . . d—2 _
Let F € D&Y C Do, be a geometric Frobenius element, and w = > im0 Vv jj’r Py (resp w =
d—2 ik ag. .a — k ap,,a ad 2
h)? 04t . _ 0,,01 .
ijo B(h) vV - J+d ’ ) a generator of the I -invariant subspace of Sym®V. F acts on vj°vji; - v;15%

via the character corresponding to Loy 4,q(ci+i¢)) ®£p(d(d71)6d/2) ®Q®* (resp. Ly(5 aig(citit)) ®£p(l_[(80§-7+1t)“1) ®
Eﬁ’;(d_l)%m) ® Q%¥F). Since Y a;g(¢?Tt) must be a constant polynomial, we have Ly (s a.g(ci+it)) = Ly (kbo)-
Additionally, if d is odd and k even, L, (syt)ei) = Lp(sot)x 18 trivial. We conclude:

Proposition 4.2. A Frobenius geometric element at infinity acts on the I -invariant subspace of SymkAif by
multiplication by v (kbo)p(d(d — 1)cq/2)* g, p)¥.

As an immediate consequence we get

Corollary 4.3. The local L-function of SymkAif at infinity det(1 — Frob T|(SymkAif)I°°) is given by (1 —
(kbo)pld(d — 1)ea/2)Fg(, pFTYFTa15D) i d is even, (1— h(kbo)pld(d — 1)ca/2)g(sh, )T Va1 ®D) i d is
odd and k is even, and 1 if d and k are odd.



Theorem 4.4. The polynomial My (f,T) decomposes as a product Py(f, T)Qr(f,T), where Qr(f,T) is given by
the formula in C’omllary and Py (d,T) satisfies a functional equation

P(T) = ¢I" P(1/¢*1T)
where |c| = ¢"**tV/2 and r is its degree.
Proof. Let j : A — P! be the inclusion. From the exact sequence
0 — Sym"Ai; — j,Sym”"Ai; — (5,Sym"Aif)s — 0
we get an exact sequence of Gal(F,/F,)-modules
0— (j*symkAif)I” — HL (A, SymkAif) — Hl(Pl,j*SymkAif) —
and therefore a decomposition

My (f,T) = det(1 — Frob T|HL (A, Sym*Aiy))
= det(1 — Frob T (j,Sym*Ais)’=) det(1 — Frob T|H' (P!, j,Sym" Ai;)).
The first factor is described by the previous corollary. On the other hand, by [8, Théoréme 1.3] we have a perfect

pairing — _
H'(P', j,Sym"*Aiy) x H'(P', j,Sym"*Ais) — Qu(—k — 1)

where @ is the dual of Aiy, which is constructed in the same way as Aiy using the complex conjugate character

1 instead of ¢. If the eigenvalues of the action of Frobenius on Hl(Pl,j*SymkAif) are ag,- - ,Q,, so that
Po(f,T) =T](1—;T), it follows that Py, (f,T) = [[(1— (¢**!/a;)T) and therefore the functional equation holds.
Applying the functional equation twice we get |c| = ¢"(*+1)/2, O

5 Some special cases

We will now see how the previous results apply to some special values of f. First, consider the case f(t) = t.
In this case the equation f'(t) 4+ u(t)*' = 0 gives u(t) = rot, where "' = —d. Then v(t) = t/r, and
g(t) = flu(®) + vt =td(1/rd + 1/r0) = C;;OI t4. By corollary we get that the degree of My(f;T) is the
k-th coefficient in the power series expansion of

1 (=g — Rty

where
Fy ({11:7) = ZH1— ()T
vqu] 0

Explicitly,
1 k+d—2
deg My (f,T) = 1 (< d—9 ) _d'#Sdl(k7{1})> .
In particular, for d =3

(1K) = ¢ 32 (1= T) ™ (1= w(=)T) ™ = = 37 (1= ex(
m=0

v€F,

2 —2mi
mm)T)_l(l _ exp( TIm

)T)~"

f

It is easily checked that So(k,{1}) := {(a,b)|a+b=k,a =b( mod p)} has L%J + 4 elements, where 6 = 0 (resp.
d=1)if k — L%J is odd (resp. even). So in this case we get an explicit formula for the degree:

deg My (f(t) =t*1T) = % <k+ 1-3 (E}J +5))

If p > k this gives (k + 1)/2 for k odd and (k — 2)/2 for k even.

Corollarystates for f(t) = t¢ that the local L-function of Sym* Ai; at infinity is (1—p(d(d—1)/2)*g (1), p)*T)#Ta-107)
if d is even, (1 — p(d(d —1)/2)*g(s), p)*T)#Va-1(k:J) if d is 0odd and k is even and 1 if d and k are odd. For d = 3,
we can again provide a more explicit expression.
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Since 3 is odd, the local L-function is 1 for k odd. For k even, we can write #S2(k, {1}) = L%J +6= ZL%J +1.
Every orbit of Z/2Z acting on Sa(k,{1}) has two elements except for {(k/2,k/2)}, so #Tz(k,{1}) = L%J + 1

Us(k,{1}) contains the orbits such that rk is a multiple of 4. If ¥ = 0(mod 4) this includes all orbits. If

k = 2(mod 4) the orbit {(£, %)} must be excluded. So the trivial factor for k even is

(1 g, p)*T)%) for k = 2(mod 4)
(=g, p) 'T)L%J+1 for k = 0(mod 4)
In particular, for p > & the trivial factor of M;,(t3,T) is 1 if k = 2(mod 4) and (1 — g(¢, p)*T) if k = 0(mod 4).

We will now consider the case where g(t) = Y b;t" has b; # 0 for i = 1,...,d — 2. This includes the generic
case where all coefficients of g(t) are non-zero as a special case. Suppose first that by_1 = 0 (or, equivalently,
that cg—1 = 0). Sq—1(k,J) is the set of all (ag,...,a4-2) € Zigl such that > a; = k and > a;¢7% = 0 for all
j=1,...,d—2. The system of equations {3, (¥z; = 0[j = 1,...,d—2} has rank d — 2 (since the (d—2) x (d—2)
minors are Vandermonde determinants) and has (1,1,...,1) as a solution, so all solutions must be of the form
(a,a,...,a) modulo p for some a. Therefore

Faa(J;T) : Z#Sdlkj)
k=0

p—1 oo
_ Z Z (a+sop)+-+(atsa—2p)

a=0s0,...,84—2=0
p—1 00
= Z T(d=1a Z TP(s0++sd-2)
a=0 805--+8d—2=0
1 —7Td=Dp
- (1 —Tr)d-1(1 —Td-1)

Suppose now that by_ # 0 (or, equivalently, that ¢4, # 0). Making the change of variable f(t) = f(t — <=1)

deg
=R! 7Ttr£ = Alf ®

we eliminate the degree d — 1 term. Moreover, Ai ;= Rlﬂt!ﬁw(ﬂ
[,w(c%dlt) and thus Sym*Ai; = (SymkAi ) ® L k Lty

(L) D Lpa(s01)) @ Lp(a(a—1) 1cd/2>®9®5w<7°57;) [A=1](L 5 0) - 2=t a-1) O Lp(500)) @ Lp(a(a-1)ca/2) ® Q-

In other words, g(t) = §(¢t) — cgcdl ¢t

If p divides k, the condition Y, a;¢¥ for j = d — 1 is void, so both the dimension of M (f;T) and the trivial
factor at infinity behave as in the bg_1 = 0 case. If p does not divide k, the condition Y, a;¢* does never hold for
j=d—1,50 Sq_1(k,J>;) =0 for j =1,...,d—1. In particular, the trivial factor of My (f;T) is 1. Furthermore,
applying the formula for the degree, we get

dog My(f,T) = — <<k;f; 2) - #Sdl(k,{l})> .

S=lytta) G(f (@) +t(@+4=L))

. As a representation of D, we have then Aiy = [d —

As a final example, suppose that d — 1 is prime and p is a multiplicative generator of Fy_1. In this case,
all non-trivial (d — 1)-th roots of unity are conjugate over F,, so ag + a1{ + -+ + ag—2¢%? = 0 if and only if
ap+a1¢? + -+ ag_oC%27 =0 forany j =1,2,...,d— 2. Therefore Sy_1(k,{1}) = Sq_1(k, J) for every J C Z
such that J N (d —1)Z = (). As in the previous example, we conclude that, if c4_1 = 0,

1 — 7d=1p
(1 _ Tp)d—l(l _ Td—l)

for every j € J. By corollary the degree of My (f;T) is the k-th coefficient of the power series expansion of

Fi1(J>5T) =

1 1 1 —Tld=bp Zh 1 _d 1 — Tld=1)p
(d—1)(1-T)-1 d—1 (1—Tr)d-1(1—Td1) —1D)(1-T)1 d—1 (1-Tr)d-1(1—Td-1)

If ¢4_1 # 0 we have, as in the previous example, the same formula for the degree if k is a multiple of p, and
the k-th coefficient in the power series expansion of
1 1 1 —Tld=bp
(d—1)(1—-T)1 d—1 (1—1Tr)d-1(1—TdT)

if £ is prime to p.
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6 The p-adic point-of-view
In the previous section, we considered the rational function

det(1 — Frob T|H!(AL , Sym”Aiy))
det(1 — Frob T|H2(AL , Sym" Aiy))

Mk(f7 T) =

from the ¢-adic point-of-view. In this section, we use techniques in Dwork theory to describe and analyze My (f,T)
p-adically. The motivation for this approach is to provide estimates for the p-adic absolute values of the zeros
and poles of My (f,T).

6.1 p-adic interpretation of My (f,T)

Let F, be the finite field with ¢ = p® elements. Abusing notation, we will write f(¢, z) for the polynomial f(x)+tz.
Dwork’s theory provides a way to represent the function My (f,T) p-adic homologically. This is accomplished

by defining “Frobenius” operators, both denoted by /3, which act on certain homology spaces H, j, and Hy g, so

that _

det(1 — (T | Hy 1)

det(1 —gBT | Hox)

Mk(fa T) =

In this form, estimates for the p-adic absolute values of the zeros and poles of My (f,T) may be derived from an
analysis of 3 on the homology spaces Hy , and H; ;. This analysis is carried out in section For now, let us
demonstrate how Dwork’s theory may be used to derive the above homological description of My (f,T).

p-adic Spaces. We begin by fixing some notation. Let C, be the completion of an algebraic closure of Q,. The
valuation on Q, is normalized such that ord,(p) = 1. Let Qg denote the unramified extension of Q, of degree

a. Let m € C,, be a root of the Artin-Hasse series Y o ; i p(m) = z% Notice that Q,(7) is a totally
ramified extension of Q, of degree p— 1. Let Q4(7) denote the compositum in C, of the fields Q, and Q, (), and
denote its ring of integers by Z,[r]. Note that the residue class field of Z4[n] is Fy. Let 7 € Gal(Qq(m)/Qp (7))
be a lifting of the Frobenius map = — z? in Gal(F,/F,) such that 7(7) = 7.

Dwork’s “splitting function” provides a bridge between the finite field F, and the p-adic field C,, by describing

exponential sums over finite fields p-adic analytically. Let E(t) := exp (Z;ﬁo t;:). Define m; := Zé—o TZ-l

note that ord,(m) > % — 1 — 1. Dwork’s infinite splitting function is defined as 6(t) := E(rt) = > .o, Nit".

Observe that each coefficient satisfies ord,(X\;) > pil.

Next, we need to describe the function spaces that our “Frobenius” operators will act upon. In order to
obtain the best possible estimates for the zeros and poles of the L-function, the functions in these spaces will
have specific growth conditions that fit our particular polynomial f(¢,z). These are described as follows. Let b

and b be two positive real numbers. Define functions wg, w1 : Z>¢ — éZ by

woln) =" and wy(n) = (T) n.

With p € R, define the p-adic spaces

L(b; p) {ZB t" | By, € Zg[r], ord,(By) > bwi(n) + p for all n > O}
n=0

L) = | L(b:p)

pER

K@, b;p) = {Z Bpx™ | By, € L(b'; bwo(m) + p) for all m > 0}

m=0

K@',b) == | KW, b;p)
pER
K@, b)* = zK(b',b).

Notice that the space K(¥,b) is indeed suited for our polynomial as follows. Let f(t,z) € Zg[t,x] denote the
Teichmiiller lifting of f(¢, ) € F,[t,z]. Then f € K(-£, £-; —-2).

pl’pl’ p—1
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Relative homology. In order to define relative homology we need to define a twisted differential operator on
(', b). The twisting is necessary since it allows the differential operator to commute with the Frobenius operator

o, as seen below. Writing f (¢, z) = 24 + Zn Odnac + tx, define

d—1
F(t,z) = 0(z?)6(tx) H O(anx™) € Zy[7][[t, x]]
n=0
Fu(t,x) = 1:[ FT (" a?") € Z[x][[t, ]).
1=0

Observe that

F(t,x) e K('/p,b/p;0)  and  Fu(t,z) € K(V'/q,b/q;0)
for all real numbers b’ < b < p/(p — 1). Next, we define a function G(t,x) such that
G(t,x)

F(t,z) = Gr(tram)’

Using this equation recursively, we see that G(t, ) must be defined by

Gt,x) == [[F (" ,a"") € Z,[x]llt, 2]).
j=0

Set f, == mawf( x). Define a (twisted) differential operator on K(b',b) by

1
D(t): = — o G(t
=G0 *vas 2600
= xé + H(t,x) (5)
- 0z ’
where -
=S w727,
3=0
Note, H acts by multiplication and H € IC(p T p”l, —1), thus D(t) is an endomorphism of /(b’,b). Using this

operator, we may define the relative homology spaces
Ho = ker(D(t) | K(b',b)) and  Hq:= K, 0)°*/DE)KW,b).

In the introduction of this paper, the space ‘H; was denoted by Aiy. Now, the above notation can be a bit
ambiguous at times. That is, there are times when we will need to keep track of both ¢ and the constants ' and b
in the homology spaces H; and Hy. Thus, We will often denote Hi by Hi,(b',b). In general, Hj ¢n (b1, b2) means
K(b1,b2)*/D(t™)K(br, bo) where D(t") := x2 + H(t", z).

Symmetric powers of relative homology. (cf. Robba [23]) The eigenvalues of the Frobenius operators
which act on the relative homology spaces H; and Hj consist of power series in the variable ¢ that, when specialized
to some Teichmiiller representative of ¢ € F,, produce the reciprocal roots (%), ..., mq—1(f) of the L-function
attached to f over A, as mentioned in the introduction. Now, in the definition of My (f,T), a type of symmetric
product of these roots is presented. A homological description of this symmetric product is obtained by taking
the symmetric power of relative homology. This we will now do. Let H(k) = Sym*H, denote the k-th symmetmc
power of Hy over L(b'). As we shall see in Theorem . below, H; is a free L(b ")-module with ba81s {2"}4=} while

Ho = 0. Thus, H( ) is a free L(V')-module with basis {e{" -+ e} }i\ 4 tis =k Where e; := x'. For notatlonal
convenience, we will denote €' - - - e~ by el with i:= (i1,...,i4-1). For p € R, define
HE W, by p) = 3 Bie' | By € LV ;b (i) + p) (6)

i:=(i1,...,id,1)eZ§61
i1+ tig—1=k

where wq(i) is defined by

wo (i) := wolit, ..., ia-1) szwo
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Note that
HY =HB @ b) = | HP W b p).
pER

Next, we define a differential operator on Hgk) as follows. With ft(t, x) = t% f (t,x), define

1 0
0:= Gl ) otaoG(t,x)

o
=tor +W(t )

where

W(t,x) := Z Trjpjf[j (tpj , a:pj).
§=0
Note, W(t,z) € K(;57, ;575 —1) and so 0 is an endomorphism of K(b',b). Now, since & commutes with D(t) as
endomorphisms of K(b', b), and its image lies in 2K (b, b), it induces an operator on relative homology 9 : H1 — H;.
We may extend 0 to Hgk) by extending linearly the following action: for the product uy ---uy € 'Hgk) define

k
a(ul . ’U,k) = Zul s -dj . uk(?(uj)
Jj=1

We will sometimes denote d by J; to indicate that it is an endomorphism of Hgkt) . Define the homology spaces
Ho i, = ker(0 | Hgk)) and Hy = tHgk)/ﬁHgk).

In terms of f-adic theory, these are the p-adic versions of H? (A% ,Sym"Ai £) and H! (A% ,Sym"*Ai ), respectively.
q q

Frobenius map. Now that we have created the appropriate spaces, let us define the Frobenius operators. There
will be two Frobenius operators involved, @(t) which is defined on relative homology whose eigenvalues are power
series in t and equal m;(t) when ¢ is specialized, and another B which will give the homological description of
My (f,T). We begin with the definition of a.

Define the Cartier operator

Yot K(V,b/p) = K(b/,b) by > Bpa™—— Y Bppa™
m=0 m=0

Next, define the Dwork operator, which so far we have been calling the “Frobenius operator”, by (recall, ¢ = p%)
a(t) ==yl o Fy(t,x) : K(b',b) — K(b'/q,b).
Since a(t) o D(t) = gD(t?) o a(t), a(t) induces a map on relative homology
a(t) : Ha(V',0) — Hiwa (V' /q,b).

We may extend this map to the symmetric powers of relative homology, which we will denote by &) (t) :
Hg?(b’, b) — H§’f2q (b'/q,b). Next, define the Cartier operator v : Hglfgp(b’/p, b) — ’Hg’ft)(b’, b) by

(Z Ba,nt"> el (Z Bi,pnt”> e,
n=0 n=0
where we have used the fixed basis in @ to describe the elements of Hgk). Finally, define the Dwork operator

B =y oa™ () : M (v, b) — MY (v, b).
Since § o0 d = q0 o 3, (8 induces linear maps
B : HO,k — HO,k and B : Hl,k — Hl,k~

Using Dwork’s trace formula twice, precisely as in [23], we have

_det(1— BT | Hyy)
M) = G4BT [ o)
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6.2 Estimates for p-adic absolute values of My(f,T)

We now have a p-adic homological representation of the L-function My (f,T) as a quotient of characteristic poly-
nomials of the Frobenius B acting on H; ; and Hy ;. In this section, we will focus our attention on understanding
the roots of these polynomials, and since Hy j is often trivial, we will focus on 3 acting on H;y j,. The approach
we will take in finding estimates for the p-adic absolute values of the roots lies in the following key idea. On the
chain level, 8 acts on 'Hgk), a space consisting of functions with specific growth conditions. Since these growth
conditions are estimates on the p-adic absolute values of the coefficients of the power series of these functions, if
one knows how functions in Hgk) reduce to elements in homology H i, perhaps the growth rates of these functions
transcends to p-adic estimates of the reduced elements in homology. This is Dwork’s decomposition theory, and
it is demonstrated in equation below. As we will see in this section, once this is assumed we may apply the
theory to obtain estimates for the p-adic absolute values of My(f,T).
Define W : Zsg x Z&y" — 4750 by
W(n,i) := wi(n) + we(i)

where w; and wg were defined in the previous section. For notational convenience, define M := HY? and
M, b p) = Hglft)(b', b;p), and N := t'Hth) and N(V,b; p) := (tHgkt)) N Hglft)(b’, b; p). In general, if V is a subset
of M define V(b',b;p) :=V N M(V,b; p).

Theorem below, the main theorem of this section, provides estimates for the p-adic absolute values of the
roots of My, (f,T). Define the g-adic valuation ordy(-) := Lord,(-).

Theorem 6.1. Let p be a prime number such that (p,d) = 1. Suppose there exists a free, finite rank Zg[m]-
submodule V' of N with basis T := {t"e'}, 5)ca for some index A such that, with b:=p/(p — 1),

N (b,b;0) C V(b,b;0) ® OM(b, b;e) (7)

di’HLQq(ﬂ.) (Hl,k)
m=0

for some € € Ruq. Then, writing detg, (=) (1 — BT | Hix) =Y cmnT™, we have

ordg(cm) > min{z W (n i)}
j=1

where the minimum runs over all sets consisting of m distinct elements of the form (n,i) € A. Equivalently, the
g-adic Newton polygon of deth(ﬂ)(l — BT | Hi 1) lies on or above the lower convex hull of the points

R 1 R
(bS] rmnndm o
N=0 N=0

where vy = #{(n,i) € A| W(n,i) = N/d}.

Before proceeding to the proof of this theorem, let us give an example of it. In [15], the function M( f,d%

was studied for the cubic family f(t,2) = 2% + tx. In particular, N = tHgk) was essentially shown to satisfy
for some V. Consequently, using Theorem [6.1] we have the following result, which was conjectured in loc.cit..

Corollary 6.2. Let p > 5 be a prime number. For the cubic family f(t,z) := 23+ tz, when the symmetric power
k is odd and k < p, then My (23, T) is a polynomial. Furthermore, writing My,(z3,T) = detq,(x)(1 =BT | Hy k) =

Zdiqu“”(Hl’k)

m
m—0 e T™, we have

1
ordg(cm) > g(m2 +m+ km).

Proof of Corollary. By Corollary below and [I5], Section 6.2], the Z,[r]-submodule V' defined by the Z,[n]-
— k—1

. L k-1 k=1
span of the set {tef"*'e3'}. 2 C N satisfies (Eb when k is odd and k < p. Thus, A = {(1, (k — 2i,2i))}, %, , and
so by Theorem 6.1}

3
L

ordg(cm) > . (w1 (1) + wo(k — 24, 29))
mwi (1) + kmawo (1) + (w(2) — we(1))m(m — 1).

I
=}

The result follows since wy(n) := 2n/3 and wy(n) := n/3. O
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The main result in Section below will be to reduce the hypothesis to a similar hypothesis which we
believe is attainable. It is expected that this similar hypothesis will hold under rather general conditions on the
prime p, the degree d, and the symmetric power k. However, it is also expected that this similar hypothesis will
fail just as often, yet will still hold. The conditions under which the weaker hypothesis is valid is currently
under investigation.

The rest of this section is devoted to the proof of Theorem whose argument closely follows that of Dwork’s
[9, §7] and Adolphson-Sperber’s [2]. The proof rests on relating the Newton polygon of 3 to another operator,
(1, whose Newton polygon is much easier to estimate due to the Dwork decomposition of A given in . The
reason is that Dwork decomposition allows us to work on the chain level, where the operator (3, acts in an easily
understood way. Once estimates on [3; are found on the chain level Dwork decomposition provides estimates in
homology of 3;.

For & <band b <p/(p—1), define ay : K(¥',b) — K(b'/p,b) by

=71 tor, 0 F(tx)

— 1 -1
e o1 o1, o G(t,x).

Notice that ay o D(t) = pD(t?) o a1, and so oy induces a map
ay(t): Hit(V',b) — Hiw (V' /p,b).
On K(V',b), since
a(t) = ¢y o Fo(t, z)
=to P (" 2" ) FT (1P aP)F(t, x)
= (fl 01y 0 F(tpa_l,x)> o ot otp, 0 F(tP,2)) o (17 oty 0 F(t, 7))
-1

:Oll(tpa )o~-~oa1(tp)oa1(t),

it follows that

We also have the property that
1/},50071(1&”):071 t Owt. (9)

(
Consequently, with 31 := ¢y o SymF(ay(t)) : Hglft)(b’, b) — HY“,Q (v, b), we have the relation

a—1

By =i o Sym* (dl(tp
= of o Sym"(a(t))
=p

where we have used @) for the first equality and for the second. Since detq, () (1 — BT | Hix) € Qp(n), we
have that

Jo-rom(tr)oa(t))

(deth(ﬂ)(l — BT | H17k>))a = NOTqu(W)/Qp(ﬂ.)deth(ﬂ)(1 — BT | Hix)
= detQp(w)(l — BT | Hl,k)-

Thus,

(detg,x)(1 = BT | Hy k)" = detg, (x) (1 — BT | Hy)
= detQp(ﬂ)(l — ﬂf’Ta | Hl,k)
= [[ deto, (1= CAT | Hig). (10)
¢o=1

Counting multiplicities, let m; denote the number of reciprocal roots of detQp(ﬂ)(l — BT | H, 1) which have
slope s;; note, we say A has slope s; if ord,(\) = s;. Then, from 1| (deth(ﬂ)(l — BT* | HLk))a has am;
reciprocal roots of slope s;, and so det@q(ﬂ)(l — 3T° | Hy 1) has m; reciprocal roots with slope s;. We conclude
that detg, (n) (1 — BT | Hy ) has m;/a reciprocal roots of slope as;.

Next, for the g-adic valuation ordy(-) := Zord,(-), we will say a root A has g-adic slope s; if ordy(\) = s;.
Observe that the above paragraph has demonstrated that detq, () (1 — 8T | Hy k) has m; reciprocal roots with
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q-adic slope s; if and only if detg, (x) (1 — B1T | Hy k) has am; reciprocal roots with p-adic slope s;. In terms of
Newton polygons, this means the vertices of the g-adic Newton polygon of detg, (x)(1 — BT | H, ) are

(0,0) and <Zmz,2mlsl> n = 1,2,...,diqu(ﬂ.)(H17k)
i=1 i=1

if and only if the vertices of the p-adic Newton polygon of detg () (1 — BT | Hy ) are

n n
(0,0) and (Z am;, Z ami5i> n=12,...,dimg, ) (Hi)
i=1 i=1

Using this relation, any lower bound for the p-adic Newton polygon of the latter may be transformed to a lower
bound of the g-adic Newton polygon of the former by dividing the coordinates of the vertices by a. Let us now
concentrate on a lower bound for the p-adic Newton polygon of detg, ) (1 — BT | Hy ).

Define K(b',b)® := xK(b,b), and let V be the L(b')-span of the set {z,22,... 297} in K(¥',b)*. Define
K, b; p) = KO, b)* N K, b; p) and V(V,b;p) := VNK(,b;p). By our hypothesis on the prime p, we will
prove in the following section the Dwork decomposition

K, b;0)* C V(V,b;0) & D)KL, b;e), (11)
where € := b— p%l. Consequently, K(b',b)* = V@& D(t)K(V',b), so we may identify H; with V, a free L(‘b’)—module
of rank d—1 with basis {x, z2,..., 2971}, Consequently, Hgk) is a free L(b')-module with basis {e}' - -- e} 7} := el},
where i = (i1,...,i4-1), each i; is a nonnegative integer satisfying iy + - +iq—1 = k, and e; := 7.

Set b = Py, Fori =1,....d -1, 2" € IC(%7 %; —%wo(i))' and so F(t,z)z" € K(2, %; —%wo(i))'. Thus,

ay(z?) € K(%,b; —%wo(i))'. By we may write this as
. b
ar(z') = Ajx 4 Ay gzt mod(D(tp)lC(g, b)) (12)

where A; ; € L(%; %(pwo(j) —wo(4))).
Let S(i1,...,i4—1) denote the set of nonnegative integers (lgr))lgs,rgd_l that satisfy the system

l§1)+~~+l((11_)1:i1

lﬁd‘” + -+ l,(id__ll) =tdq—1.

and T'(j1,...,Jd—1) denote the set of nonnegative integers (zg”)lgs,rgd,l that satisfy the system

1 4 1Y = gy

(0, 4o ) = g
The k-th symmetric power of a; acts on the basis {e!} as follows:
Sym* (@ (t)er' e

= (aa(t)er)" -+ (@ (t)ea—1)™

i1 Gd—1
T T
= (D Aue | [ Do Adrge
j=1 j=1
1 — d—1 — 1 d—1
_ 7 Algl) . Alfi—)l . Algd v . Alc(ifl ) lgl)+~~'+l(1d v . l:(if)lJ’»'”J’»l:(i—l )
= >0 1,1 1,d—1 d—1,1 d-1,d-1 ) €1 €q-1

1$YeS(in,e . yia—1)

_ s o2\ J1 Jd—1
= E B(i,j)er -+ ey
Ji=01seja—1) €285}
Jittja—1=k
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where
l(l) l[(il)l l(d—l) lfldzl)
1-37) — 1 — 1 —
B(l,.]) = E (Z>O) A171 "'Al,dfl Ad71,1 "'Adfl,dfl
(7)€ (ixsensia—1)NT (G2, Ja—1)

and “Zs(” is some determinable nonzero positive integer. It follows that B(i;j) € L(%; %(pwo (j) — wo(i))), and
S0

b b b
Sym”* (an (t)) : H§’“)<5,§;0> - Hﬁ’”(};,b; 0). (13)

Recall, M := HY? and NV := tHyft) . We are supposing that there exists a free Z,[r]-submodule V of N with
basis I' := {t"e! | (n;i) € A} such that

N(b,b;0) C V(b,b;0) & IM(b, b;e) (14)

for some € € R. Now, I represents a basis of Hy i, over Q4 (), but we need to understand the Fredholm determinant
of 31 on Hyj viewed as a vector space over Q, (7). To do this recall that Q,(7) is an unramified extension field
of Q,(m). We have denoted by Z,[r] the ring of integers of Qq(7) with uniformizer 7 and residue field F,, and
Zy[7] the ring of integers of Q,(7) with uniformizer 7 and residue field F,,. Let {71,...,7,} be a basis of F, over
F,, and let {n1,...,n,} be a lifting of this basis to an integral basis of Q4(7) over Q, ().

Lemma 6.3 (Dwork). The basis {n;} has the property of p-adic directness; that is, for any g € Qq(w), writing
g =him + -+ hang with h; € Qu(7), then

ordy(g) = . 1{11n {ord,(h;)}.

.....

Proof. Without loss of generality, we may assume that ord,(g) = 0. Set —c := (p — 1) min{ord,(h;)} € Z.
Suppose ¢ > 0. For any ¢ € Z,[n], denote by & its image in the residue field F,. Using this notation, we see that

0= (7°9) = (7°h1)ii + - - + (7°ha)ila  mod(r).

Since {#;} is a basis of F,, we must have 7¢h; = 0 in F, for every i. Hence, 7°h; € 7Z4[r], and so h; € w1 7Z[r]
for every i. Thus, for each i we have

1-— 1
ordy(h;) > p_i =+, min {ordy(h)}.
However, since this is not possible we must have ¢ nonnegative. Thus, —c¢ > 0 which means min{ord,(h;)} > 0=
ordp(g). Since we easily have ordy(g) > min{ord,(h;)}, we must have equality, proving the lemma. O
Since t"e' € M(Z, 5; —I%W(n, i)), we have by that Sym”(ay(t))(t"e!) € J\/’(%7 b; —%W(n, i)) and so

Bi(tmel) € N (b, b; —ZW(n i)). By Dwork decomposition , this means

B (tmel) = Z C(n,i;m,j)t™ed  mod(OM)
(m,j)er
with

ordy(C(n,i;m,j)) = ~(pW(m,j) — W(n,i)).

b

p
From the lemma above, if B € Z,[n] satisfies ord,(B) >
satisfy ord,(B;) > p. Thus, we may write

p, then writing B = Bym + - - - 4+ Bgn, the coefficients

Z nlm.]rm

with C'(n,i;m,j), € Z [ ] and ord,(C(n,i;m,j),) > %( W(m,j) — W(n,1)). Now, a basis of Hyj over the field
Q,(7) is given by IV := {n;t"e' | j = 1,. ( i) € A}. Thus, for n;t"e! € I, we have
Brlnit"e) =771 () D2 Clniym jit"e mod(OM)
(m.,j)er
= 7_1(773') Z Z C(n,i; maj)rnrej (15)
(m,j)er r=1
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Writing

a

T M) =Y bajans With by € Zy[],

s=1
then becomes
Bi(nit"e") h = Z ZDJJL i;s,m,j)nst™e
(m.,j)er s=1

where

D(j,n,i;s,m,j) : ZCnlmJ s,

It follows that

ordy(D(j,n,i;s,m,j)) > —(pW(m,j) — W(n,1)).

ESERS

Writing detq, () (1 — BiT | Hik) = o _ocmT™ then

m

=0y > sen(o) [T DG iV o), no @, i),
=1

oc€ESm

where S, is the permutation group on {1,...,m} and the outer summation runs over all sets consisting of m
distinct elements of the form (j,n,i) where n;t"e' € I''. It follows that

ordy(cy,) > min {Z W (ng, i(l))}
=1

where the minimum runs over all sets consisting of m distinct elements of the form (j,n,i) where njt"ei el
Let ry := #{t"e! € T | W(n,i) = N/d}. Then there are ary number of elements n;t"e! € I with weight
W (n,i) = N/d. Thus, if
R
= Z arn

N=0

i) = 3 are ().

N=0

then

In other words, the p-adic Newton polygon of detg, x)(1 — 61T | Hy k) lies on or above the lower convex hull of

the points
R R N
(Z CLT‘N,ZCLTNd> R:O,l,...,dim(@p(ﬂ.) Hl,k
N=0 N=0

Thus, the g-adic Newton polygon of detq, x) (1 — BT | Hi ) lies on or above the lower convex hull of the points

R R N
(Z TN,ZTNd> RZO,l,...,diqu(ﬂ.) Hl,k~
N=0

N=0

This finishes the proof of Theorem

6.3 Relative Dwork homology

Integral to the proof of Theorem was the Dwork decomposition of relative homology given on . The main
result of this section is to provide a proof of this result. This proof will closely follow arguments of Dwork’s [9]
§7] and Adolphson-Sperber’s [2]. We begin by recalling that

VU, by p) = (LY )z & - & LY )z 1) N K, b; p)

= |J v, bp).

pER
Theorem 6.4. Suppose (p,d) = 1. Let b and b’ be real numbers satisfying b’ < b and —1 <b < B Set

-
e:=b— %1 Then
P
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1. KV, b)* = V(' b) & DKV, b),
K@, b;0)* C VI, b;0) & DK, be),

L . . 1
D(t) is injective if b > =,

e

if g € K(V/,b)® is divisible by t" and we write g = £ + D(t)¢ with £ € V(V',b) and ¢ € K(V',b), then t"
divides € and C.

The proof of this theorem will consist of a series of lemmas which will comprise the rest of this section.
Lemma 6.5. Suppose b’ < b. Then
K, b;0)* C VU, b;0) + 7w f KV, b e).

Furthermore, if € € K(V,b)* is divisible by t" then when we write & = ¢+ (nfy)v with ¢ € V(V,b) and v € K(V,b),
then t™ divides both ¢ and v.

Proof. Write f(t,z) = 2% + Z?;é ajzd + tz. Now, with

7 fol(t, z) = w(da + (dejmj + tx)
j=1
we may write, for m > d,
m d 1 m—d = 1 m—d 1 m—d
™ = wdx (de ) + 7 ;]ajxj + tx (M:E — W—daz )

= 1 fu(t, x) <7rldxmd) — Z %djxm”’d — %tmm“’d.

Notice that the last right-hand sum consists of terms in = of degree strictly smaller than ™. This is our reduction
formula for 2™, reducing all monomials 2™ to some linear combination of {x,z?,... 241}
Next, consider By,,t"a™ € KC(b',b;0) with B,,,, € Z4[n]. The reduction formula takes the form

d—1 .
n,.m ¢ B’ﬂm n,_.m—d ]B’ﬂmA n,_ m+j—d Bnm n+1l,_m+1—d
Bymt"z™ = wf,(t, x) Tt x - E a;t"z - ——t"" . (16)
e

d d

=1

Observe that, since m > d, it is immediate that B;;%j‘t"xm_d € K(V',b; e) while the other terms w%djt"mmﬂ_d
and B’é"" tntlgmti=d Jie in K(V',b;0) since b > b'. Tterating the recursive equation 1' we obtain

Bpumt™z™ € V(V',b;0) + 7 fo(t, 2) KV, b €). (17)
Next, let £ = mezo Bpmt"z™ € K(V',b;0)°. For each N € Z>, we may write { = ¢ +Zn20 n™N) where

N
77("’N) = Z Bymt"z™ and §(N) = Z Z B, t"z™.
m=0 n>0m>N+1

Observe that 2V*1 | ¢((V) for every N, and t" | n(™»N). By , we may write n(™N) = I/YL’N) + (fo)l/én’N)
with V%n’N) € V(¥',b;0) and z/én’N) € K(V',b;e), both with the property that they are divisible by t". Hence,
D >0 I/YL’N) and ) <, I/2(n7N) produce well-defined elements of V(,b;0) and (b, b;e), respectively. Let us
denote these elements by VfN) and z/éN). We have thus constructed sequences of elements {V§N)} N>1in V(¥,b;0)

and {VéN)}Nzl in IC(¥, b; e) which satisfy

£=CM 4 o™ 1 (rf )iV

Now, in the topology of coefficient-wise convergence (i.e. the (m,t,xz)-adic topology), Z,[r][[t,z]] is compact.
Thus, K(b',b; p) is compact for each p in the induced topology. Hence, we may restrict ourselves to convergent

subsequences of {VfN)}Nzl and {uéN)}Nzl with limits v € V(V/,0;0) and ve € (¥, b; ), respectively. Thus,
€= ngnoo (C(N) + V{N) + (ng;)l/z(N)> =v + (fo)l/27

where limy oo (V) = 0 since zV+! | ¢) for each N. This proves the lemma. O
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Lemma 6.6. Let b and b be real numbers. Then V(b',b) N7 f,K(1',b) = {0}.
Proof. Suppose 1 := c1z4- - -+ cq_12 1 € V', b) N foIC(V,b). Let ¢ := Z;io Bjxd € K(V',b) satisfy n = TfzC.
Now,
A > .
T fa Z Bjr! =iz + cgx® + - gzl
3=0
Writing 7 f, (¢, 2) = 7 (da? + 27;11 jajzl + tx), we have

co d—1

deB it +ZZWB a; It +Z7rB t? = =4 4 eqoqz®T
r=0j=1

For j > 0, since the coefficient of 97 in this equation must vanish, we have

d+j—2
7dB;+ Y 7Bpiayjr + 7Basj 1t =0
r=j+1
and so
d+] 2 1
= —= Z B ad+] r = gBd_H_lt. (18)
r=j+1
Using recursively, we see that B; — 0 (p, t)-adically. Hence, B; = 0 for all j > 0 as desired. O

Lemma 6.7. Let & € K(V,b) and suppose wfo& € KV, b;p). Then & € K(V,b;p+e¢).
Proof. Let £ = Z;’;OBjxj e K',b) and 7fp,¢ = Z;‘;Oijj e K, b;p). Writing 7fy(t,z) = w(da? +
Zj 11de( t)a?), where a;(t) := t, we have

oo d—1 oo
Zﬂ'dB i —i—ZZn’B ajx T = ZCja:j.
r=0j=1 j=0
From this, the coefficient of 2917 satisfies
d4j—1
7dBj+ Y wBriatj-r = Cay;
r=j+1
for all 7 > 0. Rewriting this, we have
1 d+j—1
B; = CdJrj 7 Z Byagyj—r-

r=j+1

Iterating this n-times produces

Bi= ¢+ (67 46+ +¢0)

where
d+j—1 d+ri—1 d+r,_1—-1 1
CT(i]) == E E T § dinBrn&dJl’j*Tl Adtry—ry " Odry,_y—rs,
ri=j+1lra=ri+1 rpn=rp—1+1
and
) ._ 1 C
= — gy
1 wd +J
|
() ._ i
2 = o E Catr Gdyj—r
d’m ,
ri=j+1

d4j—1 d4ri—1
G . L Coor g i
3T B d+ra@d+j—ry Qd+ri—ry

ri=j+1lro=ri+1

d+j—1 d+r;—1 d+rp_2—1

. 1
J) . Ao A g
57(1 )= dnn E E T E Cd‘f”"n—lad‘f’]*rla’d‘i”"l*?b Adtry_o—Tn_1-

ri=j+1ra=ri+1 Tn—1=Tn—2+1
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Since B,., € L(b';bwo(ry)), @) 0 as n tends to infinity. Thus, to complete the lemma, let us show > > | &(lj) €

L(b': b () + )
We know Cyy,, , € L(V;bwo(d + rp—1) + p). We wish to show

1

mcd-i-rn—l&d-l-j—ﬁ dd+?”1—7“2 T &d+rn,—2_rn—l € L(b/; bwo (]) +e+ ,0) (19)

Notice that typically has many a terms equal to 1. These @ will not affect the L(b'; o) space that lies in.
It is only when the a equals t that things change. The worse case is when all @ equal ¢. In this case, r; =id+j—1
fori=1,2,...,n — 1 making take the form

1 o
i1, Cdr(n-1)d+j—(n-1)t .

which may easily be shown to lie in L(V';bwg(j) + e + p). The general case is similar. This concludes the proof
of the lemma. O

Lemma 6.8. Let b’ < b and T <b< 1%, Withe::b—]ﬁ we have
K, b;0)* C V(',b;0) + D(t)K(V, b;e).

Furthermore, if € € KK(V/,b)® is divisible by t™, then when we write £ = n+ D(t)¢ withn € V(b',b) and ¢ € K(V',b),
then n and ¢ are also divisible by t™.

Proof. Recall, D(t) = ma + H(t,z) with H(t,z) == Z;io wjpjf;j (tpj,mpj). Now, observe that

fA;c—] (tpg ) a?’ ) = fx(tv ‘T)pj + phj (tv 1‘)
for some polynomial h; with coeflicients in Z,[r]. Write

H(t,z) = mfo(t,2)Q1(t, z) + Ky (t, )

where
= ijﬂ L fu tx)p7

Ki(t,z) := Zﬂjpj+1hj(t,:r).

j=1

:0). To see this, note that since f € K(-£ we have

We claim that Qq, = o J K1 € K(-& =1 p—1} —1%),

P
p—1’ p—1’

ot er(Ey, E ;(pfl)@fl)).

1'p—1

Thus,

—1 'Apj,1 p p .
G op? fE EIC(pi—l’pi— 1,0)

proving the result for ()1 and 1/Q. Next, since h; consists of terms coming from the expansion of f}c’j, we see
that h; € (=2, 2y — (L) 7). Thus m;p7+1h; € (=2

p—1’ p— 1 p—1 p— 1’p I

We will first suppose b > 1%' Let £ € K(V,b;0)*. By Lemma there exists 11 € V(V/,b;0) and ¢4 €
K(V,b; €) such that € =y + (7 fz)¢1. Thus,

E=m+(H-K)Q'G

0
=m+(Qy'Ki1G1 — $%QI1C1) + D) (Q1 ).
——
=

;0) proving the result for K.

=1

Notice that 14 € IC(b',b;¢e)® and (] € K(V',b;e). Continuing this same process, but now with vy instead of &, we
are lead to

E=(m—+-+nn)+vn+DE)(G + -+ )
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where n; € V(V,b; (i — 1)e), vy € K(b/,b;Ne)®, and ¢/ € K, b;ie). Thus, n := > 2 m € V(V,b;0) and
(=372, ¢ e KW, bje). Upon taking the limit in the coefficientwise convergence topology we see that

§=n+D(t)¢
as desired.
We now consider the case when b = p—il. Let £ € (Y, b;0)°. For each N € Z>(, we may write
N
§=> Bua"+ Y Bpa"
n=1 n>N+1
Let € > 0. For 1 <n < N, since bwg(n) > (b+ m)wo(n) — € we see that
N €
B,x" ¢ K(b', b+ ———;—€)°.
Z;n ( vy 9
Since b + W > p%l, there exists 7(&V) € V(b', b+ m; —€) and ¢(&N) € K, b+ onN);_G + onN)) such

that
N
> Bua™ = 5N + D)),
n=1

We have just constructed sequences {n(¢M}_, C V(V,b; —¢) and {¢(“M}P_, C K(b',b;—€). Since K(¥,b;p)
and V(V',b; p) are compact in the coefficientwise convergence topology for each p, we may restrict ourselves to
convergent subsequences with limits 7(9) € V(¥',b; —€) and ¢(©) € (I, b; —¢) which satisfy
& ="+ D).
In the coefficientwise convergence topology, letting ¢ — 07, there exists € V(V',b;0) and ¢ € K(¥, b; 0) such that
¢ = lim 1+ D()¢") = n+ D(H)C.
e—0

This proves the first part of the lemma.
The second part follows from the divisibility result in Lemmal6.5|and running through the above argument. [

Lemma 6.9. Let b’ <b and p%l <b< p%l. Then
V(H',b) N DKW, b).

Proof. Let us first assume b > ﬁ. Let n € V(V/,b) N D(t)K(b',b) be non-zero, and let & € K(b',b) be such that
D(t)¢ = n. Find a real number ¢ such that & € IC(V',b;¢) but & € IC(V',b;c+ e). We will prove that no such ¢
exists, contradicting the existence of 7.

Since D(t) = xa% + (7f.)Q1 + K1, we have

- 0
n=D(t)§ = (7fz)Q18 + (:caxf + K1£> :
Since x%«f + K1§ e KV, b;c)®, by Lemmathere exists 11 € V(b',b;¢) and ¢, € K(V',b; ¢+ ) such that
éf-f—Kg—V + D(t)¢
fﬂax s =" 1-

Hence,

n = (7fs)Q1€ + 11+ D(t)C1
= (1fe)QuE+G) +vi + K1

Since K1¢; € K(V',b; ¢+ e), applying Lemma again produces v, € V(b',b;c+¢e) and (; € K(V',b; ¢ + 2¢) such
that K1<1 = Vs + D(t)CQ ThUS,

n=Tf)Qi(€+ G+ Co) + (1 + 1) + KiCa.
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Iterating this via induction, and taking the limit in the coefficient-wise convergence topology, we obtain

n=(rfs)Q(€+ ZQ) + ZVi-
i=1 i=1
This means (7 f,)Q1(E+25°, &) € V(V,b), and so by Lemma E=—=3"2,¢ € K(V,b; c) which is impossible.
Suppose now that b = —= and n € V(b',b) N D(¢)K(b',b). With this choice of b, oy := T oy, 0 F(t,x) is a
map from (Y, b) to (', pb). Therefore, since oy o D(t) = pD(t?) o a1, we see that

ai(n) € D(")K(V', pb).

Thus, the reduction of aq(n) equals zero in Hy 4» (b, pb). Now, we may also view oy as an endomorphism of
K(V',pb) and so, abusing notation, we obtain a map on homology &; : Hi (b, pb) — Hi (', pb). By Lemma
below, this map @, is invertible. Therefore, since the reduction of ay(n) is zero in Hy » (b, pb), we must have
the reduction of 7 in Hi (b', pb) equal to zero as well. Hence, n € D(¢)KC(V, pb). Since D(¢)KC(V,pb) C K(¥, pb),
we see that n € V(¥/,pb) N D(¢)KC(V', pb). However, this intersection equals {0} by the argument above since
bp > 1/(p — 1), proving n = 0 as desired. O

Lemma 6.10. Let b’ <1/(p—1). Then ay : H14(b/,p/(p — 1)) = H1(V',p/(p — 1)) is an isomorphism.

Proof. Since b’ < 1/(p — 1), it follows from definition that «; is a map from (b, 1/(p — 1)) to K(¥',p/(p — 1)).
Now, define a map o : K(V',p/(p—1)) — K(¥',1/(p — 1)) by

o =F(t,z) tod, o1
where @, is the map z — aP. Clearly, ay o o) = id, the identity map on K(b',p/(p — 1)). Hence, we have
K@®',p/(p—1)) = a1af K, p/(p — 1)) C a: KO, 1/(p — 1)) C KOV, p/(p — 1))

Hence, a3 maps K(b',1/(p — 1)) isomorphically onto K(b',p/(p — 1)). A similar argument shows a; maps
K(',1/(p—1))* isomorphically onto IC(b',p/(p — 1))°.
By Lemma we know

K@, 1/(p—1)*cVE,1/(p—1)) + DK, 1/(p — 1))
Applying o1 to this we obtain
K@, p/(p—1))" = K¥,1/(p— 1)) CarV(t',1/(p — 1)) + D(t")K(V,p/(p — 1)).
Since V¥, p/(p — 1)) € K(¥',p/(p — 1))*, we have
V(',p/(p—1)) CarV(¥',1/(p—1)) + D)W, p/(p — 1))
Now, it follows from the definition that V(b',b1) = V(b/,by) for any positive real numbers by and by. Thus,
V(',p/(p—1)) CarV(¥',p/(p— 1)) + D)LV, p/(p — 1)).

Viewing oy as an endomorphism of (0, p/(p — 1))*, this shows a; : H1,.(V',p/(p — 1)) = H1,(b',p/(p — 1)) is
surjective. Since both of these spaces are free L(d’)-modules of finite rank, &; must also be injective. This finishes
the lemma. 0

Lemma 6.11. Suppose b > p—il. If € e K(V',b) and D(t)¢ € K(V',b; p), then & € K(V',b;p+e).
Proof. Suppose € # 0. Choose ¢ € R such that & € K(V',b;¢) but £ € K(V,b;¢c+ €). Then

(7 f2)@1€ = D(t)¢ — z%ﬁ — K € € K(b',b;min{p, c}).

Thus, (7f,)¢ € K(V,b; min{p, ¢}) which, by Lemma implies £ € K(V', b; min{p, ¢} + e). By our choice of ¢ the
lemma follows. O
Corollary 6.12. Suppose b > p%l. Then D(t) is injective.

Proof. Suppose there exists nonzero £ € (¥, b) such that D(¢)¢ = 0. Then, by Lemma since 0 € (¥, b; p)
for every p, we have £ € IC(V,b; p + e) for every p. Hence, £ must be zero. O
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6.4 Dwork decomposition for the symmetric powers of relative homology

Theorem demonstrated one consequence of Dwork decomposition with the operator 0. In this section, we
wish to take the hypothesis of Dwork decomposition in that theorem and reduce it to a similar hypothesis which
replaces the differential operator 0 with an easier operator Lg described below. We expect that this similar
hypothesis may be demonstrated for a large class of f(¢,x). However, we also expect that it will fail just as often.
New ideas will be required to handle the latter case.

It is easiest to see the main obstructions to the theory if we generalize a bit. Let d be a positive integer. We
call a function w : Z%, — ézzo a weight function if it satisfies the following three properties:

1. w(0) =0,
2. w(cu) = cw(u) for every ¢ € Q>p, and
3. w(u+v) <w(u) +w(v) for all u,v € Z,,.
Let wy : 25, — d%ZZO be a weight function. Let b and b’ be positive real numbers. For each p € R define
L(t'sp) =9 > At | Ay € Zy[n], ordy(A5) = bwi(§) + p
jez,
This is a p-adic Banach space with norm given by || 3 A;t}|| := min; ord,(4;). Define

L) = |J LW; p).

pER
Let M be a free L(b')-module with basis {es,...,e,}. We place a weight on each basis element e; as follows: fix
a positive integer do and let wo : {1,...,r} — %Zzo be any function. Note, wq is not a weight function since the

set {1,...,7} is finite. Define

MV, by p) = {Z Bie; | B; € L(V'; bwo(i) + p)} (20)

=1
and
M) = M = | MV, b; p).
pER

For any subset U of M, we may define U(V',b; p) :=U N MV, b;p) and U(V',b) :=U N M(¥,b).
Denote by M®) := Sym* M the k-th symmetric power of M over L(Y). Similar to (20) define

MBE (W b p) = > Bie' | By € L(b; bwo(i) + p)
ii=(i1,...,1,) ELL
i1 tin=k

where e' :=e]' ---elr and

U)()(l) = ’wo(il, e ,Z'T) = Zijwo(j).
j=1

Let A be a free, finite rank L(b')-module, and denote by N'*) the k-th symmetric power of A" over L('). Let
® : M — N be an L(b')-module morphism. Define the Leibnitz operator of ® to be the operator L : M®*) —
N®) defined by

,
Lop(ett---elr) = Z et et Tl el D (e,,).
m=1

Next, we mention a short technical lemma which will be useful.

Lemma 6.13. Suppose ® : M(V/,b;0) — N (V',b;p). Then Lo : MEF) (', b;0) — NFE) (¥, b; p).

25



Proof. Since e; € M(b',b; —bwo(i)) we have ®(e;) = az1e1 + -+ + aire, € N(',b;p — bwo(i)). Thus, a;; €
L(V'; p+ bwo(j) — bwo(i)). Similarly, since e}' - --elr € M(b', b; —bwg (i1, . .. ,i,)) we see that

T

Lo(ep €)=Y qeft el 7' eird(es)

I=1
Z Z Qlitl -1 i
= < llal]e] ] ..ell ...eTT
=1 j<li
E . i1 15—1 i+1 2.
_|_ Zlal,]el ...ej ...el ...eT
3>l
. i i
+1ae)' - e ) .
. . ; i1 S
Let us consider one of these terms, say 4;a; jei' - - - e;] e el with j < . Observe

ordy(ay ;) > p+ bwo(j) — bwo(l)
:p+wa(i1,...,ij +17--~7il - 1,...,7;1») —wa(ih...,i,«).

The other terms are similar, proving Lg(e!) € N5)(¥ b; p — bwg(i)) as desired. O

Let us now return to our particular family. With f, := t%f(t, x), since rfy € IC(p T ppl, —1), by Theorem
[6.4 we have for each i =1,...,d — 1,

mfi(t, )z’ = Ajyx+ -+ A g12? 4+ D) (h(t, )

for some A; ; € L(;57) and h; € K(5E7, 527). This defines a morphism

p P

WftiHLt(L,L 0) — Hlt( 7 p—l

-1
p—1p-1 )

via the matrix (A; j)1<s, j<d—1 which acts on the right. With ¥’ < band b < p/(p—1), this defines an endomorphism
L.; on H)(W,b). Set N(V,b) == tHS") (0, b) and M(¥',b) := H) (¥, b).

mft

Theorem 6.14. Let p be a prime number such that (p,d) = 1. Suppose Eﬁft satisfies the following: there exists
a free ﬁm’te rank Zq[n]-submodule Vi, of N(p/(p —1),p/(p — 1)) such that for any ;L5 > b > b" > L with

p—1’
o
=b pl’

1. N/, b;0) C Vi (b, 5;0) + wat./\/l(b’,b;e’)
2. Ve(W',0)N L M(V',b) = {0}

Then 8 satisfies:
1. N, b;0) C Vi(b,b;0) + DMV, b; ¢

2. Vi (b, 0) N OM(V,b) = {0} for p%l <b < and - <b <

1 1 1
As an example of the theorem, consider the cubic family f(t,z) = 2 + tz. In [15] it was shown that L
satisfied the hypothesis in the theorem when k is odd and k& < p. Consequently, we have the following result.

Corollary 6.15. Let f(t,z) = 2% +tx and p > 5 be a prime number Suppose k is an odd positive integer
satisfying k < p. Let Vi, denote the Zy[r]-span of the set {te¥~*'e3'}, 20 C N Then

N, b;0) C Vie(b',b;0) + OM(V, b;€).
The proof of Theorem will consist of a series of lemmas which will comprise the rest of this section.
Lemma 6.16. Suppose 1/(p—1) <b' <b<p/(p—1). Sete :=b — —=. If
N, b;0) CcV(V,b;0)+ ,Cﬂft./\/l(b’7 b;e’)
then
N, b;0) C V(V,b;0) + OM( , b; ).
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Proof. On K(V',b) we may write 0 := t% + W(t,x) where
Wit,x) =S mp fT (7 o).
j=0

For each j € Z>( write S ;
7 a”) = fult,2)” + pg;(t, )

for some polynomial g; whose coefficients lie in Zg[n]. This allows us to write

W(t,x) = TI'ft(t, x)Qa(t, x) + Ka(t, x) (21)

where

Qa2(t,r) = Zﬂﬂflpjft(t,x)ptl

j=0
o0
Kg(t,l') = Zﬂ'jpj+1gj(t,17).
j=1
Using a similar argument as that in Lemma one may show Q, ~ o , Ko € IC(p T ppl ;0).

Since tx | f;, we may write Qa(t, ) = 1+ (tz)?~'v(t,z) for some v, making Qy(t, )z = x + tP~'aPu(t, x) €
K(GGE 35— (%) wp(1)). By Lemma we may write
tp—lxpy(t)$> =B+ + Bd*lxd_1 + ﬂfw(taw)h(ta 3?)7
where Bjzi € Kt 55— (p 1) wo(1)) and h € K(;5, ;55— (p"%l) wo(1) + 1). Furthermore, since tP~!

divides the left-hand side, by Lemma each B;j for j =1,...,d — 1 is also divisible by tP~1, as well as h.
From (1)), since

Qa(t,x)x = (1 + By)x + Box? 4 -+ - + By_12% 4+ wfo(t, 2)h(t, ),
we may write for each i =1,...,d —1
W(t,z)a' = (1 + By)wfe(t,x)a’ + Si(t,z) + Ty(t, x), (22)
where
S; = 7rft (ng2 4+t Bd_la:dfl) 2t
T; == Kox' + D(t)(Q7 *m frha' ™) — x%(@flwﬁhxi_l) — K1 Q7 ' fhat ™Y

p—1’ p—1’ p—1
thermore, tPx divides each S; since t divides f; and t*~! divides each B;. Thus, S; € K(b',b;—e’ + 0 — bwy (i)

where pim (fl - b’) (wi(p) = 1) + <pf1 - b) wo(1). (23)

By Theorem [6.4] we may write

From the estimates above one may show T; € K(-£, £-; — ( 2 )wo( ), and so T; € K(b',b; —bwy(7)). Fur-

Si=Ci1x 4+ Ci,d—lxdil + D(t)z (24)
Ty = Ajgz+ -+ Ay g 1297 + D(t)w;
where
Ci,j € L(b';b(wo(j) — wo(i)) — €' + o) and A; ;€ L5 b(wo(j) — wo(4))). (25)
These define (d — 1) x (d — 1) matrices C := (C; ;) and A := (A; ;). It follows from that C' and A define
morphisms
C :Hy (b, bye’) — Hy (b, b;0)
A Hy (Y, 0;0) — Hy (Y, 5;0).
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By Lemma below this means
Lo Hglft)(b', be') — Hgkt) (v, b; 0)
La: MV, 5:0) = HE (¥, ;0.

Finally, with u := 1+ By, from and we see that

Lw = Nﬁﬂft + Lo+ La4.
We will first suppose p—il <V < B Let € € N(¥,b;0). By the hypothesis on L, 7, there exists 1y €
V(¥,b;0) and ¢; € M(V,b;€e') so that € = + L 71 Hence,

E=m+ Lo+ La)(—p ")+ Lw(p ')

d

=m+(Lc+La+ t%)(—/flcl) +0(p~ 1),
——

=]

=1

and so £ = m + v + 9¢{. By our assumptions on b’ we have o > 0. Let € := min{p,e’} > 0. Notice that
v € Hglft)(b', bye) and (] € Hgkt) (t/,b;€’). We have just taken & and written it as the sum 7y + 4 + 9¢;. We may
now do the same procedure but now with v, which means

E=(m+mn2)+va+0(C + ).

Continuing this process, we are led to an equation of the form
E=(m+ - +un) +vn+0(( + -+ Cy)

where n; € V(V/,b; (i — 1)e), (] € Hglft)(b’, b; (i — e+ ¢'), and vy € N(b,b; Ne). Letting N tend to infinity, we
see that

§=n+o¢
where n:= 32, m; € V(V',5;0) and (' := >0 ¢/ € M(V,b;€’) as desired.

Suppose now that b =V = E5. Let { € N(@',b;0). Let 0 < e < 1. Then £ € N(b —¢,b;0). By the above
argument, there exists 7(9) € V(¥ — €,b;0) and () € M(V — €,b;1 — €) such that & = (9 + 9¢(). Restricting
ourselves to a strictly decreasing sequence of € which tend to zero constructs sequences {77(5)}E C V(p%l, b;0) and
{¢n, c M(}ﬁ, b;0). These two spaces are compact in the topology of coefficientwise convergence, and so the
sequences have accumulation points 1 and (, respectively. By construction, n belongs to each V(b — ¢, b;0) for
every € > 0, which forces n € V(¥',b;0). A similar argument holds for ¢, showing ¢ is an element of M (¥, b;1).

P

This proves the result for the case b’ = b = =

Lastly, suppose b/ = ﬁ. For each N € Z>g, we may write

€= 21: <§:1 Bn,it”> e+ ( i Bn’it"> e,

i n=N+1

Let € > 0. For each 1 <n < N, since b'wy(n) + bwy (i) > (' + m)wl(n) + bwg (i) — €, we see that

N
Z (Z Bmit”) e e NV + o (V) b; —e).

i n=1

Suppose b > b’ + m > ﬁ. It follows from the argument above that there exists () € V(b + W, b; —e)

and <(67N) c M(b/ + ﬁ b7 —e + m) such that

)a
N
Z (Z Bn,itTL) ei = 77(67N) + 8C(E’N),

i n=1

We have just constructed sequences {n(©M}¥_, C V(b',b;—e¢) and {¢(&V)}_, € M(V',b;—e). Since both of
these spaces are compact in the topology of coefficientwise convergence we may restrict ourselves to convergent
subsequences with limits 7() € V(¥ b; —¢) and ¢(9) € M(V,b; —¢) which satisfy

£=n +0¢.
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In the coefficientwise convergence topology, letting ¢ — 0%, there exists n € V(¥/,b;0) and ¢ € M (¥, b;0) such
that
§= lim 7' + ¢ =4 aC.
This finishes the case when b > V' = p . The case when b =¥ = —1 is similar. O
P

Lemma 6.17. Suppose ;= <V < ;P57 and 1/(p—1) <b<p/(p—1). Suppose

V(' b)N LTrﬂ/\/l(b'7 b) = {0}.
Then
V', b) noOM(b,b) = {0}.

Proof. We will first assume £ > b > p—il. Let n € V(¥/,b) N OM(V',b) be non-zero, and let & € M(b',b) be
such that 9¢ = 7. Let ¢ be a real number such that £ € M(V,b;¢) but & & M(b',b;c+ €) for any € > 0. We will

prove that no such c exists, contradicting the existence of a non-zero 7.
Using notation from the proof of Lemma we have 0 = t% + uﬁﬂﬁ + Lo + L4, and so

d
n=08=pl &+t + Lo+ La)g.

=:¢!

Letting € := min{p, e’} > 0, where p comes from , we see that ¢ € M(V,b;¢c — ¢ + ¢€). From Lemma
there exists my € V(V/,b;¢ — e’ +¢€) and 3 € M(V',b; ¢+ €) such that

¢ =m+0G

d
=t Log, (0C) + (o + Lo+ La)Gr -

=:(5
Observe that ¢ € M(V',b;c+ 2¢ —¢'), and
n=L; 1€+ pGr) + G+
Tterating this process, but now starting with ¢}, we are led to the equation
n="L;E+CG+ 4+ )+ g + 4+ 1)

with ¢; € M(b', b; ¢+ ie), (g € MV, b;¢+ (N +1)e —€), and n; € V(b',b;¢ — €' + ie). Hence,

W—Z Ua 7\'ft §+Z<z
i=1

It follows from the hypothesis on £_; that { = — Yoic 1 G € M(Y,b;c + €), contradicting out choice of c.

The result follows for b’ = ﬁ since

V(b)) NOM®D,b) C V(B —€,b) NOM( — e, b) = {0},

where the last equality follows for any € > 0 by the preceding argument. O
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