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Abstract. We prove some improvements of the classical Weil bound for one

variable additive and multiplicative character sums associated to a polynomial
over a finite field k = Fq for two classes of polynomials which are invariant

under a large abelian group of automorphisms of the affine line A1
k: those

invariant under translation by elements of k and those invariant under homo-
theties with ratios in a large subgroup of the multiplicative group of k. In both

cases, we are able to improve the bound by a factor of
√
q over an extension

of k of cardinality sufficiently large compared to the degree of f .

1. Introduction

Let k = Fq be a finite field with q elements. As a consequence Weil’s bound
for the number of rational points on a curve over k, one can obtain estimates for
character sums defined on the affine line A1

k (cf. [6],[17]). Let us describe the precise
results.

Let f ∈ k[x] be a polynomial of degree d and ψ : k → C? a non-trivial additive
character. Consider the sum

∑
x∈k ψ(f(x)) (and, more generally,

∑
x∈kr ψ(Trkr/k(f(x)))

for a finite extension kr of k of degree r). Then, if d is prime to p, we have the
estimate ∣∣∣∣∣∑

x∈kr

ψ(Trkr/k(f(x)))

∣∣∣∣∣ ≤ (d− 1)q
r
2 .

If d is divisible by p, we can reduce to the previous case using the following trick.
Since t 7→ ψ(tp) is a non-trivial additive character, there must be some a ∈ k such
that ψ(tp) = ψ(at) for every t ∈ k. If f(x) = adx

d + ad−1x
d−1 + · · · with d = ep,

let bd ∈ k be such that bpd = ad, then

ψ(Trkr/k(f(x))) = ψ(Trkr/k((bdx
e)p))ψ(Trkr/k(f(x)− adxd)) =

= ψ(Trkr/k(bdx
e)p)ψ(Trkr/k(f(x)−adxd)) = ψ(a·Trkr/k(bdx

e))ψ(Trkr/k(f(x)−adxd)) =

= ψ(Trkr/k(f(x)− adxd + abdx
e)).

We keep reducing the polynomial in this way until we get a polynomial with degree
d′ prime to p. Then we apply the prime to p case and obtain an estimate∣∣∣∣∣∑

x∈kr

ψ(Trkr/k(f(x)))

∣∣∣∣∣ ≤ (d′ − 1)q
r
2 .

except when d′ is zero (that is, when f = c+ gp − ag for some constant c and sone
g ∈ k[x]). If the character ψ is obtained from a character of the prime subfield Fp
by pulling back via the trace map, then a = 1.
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Similarly, if χ : k? → C? is a multiplicative character of order m > 1 and f ∈ k[x]
is not an m-th power, we have an estimate∣∣∣∣∣∑

x∈kr

χ(Nkr/k(f(x)))

∣∣∣∣∣ ≤ (e− 1)q
r
2 ≤ (d− 1)q

r
2

where e is the number of distinct roots of f .
In this article we will improve these estimates for a special class of polynomials:

those which are either translation invariant or homothety invariant, that is, either
f(x + λ) = f(x) for every λ ∈ k or f(λx) = f(x) for every λ ∈ k? (or every λ in
a large subgroup of k?). For such polynomials, there is a large abelian group G of
automorphisms of A1

k such that f ◦ σ = f for every σ ∈ G.
On the level of `-adic cohomology, this gives an action of G on the pull-back by

f of the Artin-Schreier and Kummer sheaves associated to ψ and χ respectively
[1, 1.7], so they induce an action on their cohomology. The character sums can be
expressed as the trace of the geometric kr-Frobenius action on this cohomology, by
Grothendieck’s trace formula. The above estimates are a consequence of the fact
that this action has all eigenvalues of archimedean absolute value ≤ q

r
2 . Precisely,

if Sr =
∑
x∈kr ψ(Trkr/k(f(x))) (respectively Ur =

∑
x∈kr χ(Nkr/k(f(x)))) the L-

functions

L(ψ, f ;T ) := exp
∑
r≥1

Sr
T r

r

and

L(χ, f ;T ) := exp
∑
r≥1

Ur
T r

r

are the polynomials det(1−T ·Frobk|H1
c(A1

k̄
, f?Lψ)) and det(1−T ·Frobk|H1

c(A1
k̄
, f?Lχ)),

of degree d′ − 1 and e− 1 respectively.
Now under the action of the abelian group G, this cohomology splits as a direct

sum of eigenspaces for the different characters of G. Under certain generic condi-
tions, it is natural to expect some cancellation among the traces of the Frobenius
actions on these eigenspaces, thus giving a substantial improvement of Weil’s esti-
mate if G is large (namely by a

√
#G factor). Compare [15], where an improvement

for the Weil estimate for the number of rational points on Artin-Schreier curves was
obtained using the same arguments we apply in this article.

For the translation invariant case (sections 2 ans 3), we obtain this improvement
using the local theory of `-adic Fourier transform [14] and Katz’ computation of the
geometric monodromy groups for some families of exponential sums [7], [9]. The
argument is similar to that in [15]. For the homothety invariant case (sections 4
and 5), we use Weil descent together with certain properties of the convolution of
sheaves on Gm,k.

Throughout this article, k = Fq will be a finite field of characteristic p, k̄ = F̄q a
fixed algebraic closure and kr = Fqr the unique extension of k of degree r in k̄. We
will fix a prime ` 6= p, and work with `-adic cohomology. In order to speak about
weights without ambiguity, we will fix a field isomorphism ι : Q̄` → C. We will use
this isomorphism to identify Q̄` and C without making any further mention to it.
When we speak about weights, we will mean weights with respect to the chosen
isomorphism ι.
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2. Additive character sums for translation invariant polynomials

Let f ∈ k[x] be a polynomial. f is said to be translation invariant if f(x+ a) =
f(x) for every a ∈ k.

Lemma 2.1. Let f ∈ k[x]. The following conditions are equivalent:

(a) f is translation invariant.
(b) There exists g ∈ k[x] such that f(x) = g(xq − x).

Proof. (b) ⇒ (a) is clear. Suppose that f is translation invariant. If the degree
of f is < q, the polynomial f(x) − f(0) has at least q roots (all elements of k)
and degree < q, so it is identically zero. So f is the constant polynomial f(0).
Otherwise, we can write f(x) = (xq − x)h(x) + r(x) with deg(r) < q. For every
a ∈ k we have then f(x+ a) = (xq − x)h(x+ a) + r(x+ a) = (xq − x)h(x) + r(x),
so (xq − x)(h(x + a) − h(x)) = r(x) − r(x + a). Since the right hand side has
degree < q, we conclude that h(x + a) − h(x) = r(x + a) − r(x) = 0. r(x) is then
translation invariant and therefore constant, for its degree is less than q, and h is
also translation invariant of degree deg(f)− q. By induction, there is t ∈ k[x] such
that h(x) = t(xq − x). So we take g(x) = xt(x) + r. �

Let f ∈ k[x] be translation invariant, and g ∈ k[x] of degree d such that
f(x) = g(xq − x). Let ψ : k → Q̄?` be a non-trivial additive character. The Artin-
Scheier-reduced degree of f (i.e. the lowest degree of a polynomial which is Artin-
Schreier equivalent to f) is q(d− 1) + 1 (since g(xq − x) = adx

qd + dadx
q(d−1)+1 +

(terms of degree ≤ q(d − 1))). Therefore the Weil bound for exponential sums
gives ∣∣∣∣∣∑

x∈kr

ψ(Trkr/k(f(x)))

∣∣∣∣∣ ≤ q(d− 1)q
r
2 = (d− 1)q

r
2 +1

On the other hand, since f(x) = g(xq − x) we get, for every r ≥ 1,∑
x∈kr

ψ(Trkr/k(f(x))) =
∑
x∈kr

ψ(Trkr/k(g(xq − x))) =

=
∑
t∈kr

#{x ∈ kr|xq − x = t}ψ(Trkr/k(g(t))) =

=
∑
t∈kr

∑
u∈k

ψ(uTrkr/k(t))ψ(Trkr/k(g(t))) =
∑
u∈k

∑
t∈kr

ψ(Trkr/k(g(t) + ut)).

Consider the Q̄`-sheaf Lψ(g) := g?Lψ on A1
k, where Lψ is the Artin-Schreier sheaf

associated to ψ. The Fourier transform of the object Lψ(g)[1] with respect to ψ [13]
is a single sheaf Fg placed in degree −1. The sheaf Fg is irreducible and smooth

of rank d− 1 on A1
k, and totally wild at infinity with a single slope d

d−1 and Swan

conductor d [7, Theorem 17]. We have∑
x∈kr

ψ(Trkr/k(f(x))) =
∑
x∈kr

ψ(Trkr/k(g(xq − x))) =
∑
u∈k

∑
t∈kr

ψ(Trkr/k(g(t) + ut)) =

(1) = −
∑
u∈k

Tr(Frobrk,u|(Fg)u) = −
∑
u∈k

Tr(Frobk,u|[Fg]ru)

where [Fg]r is the r-th Adams power of Fg [4].
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Let g(x) =
∑d
i=0 aix

i. Recall the following facts about the local and global
monodromies of the sheaf Fg:

(1) Suppose that p > d and k contains all 2(d−1)-th roots of −dad. Let u(t) =∑
i≥0 rit

1−i ∈ tk[[t−1]] be a power series such that f ′(t) + u(t)d−1 = 0 and

let v(t) =
∑
i≥0 sit

1−i be the inverse image of t under the automorphism

k((t−1)) → k((t−1)) defined by t−1 7→ u(t)−1 (cf. [3, Proposition 3.1]).

Let h(t) =
∑d
i=0 bit

i be the polynomial obtained from f(v(t)) + v(t)td−1 ∈
tdk[[t−1]] by removing the terms with negative exponent. Then, as a rep-
resentation of the decomposition group D∞ at infinity, we have

Fg ∼= [d− 1]?(Lψ(h(t)) ⊗ Lρd(s0t))⊗ ρ(d(d− 1)ad/2)deg ⊗ g(ρ, ψ)deg

where ρ : k? → Q̄?` is the quadratic character, g(ρ, ψ) = −
∑
t∈k ρ(t)ψ(t)

the corresponding Gauss sum and [d − 1]? : Gm,k → Gm,k the (d − 1)-th

power map [5, Equation 3]. Notice that sd−1
0 = −1/dad.

(2) Suppose that p > 2, and let G ⊆ GL(V ) be the geometric monodromy
group of Fg, where V is its stalk at a geometric generic point. Then by
[16, Propositions 11.1 and 11.6], either G is finite or G0 (the unit connected
component of G) is SL(V ) or Sp(V ) in its standard representation. By [7,
proof of Theorem 19], for p > d the Sp case occurs if and only if g(x+c)+d
is odd for some c, d ∈ k. Moreover for p > 2d − 1 G is never finite by [7,
Theorem 19]. See [5, Section 2] for some other criterions that rule out the
finite monodromy case in the p ≤ 2d− 1 case.

The determinant of Fg is computed over k̄ in [7, Theorem 17]. In order to obtain
a good estimate in the exceptional case below, we need to find its value over k.

Lemma 2.2. Suppose that p > d and k contains all 2(d − 1)-th roots of −dad.
Then

detFg ∼= Lψ((d−1)bd−1t+(d−1)b0)⊗ρd(−1)deg⊗ρd−1(d(d−1)ad/2)deg⊗(g(ρ, ψ)d−1)deg

Proof. Note that the result is compatible with [7, Theorem 17], since bd−1 =

ad−1s
d−1
0 = ad−1/r

d−1
0 = −ad−1/dad as one can easily check.

Let Dd−1
∞ ⊆ D∞ be the closed subgroup of index d− 1 which fixes 1/td−1. Since

k contains all (d − 1)-th roots of unity, Dd−1
∞ is normal in D∞ and the quotient

D∞/D
d−1
∞ is generated by t 7→ ζt, where ζ ∈ k is a primitive (d − 1)-th root of

unity. Using the previous description of the representation of D∞ given by Fg, we
get an isomorphism of Dd−1

∞ -representations

[d− 1]?Fg ∼=

∼=

(
d−2⊕
i=0

(t 7→ ζit)?Lψ(h(t)) ⊗ Lρd(s0t)

)
⊗ ρ(d(d− 1)ad/2)deg ⊗ g(ρ, ψ)deg ∼=

∼=

(
d−2⊕
i=0

Lψ(h(ζit)) ⊗ Lρd(s0ζit)

)
⊗ ρ(d(d− 1)ad/2)deg ⊗ g(ρ, ψ)deg

so

[d− 1]? detFg ∼= det[d− 1]?Fg ∼=

∼=

(
d−2⊗
i=0

Lψ(h(ζit)) ⊗ Lρd(s0ζit)

)
⊗ ρd−1(d(d− 1)ad/2)deg ⊗ (g(ρ, ψ)d−1)deg ∼=
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∼= Lψ(
∑d−2
i=0 h(ζit)) ⊗ Lρd(

∏d−2
i=0 (s0ζit))

⊗ ρd−1(d(d− 1)ad/2)deg ⊗ (g(ρ, ψ)d−1)deg ∼=
∼= Lψ((d−1)bd−1td−1+(d−1)b0)⊗Lρd((−1)d(s0t)d−1)⊗ρd−1(d(d−1)ad/2)deg⊗(g(ρ, ψ)d−1)deg ∼=
∼= Lψ((d−1)bd−1td−1+(d−1)b0)⊗Lρd(d−1)(−s0t)⊗ρ

d(−1)deg⊗ρd−1(d(d−1)ad/2)deg⊗(g(ρ, ψ)d−1)deg ∼=
∼= Lψ((d−1)bd−1td−1+(d−1)b0) ⊗ ρd(−1)deg ⊗ ρd−1(d(d− 1)ad/2)deg ⊗ (g(ρ, ψ)d−1)deg

since
∑d−2
i=0 (ζj)i = 0 for (d− 1) 6 |j, d(d− 1) is even and

∏d−2
i=0 ζ

i = (−1)d.
In particular, [d− 1]?(detFg) and

[d− 1]?Lψ((d−1)bd−1t+(d−1)b0)⊗ ρd(−1)deg ⊗ ρd−1(d(d− 1)ad/2)deg ⊗ (g(ρ, ψ)d−1)deg

are isomorphic characters of Dd−1
∞ , so there is some character χ : k? → Q̄?` with

χd−1 = 1 such that

detFg ∼= Lχ⊗Lψ((d−1)bd−1t+(d−1)b0)⊗ρd(−1)deg⊗ρd−1(d(d−1)ad/2)deg⊗(g(ρ, ψ)d−1)deg

as representations of D∞. But then

̂(detFg)⊗Lχ⊗Lψ((d−1)bd−1t+(d−1)b0)⊗ρd(−1)deg⊗ρd−1(d(d−1)ad/2)deg⊗(g(ρ, ψ)d−1)deg

is a rank 1 smooth sheaf on Gm,k, tamely ramified at 0 and unramified at infinity,
so it must be geometrically trivial, that is, χ is trivial (since everything else is
unramified at 0). Moreover, since the Frobenius action is trivial at infinity it must
be the trivial sheaf. Therefore

detFg ∼= Lψ((d−1)bd−1t+(d−1)b0)⊗ρd(−1)deg⊗ρd−1(d(d−1)ad/2)deg⊗(g(ρ, ψ)d−1)deg

as sheaves on A1
k. �

Proposition 2.3. Suppose that p > d, the sheaf Fg does not have finite monodromy
(e.g. p > 2d− 1) and there do not exist c, d ∈ k such that g(x+ c) + d is odd. Then
we have an estimate ∣∣∣∣∣∑

x∈kr

ψ(Trkr/k(f(x)))

∣∣∣∣∣ ≤ Cd,rq r+1
2

where

Cd,r =
1

d− 1

d−1∑
i=0

|i− 1|
(
d− 2 + r − i

r − i

)(
d− 1

i

)
unless ad−1 = 0 and r = d− 1, in which case there is an estimate∣∣∣∣∣∑
x∈kr

ψ(Trkr/k(f(x)))− (−1)d−1q · ρd(−1)(ψ(b0)ρ(d(d− 1)ad/2)g(ρ, ψ))d−1

∣∣∣∣∣ < Cd,rq
r+1
2 .

Proof. By [4, Section 1], we have∑
x∈kr

ψ(Trkr/k(f(x))) = −
∑
u∈k

Tr(Frobk,u|[Fg]ru) =

=

r∑
i=0

(−1)i−1(i− 1)Tr(Frobk,H
1
c(A1

k̄,Symr−iFg ⊗ ∧iFg))−

−
r∑
i=0

(−1)i−1(i− 1)Tr(Frobk,H
2
c(A1

k̄,Symr−iFg ⊗ ∧iFg)).

Let G ⊆ GL(V ) be the geometric monodromy group of Fg. Under the hypotheses
of the proposition, the unit connected component of G is SL(V ), so G is the inverse
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image of its image by the determinant. By lemma 2.2, G is SL(V ) if bd−1 = 0 (if
and only if ad−1 = 0) and GLp(V ) = µp · SL(V ) (since p > d, so p does not divide
d− 1) if bd−1 6= 0.

For every i, the dimension of H2
c(A1

k̄
,Symr−iFg ⊗ ∧iFg) is the dimension of the

coinvariant (or the invariant) space of the action of G on Symr−iV ⊗ ∧iV . By
[15, Corollary 4.2], the action of SL(V ) ⊆ G on Symr−iV ⊗ ∧iV has no invariants
unless r = d − 1 and i = r, r − 1, in which case the invariant space Wi is one-
dimensional. If ad−1 6= 0, a generator ζp of the quotient G/SL(V ) ∼= µp acts on Wi

via multiplication by ζd−1
p , which can not be trivial since p > d. So the action of

G has no invariants on Symr−iV ⊗ ∧iV for any i if ad−1 6= 0.
In that case, since H1

c(A1
k̄
,Symr−iFg ⊗∧iFg) is mixed of weights ≤ r+ 1 we get∣∣∣∣∣∑

x∈kr

ψ(Trkr/k(f(x)))

∣∣∣∣∣ ≤
r∑
i=0

|i− 1|dim H1
c(A1

k̄,Symr−iFg ⊗ ∧iFg) · q
r+1
2 .

Moreover, by the Ogg-Shafarevic formula we have

dim H1
c(A1

k̄,Symr−iFg ⊗ ∧iFg) = −χ(A1
k̄,Symr−iFg ⊗ ∧iFg) =

= Swan∞(Symr−iFg ⊗ ∧iFg)− rank(Symr−iFg ⊗ ∧iFg) ≤

≤ 1

d− 1
rank(Symr−iFg ⊗ ∧iFg) =

1

d− 1

(
d− 2 + r − i

r − i

)(
d− 1

i

)
since all slopes at infinity of Fg (and a fortiori of Symr−iFg ⊗ ∧iFg) are ≤ d

d−1 .

Suppose now that ad−1 = 0 and r = d− 1. As in [15, Corollary 4.2], we have

r∑
i=0

(−1)i−1(i− 1)Tr(Frobk,H
2
c(A1

k̄,Symr−iFg ⊗ ∧iFg)) =

= (−1)r(r − 2)Tr(Frobk,H
2
c(A1

k̄,Sym1Fg ⊗ ∧r−1Fg))+

+(−1)r−1(r − 1)Tr(Frobk,H
2
c(A1

k̄,∧
rFg)) =

= (−1)r−1Tr(Frobk,H
2
c(A1

k̄,detFg)) =

= (−1)dq · ψ((d− 1)b0)ρd(−1)ρd−1(d(d− 1)ad/2)g(ρ, ψ)d−1 =

= (−1)dq · ρd(−1)(ψ(b0)ρ(d(d− 1)ad/2)g(ρ, ψ))d−1

by lemma 2.2. We conclude as above using the fact that, for the two values of i for
which H2

c(A1
k̄
,Symr−iFg ⊗ ∧iFg) is one-dimensional, the sheaf Symr−iFg ⊗ ∧iFg

has at least one slope equal to 0 at infinity, so

dim H1
c(A1

k̄,Symr−iFg ⊗ ∧iFg) = 1− χ(A1
k̄,Symr−iFg ⊗ ∧iFg) =

= 1 + Swan∞(Symr−iFg ⊗ ∧iFg)− rank(Symr−iFg ⊗ ∧iFg) ≤

≤ 1 +
d

d− 1
(rank(Symr−iFg ⊗ ∧iFg)− 1)− rank(Symr−iFg ⊗ ∧iFg) <

<
1

d− 1
rank(Symr−iFg ⊗ ∧iFg) =

1

d− 1

(
d− 2 + r − i

r − i

)(
d− 1

i

)
.

�
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Proposition 2.4. Suppose that p > d, the sheaf Fg does not have finite monodromy
(e.g. p > 2d − 1) and there exist α, β ∈ k such that g(x + α) + β is odd (so d is
odd). Then we have an estimate∣∣∣∣∣∑

x∈kr

ψ(Trkr/k(f(x)))

∣∣∣∣∣ ≤ Cd,rq r+1
2

where

Cd,r =
1

d− 1

d−1∑
i=0

|i− 1|
(
d− 2 + r − i

r − i

)(
d− 1

i

)
unless ad−1 = 0 and r ≤ d− 1 is even, in which case there is an estimate∣∣∣∣∣∑

x∈kr

ψ(Trkr/k(f(x)))− (−1)rψ(−β)rq
r
2 +1

∣∣∣∣∣ < Cd,rq
r+1
2 .

Proof. The proof is similar to the previous one. In this case, the unit connected
component of G is Sp(V ), so by lemma 2.2 G is Sp(V ) if bd−1 = 0 (if and only if
ad−1 = 0) and µp · SL(V ) (since p > d, so p does not divide d− 1) if bd−1 6= 0.

By [10, lemma on p.62], the action of Sp(V ) ⊆ G on Symr−iV ⊗ ∧iV has no
invariants unless r ≤ d−1 is even and i = r, r−1, in which case the invariant space
Wi is one-dimensional. If ad−1 6= 0, a generator ζp of the quotient G/Sp(V ) ∼= µp
acts on Wi via multiplication by ζd−1

p , which can not be trivial since p > d. So the

action of G has no invariants on Symr−iV ⊗∧iV for any i if ad−1 6= 0. We conclude
this case as in the previous proposition.

Suppose now that ad−1 = 0, r ≤ d − 1 is even and i = r or r − 1. Since the
coefficient of xd−1 in g(x) is 0, the coefficient in g(x + α) + β is dadα, so it can
only be an odd polynomial if α = 0. That is, g(x) + β is odd, or equivalently,
g(−x) = −2β− g(x). Then the sheaf ψ(β)deg ⊗Fg(1/2) is self-dual: since the dual
of Lψ(g) is Lψ(−g)(1), using that D ◦ FTψ = [−1]?FTψ ◦D(1) [13, Corollaire 2.1.5]

we get that the dual of Fg = H−1(FTψ(Lψ(g)[1])) is

[−1]?H−1(FTψLψ(−g)(1)) = [−1]?F−g(1) = [−1]?F2β+g(−x)(1) = ψ(2β)deg ⊗Fg(1)

so ψ(β)deg ⊗ Fg(1/2) is self-dual (symplectically, since it is so geometrically by
[7, Theorem 19]). In particular, the one-dimensional Sp(V )-invariant subspace of
(Symr−iFg ⊗ ∧iFg)⊗ ψ(β)r·deg(r/2) is also invariant under all Frobenii. So Wi is
in fact the geometrically constant sheaf ψ(−β)r·deg(−r/2). In particular

r∑
i=0

(−1)i−1(i− 1)Tr(Frobk,H
2
c(A1

k̄,Symr−iFg ⊗ ∧iFg)) =

= (−1)r(r − 2)Tr(Frobk,H
2
c(A1

k̄,Sym1Fg ⊗ ∧r−1Fg))+

+(−1)r−1(r − 1)Tr(Frobk,H
2
c(A1

k̄,∧
rFg)) =

= (−1)r−1Tr(Frobk,H
2
c(A1

k̄, ψ(−β)r·deg(−r/2))) = (−1)r−1ψ(−β)rq
r
2 +1.

We conclude as in the previous proposition. �
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3. Multiplicative character sums for translation invariant
polynomials

Let f ∈ k[x] be translation invariant, and g ∈ k[x] of degree d such that f(x) =
g(xq − x). Let χ : k? → Q̄?` a non-trivial multiplicative character of order m,
extended by zero to all of k. Since f has degree qd, Weil’s bound gives in this case∣∣∣∣∣∑

x∈kr

χ(Nkr/k(f(x)))

∣∣∣∣∣ ≤ (qd− 1)q
r
2 .

On the other hand we have, for every r ≥ 1,∑
x∈kr

χ(Nkr/k(f(x))) =
∑
x∈kr

χ(Nkr/k(g(xq − x))) =

=
∑
t∈kr

#{x ∈ kr|xq − x = t}χ(Nkr/k(g(t))) =

=
∑
t∈kr

∑
u∈k

ψ(uTrkr/k(t))χ(Nkr/k(g(t))) =
∑
u∈k

∑
t∈kr

ψ(uTrkr/k(t))χ(Nkr/k(g(t))).

Consider the Q̄`-sheaf Lχ(g) := g?Lχ on A1
k, where Lχ is the Kummer sheaf on

Gm,k associated to χ [1, 1.7], extended by zero to A1
k. Suppose that g is square-free

and its degree d is prime to p. Then Lχ(g) is an irreducible middle extension sheaf,

smooth on the complement of the subscheme Z ⊆ A1
k defined by g = 0. Since there

is at least one point where it is not smooth, it is not isomorphic to an Artin-Schreier
sheaf and therefore the Fourier transform of Lχ(g)[1] is a single irreducible middle
extension sheaf Fg placed in degree −1 [8, 8.2]. We have∑
x∈kr

χ(Nkr/k(f(x))) =
∑
x∈kr

χ(Nkr/k(g(xq−x))) =
∑
u∈k

∑
t∈kr

ψ(uTrkr/k(t))χ(Nkr/k(g(t))) =

(2) = −
∑
u∈k

Tr(Frobrk,u|(Fg)u) = −
∑
u∈k

Tr(Frobk,u|[Fg]ru)

where [Fg]r is the r-th Adams power of Fg.

Proposition 3.1. The sheaf Fg has generic rank d, it is smooth on Gm,k and
tamely ramified at 0. Its rank at 0 is d − 1. If all roots of g are in k, the action
of the decomposition group D∞ on the generic stalk of Fg splits as a direct sum⊕

a χ(g′(a))deg ⊗ g(χ, ψ)deg ⊗ Lχ̄ ⊗ Lψa where the sum is taken over the roots of
f , Lψa is the Artin-Schreier sheaf corresponding to the character t 7→ ψ(at) and
g(χ, ψ) = −

∑
t χ(t)ψ(t) if the Gauss sum.

Proof. The generic rank of Fg is the dimension of H1
c(A1

k̄
,Lχ(g) ⊗ Lψz ) for generic

z. Since Lχ(g) is tamely ramified everywhere and has rank one, for any z 6= 0

Lχ(g)⊗Lψz is tamely ramified at every point of A1
k̄

and totally wild at infinity with

Swan conductor 1. In particular its Hi
c vanish for i 6= 1. By the Ogg-Shafarevic

formula, its Euler characteristic is then 1− d− 1 = −d, since there are d points in
A1
k̄

where the stalk is zero. Therefore dim H1
c(A1

k̄
,Lχ(g) ⊗Lψz ) = d for every z 6= 0.

Similarly, it is d− 1 for z = 0. Since Fg is a middle extension, it is smooth exactly
on the open set where the rank is maximal, so it is smooth on Gm,k. It is tamely
ramified at zero, since Lχ(g) is tamely ramified at infinity [14, Théorème 2.4.3].

Suppose now that all roots of g are in k, and let a be one such root. In an étale
neighborhood of a, the sheaf Lχ(g) is isomorphic to Lχ(g′(a)(x−a)) = χ(g′(a))deg ⊗
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Lχ(x−a), since g(x) = g′(a)(x − a) g(x)
g′(a)(x−a) and g(x)

g′(a)(x−a) is an m-th power in

the henselization of A1
k at a (since its image in the residue field is 1). Applying

Laumon’s local Fourier transform [14, Proposition 2.5.3.1] and using that Fourier
transform commutes with tensoring by unramified sheaves, we deduce that the

D∞-representation Fg contains (LFT
(0,∞)
ψ χ(g′(a))deg ⊗Lχ)⊗Lψa = χ(g′(a))deg ⊗

g(χ, ψ)deg ⊗Lχ̄⊗Lψa as a direct summand. Since g has d distinct roots we obtain
d different terms this way, which is the rank of Fg, so its monodromy at ∞ is the
direct sum of these terms. �

Define by induction the sequence of polynomials gn[x] ∈ k[x] for n ≥ 1 by:
g1(x) = g(x), and for n ≥ 1 gn+1(x) is the resultant in t of gn(t) and g(x− t).

Corollary 3.2. Suppose that either m does not divide r or gr(0) 6= 0. Then we
have an estimate ∣∣∣∣∣∑

x∈kr

χ(Nkr/k(f(x)))

∣∣∣∣∣ ≤ Cd,rq r+1
2

where

Cd,r =

r∑
i=0

|i− 1|
((

d− 1 + r − i
r − i

)(
d

i

)
−
(
d− 2 + r − i

r − i

)(
d− 1

i

))
.

Proof. By the previous proposition, the action of the inertia group I∞ on F⊗rg splits
as a direct sum over the r-uples of roots of f⊕

(a1,...,ar)

L⊗rχ̄ ⊗ Lψa1 ⊗ · · · ⊗ Lψar =
⊕

(a1,...,ar)

L⊗rχ̄ ⊗ Lψa1+···+ar
.

For each (a1, . . . , ar), the character L⊗rχ̄ ⊗Lψa1+···+ar
is trivial if and only if both

L⊗rχ̄ and Lψa1+···+ar
are trivial, that is, if and only if m divides r and a1 + · · · +

ar = 0. Under the hypotheses of the corollary, at least one of these conditions
does not hold (since the sums a1 + · · · + ar are the roots of gr). So F⊗rg has no
invariants under the action of I∞ and, a fortiori, under the action of the larger
group π1(Gm,k̄, η̄). Since Symr−iFg ⊗ ∧iFg is a subsheaf of F⊗rg for every i, we

conclude that H2
c(A1

k̄
,Symr−iFg ⊗ ∧iFg) = 0 for every i = 0, . . . , r. Therefore∑

x∈kr

χ(Nkr/k(f(x))) = −
∑
u∈k

Tr(Frobk,u|[Fg]ru) =

=

r∑
i=0

(−1)i−1(i− 1)Tr(Frobk,H
1
c(A1

k̄,Symr−iFg ⊗ ∧iFg)).

Since H1
c(A1

k̄
,Symr−iFg ⊗ ∧iFg) is mixed of weights ≤ r + 1, we get∣∣∣∣∣∑

x∈kr

χ(Nkr/k(f(x)))

∣∣∣∣∣ ≤
r∑
i=0

|i− 1|dim H1
c(A1

k̄,Symr−iFg ⊗ ∧iFg) · q
r+1
2 .

And by the Ogg-Shafarevic formula, we have

dim H1
c(A1

k̄,Symr−iFg ⊗ ∧iFg) = −χ(A1
k̄,Symr−iFg ⊗ ∧iFg) =

= Swan∞(Symr−iFg ⊗ ∧iFg)− rank0(Symr−iFg ⊗ ∧iFg) ≤

≤
(
d− 1 + r − i

r − i

)(
d

i

)
−
(
d− 2 + r − i

r − i

)(
d− 1

i

)
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by the previous proposition, since Fg is smooth on Gm,k, tamely ramified at 0 and

all its slopes at infinity (and thus all slopes of of Symr−iFg ⊗ ∧iFg) are ≤ 1.
�

Corollary 3.3. If all roots of g(x) =
∑d
i=0 aix

i are in k, the determinant of Fg is

χ((−1)d(d−1)/2a
−(d−2)
d disc(g))deg ⊗ (g(χ, ψ)d)deg ⊗ Lχ̄d ⊗ Lψ−ad−1/ad

.

Proof. By proposition 3.1, the action of D∞ on the determinant of Fg is given by

G :=
⊗
a

χ(g′(a))deg⊗g(χ, ψ)deg⊗Lχ̄⊗Lψa = χ(
∏
a

g′(a))deg⊗(g(χ, ψ)d)deg⊗Lχ̄d⊗Lψ∑
a

where the product is taken over the roots of g. Now
∑
a = −ad−1/ad, and∏

a

g′(a) =
∏
a

ad
∏

g(b)=0,b6=a

(b− a) =

= add
∏

g(a)=g(b)=0,a 6=b

(a− b) = (−1)d(d−1)/2a
−(d−2)
d disc(g).

Therefore det(Fg)⊗Ĝ is smooth on Gm,k, tamely ramified at zero and unramified
at infinity, so it is geometrically constant. Looking at the Frobenius action at 0, it
must be the constant sheaf Q̄`. We conclude that det(Fg) ∼= G. �

Proposition 3.4. Let h(x) = g(x − ad−1

dad
). Suppose that p > 2d + 1 and h is not

odd (for d odd) or even (for d even). Then the geometric monodromy group G of
Fg is GLsp(V ) if ad−1 6= 0 and GLs(V ) if ad−1 = 0, where V is the geometric
generic stalk of Fg and s is the order of χd.

Proof. Since Lχ(g) is the translate of Lχ(h) by a := ad−1

dad
, we have Fg = Fh ⊗ Lψa .

If G (respectively G′) is the geometric monodromy group of Fg (resp. Fh), we have
then G ⊆ µp · G′ and G′ ⊆ µp · G. In particular, the unit connected components
G0 and G′0 are the same. Since Fg is pure, G0 is a semisimple group [2, Corollaire
1.3.9], so by [9, Theorem 7.6.3.1], Fg is Lie-irreducible and G0 is one of SL(V ),
Sp(V ) (only possible if χd = 1) or SO(V ) (only possible if χd has order 2). We will
see that, under the given hypotheses, the last two options are not possible.

By corollary 3.3, the determinant of Fh is geometrically isomorphic to Lχ̄d . By
[7, Proposition 6], the factor group G′/G′0 is cyclic of finite prime to p order. In
particular, there exists some prime to p integer e such that the geometric mon-
odromy group of the pull-back [e]?Fh is in G′0, where [e] : Gm,k → Gm,k is the
e-th power map. If G′0 = Sp(V ) or SO(V ), [e]?Fh would then be geometrically
self-dual. By proposition 3.1, its restriction to the inertia group I∞ is the direct
sum of [e]?Lψb ⊗ Lχ̄e taken over the roots b of h. Its dual is then the direct sum
on [e]?Lψ−b ⊗ Lχe . Given that the dual of [e]?Lψb is [e]?Lψ−b , in order for this to
be self-dual as a representation of I∞ a necessary condition is that the set of roots
of h is symmetric with respect to 0, that is, that h is either even or odd (since it is
a priori square-free).

So, if h is neither even nor odd, G0 is SL(V ). Then G is SLn(V ), where n is
the geometric order of the determinant of Fg. By corollary 3.3, this order is sp if
ad−1 6= 0 and s if ad−1 = 0. �
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Corollary 3.5. Let h(x) = g(x− ad−1

dad
). Suppose that p > 2d+ 1 and h is not odd

(for d odd) or even (for d even). Then we have an estimate∣∣∣∣∣∑
x∈kr

χ(Nkr/k(f(x)))

∣∣∣∣∣ ≤ Cd,rq r+1
2

where

Cd,r =

r∑
i=0

|i− 1|
((

d− 1 + r − i
r − i

)(
d

i

)
−
(
d− 2 + r − i

r − i

)(
d− 1

i

))
unless r = d, χd is trivial and ad−1 = 0, in which case there exists an `-adic unit

β ∈ Q̄` with |β| = q
d
2 such that∣∣∣∣∣∑
x∈kr

χ(Nkr/k(f(x)))− (−1)dqβ

∣∣∣∣∣ ≤ Cd,rq r+1
2 .

If k contains all roots of g, then β = χ((−1)d(d−1)/2a
−(d−2)
d disc(g))g(χ, ψ)d.

Proof. By the previous proposition, the monodromy group G of Fg is GLsp(V ) if
ad−1 6= 0 and GLs(V ) if ad−1 = 0. We proceed as in the proof of proposition 2.3:
G0 has no invariants on Symr−iV ⊗ ∧iV unless r = d and i = r, r − 1, in which
case the invariant space is one-dimensional and G acts on it via multiplication by
the determinant. So the action of G does not have invariants unless ad−1 = 0 and
χd is trivial (i.e. m|d) by corollary 3.3. In that case we obtain the estimate as in
2.3, using the value for Cd,r computed in corollary 3.2.

In the exceptional case, we have again

r∑
i=0

(−1)i−1(i− 1)Tr(Frobk,H
2
c(A1

k̄,Symr−iFg ⊗ ∧iFg)) =

= (−1)r−1Tr(Frobk,H
2
c(A1

k̄,detFg)).

Now detFg is geometrically constant of weight d, so there exists an `-adic unit

β with |β| = 1 such that detFg = (βq
d
2 )deg. Then Tr(Frobk,H

2
c(A1

k̄
,detFg)) =

βq
d
2 +1. If k contains all roots of g, the value of β is given in corollary 3.3.

We conclude as in proposition 2.3 using that, for the two values of i for which
H2
c(A1

k̄
,Symr−iFg ⊗ ∧iFg) is one-dimensional, the sheaf Symr−iFg ⊗ ∧iFg has at

least one slope equal to 0 at infinity, so

dim H1
c(A1

k̄,Symr−iFg ⊗ ∧iFg) = 1− χ(A1
k̄,Symr−iFg ⊗ ∧iFg) =

= 1 + Swan∞(Symr−iFg ⊗ ∧iFg)− rank0(Symr−iFg ⊗ ∧iFg) ≤

≤ gen.rank(Symr−iFg ⊗ ∧iFg)− rank0(Symr−iFg ⊗ ∧iFg) =

=

(
d− 1 + r − i

r − i

)(
d

i

)
−
(
d− 2 + r − i

r − i

)(
d− 1

i

)
.

�
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4. Additive character sums for homothety invariant polynomials

Let f ∈ kr[x] be a polynomial and e|q− 1 an integer. Let Γe ⊆ k? be the unique
subgroup of k? of index e. We say that f is Γe-homothety invariant if f(λx) = f(x)
for every λ ∈ Γe. Equivalently, if f(λex) = f(x) for every λ ∈ k?. An argument
similar to that in lemma 2.1 shows

Lemma 4.1. Let f ∈ kr[x] and e|q − 1. The following conditions are equivalent:

(a) f is Γe-homothety invariant.

(b) There exists g ∈ kr[x] such that f(x) = g(x
q−1
e ).

Let f ∈ kr[x] be Γe-homothety invariant, g ∈ kr[x] of degree d such that f(x) =

g(x
q−1
e ) and ψ : k → Q̄?` a non-trivial additive character. Weil’s bound gives in this

case ∣∣∣∣∣∑
x∈kr

ψ(Trkr/k(f(x)))

∣∣∣∣∣ ≤
(
d(q − 1)

e
− 1

)
q
r
2 .

On the other hand,∑
x∈kr

ψ(Trkr/k(f(x))) = ψ(Trkr/k(f(0))) +
∑
x∈k?r

ψ(Trkr/k(g(x
q−1
e ))) =

= ψ(Trkr/k(f(0))) +
q − 1

e

∑
Nkr/k(x)e=1

ψ(Trkr/k(g(x))) =

(3) = ψ(Trkr/k(f(0))) +
q − 1

e

∑
µe=1

∑
Nkr/k(x)=µ

ψ(Trkr/k(g(x))).

For each µ, we will estimate the sum
∑

Nkr/k(x)=µ ψ(Trkr/k(g(x))) using Weil de-

scent. Fix a basis {α1, . . . , αr} of kr over k, and let P (x1, . . . , xr) =
∏
σ(σ(α1)x1 +

· · · + σ(αr)xr), where the product is taken over all σ ∈ Gal(kr/k). Since P is
Gal(kr/k)-invariant, its coefficients are in k. By construction, for every (x1, . . . , xr) ∈
kr we have P (x1, . . . , xr) = Nkr/k(α1x1 + · · ·+ αrxr). Therefore∑

Nkr/k(x)=µ

ψ(Trkr/k(g(x))) =
∑

P (x1,...,xr)=µ

ψ(Trkr/k(g(α1x1 + · · ·+ αrxr)) =

=
∑

P (x1,...,xr)=µ

ψ

(∑
σ

gσ(σ(α1)x1 + · · ·+ σ(αr)xr)

)
where gσ is the polynomial obtained by applying σ to the coefficients of g, and the
sum is taken over all r-tuples (x1, . . . , xr) ∈ kr such that P (x1, . . . , xr) = µ. By
Grothendieck’s trace formula, we get

(4)
∑

Nkr/k(x)=µ

ψ(Trkr/k(g(x))) =

2r−2∑
i=0

Tr(Frobk|Hi
c(Vµ ⊗ k̄,Lψ(G)))

where Vµ is the hypersurface defined in Ark by the equation P (x1, . . . , xr) = µ and
G =

∑
σ g

σ(σ(α1)x1 + · · ·+ σ(αr)xr) ∈ k[x] (since it is Gal(kr/k)-invariant).

Proposition 4.2. Suppose that g has degree d prime to p. For any µ ∈ k?, Hi
c(Vµ⊗

k̄,Lψ(G)) = 0 for i 6= r − 1 and dim Hr−1
c (Vµ ⊗ k̄,Lψ(G)) = rdr−1.
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Proof. Over kr, the map (x1, . . . , xr) 7→ (σ(α1)x1 + · · · + σ(αr)xr)σ∈Gal(kr/k) is

a (linear) isomorphism between Arkr and AGal(kr/k)
kr

. The pull-back of P under

this automorphism is just x1 · · ·xr. So Vµ ⊗ k̄ is isomorphic to the hypersurface
x1 · · ·xr = µ, and the sheaf Lψ(G) corresponds under this isomorphism to the sheaf
Lψ(

∑
σ g

σ(xσ)) = �σLψ(gσ) where Lψ(gσ) is the pull-back of the Artin-Schreier sheaf
Lψ by gσ.

For every σ ∈ Gal(kr/k), the sheaf Lψ(gσ) is smooth on A1
k̄

of rank one, with
slope d at infinity. [8, Theorem 5.1] shows that the class of objects of the form G[1]
where G is a smooth Q̄`-sheaf on Gm,k̄, tamely ramified at 0 and totally wild at

infinity is invariant under convolution. In particular, if m : GGal(kr/k)

m,k̄
→ Gm,k̄ is

the multiplication map, Rim!(�σLψ(gσ)) = 0 for i 6= r − 1 and Rr−1m!(�σLψ(gσ))

is smooth on Gm,k̄ of rank rdr−1, tamely ramified at 0 and totally wild at infinity
with Swan conductor dr [8, Theorem 5.1(4,5)]. Taking the fibre at µ proves the
proposition using proper base change. �

Corollary 4.3. Suppose that g has degree d prime to p. Then∣∣∣∣∣∣
∑
x∈k?r

ψ(Trkr/k(f(x)))

∣∣∣∣∣∣ ≤ rdr−1(q − 1)q
r−1
2

Proof. Since Lψ(G) is pure of weight 0, Hr−1
c (Vµ ⊗ k̄,Lψ(G)) is mixed of weights

≤ r − 1 for every µ (in fact it is pure of weight r − 1 by [8, Theorem 5.1(7)]). So
the previous proposition together with (4) implies∣∣∣∣∣∣

∑
Nkr/k(x)=µ

ψ(Trkr/k(g(x)))

∣∣∣∣∣∣ ≤ rdr−1q
r−1
2

for every µ ∈ k?. We conclude by using (3). �

5. Multiplicative character sums for homothety invariant
polynomials

Let e|q − 1 an integer and f(x) = g(x
q−1
e ) ∈ kr[x] Γe-homothety invariant as in

the previous section. Let d = deg(g) and χ : k? → Q̄?` a non-trivial multiplicative
characer of order m. Weil’s bound gives∣∣∣∣∣∑

x∈kr

χ(Nkr/k(f(x)))

∣∣∣∣∣ ≤
(
d(q − 1)

e
− 1

)
q
r
2

if g is not an m-th power. On the other hand, we have∑
x∈kr

χ(Nkr/k(f(x))) = χ(Nkr/k(f(0))) +
∑
x∈k?r

χ(Nkr/k(g(x
q−1
e ))) =

= χ(Nkr/k(f(0))) +
q − 1

e

∑
Nkr/k(x)e=1

χ(Nkr/k(g(x))) =

(5) = χ(Nkr/k(f(0))) +
q − 1

e

∑
µe=1

∑
Nkr/k(x)=µ

χ(Nkr/k(g(x))).
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In order to estimate the sum
∑

Nkr/k(x)=µ χ(Nkr/k(g(x))), we may and will as-

sume without loss of generality that g(0) 6= 0: otherwise, writing g(x) = xag0(x)
with g0(0) 6= 0,∑

Nkr/k(x)=µ

χ(Nkr/k(g(x))) =
∑

Nkr/k(x)=µ

χ(Nkr/k(xag0(x))) =

=
∑

Nkr/k(x)=µ

χ(Nkr/k(xa))χ(Nkr/k(g0(x))) = χ(µ)a
∑

Nkr/k(x)=µ

χ(Nkr/k(g0(x))),

with |χ(µ)a| = 1.
Let P =

∏
σ(σ(α1)x1 + · · ·+ σ(αr)xr) be as in the previous section, then∑

Nkr/k(x)=µ

χ(Nkr/k(g(x))) =
∑

P (x1,...,xr)=µ

χ(Nkr/k(g(α1x1 + · · ·+ αrxr))) =

=
∑

P (x1,...,xr)=µ

χ

(∏
σ

gσ(σ(α1)x1 + · · ·+ σ(αr)xr)

)
so, by Grothendieck’s trace formula,

(6)
∑

Nkr/k(x)=µ

χ(Nkr/k(g(x))) =

2r−2∑
i=0

Tr(Frobk|Hi
c(Vµ ⊗ k̄,Lχ(H)))

where Vµ is the same as in the previous section andH(x1, . . . , xr) =
∏
σ g

σ(σ(α1)x1+
· · ·+ σ(αr)xr), the product taken over the elements of Gal(kr/k).

Over kr, the map (x1, . . . , xr) 7→ (σ(α1)x1 + · · · + σ(αr)xr)σ∈Gal(kr/k) is an

isomorphism betweem Arkr and AGal(kr/k)
kr

, and the pull-back of P under this auto-

morphism is x1 · · ·xr. So Vµ⊗k̄ is isomorphic to the hypersurface x1 · · ·xr = µ, and
the sheaf Lχ(H) corresponds under this isomorphism to the sheaf Lχ(

∏
σ g

σ(xσ)) =
�σLχ(gσ) where Lχ(gσ) is the pull-back of the Kummer sheaf Lχ by gσ. Thus

dim Hi
c(Vµ⊗k̄,Lχ(H)) = dim Hi

c({x1 · · ·xr = µ},�σLχ(gσ)). By proper base change,

the group Hi
c({x1 · · ·xr = µ},�σLχ(gσ)) is the fibre at µ of the sheaf Rim!(�σLχ(gσ)),

where m : AGal(kr/k)

k̄
→ A1

k̄
is the multiplication map.

Proposition 5.1. Let g1, . . . , gr ∈ kr[x] be square-free of degree d with gi(0) 6= 0,
m : Arkr → A1

kr
the multiplication map and Kr := Rm!(Lχ(g1) � · · · � Lχ(gr)).

Suppose that χd is not trivial. Then Kr = Lr[1 − r] for a middle extension sheaf
Lr of generic rank rdr−1 and pure of weight r − 1 (on the open set where it is
smooth), which is totally ramified at infinity and unipotent at 0, with H1

c(A1
k̄
,Lr)

pure of weight r and dimension (d− 1)r.

Proof. We will proceed by induction, as in [1, Théorème 7.8]. For r = 1, Lr = Lχ(g1)

and all results are well known (see e.g. [11]). The sheaf is smooth of rank 1 on the
complement of the set of roots of g1, and the monodromy group at a root α acts
via the non-trivial character χ, so Lχ(g1) is a middle extension at α.

Suppose everything has been proven for r − 1. Then

Kr = Rm!(Lχ(g1) � · · ·�Lχ(gr)) = Rm2!(Rm1!(Lχ(g1) � · · ·�Lχ(gr−1))�Lχ(gr)) =

= Rm2!(Kr−1 � Lχ(gr)) = Rm2!(Lr−1[2− r] � Lχ(gr))

where m1 : Ar−1
kr
→ A1

kr
and m2 : A2

kr
→ A1

kr
are the multiplication maps.
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The fibre of Kr at t ∈ k̄ is then RΓc({xy = t} ⊆ A2
k̄
,Lr−1 � Lχ(gr))[2 − r].

If t 6= 0, {xy = t} is isomorphic to Gm via the projection on x, so the fibre
is RΓc(Gm,k̄,Lr−1 � σ?tLχ(gr))[2 − r], where σt : Gm,k̄ → Gm,k̄ is the involution
x 7→ t/x. Since Lr−1 is totally ramified at 0 (and unramified at infinity) and
σ?tLχ(gr) is unramified at 0 (and totally ramified at infinity), their tensor product

is totally ramified at both 0 and infinity. In particular, its H2
c is vanishes. On

the other hand, Lr−1 and Lχ(gr) do not have punctual sections [12, Corollary 6

and Proposition 9], so neither does Lr−1 ⊗ σ?tLχ(gr) and thus its H0
c vanishes.

We conclude that the restriction of Kr to Gm is a single sheaf placed in degree
1 + (r − 2) = r − 1.

The fibre of Kr at 0 is RΓc({xy = 0} ⊆ A2
k̄
,Lr−1 � Lχ(gr))[2 − r]. The group

H2
c({xy = 0},Lr−1 �Lχ(gr)) vanishes, because so does H2

c of its restriction to x = 0
(which is a constant times Lχ(gr), totally ramified at infinity) and to y = 0 (which

is a constant times Lr−1, also totally ramified at infinity). The group H0
c also

vanishes, because neither the restiction of Lr−1 �Lχ(gr) to x = 0 nor its restriction
to y = 0 have punctual sections. So the stalk of Kr at 0 is also concentrated in
degree r − 1.

Once we know Kr is a single sheaf Lr = Rr−1m!(Lχ(g1) � · · · � Lχ(gr)), since

Hi
c(A1

k̄
,Lχ(gi)) = 0 for i 6= 1 and has dimension d−1 and is pure of weight 1 for i = 1

we get, by Künneth, that Hi
c(A1

k̄
,Lr) = 0 for i 6= 1 and it has dimension (d−1)r and

is pure of weight r for i = 1. Similarly, since the inverse image of Gm,k̄ under the

multiplication map is Gr
m,k̄

, H1
c(Gm,k̄,Lr) = 0 for i 6= 1 and it has dimension dr for

i = 1. In particular, the rank of Lr at 0 is χ(A1
k̄
,Lr)−χ(Gm,k̄,Lr) = dr − (d− 1)r.

Let t ∈ k̄ be a point which is not the product of a ramification point of Lr and
a ramification point of Lχ(gr). Then at every point of Gm,k̄ at least one of Lr−1,
σ?tLχ(gr) is smooth. Since Lr−1 has unipotent monodromy at 0 and σ?tLχ(gr) is
unramified at ∞, by the Ogg-Shafarevic formula we have

−χ(Gm,k̄,Lr−1) = Swan∞Lr−1 +
∑
s∈k̄?

(SwansLr−1 + dropsLr−1)

and

−χ(Gm,k̄, σ?tLχ(gr)) = Swan0Lχ(gr) +
∑
s∈k̄?

(Swant/sLχ(gr) + dropt/sLχ(gr))

The local term at u ∈ k̄? (sum of the Swan conductor and the drop of the rank)
gets multiplied by e upon tensoring with un unramified sheaf of rank e. The local
term at 0 or ∞ (the Swan conductor) gets multiplied by e upon tensoring with a
sheaf of rank e with unipotent monodromy. We conclude that

−χ(Gm,k̄,Lr−1 ⊗ σ?tLχ(gr)) = −(rank Lχ(gr))χ(Gm,k̄,Lr−1)−

−(rank Lr−1)χ(Gm,k̄, σ?tLχ(gr)) = dr−1 + d(r − 1)dr−2 = rdr−1.

This is the generic rank of Lr.
Being a middle extension is a local property which is invariant under tensoring

by unramified sheaves. Since, at every point of Gm,k̄, at least one of Lr−1, σ?tLχ(gr)

is unramified and they are both middle extensions (by the induction hypothesis),
their tensor product is a middle extension on Gm,k̄. Since it is totally ramified

at both 0 and ∞, we conclude that H1
c(Gm,k̄,Lr−1 ⊗ σ?tLχ(gr)) is pure of weight
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(r − 2) + 1 = r − 1 [2, Théorème 3.2.3]. So Lr is pure of weight r − 1 on the open
set where it is smooth.

Now let jW : W ↪→ A1
k̄

be the inclusion of the largest open sen on which Lr
is smooth. Since Lr has no punctual sections, there is an injection 0 → Lr →
jW?j

?
WLr, let Q be its punctual cokernel. We have an exact sequence

0→ H0
c(A1

k̄,Q)→ H1
c(A1

k̄,Lr)→ H1
c(A1

k̄, jW?j
?
WLr)→ 0

where H0
c(A1

k̄
,Q) has weight ≤ r − 1. Since H1

c(A1
k̄
,Lr) is pure of weight r, we

conclude that H0
c(A1

k̄
,Q) and therefore Q are zero, so Lr is a middle extension.

Now let j : A1
k̄
↪→ P1

k̄
be the inclusion, again we get an exact sequence

0→ LI∞r → H1
c(A1

k̄,Lr)→ H1
c(P1

k̄, j?Lr)→ 0

with LI∞r of weight ≤ r − 1, since H1
c(A1

k̄
,Lr) is pure of weight r we conclude that

LI∞r = 0, that is, Lr is totally ramified at infinity.
It remains to prove that Lr has unipotent monodromy at zero. Consider the

exact sequence

0→ LI0r → H1
c(Gm,k̄,Lr)→ H1

c(A1
k̄,Lr)→ 0

which identifies LI0r with the weight< r part of H1
c(Gm,k̄,Lr). Since H1

c(Gm,k̄,Lr) =⊗r
i=1 H1

c(Gm,k̄,Lχ(gi)) and H1
c(Gm,k̄,Lχ(gi)) has d − 1 Frobenius eigenvalues of

weight 1 and one of weight 0, we conclude that H1
c(Gm,k̄,Lr) has

(
r
i

)
(d− 1)i eigen-

values of weight i for every i = 0, . . . , r. By [8, Theorem 7.0.7], an eigenvalue
of weight i < r on LI0r corresponds to a unipotent Jordan block of size r − i for
the action of I0. So the sum of the sizes of the unipotent Jordan blocks for the
monodromy of Lr at 0 is

r−1∑
i=0

(
r

i

)
(d− 1)i(r − i) = r

r−1∑
i=0

(
r

i

)
(d− 1)i − r

r−1∑
i=0

(
r − 1

i− 1

)
(d− 1)i =

= r

r−1∑
i=0

(
r − 1

i

)
(d− 1)i = r(1 + d− 1)r−1 = rdr−1

which is the generic rank of Lr. So the unipotent Jordan blocks fill out the entire
monodromy at 0. �

Corollary 5.2. Suppose that g is square-free of degree d prime to p and χd is not
trivial. For any µ ∈ k?, Hi

c(Vµ ⊗ k̄,Lχ(H)) = 0 for i 6= r − 1 and dim Hr−1
c (Vµ ⊗

k̄,Lχ(H)) = rdr−1.

Proof. Apply the previous proposition with (g1, . . . , gr) = (gσ)σ∈Gal(kr/k), and
proper base change. �

Corollary 5.3. Suppose that g is square-free of degree d prime to p and χd is not
trivial. Then ∣∣∣∣∣∣

∑
x∈k?r

χ(Nkr/k(f(x)))

∣∣∣∣∣∣ ≤ rdr−1(q − 1)q
r−1
2
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Proof. Since Lχ(H) is pure of weight 0, Hr−1
c (Vµ⊗ k̄,Lχ(H)) has weights ≤ r−1 for

every µ. So the previous corollary together with (6) implies∣∣∣∣∣∣
∑

Nkr/k(x)=µ

χ(Nkr/k(g(x)))

∣∣∣∣∣∣ ≤ rdr−1q
r−1
2

for every µ ∈ k?. We conclude by using (5). �

Remark 5.4. The following example shows that the hypothesis χd non-trivial is
necessary. Let p be odd, r = 2, g(x) = x2 + 1 and ρ : k? → Q̄?` the quadratic
character. Then∑

Nkr/k(x)=1

ρ(Nkr/k(x2 + 1)) =
∑

xq+1=1

ρ((x2 + 1)(x2q + 1)) =

=
∑

xq+1=1

ρ(x2 + x2q + 2) =
∑

xq+1=1

ρ((x+ xq)2) ≥ q − 1

since x + xq = Trkr/k(x) ∈ k and therefore ρ((x + xq)2) = ρ(x + xq)2 = 1 unless

x + xq = 0, which only happens for x2 = −1, that is, for at most two values of x.
So we can never have an estimate of the form∣∣∣∣∣∣

∑
Nkr/k(x)=1

ρ(Nkr/k(x2 + 1))

∣∣∣∣∣∣ ≤ C · q 1
2

which is valid for all q.
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