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Abstract

The following problem is treated: Characterizing the tangent cone
and the equimultiple locus of a Puiseux surface (that is, an algebroid
embedded surface admitting an equation whose roots are Puiseux
power series), using a set of exponents appearing in a root of an equa-
tion. The aim is knowing to which extent the well–known results for
the quasi–ordinary case can be extended to this much wider family.
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1 Introduction. Privileged exponents

Let us consider C (or any other algebraically closed field of characteristic 0),
let X and Y be formally independent variables over C and let m ∈ N be a
positive integer, fixed in what follows. We have the following rings and fields:

K = C((X, Y )) ⊂ L = C
((

X1/m, Y 1/m
))

R = C[[X, Y ]] ⊂ S = C
[[

X1/m, Y 1/m
]]

.

The elements of S will be called Puiseux power series.
The field extension is trivially normal and finite, having as Galois group

G ≃ Cm × Cm. We will denote the elements of G by

(a, b) : L −→ L

X1/m 7−→ δaX1/m

Y 1/m 7−→ δbY 1/m
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where δ (fixed from now on) is a primitive m–th root of the unity.
Definition.– Let S = Spec(C[[X, Y, Z]]/(F )) = Spec(RS) be an embedded
algebroid surface. Then S is called a Puiseux surface if the roots of F are
Puiseux power series.

If S is an irreducible Puiseux surface and F is an equation of S which is
the minimal polynomial of ζ ∈ S, we will say that S is defined by ζ .
Definition.– Let ζ ∈ S, written as

ζ =
∑

(i,j)∈∆(ζ)⊂N2

cijX
i/mY j/m, 0 6= cij ∈ C.

The set ∆(ζ) (∆, if no confussion is posible) is called the set of exponents
of ζ . Note that we consider the exponents (i, j) rather than (i/m, j/m).

A particular case of Puiseux power series (and the surfaces they deter-
mine) has been studied quite thoroughly: that of the quasi–ordinary series.
A power series ζ ∈ S with minimal polynomial F (Z) is called quasi–ordinary
if

D(F ) = XaY bu(X, Y ), with u(0, 0) 6= 0,

where D(F ) is the discriminant of F (with respect to Z, of course). These
series were already used by Jung ([5]) in his work on the resolution of surface
singularities. Later on, the work of Lipman ([7]) and others (see, for instance
[4], [3]) has led to a quite well understanding of the geometry and the topology
of these surfaces and their resolution.

In particular, it is known that the quasi–ordinary character is preserved
by blowing–up equimultiple smooth subvarieties.
Definition.– Given a Puiseux power series ζ =

∑
cijX

i/mY j/m, we will say
that a set E = {(i1, j1), ..., (it, jt)} ⊂ ∆ is a set of privileged exponents if

K(ζ) = K
(
X i1/mY j1/m, ..., X it/mY jt/m

)
.

Example.– Consider the Puiseux power series

ζ = X13/9Y 16/9 − 2X22/9Y 7/9 + 7X12/9Y 11/9 − 5X7/9Y 4/9.

Then we have the following minimal sets of privileged exponents:

E1 = {(7, 4), (12, 11)}, E2 = {(12, 11), (13, 16)}, E3 = {(12, 11), (22, 7)}.

In fact, these are all the minimal sets of privileged exponents, as

X12/9Y 11/9 /∈ K
(
X13/9Y 16/9, X22/9Y 7/9, X7/9Y 4/9

)
.
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It is possible to give a constructive (in an ample sense, taking into account
that our objects are power series) process which produces a set of privileged
exponents from a given Puiseux power series ([11]). The process relies on a
chosen monomial order. If a graded order is taken, the exponents for a quasi–
ordinary power series are precisely the so–called characteristic exponents ([7])
of the power series.

Let ζ be a given quasi–ordinary power series ζ with minimal polynomial
F , defining a Puiseux surface S = Spec(RS). The characteristic exponents of
ζ have the following properties (see the above references), up to a technical
process called normalization:

(a) They are totally ordered by the product ordering

(i, j) < (i′, j′) ⇐⇒ i < i′, j < j′.

(b) Every exponent (i, j) ∈ ∆ can be written (mod Zm×Zm) as an integral
combination of the characteristic exponents.

(c) Their monomials generate the same field extension (of K) than ζ .

(d) They determine the degree of F (that is, [K(ζ) : K]).

(e) They determine the set of equimultiple subvarieties of S.

(f) They determine the tangent cone of S.

(g) They determine (and are determined by) the topological type of S (in
the sense of [12]).

(h) They determine the characteristic exponents of any permissible blowing–
up of S.

Our abstract aim is studying to which extent the properties of quasi–
ordinary singularities can be extended to the general Puiseux singularities.
In particular we wanted to know if the tangent cone and the equimultiple
locus can be obtained from a finite set of data.
Remark.– When working with a given ζ ∈ S and its minimal polynomial
F (Z), we can always consider that ∆∩ (Zm)2 = ∅. This can be achieved by
performing the Tchirnahusen transformation on F , that is, if

F (Z) = Zn + an−1(X, Y )Zn−1 + ... + a0(X, Y ),

3



then the change of variables

Z 7−→ Z −
1

n
an−1(X, Y )

will take F to the minimal polynomial of the power series resulting from
erasing all the monomials in ζ with exponents in (Zm)2. So, from now
on, we will assume that all the power series we are working with have no
exponents in (Zm)2.

Let ζ ∈ S and {(i1, j1), ..., (it, jt)} be a set of privileged exponents of ζ .
We have already proved in [11] that this set verify the properties (b), (c)
(well, this is obvious) and (d). In particular, with the notations above

[K(ζ) : K] =
m2

d(ζ)
,

where d(ζ) is the gcd of the 2 × 2 minors of the matrix
(

m 0 i1 ... it
0 m j1 ... jt

)

which does not depend on the set of privileged exponents considered.
In this paper we prove that it is not possible, with full generality, to ob-

tain (e) and (f) from a subset of ∆. As the tangent cone and the equimultiple
subvarieties are essential for a complete understanding of the resolution pro-
cess, we conclude that a more complicated set of data is necessary for the
general Puiseux case.

2 The tangent cone of Puiseux surfaces

For our purposes, we can take the tangent cone of an embedded algebroid
surface to be the affine variety defined by the initial form of an equation of
the surface. In fact, the actual definition is the spectrum of the graded ring
gr(X,Y,Z)(RS), but it is easily shown that both versions coincide ([7]).
Remark.– We can restrict ourselves to irreducible Puiseux surfaces, as the
tangent cone of a reducible surface is the union of the tangent cones of its
irreducible components.

Let therefore S be an irreducible Puiseux surface, defined by ζ . As an
equation of S is

F (Z) =
n∏

i=1

(Z − ζi) ,
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where {ζ = ζ1, ..., ζn} = {(a, b)(ζ) | (a, b) ∈ G}, it is plain from [11] that the
multiplicity of S is determined by a set of privileged exponents (for instance,
choosing any graded ordering in N2 so that the first exponent determines the
order of ζ). In fact,

mult(S) = min{n, nν(ζ)} = min

{
m2

d(ζ)
,
m2ν(ζ)

d(ζ)

}

,

where ν is the usual order in S. Here we need to make a crucial distinction
for the sequel.
Definition.– A Puiseux power series ζ ∈ S will be called transversal if
ν(ζ) ≥ 1. Otherwise it will be called non–transversal.

In geometrical terms, transversality (respectively, non–transversality) cor-
responds to the situation in which the generic fiber of the projection

(X, Y, Z) 7−→ (X, Y )

has exactly n = [K(ζ) : K] (respectively strictly less) points.

2.1 The transversal case

This case is the easiest one. Note that, if ν(ζ) ≥ 1, then its minimal polyno-
mial

F (Z) = Zn +
n−2∑

l=0

al(X, Y )Z l

is a Weierstrass polynomial, that is ν(al) ≥ n − l.
Remark.– If ν(ζ) > 1, the tangent cone of S is the plane Zn = 0.
Remark.– If ν(ζ) = 1, let ζ be the initial form of ζ . As Galois conjugation
leaves the exponents unchanged, we have

F =
n∏

i=1

(
Z − ζi

)

with ∆(ζi) = ∆(ζ) and ∆(ζ) = ∆(ζi).
Obviously there can be repeated factors in the above decomposition of

F . In particular, it becomes clear that F must be a power of the minimal
polynomial of ζ.

Using the previous expression for the degree of a minimal polynomial
from a set of privileged exponents, we can conclude that, in this case, F is
a d(ζ)/d(ζ) power of an irreducible polynomial (which is the equation of the
surface defined by ζ).
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2.2 The non–transversal case

Let us write ν(ζ) = λ = µ/n < 1. In this case the situation is less straight-
forward. The initial form of F is now

F = ζ1...ζn,

which is a form of order λm2/d(ζ). Being a homogeneous polynomial in two
variables with coefficients in C it can be written as a product of linear forms

F = Ga1

1 ...Gar

r , with Gi 6= Gj ,

that is, the tangent cone is a union of linear planes. It could well be an only
plane or a proper product of planes.

Let us begin with a particularly simple case:
Lemma.– Let ζ = X1/m + αY 1/m, 0 6= α ∈ C. Then, the tangent cone of
the surface defined by ζ is given by (X − αmY )m.
Proof: Apply Cardano formulae for the cyclotomic case.

In fact, it is easy showing that

∏

δ | δm=1

(
X1/m + δαY 1/m

)
= X − αmY.

The factors on the right hand side will be called the monic conjugates of
ζ .

Let us move on to the general case and let ζ ∈ S with

ζ = L
(1)
1 ...L(1)

r1
L

(2)
1 ...L(2)

r2
...L

(l)
1 ...L(l)

rl
,

where
L

(a)
b = X1/m − α

(a)
b Y 1/m,

and they are written in such a way that two linear forms L
(a)
b1

and L
(a)
b2

share
the same superindex if and only there exists δ, an m–th root of the unity,
with

δα
(a)
b1

= α
(a)
b2

.

Clearly r1 + ... + rl = µ.
Moreover, when conjugating ζ by (a, b) ∈ G, L

(1)
1 must be taken (up to

product by a constant) into one of its monic conjugates, and so does all

L
(1)
j , j = 2, ..., r1. In fact, when we have computed all the m2/d(ζ) posible
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conjugates of ζ appearing in the decomposition of F , the m monic conjugates
of L

(1)
1 must appear among all the conjugates of the L

(1)
j ’s

Further, all of these monic conjugates must appear the same number of
times. If this were not so, after gathering together the remaining forms, we
would get a product

p∏

i=1

(
X1/m − αiY

1/m
)

= s(X, Y ) ∈ R.

Now, as this product must remain invariant by any (a, b) ∈ G, the unique
factorization in S implies that all the monic conjugates of every factor must
lie in the product.

Therefore, the total number of monic conjugates of the L
(1)
j ’s appearing

in the constant term of F is m2r1/d(ζ), and all of them appear the same
number of times. So, together with the previous lemma, this proves that the
decomposition of the tangent cone is

(X − αm
1 Y )mr1/d ... (X − αm

l Y )mrl/d .

Example.– If we consider

ζ = X3/4 + 2X2/4Y 1/4 − X1/4Y 2/4 − 2Y 3/4 + X6/4,

we have the following decomposition for ζ:

ζ̄ = X3/4 + 2X2/4Y 1/4 − X1/4Y 2/4 − 2Y 3/4

=
(
X1/4 − Y 1/4

) (
X1/4 + Y 1/4

) (
X1/4 + 2Y 1/4

)
.

In the previous notation, this means

L
(1)
1 = X1/4 − Y 1/4, L

(1)
2 = X1/4 + Y 1/4, r1 = 2

L
(2)
1 = X1/4 + 2Y 1/4, r2 = 1

and so the decomposition of the tangent cone is

[
(X − Y )4

]2 [
(X − 24Y )4

]1
= (X − Y )8 (X − 16Y )4.

Remark.– In the quasi–ordinary case, Lipman showed ([7]) that the tangent
cone could consist in, at most, two planes. In our case, there is no bound for
the amount of planes appearing, as we will show now.
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Obviously, for m fixed, at most m − 1 planes can occur to join in the
tangent cone, but there can be in fact m − 1 of them. A simple example is
obtained by taking

ζ = ζ =
µ∏

k=1

(
X1/m + mkY 1/m

)
,

whose tangent cone is the union of µ differents planes. By varying µ from 1
to m − 1 we obtain all the possible structures.

We summarize the results on this section.
Proposition.– Let S be a Puiseux surface defined by ζ ∈ S and F (Z) the
minimal polynomial of ζ ; n and d(ζ) defined as above. Then

(a) If ν(ζ) > 1 the equation of the tangent cone is the Zn = 0.

(b) If ν(ζ) = 1 the equation of the tangent cone is the d(ζ)/d(ζ)–th power
of an irreducible polynomial (the minimal polynomial of ζ).

(c) If ν(ζ) < 1 the equation of the tangent cone is a product of linear
forms.

Remark.– Note that, while ν(ζ) can be known from a set of privileged
exponents, the number of different linear forms occuring in case (c) cannot
be found out from such a set. A simple example is given by

ζ1 = X2/4 + (1 + i)X1/4Y 1/4 + iY 2/4, ζ2 = X2/4 + 2X1/4Y 1/4 + 2Y 2/4

which have the same ∆ (hence the same set of privileged exponents for any
choice of a total ordering in N2). However, the first power series defines a
surface whose tangent cone is given by (X − Y )4, while the tangent cone of
the surface defined by the second is (X − Y )2(X − 4Y )2.

3 The equimultiple locus of Puiseux surfaces

The equimultiple locus of an algebroid surface is the set of primes P ⊂ R[[Z]]
such that F ∈ P (ν), where ν is the usual order of F . We will be interested
only on primes of height 1 as the maximal ideal of R[[Z]] lies always in the
equimultiple locus.
Remark.– Analogously as in the previous section, we will reduce ourselves to
the irreducible case, as a given prime is equimultiple in an algebroid surface
if and only if it is equimultiple in all of its irreducible components.
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3.1 The transversal case

Again this is the easiest part. Firstly note that, due to the fact that the
minimal polynomial has the form

F (Z) = Zn + an−2(X, Y )Zn−2 + ... + a0(X, Y ),

with ν(F ) = n, a prime ideal belonging to the equimultiple locus can be
taken to be (Z, G(X, Y )),with G(X, Y ) ∈ R, ν(G) > 0.

Let us begin by considering the simplest posible question: is (X, Z) in
the equimultiple locus? If S is defined by ζ and the corresponding equation
is

F (Z) =
n∏

i=1

(Z − ζi) = Zn +
n−2∑

l=0

al(X, Y )Z l,

with ν(al) ≥ n − l, it becomes obvious that (X, Z) lies in the singular locus
if and only if Xn−l|al for all l = 0, ..., n − 2.

But every monomial of al is of the form

αX(i1+...+il)/mY (j1+...+jl)/m,

for some choice {(i1, j1), ..., (il, jl)} ⊂ ∆. In particular, if we choose (i0, j0) ∈
∆ and take i1 = ... = il = i0 and j1 = ... = jl = j0 we will get the monomial

αX li0/mY lj0/m.

Hence, it must be li0/m > l, that is, i0 > m for all (i0, j0) ∈ ∆. This
condition clearly suffices, but it is also necessary. For, if we had an exponent
(i0, j0) ∈ ∆ with i0 < m, the n–th power of this exponent will appear as an
exponent in a0(X, Y ) (at least, if we take (i0, j0) with minimal degree in X
for avoiding cancellations) and its degree in X will be strictly lower than n,
hence (X, Z) cannot be in the equimultiple locus.

Similarly, (Y, Z) lies in the equimultiple locus if and only if Y |ζ . Note
that this condition can be observed in a set of privileged exponents if we
choose, for instance, the inverse lexicographic ordering as total ordering in
N2 (see [11] for how this implies Y |ζ).

The general case follows the same lines: a prime (Z, c(X, Y )) lies in the
equimultiple locus if and only if c(X, Y )n−l|al, for all l = 0, ..., n − 2. So, it
obvioulsy suffices that c(X, Y )|ζ .
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Let us see that this is also necessary. First c(X, Y )|ζ is equivalent to
c(X, Y )|ζi for all i = 1, ..., n, as c(X, Y ) ∈ R. So if c(X, Y ) lies in the
equimultiple locus but does not divide ζ , it does not divide any ζi. Write

c(X, Y ) = c1

(
X1/m, Y 1/m

)
...cs

(
X1/m, Y 1/m

)
,

the factorization of c(X, Y ) in S. There must be some ci not dividing ζ , so
write ζ1, ..., ζj the conjugates of ζ not divided by ci. Then

an−j(X, Y ) =
∑

l1,...,lj∈{1,...,n}

ζl1...ζlj ,

so ci divides all terms of the right hand side except ζ1...ζj , which is imposible
as c(X, Y )|an−j.

The only remaining posibility is that ci does not divide any conjugate of
ζ . This is clearly absurd again, as ci must divide a0 = ζ1...ζn.

3.2 The non–transversal case

Write the minimal polynomial of ζ ∈ S as

F (Z) = Zn + ... + a0(X, Y ),

with ν(F ) = l < n. We will look up first for equimultiple curves P , not lying
in Z = 0. If the initial form of ζ contains both X1/m and Y 1/m it comes out
that both X and Y appear in F . Then, as D(F ) ∈ P , for any derivation D
of order l − 1, it is plain that P = (X, Y ), which is impossible since F is a
monic polynomial in Z.

Hence ζ can be assumed to be

ζ = Xa/m + ζ ′,

with a < m, ν(ζ ′) > ν(ζ). But, ζ ′ contains a monomial of the form Xb/mY c/m,
with b < a, and we take one of these monomials with minimal b, it follows
(for the same reason as above) that P = (X, Y ).

So, if there are equimultiple curves not lying in Z = 0, the series has the
form ζ = Xλu(X1/m, Y 1/m), and, therefore, (X, Z) is an equimutiple curve
as well. This situation features a curious phenomenon, which is shown in the
following lemma, whose proof follows the same lines as Lipman’s normaliza-
tion for quasi–ordinary surfaces ([7]).
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Lemma.– Let ζ ∈ S, ν(ζ) < 1 and (X, Z) lying in the equimultiple locus of
the surface S, defined by ζ . Then there is a transversal Puiseux power series
η ∈ S defining S.
Proof: Let us write, as above, ζ = Xλu(X1/m, Y 1/m). Let us call F the
minimal polynomial of ζ ; µ/m the order of ζ . F is regular with respect to
Z and X (with order λm2/d). So, let us call F̂ the Weierstrass polynomial
associated to F with respect to X.

Let now T be a new variable. As the units of R have all of their µ–th
roots inside R, the power series

Xµu(X, Y ) − T µ ∈ C[[X, Y, T ]]

has a factor Xu′(X, Y )−T , where u′ is an µ–th root of u. By the Weierstrass
Preparation Theorem, there exists a unit u′′(X, Y, T ) such that

u′′(X, Y, T )(Xu′(X, Y ) − T ) = X − R(Y, T ) (⋆)

Doing X = 0 we can easily find R(Y, T ) = Tu′′(0, Y, T ). Define then
G(Y, T ) = u′′(0, Y, T ), which is a unit in C[[Y, T ]]. Writing X = R(Y, T ) in
the above formula we get

0 = u′′(R(Y, T ), Y, T ) [R(Y, T )u′(R(Y, T ), Y ) − T ] .

Hence, as R(Y, T ) = TG(Y, T ),

TG(Y, T )u′(TG(Y, T ), Y ) − T = 0.

This means X = TG(Y, T ) annihilates a factor of (⋆) and therefore

(TG(Y, T ))µ u(TG(Y, T ), Y ) − T µ = 0.

If we write now X1/m instead of X, Y 1/m instead of Y and Z1/µ instead
of T , we can assure that there is a unit G(Y 1/m, Z1/µ) such that, if we write
X1/m = Z1/µG(Y 1/m, Z1/µ), we get

ζ
(
Z1/µG

(
Y 1/m, Z1/µ

)
, Y 1/m

)
= Z.

As we have
F
(
X, Y, ζ

(
X1/m, Y 1/m

))
= 0,
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doing X1/m = Z1/µG(Z1/µ, Y 1/m) we obtain

F
(
Zm/µGm

(
Z1/µ, Y 1/m

)
, Y, Z

)
= 0.

Hence η = Zm/µGm
(
Z1/µ, Y 1/m

)
is a transversal Puiseux power series

which is a root of F̂ .
Remark.– As for other kind of primes in the equimultiple locus of S, note
that the arguments for the transversal case do not use transversality at all.
That means (Z, c(X, Y )) lies in the equimultiple locus if and only if c(X, Y )|ζ ,
which is imposible when ν(ζ) < 1.

This finishes the considerations for the non–transversal case.
We summarize the results on this section.

Proposition.– Let S be a Puiseux surface defined by ζ ∈ S and F (Z) the
minimal polynomial of ζ . Then

(a) If ν(ζ) ≥ 1, a prime ideal (Z, c(X, Y )) lies in the equimultiple locus if
and only if c(X, Y )|ζ .

(b) If ν(ζ) < 1 either there are no primes of height 1 in the equimultiple
locus or there exists a change of variables which takes the surface into
the transversal case.

Remark.– Again, it is not posible to express the equimultiple locus from a
set of exponents of ζ , as it is shown in the following example:

ζ1 = X3/2 + Y 1/2X − Y X1/2 − Y 3/2, ζ2 = X3/2 + 3Y 1/2X + 3Y X1/2 + Y 3/2.

The first Puiseux power series defines a surface with equation

F1 = Z4 − 2(X − Y )2(X + Y )Z2 + (X − Y )6

where the prime P = (Z, X − Y ) lies in the equimultiple locus, while an
equation for the second surface is

F2 = Z4 − 2
(
X3 + 15X2Y + 15XY 2 + Y 3

)
Z2 + (X − Y )6,

hence the equimultiple locus of this surface is simply the closed point.
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4 Final comments

Puiseux singularities are still far from being well understood. In particular,
two goals seem highly interesting to attain:

(a) A simple (as simple as possible, at least) criterion for deciding when-
ever a given surface is Puiseux. In the quasi–ordinary case, this is the
celebrated Jung–Abhyankar theorem ([5], [1]) but, for the more general
case, we cannot know whether a given polynomial has Puiseux roots
unless we actually compute them. This is now posible, thanks to the
work of McDonald ([9]) and Aroca–Cano ([2]); but, while useful for
working with examples, this method has not been adopted so far for
its use on abstract argumentations.

(b) A numerical (say arithmetical, say combinatorial) control of the be-
haviour of the singularity in the resolution process. In the quasi–
ordinary case, this is the main result in Lipman’s thesis ([7]). For
the general case, only partial results are known (see [10]), which we
summarize now:

(i) It is possible to describe a resolution process for Puiseux surfaces
which, in each step, preserves the Puiseux character. This resolution
process is, basicly, the Levi resolution ([6]) which consists in blowing–
up maximal subvarieties of the equimultiple locus; up to some previ-
ous monoidal transformations which take our surface into another one
whose roots are ν–quasi–ordinary (this is a mild generalization of the
quasi–ordinary concept, see, for instance, [8]).

(ii) For some cases (transversal and ν–quasi–ordinary) it is possible
to prove that the blowing–up of a Puiseux surface is still a Puiseux
surface, and also we are able to know a set of privileged exponents of
the transformed surface from a set of the original one. Still, we do not
know what happens in the general case.

Example.– Let us end with an example showing the difficulties of the be-
haviour under blowing–up of a Puisuex surface. The computations below
have been posible thanks to the software developed by F. Aroca and J. Cano
([2]).

Let us consider
ζ = X2/5 + Y 2/5,
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whose minimal polynomial is

F (Z) = Z25+a20(X, Y )Z20+a15(X, Y )Z15+a10(X, Y )Z10+a5(X, Y )Z5+a0(X, Y ),

where

a20(X, Y ) = −5X2 − 5Y 2

a15(X, Y ) = 10X4 + 10Y 4 − 605X2Y 2

a10(X, Y ) = −10X6 − 10Y 6 − 1905X4Y 2 − 1905X2Y 4

a5(X, Y ) = 5X8 + 5Y 8 − 605X6Y 2 − 605X2Y 6 + 1905X4Y 4

a0(X, Y ) = −X10 − Y 10 − 5X8Y 2 − 5X2Y 8 − 10X4Y 6 − 10X6Y 4

A quadratic transform in the point (0 : 0 : 1) of the tangent cone gives
the equation

Z15 + a20(X, Y )Z12 + a15(X, Y )Z9 + a10(X, Y )Z6 + a5(X, Y )Z3 + a0(X, Y ).

The roots of this equation (which is a Weierstrass equation w.r.t. X, Y
and Z) as a polynomial in Z are

η = Y 2/3 +
5

3
X2/5Y 4/15 +

5

9

X4/5

Y 2/15
−

5

81

X6/5

Y 8/15
;

and all of its conjugates. Analogously, its roots as a polynomial in X are

ς = Z3/2 −
5

2
Z9/10Y 2/5 +

15

8
Z3/10Y 4/5 −

5

16

Y 6/5

Z3/10
,

and all of its conjugates. As the polynomial is symmetric in X and Y , we
cannot find an easy parametrization which gives us an equation with Puiseux
roots. The existence of such an equation is a problem which relates with the
two open questions set above.
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