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José M. Tornero∗

Depto. de Álgebra
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Abstract

In this paper we show that the singular braid monoid of an orientable

surface can be embedded in a group. The proof is purely topological,

making no use of the monoid presentation.
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1 Introduction

The aim of this paper is proving, in an easy and fully topological way,

that the singular braid monoid of an orientable surface can be embedded

into a group.
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The singular braid monoids appear naturally when studying braid

groups of surfaces. They were introduced in [1] and [4] and they arise

in some situations connected with the Vassiliev knot invariants ([2]).

A particular case of our theorem (that of the open disk) was proved

by Fenn, Keyman and Rourke in [6], where it was pointed out that all

the topological difficulties of the proof relied on the so–called diamond

lemma. Their proof, although purely topological, was both quite involved

and not adaptable (at least in an easy way) for general orientable surfaces.

On the other hand our approach results in a simpler proof, even for the

open disk case.

An algebraic generalization of this result can be found in [3], which

in fact may include the surface case if applied together with the results

of [7] concerning the monoid presentation. However, we think that a

topological and more down–to–earth proof of this result may shed some

light and contribute towards a better understanding of the subject.

A final comment is in order : a different proof of this result, also based

in the monoid presentation, has been announced to us by Bellingeri in a

private communication.

2 The singular braid monoid and the sin-

gular braid group

Definition.– Let U be any orientable surface. If we fix beforehand n

distinct points P1, ..., Pn ∈ U , a geometric braid is a set of n differentiable

disjoint paths b1, ..., bn inside the cylinder U × [0, 1], such that bi (also

called the i–th string) goes, monotonically in t ∈ [0, 1], from (Pi, 0) to

(Pj , 1).

A singular geometric braid is just the same as a geometric braid, except

for the fact that we allow a finite number of transversal intersections

between two strings. The intersection points will be called singular points.

If we consider the braids modulo isotopies of U × [0, 1] leaving fixed

U ×{0, 1}, we get the singular braid monoid (of U), noted SBn, with the

operation defined by concatenation.
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We will note by α, β, γ, ... the geometric braids and by α̂, β̂, γ̂, ... their

corresponding classes in SBn.

When U is the open disk D, SBn is a very well–known monoid ([5]),

generated by the braids σ̂i, σ̂
−1

i , τ̂i, where σi, σ
−1

i , τi are the geometric

braids shown below. We will also speak of σ̂i, σ̂
−1

i , τ̂i in the general case,

by means of the natural embedding of the singular braid monoid of the

disk into SBn.

In what follows, we will draw braids only in the cylinder D× [0, 1] (for

the sake of simplicity), although our arguments will work for U × [0, 1].

We will introduce now the analogous setup to that of Fenn, Keyman

and Rourke in [6] for the disk case.

Definition.– We will call M the monoid where the elements are geometric

singular braids (modulo isotopies) in which every singular point is assigned

a colour, black or white.

We will then note by α, β, γ, ... the geometric braids (with coloured

singular points) and by α̂, β̂, γ̂, ... their corresponding classes in M .

Remark.– There is a surjection from M to SBn which consists on for-

getting the colours of the singular points. On the other hand, SBn can

be embedded in M by assigning the black colour to every singular point.

The image of τ̂i under this injection will be noted also by τ̂i, while we

will note by υi the braid obtained by assigning the white colour to the

singular point of τi. We will call υ̂i the opposite of τ̂i.
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Without explicit mention we will consider SBn as a submonoid of M ,

using the above injection.

Definition.– If we add to M the relations τ̂iυ̂i = υ̂iτ̂i = 1, we obtain a

group, called the singular braid group (of U), noted SGn.

The relations τ̂iυ̂i = υ̂iτ̂i = 1 in SGn.

From now on, if a singular braid has the form, say α̂ = ̂α1τiα2, and

we do not care about who α1 and α2 are, we will draw it as follows:

3 The embedding theorem

Theorem.– The natural map SBn −→ SGn is one–to–one.

Before proving the result we will introduce a few notations. For α, β

geometric singular braids, we will note α ր β if there exist α1, β1 such

that α̂ = α̂1, β̂ = β̂1 and we can obtain β1 from α1 by adding a pair of

consecutive opposite singular points. In the same way, we will note α ց β

if there exist α1, β1 such that α̂ = α̂1, β̂ = β̂1 and we can obtain β1 from

α1 by erasing a pair of consecutive opposite singular points.

Remark.– Note that α̂ and β̂ define the same element on SGn if and

only if there exist α = α0, α1, ..., αk = β such that either αi ր αi+1 or

αi ց αi+1 for all i = 0, ..., k − 1.

The following result is the key part of the proof of the theorem, as

noted in [6], where it is proved for the case U = D. The proof will be

given in the following section.
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Diamond lemma.– Let α, β, γ be geometric singular braids such that

α ր β ց γ. Then, either α̂ = γ̂, or there exists η such that α ց η ր γ.

Definition.– We will say α̂ ∈ M is irreducible if there is no β with α ց β.

Corollary.– If α̂, β̂ ∈ M are irreducible and define the same element in

SGn, then α̂ = β̂ in M .

The proof is immediate from the diamond lemma (see [6]) and, besides,

as the elements of SBn are irreducible (they only have black singular

points), this proves that the map from SBn to SGn is an embedding.

Hence the theorem is proved, up to the diamond lemma.

4 The diamond lemma

Given a geometric singular braid β, with a singular point p on it, we will

denote by β(p+) and β(p−) the braid obtained from β by replacing p by

a positive and negative crossing, respectively. That is, if β = β1τiβ2,

(where p is the singular point in τi) we will have β(p+) = β1σiβ2 and

β(p−) = β1σ
−1

i β2. In a similar way, if we have p1, ..., pm singular points

on β, we will write β(ps1

1 , ..., psm

m ) the braid obtained by replacing each pi

by a crossing with sign si ∈ {+,−}.

If we have a singular braid β, with a singular point p on it, we will

write β(p•) and β(p◦) the braid obtained from β by replacing p (no matter

which colour it has) by a black point and a white point, respectively.

Lemma 1.– Let β and β′ be geometric singular braids, p a singular point

on β. Assume β̂ = β̂′ and let us call also p the point corresponding to p

in β′. Then:

1. ̂β(p+) = ̂β′(p+).

2. ̂β(p−) = ̂β′(p−).

Proof.– As both cases are analogous, we will do the first case only.

As β̂ = β̂′ , there exists an isotopy of the cylinder, Ht, with H0(β) = β,

H1(β) = β′. Take a sphere S centered at p with radius small enough such

that the only strings intersecting S are those forming the singular point.

We can assume that β(p+) and β coincide outside S.
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We can suppose that H1(S) is also a sphere centered at p on β′. Hence,

if we apply H1 to β(p+), we obtain the braid β′, except for the fact that

the point p has been replaced by a positive crossing (since U is orientable).

That is, we get β′(p+). So H1(β(p+)) = β′(p+).

Lemma 2.– Let β̂ ∈ M , having two consecutive singular points, p and q.

Then ̂β(ps, qc) = ̂β(pc, qs), with s ∈ {+,−}, c ∈ {•, ◦}.

Proof.– This result is a straightforward consequence of the well known

relation σiτi = τiσi in the singular braid monoid of the disk.

We can now proceed to prove the diamond lemma. As α ր β we can

consider, with no loss of generality, that α = β(p+, q−) for some pair p, q

of opposite consecutive points in β. On the other side, as β ց γ, let us

call β′ the braid verifying β̂ = β̂′ and, as above, γ = β′(r+, s−) for a pair

r, s of opposite consecutive points in β′.

Let us call H the cylinder isotopy taking β into β′. Then, using our pre-

vious notation, we can write α = β(p+, q−) ր β
H
−→ β′ ց β′(r+, s−) = γ.

The technique used for the proof is heavily related to the proof of

lemma 1. In fact, we will make an extensive use of the fact that H brings

together r and s, while possibly moving apart p and q, and H−1 acts the

other way around. This fact, together with the using of the small spheres

as in lemma 1, will give us the result.

We will assume that p is above q and r is above s from now on. Then

we need to distinguish three cases:

(a) p = r, q = s.
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(b) p, q, r, s are all distinct.

(c) p = s or q = r.

Case (a) This is the easiest situation. As β̂ = β̂′, from lemma 1 we have

̂β(p+) = ̂β′(p+). Hence α̂ = ̂β(p+, q−) = ̂β′(p+, q−) = γ̂.

Case (b) In this case β has two pairs of opposite singular points, (p, q)

and (r, s), of which (p, q) are consecutive. Hence β can be assumed to

have the form β1τiυiβ2, and the analogous thing happens with β′ and

(r, s).

Then we can write

α = β(p+
, q

−)
H
−→ β

′(p+
, q

−) ց β
′(p+

, q
−

, r
+

, s
−)

H−1

−→

H−1

−→ β(p+
, q

−

, r
+

, s
−) ր β(r+

, s
−)

H
−→ β

′(r+
, s

−) = γ.

This proves the existence of η = β′(p+, q−, r+, s−) with α ց η ր γ.

Case (c) We will do the subcase q = r, the other one being symmetric.

We have
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Then, from lemma 2,

α = β(p+
, q

−)
H
−→ β

′(p+
, q

−) = β
′(p+

, q
−

, s
•)

∼

−→ β
′(p+

, q
•

, s
−)

H−1

−→

H−1

−→ β(p+
, q

•

, s
−)

∼

−→ β(p•

, q
+

, s
−)

H
−→ β

′(p•

, q
+

, s
−) = γ,

where
∼

−→ stands for the (non–specified) isotopies which come from ap-

plying the lemma 2. This proves α̂ = γ̂ and concludes the proof of the

diamond lemma.
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