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Abstract. It is a classical result (apparently due to Tate) that all elliptic

curves with a torsion point of order n (4 ≤ n ≤ 10, or n = 12) lie in a one-

parameter family. However, this fact does not appear to have been used ever

for computing the torsion of an elliptic curve. We present here a extremely

down–to–earth algorithm using the existence of such a family.

Mathematics Subject Classification (2000): 11G05

1. Tate and Weierstrass normal forms

An elliptic curve is a plane smooth affine (respectively projective) curve de-

fined by a cubic (homogeneous) polynomial. All these curves are known to be

birrationally equivalent (that is, isomorphic as algebraic varieties, up to a fi-

nite number of points) to one which equation has the form Y 2+a1XY +a3Y =

X3 + a2X
2 + a4X + a6. When all the coefficients lie in a field K, the set

of points in the curve with both coordinates in K admits a group structure

([Cassels 1966], [Cassels 1991], [Husemoller 1987]) with the inner operation

defined by the classical chord–tangent procedure. This group is then noted

E(K). For historical reasons we will note this operation additively and so
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we will write 2P for P + P . As the unit element is usually taken to be the

only point at infinity (say O), we can restrict ourselves to affine points.

The Mordell–Weil theorem states that, if K is a number field, E(K) is

always a finitely generated abelian group ([Cassels 1991], [Husemoller 1987]).

The torsion subset of E(K) is hence a finite subgroup, noted ET (K). The

strongest result concerning ET (Q) is due to B. Mazur and explicitly states

all groups which can appear as torsion subgroups of elliptic curves defined

over Q:

Theorem (Mazur).– ([Mazur 1977], [Mazur 1978]) Let E be an elliptic

curve defined over Q. Then its torsion group ET (Q) is either isomorphic to

Cn (the cyclic subgroup of n elements) for n = 1, 2, ..., 10, 12 or to C2 × C2n

for n = 1, 2, 3, 4. All of these possibilities actually occur.

The aim of this paper is giving an efficient procedure, different from the

usual ones, still very lowbrow, for computing the torsion subgroup of an

elliptic curve defined over the rationals. First of all we must put the curve

into a more manageable form.

For a general elliptic curve it is known (see, for instance, [Cassels 1966],

[Cassels 1991], [Husemoller 1987]) that using linear changes of variables, one

can take the equation defining the elliptic curve into an easier one of the type

Y 2 = X3 + AX + B. This is known as Weierstrass (short) normal form.

A straightforward computation proves that the only linear changes of

variables preserving Weierstrass normal form are those given by

{

X 7−→ u2X ′

Y 7−→ u3Y ′

for some u ∈ Q. Such a change takes the curve defined by Y 2 = X3+AX+B

into the one defined by Y 2 = X3 +(A/u4)X +(B/u6). This argument shows

that one can always assume A and B to be in Z. It also implies that the

number A3/B2 is an invariant of the equivalence class of elliptic curves in

Weierstrass form up to linear changes of variables.

Of course, even if two curves Y 2 = X3 +AX +B and Y 2 = X3 +CX +D

verify A3/B2 = C3/D2 this does not mean they are equal up to some linear

change of variables of the previous form. In fact, it is fairly elementary
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proving that this happens if and only if the following condition hold: there

exists a rational solution u for the system

{

u4 =
A

C
, u6 =

B

D

}

,

with the obvious arrangements for the cases in which any of the coefficients

vanishes.

In addition, if the curve is already known to have one rational point of

order n > 3, one can choose to put the equation of the curve in the form

Y 2+bXY +cY = X3+dX2, also using nothing but linear changes of variables.

This second formula is called Tate normal form ([Husemoller 1987]).

2. The Lutz – Nagell theorem

Most classical algorithms for computing rational torsion of elliptic curves are

based on the following result, achieved independently by Lutz and Nagell

([Nagell 1935], [Lutz 1937]):

Theorem (Lutz – Nagell).– Let E be an elliptic curve defined over Q,

given by a Weierstrass equation Y 2 = X3 + AX + B with A, B ∈ Z, and let

P = (α, β) ∈ ET (Q). Then

(a) Both α and β are in Z.

(b) Either β = 0 or β2|(4A3 + 27B2).

Clearly β = 0 is equivalent to 2P = O and this 2-torsion part is rapidly

computable. For computing the remaining points (if there are any) we simply

factorize ∆ = 4A3 + 27B2. This quantity, called the discriminant of E, will

be most important in the sequel. For every square divisor, say m2 of ∆, we

compute the integral solutions to X3 + AX + (B − m2). If we actually find

an integral root, say n, we only have to check whether (n, m) is a torsion

point, which only involves computing, at most, 12(n, m), following Mazur’s

Theorem.
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Simple as it is, this algorithm is not very efficient, being its major draw-

back the necessity of factoring ∆. This is the algorithm presented, for in-

stance, in [Cohen 1993] and [Cremona 1992].

3. Good reduction: a first bound

The first step in our algorithm will be a reasonable bound for the size of

ET (Q). The existence of the group structure in an elliptic curve does not de-

pend on the field we are taking coordinates in. So, for instance, if A, B ∈ Z,

then for all primes p, the same equation defining an elliptic curve over Q de-

fines an elliptic curve over the finite field Fp. The relationship between these

two curves can help us in our purpose, using the next result ([Cassels 1991],

[Husemoller 1987]):

Theorem.– Let E be an elliptic curve in Weierstrass form Y 2 = X3 +

AX + B, with A, B ∈ Z. If p > 2 is a prime number such that it does not

divide ∆, then the mapping

redp : ET (Q) −→ E(Fp)

(α1, α2) 7−→ (α1, α2)

O 7−→ O

is an injective group homomorphism (where αi denotes the residue classes of

αi modulo p).

Primes which do not divide ∆ are called good primes and the induced

group homomorphisms are called good reductions. So, choosing some prime p

not dividing ∆ and computing how many points lie in E(Fp) we must obtain

a multiple of the order of ET (Q). Our practical choice has been taking three

primes (as small as possible), computing the number of points in each case

and finding the greatest common divisor of all those quantities. In most

cases, this bound was found to be the actual order of ET (Q).

There are, however, some cases which does not fit this scheme. For exam-

ple, the curve defined by Y 2 = X3 + X has the property that, ET (Q) = C2

but, for every good prime p the order of E(Fp) is divisible by 4.
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Trying then to be a bit more accurate, we computed not only the order of

E(Fp), but also how many elements of order 2 it had. So, if E(Fp) presented

more points of order 2 than E itself, our choosing for the bound can be

smaller than the order of E(Fp). In the above example, as E3 is isomorphic

to C4 and E(F5) is isomorphic to C2 × C2, the bound actually found is the

order of the group ET (Q).

So, if |E(Fp)| = M , the number of points of order 2 in E is s and the

number of points of order 2 in E(Fp) is t, the choosing of the bound goes

like this:

(a) If s = t, we choose M .

(b) If (s, t) ∈ {(0, 1), (1, 3)} then we choose M/2.

(c) If (s, t) = (0, 3) then we can choose M/4 as the bound.

Note that one needs the fact that E(Fp) is a finite group with, at most,

three elements of order 2.

4. Points of given order

We will explain now how to decide when an elliptic curve defined over the

rationals has a point of a given order, say n, where n = 4, ..., 10, 12. First we

need a result on parametrization of torsion structures. Most cases are proved

(quite straightforwardly) in [Husemoller 1987]. Also see [Kubert 1976] for a

more exhaustive table, without any proofs.

Theorem.– Every elliptic curve with a point P of order n = 4, ..., 9, 10, 12

can be written in the following Tate normal form

Y 2 + (1 − c)XY − bY = X3 − bX2,

with the following relations:

(1) If n = 4, b = α, c = 0.

(2) If n = 5, b = α, c = α.
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(3) If n = 6, b = α + α2, c = α.

(4) If n = 7, b = α3 − α2, c = α2 − α.

(5) If n = 8, b = (2α − 1)(α − 1), c = b/α.

(6) If n = 9, c = α2(α − 1), b = c(α(α − 1) + 1).

(7) If n = 10, c = (2α3−3α2 +α)/ [α − (α − 1)2] , b = cα2/ [α − (α − 1)2].

(8) If n = 12, c = (3α2 − 3α + 1)(α − 2α2)/(α − 1)3, b = c(2α − 2α2 −

1)/(α − 1).

Suppose then that we want to check if a given curve E defined by Y 2 =

X3 + AX + B has a point of order n. Assume it posseses such a point:

therefore E must be isomorphic to one curve lying in the one–parameter

family. Then we simply compute the Weierstrass normal form of a generic

curve in the familiy and check the conditions given at the end of section 1

for two curves in Weirestrass form to be isomorphic.

Example.– Let us give an example with n = 5. Suppose that we would

like to know if our curve Y 2 = X3+12933X−2285226 (this is curve 110A1(C)

from [Cremona 1992]) has a point of order 5. If it is the case, the curve must

be isomorphic, by a linear change of variables, to one lying in the family

Y 2 + (1 − α)XY − αY = X3 − αX2.

So, taking this general equation to Weierstrass form we obtain an equation

which we will note Y 2 = X3 + A5(α)X + B5(α). Should this curve be

isomorphic to ours, it must hold

A5(α)3

B5(α)2
=

129333

22852262
,

which sums up to an equation in the variable α (in our case, of degree 12).

This equation will be called the final polynomial for n = 5. For every

root α0 we have to check if there is some u ∈ Q verifying
{

u4 =
A

A5(α0)
, u6 =

B

B5(α0)

}

.
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If there is then we have a point of order 5, which is easily calculated, as

(0, 0) is a point of order 5 in the Tate normal form. If not, then there are no

points of order 5 in E.

In our example, the only roots were −1/10 and 10. Besides,

A5(10) = A, B5(10) = B,

so in fact there is a point of order 5 in our curve. Tracing back the changes

of variables a point of order 5 turns out to be (123, 1080).

The only remaining case is n = 3 that is, we need a procedure for deciding

if an elliptic curve has a point of order 3. There is also a Tate normal form

for this case, but it has some inconveniences, being the heaviest one that

the family of curves depends now on two parameters. However, there is a

well-known property which can be used ([Cassels 1966]):

Proposition.– Let E be an elliptic curve given by a Weierstrass equation

Y 2 = X3 + AX + B. Then E has a point P of order 3 if and only if there is

an integral solution to the equation

3X4 + 6AX2 + 12BX − A2 = 0.

In this case, the solution is the first coordinate of P . In fact, in the

cited article one can find polynomials which characterize points of any order.

These polynomials become more complicated as the order grows, but they

also allow to obtain a obvious procedure for deciding if there is any point of

given order.

5. The algorithm

Given an elliptic curve in Weierstrass form Y 2 = X3 + AX + B, in order to

find its torsion group we proceed as follows:

Step 1. Compute the number of points with order 2, that is, the rational

solutions for X3 + AX + B.

Step 2. Pick the smaller five (for instance) good primes for E and

compute a bound M for the torsion as explained above.
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Step 3. If the number of rational solutions is either 0 or 1, then for

every divisor d of M , apply the procedure described in the previous section

to check if there is a point of order d. If this is done is decreasing order, the

first affirmative answer gives us the group (which should be isomorphic to

Cd) and one generator: either the point which comes from point (0, 0) in Tate

normal form for n = 4, ..., 10, 12 or the point directly obtained for n = 3.

Step 4. If the number of rational solutions is 3, then apply the same

procedure as above for every divisor d of M/2. Now the first affirmative

answer gives us the group (which must be C2 × Cd) and a set of generators

(the points of order 2 and the point which comes from point (0, 0) in Tate

normal form).

6. Explicit calculations

In this section, we will show the computations that led us to the implemen-

tation of our algorithm in Maple, currently available by anonymous ftp at

ftp://alg7.us.es/pub/Programs/ (comments in Spanish so far...).

So we fix an elliptic curve E, given by Y 2 = X3 +AX +B with A, B ∈ Z

and we want to know if there is a point of order n on it. For all cases (except

n = 3) we know this implies solving an equation on a parameter α which

comes from the parametrizations of Tate normal form.

However, one may find that “classical” parametrizations, though the sim-

plest ones, are not necessarily the most convenient for our purpose. As we

will need to compute the rational solutions of a polynomial in Z[X], which

the best parameter is depends heavily on which root finding method is to be

used.

Our choice was the algorithm developed in [Loos 1983], so we had to take

into account that the complexity of finding the rational roots a polynomial

in Z[X], say f(X) =
∑

aiX
i, of degree n, is O(log2 ||f ||), where

||f || =
∑

|ai|,

so one may choose a parameter which minimizes ||f || when f is the final

polynomial. Such a parameter will be called a minimal parameter.
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Case n = 4. We will do this in detail. The general equation was

Y 2 + XY − αY = X3 − αX2,

provided b 6= 0,−1/16.

Once it is taken to Weierstrass normal form, it sums up to

Y 2 = X3 + A4(α)X + B4(α),

where

A4(α) = −432α2 − 432α − 27, B4(α) = −3456α3 + 6480α2 + 1296α + 54.

So the final polynomial for α, B(α)2A3 − A(α)3B2 results

P4(α) = 21236∆α6 − 21237 (5A3 − 27B2)α5

+2837 (59A3 + 459B2)α4 + 293611∆α3

+243717∆α2 + 2437∆α + 36∆

Our next step is then to find a minimal parameter (that is, a parameter

minimizing the norm of its final polynomial). So we find a new parameter

β = rα+s. Obviously we need our new final polynomial, F4(β) to lie in Z[X]

so it is plain that the natural choosing for r must be 1/12. Then we look

for a rational s which minimizes ||F4||. As F4 was to lie in Z[X] the possible

denominators were bounded (actually they had to be a divisor of 12). We

find a minimum for s = 1/12 so we took α = (β + 1)/12 and

F4(β) = ∆β6 − 6 (34A3 − 135B2) β5 + 3 (851A3 + 2646B2)β4

+4 (313A3 + 5940B2)β3 − 6 (95A3 + 2646B2) β2

−24 (A3 − 135B2)β + 49A3 − 216B2.

If we set N = max{|A|3, |B|2} then

||F4|| ≤ 56667N ≃ 283252N.

We present below all the minimal parameters along with bounds for the

seminorm of the final polynomials, calculated as above.
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Case n = 5. β = α, deg(F5) = 12, ||F5|| ≤ 898312N ≃ 2123252N .

Case n = 6. α = β/3−1/3, deg(F6) = 12, ||F6|| ≤ 2220071N ≃ 243256N .

Case n = 7. β = α, deg(F7) = 18, ||F7|| ≤ 110725743N ≃ 22233N .

Case n = 8. α = β+1, deg(F8) = 24, ||F8|| ≤ 46702469380N ≃ 293558N .

Case n = 9. β = α, deg(F9) = 36, ||F9|| ≤ 11353024920N ≃ 2103656N .

Cases n = 10 and n = 12 can of course be worked out in the same way

but the polynomials get quite unpractical. As

ET (Q) =















C10 ⇐⇒ C2, C5 ⊂ ET (Q)

C12 ⇐⇒ C4, C6 ⊂ ET (Q)

there is no necessity of finding the actual polynomials F10 and F12. In these

cases, the generator can be easily computed using the duplication formula.

The leading coefficient of all final polynomials turns out to be ∆. Indeed,

one can look for a parameter such that the leading coefficient and the inde-

pendent term of its final polynomials are ∆. So, if the factorization of ∆ is

known, this final polynomials can speed up the process, as all the possible

rational roots of the final polynomials are known in advance.

7. Complexity and some examples

As in the previous section, let

N = max
{

|A|3, |B|2
}

.

We will show that the running time of our algorithm is O(K log2 N) for

some K ∈ N. Unless otherwise stated, [Cohen 1993] is the reference here for

the details.

The computation of the points of order two can be clearly accomplished

in the expected time, using, for instance, the algorithm given in [Loos 1983].

Note that, should this be the case, it can also be used for checking the

existence of points with order three, with the desired complexity.
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The bounding of the torsion consists only on arithmetical operations on

affine planes Fp, with p not dividing ∆. It is clear that there are primes

smaller than N which not divide ∆. Of course, it is known that arithmetical

operations with data bounded by ∆ can be carried out in O(log2 N) time.

So it only remains checking step 3 (step 4 is analogous) for the cases

n = 4, ..., 10, 12. But note that all the coefficients of our minimal polynomials

are bounded by cN , for some natural c. This means that, for a rational root,

written in irreducible form α0 = β0/γ0, we have

|β0| , |γ0| < cN.

Therefore, if we want to find out if there exists some u ∈ Q such that

u4 = A/An(α0) we only have to put A/An(α0) in irreducible form (that

amounts to find the gcd and divide) and compute the square root of its

numerator and denominator twice. All these operations can be carried out

in the expected time. If such an u exists, it is just a matter of arithmetical

checking seeing if u6 = B/Bn(α0).

Some time results of our algorithm are given in the following examples

table, using our MapleV routine.

E1 : Y 2 = X3 − 98D6E49C45C901B · X + B5D1E097F653622F55B036

E2 : Y 2 = X3 − (A2/A
′

2
)X + (B2/B

′

2
)

E3 : Y 2 = X3 − (A3/16)X − (B3/32)

where

A2 = 83ACFBAEC1BB1AC8EA33B897FDE9672AB898D04622635/

198248803F6F6429EC185BB2AB6D5DAE2C41BA0EC07AD5/

46CFF23FA458FCB36D8E85877CF0

A′

2
= 4E07B196F78B523E2BF8B93D9FF09BFF22E07284643617/

AD603BDEBE49E967484527B634E2990C1E19261C903/

AAC97D0F23EE86534D5011DF9A71
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B2 = 1594F960645253D0B7F933BFD50446DC3FC067CAFEDB11/

E76E7EBBDA0FCB2EF4AC34672D4B6469AD156134B7DEA/

2FC9C7EFA07084E7695B18DBE22D436EEE2BB5EA14C26/

D67AB385078CB862970A2B56D62C837D4E00A097490

B′

2
= AC51A232098DD799F2D035E3B630C2EE79B9C00C70B9013/

071A6A0011C7A689A577D55A9BCCDA3FDCCE2FB25958A/

D9D1F26D9D0D118651B0B5548FF001466E8D0BF7946D23F/

9319CE52A96C7C9B2D0E37DEC87027D90109

A3 = AF06EC915A7BC47C45CFBFA797633ACE67A79F7B381D29/

BCCA243AABA230AF5BAD1058D41582134BECEF3F8DBB

B3 = 1BDA1A8FE9A5108EA7DB7FB6AE8EB3F7AB45A8D22614B/

93FDB39D03E0B8324128145C706768EF5EE5BE37E68F4C

B5BC9EE31CC5B7EDA2C668D5CF0EFE9AA31F0B460EEB

Curve Group Generator Time

E1 C4 (1C8CFC03, 100F4DC00) 2.33s

E2 C5 (λ1/λ
2

3
, λ2/λ

3

3
) 10.66s

E3 C2 × C4 (λ4, λ5) 3.85s

where

λ1 = -1A8019538D071D5BFD9EEBA7B19BE9124EB6E592F0D15/

B0DD77D8016A58C

λ2 = -1626E05A34E5EA7E90A84BF3C4D604949BAA0DA532CDE1/

147804F9E6491E9E49F16F356882A85DA4C9785AC75C

λ3 = 17C6E3C032F89045AD746684045E05

λ4 = -7A36225A2ADAAFA9B059FF46EE903619BD0C4E2AD3AA1/4

λ5 = -897CE6A57036059EE6653F2FCC623CDCF4ADD7F02E202A/8

The computations have been performed in a KMD300 computer. Note

that our current implementation does not include so far the root finding

algorithm of [Loos 1983] but Maple V 5.1 built–in routine, so it is hoped

that a complete implementation of our algorithm will obtain even better

results.
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We have compared our algorithm with, probably, the two most efficient

current ones: Pari/GP built–in procedure, elltors (see [Batut et al. 2000])

and the routine Tor from the Maple package APECS (see [Connell 1999]).

Pari/GP elltors follows the algorithm described in [Doud 1998], using

the analytic parametrization of the curve. It is extremely fast and, besides,

the periods of the lattice associated to the curve are directly computed by

Pari/GP when you enter the curve with the routine ellinit. However, in

some cases (we can not figure out when or why), elltors needs such a pre-

cision that it may become unpractical. It remains, however, as our favourite

choosing for medium–size coefficients. Here are the time results, expressed as

(time for ellinit) + (time for elltors), for the previous examples, together

with the precision (by 100) required.

Curve Precision Time

E1 > 3600 ??

E2 1300 1.05s + 11.92s

E3 200 0.06s + 0.08s

For E3 elltors gave an incorrect result: it output C4 for the structure.

Hence there appears to be some minor bug in the implementation. In all our

computations, no errors were found in elltors when working with cyclic

groups.

APECS Tor uses the polynomials mentioned at the end of section 4.

When you introduce a curve, which you must do before computing its tor-

sion, it computes a great deal of data, in particular a bound for the torsion

subgroup and other relevant quantities. If data are moderately large (even

significantly smaller than the examples) this takes a huge lot of time: we

mean hours for the examples above. Anyway, its library is really huge, so,

for small–size coefficients, APECS will surely have a lot of information (of

course everything concerning rational torsion points) only to look up to.
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