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Searching for simultaneous arithmetic

progressions on elliptic curves

Irene Garćıa–Selfa∗ José M. Tornero∗

November, 2.004

Abstract

We look for elliptic curves featuring rational points whose coordi-
nates form two arithmetic progressions, one for each coordinate. A
constructive method for creating such curves is shown, for lengths up
to 5.
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1 Introduction

Let us consider an elliptic curve E defined over Q by a general Weier-
strass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, ai ∈ Q.

Definition.– We will say that the points P0, ..., Pn ∈ E are in (or
form an) x–arithmetic progression if their x–coordinates are. The
symmetric concept of y–arithmetic progression is defined analogously.

We will note by Sx(E) and Sy(E) the maximal number of points
in x–arithmetic progression and y–arithmetic progression respectively
that can be found in E.

∗Both authors supported by FQM 218 and BFM 2001–3207 and FEDER.
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Remark.– What we ignore about arithmetic progressions on elliptic
curves is far more than what we know. Apparently the first one in
considering the problem was S.P. Mohanty ([5]) who focused on the
Mordell equation Y 2 = X3 + k and looked for integral points forming
arithmetic progressions of difference 1. He proved that for all these
curves and for just these progressions Sx(E) ≤ 2 and Sy(E) ≤ 4.

Later on, Lee and Vélez ([4]) fixed their attention in the same fam-
ily, but they took into consideration all possible progressions. They
found infinite families of such curves verifying Sx(E) ≥ 4 and (not
simultaneously) Sy(E) ≥ 6.

Bremner, Silverman and Tzanakis ([2]) took another quite popular
family of curves, Y 2 = X(X2 − n2), and proved that for all these
curves and considering only integral points Sx(E) ≤ 5. They went
further and proved very interesting results on this line concerning free
subgroups of rank one in arbitrary elliptic curves. Their proofs were
quite lengthy, involving very delicate computations of local heights.

After this (although it was published earlier) Bremner ([1]) carried
out very clever computations in order to show that there are infinitely
many curves verifying Sx(E) ≥ 8. Campbell ([3]) followed his lines to
produce curves with eight points in x–arithmetic progression and also
a genus 1 curve with 12 such points (unfortunately the curve was not
in Weierstrass form!). Maybe the more intriguing parts of Bremner’s
results are, on one side, the numerical evidence of the fact that the
length of x–arithmetic progressions on elliptic curves may well not
be bounded (although Bremner himself did not risk to state such a
conjecture) and, on the other hand, the apparent connection between
long arithmetic progressions and high ranks of the Mordell-Weil group.

From these last papers it becomes clear that the main problem,
when one deals with arithmetic progressions on elliptic curves, is that
the number of parameters involved (if one wants to work with full gen-
erality) becomes unmanageable. This is why the only precise results
known are bounded to one–parametric families.

This paper is devoted to finding simultaneous arithmetic progres-
sions on elliptic curves. The precise definition goes as follows:

Definition.– We will say that the points P0, ..., Pn ∈ E are in (or form
a) simultaneous arithmetic progression if their x–coordinates and its
y–coordinates are (maybe not in the same order).

2



We will note by Sx,y(E) the maximal number of points in simul-
taneous arithmetic progressions that can be found in E.

Remark.– When one looks for such progressions with more than three
points, things start to become difficult, as the ordering of the points in
both progressions can not coincide (see below for a precise explanation
of this). Our initial aim was following [1] and imposing the conditions
with full generality in order to narrow the search with respect to the x–
arithmetic progression problem. Unfortunately it eventually became
too complicated to deal with as well. So, we took a different point of
view from Bremner’s ([1]): we have worked with (almost) arbitrary
elliptic curves, but we have looked for a restricted class of arithmetic
progressions. With this starting point, we have been able to prove the
following results, which were unknown so far:

Theorem 1.– There are elliptic curves over Q with Sy(E) ≥ 7.

Theorem 2.– There are elliptic curves over Q with Sx,y(E) ≥ 5.

2 A construction scheme

As it is well–known ([7]), any change of variables preserving the Weier-
strass form of E must be of the form

X ′ = u2X + r, Y ′ = u3Y + sX + t,

so the existence (and the length) of x–arithmetic progressions is not
affected by changes of variables. This also implies that, up to such
a change, we can consider all the points in a certain x–arithmetic
progression to be integral (the y case being symmetric). Therefore
as an immediate corollary of Siegel’s theorem (see [6] for the original
proof or [7] for a modern one) E cannot contain infinite x–arithmetic
progressions.

Hence we are left to study if there is a universal bound, indepen-
dent of the chosen curve, for the length of arithmetic progressions.
So, assume we have a curve with an x–arithmetic progression on it,
say P0, ..., Pn, and assume [2]P0 6= O. Then we can take P0 to (0, 0)
and rotate the axes in order to take the tangent at (0, 0) to the line
X = 0 (warning: this may dismantle y–arithmetic progressions in the
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original model). Then our curve must look like

E : Y 2 + aXY + bY = X3 + cX2.

Now, if we make the change

X 7−→

(

−c

b

)3

X, Y 7−→

(

−c

b

)2

Y,

our curve will be defined by

E(a, b) : Y 2 + aXY + bY = X3 − bX2.

This equation (also called Tate normal form) features two an-
other obvious points in E(a, b) other than (0, 0): (b, 0) and (0,−b).
Hence, in what follows we will make a new (strong indeed) assump-
tion and suppose P1 = (b, 0). This implies that the difference in our
x–arithmetic progression must be precisely b. In fact, we will actu-
ally take P0 = (0,−b) in order to avoid the repetition of 0 in the
y–progression.

We must look for conditions which assure us that points (kb, yk)
appear in E(a, b). Furthermore, we want these points to form as
well a y–arithmetic progression. Although the subindex of the points
will represent the increasing order in the first coordinate it is obvious
that, as for the second coordinate is concerned, the subindex of a
point might have nothing to do with its position in the y–arithmetic
progression.

In order to do that mind that if Pk = (kb, yk) ∈ E(a, b) then it
must hold

yk =
−b(ak + 1) ± b

√

(ak + 1)2 + 4k2b(k − 1)

2
,

so proving the existence of Pk is equivalent to finding a rational solu-
tion for the diophantine equation

Z2

k = (ak + 1)2 + 4k2(k − 1)b.

We make now the change of variables

αk = ak + 1 + Zk, βk = ak + 1 − Zk,

and so our previous equation becomes

αkβk + 4k2(k − 1)b = 0.
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Now, when we gather together the equations for P2, ..., Pn we must
take into account that, for all k, αk + βk = 2ak + 2. The diophan-
tine system which is equivalent to the existence of our x–arithmetic
progression is, therefore

α2β2 +16b = 0
α3β3 +72b = 0

.. .
...

...
...

αnβn +4n2(n − 1)b = 0
3α2 + 3β2 −2α3 − 2β3 = 2

...
. . .

...
...

nα2 + nβ2 −2αn − 2βn = 2(n − 2)

This can be seen as the intersection of (n − 1) hyperquadrics and
(n − 2) hyperplanes in the affine (2n − 1)–dimensional space over the
rationals. Such a system is clearly unmanageable for, say n = 10 (not
to say less). Observe that, as b = 0 leads to no progression at all, we
must in fact ask for all αi and βi to be non–zero.

What looks particularly useful with this formulation of the problem
is that, in this context, we can write

yk =
b

2
(−(ak + 1) ± Zk) ,

and hence the two solutions for yk are precisely, −bαk/2 and −bβk/2.
We can choose freely one of them, as the above equations are sym-
metric in {αi, βi}. This is quite useful in order to force the existence
of a simultaneous y–arithmetic progression.

3 Numerical results

Unlike the case of x–arithmetic progressions (for instance, in [1]),
where the conditions for the existence of a progression of length, say,
k are also to be filled for the existence of a longer progression, in our
case, if a set P0, ..., Pn displays a simultaneous arithmetic progression,
that does not mean, in principle, that P0, ..., Pk also does (although
we have not been able so far to find an example of this).

All the calculations in this section have been carried out with
MapleV and PARI/GP.
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Lenght 3. There are infinitely many curves with a simultaneous
arithmetic progression of length 3. In fact, we may even ask both
coordinates to share the same order in the progression. This clearly
implies the three points must be collinear, and it also explains why
one cannot hope to have such examples with longer lengths.

For instance, all curves of the family

E(b) : Y 2 + (2b − 1)XY + bY = X3 − bX2

have such a progression:

{(0,−b), (b, 0), (2b, b)} .

Length 4. The system needed for the existence of an x–progression
of length 4 is

α2β2 +16b = 0
α3β3 +72b = 0

3(α2 + β2) −2(α3 + β3) = 2

with y2 = −β2b/2, y3 = −β3b/2. Now, we can choose two values
for β2 and β3 which will guarantee the existence of the y–arithmetic
progression. These values, when substituted in the system will lead
to a system of three linear equations in α2, α3, b whose matrix is







β2 0 16 0
0 β3 72 0
3 −2 0 2 − 3β2 + 2β3






.

Hence we will have a unique solution if β2 6= β3/3, a family of
solutions if β2 = −2/3, β3 = −2 and no solutions at all otherwise.
The pair (β2 = −2/3, β3 = −2) does not guarantee a length 4 y–
progression but it will appear later, in the length 5 study.

If we want 0 and −b to be in the y–progression, there are only six
possibilities for this sequence and they are precisely

{

(2b, b, 0,−b), (b, 0,−b,−2b), (0,−b,−2b,−3b),

(

b

2
, 0,

−b

2
,−b

)

,

(

0,
−b

2
,−b,

−3b

2

)

,

(

0,
−b

3
,
−2b

3
,−b

)}

.

Each of them allows two possible choices for β2 and β3, except the
penultimate case, in which (β2 = 1, β3 = 3) is forbidden. The results
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found are shown in the following table, except the cases (β2 = −2, β3 =
−4), which leads to a degenerate case b = 0, and (β2 = 4, β3 = 6),
which gives the same curve as (β2 = 4, β3 = −2).

(β1, β2) (a, b) Sx Sy

(−4,−2) (−5/3,−1/6) ≥ 5 ≥ 5
(−2, 4) (−7/15, 4/15) ≥ 5 ≥ 4
(−1, 1) (−29/48, 7/192) ≥ 4 ≥ 4

(2/3, 4/2) (−7/9, 2/27) ≥ 4 ≥ 5
(1,−1) (−5/16, 1/64) ≥ 6 ≥ 7

(4/3, 2/3) (−7/45,−1/270) ≥ 4 ≥ 4
(3, 1) (29/96,−5/128) ≥ 4 ≥ 4

(4,−2) (1/3, 1/6) ≥ 4 ≥ 5
(6, 4) (25/21,−2/7) ≥ 6 ≥ 4

This search gave us the first interesting example, announced in
Theorem 1: the existence of an elliptic curve with a y–arithmetic
progression of length 7, a fact not reported until now, as far as we
know. We will look closer at this example below.

Length 5. The system needed for the x–progression is

α2β2 +16b = 0
α3β3 +72b = 0

α4β4 +192b = 0
3(α2 + β2) −2(α3 + β3) = 2
4(α2 + β2) −2(α4 + β4) = 4

where yj = −βjb/2, for j = 2, 3, 4. Observe now that a blind choice of
(β2, β3, β4) as in the previous case will lead, in general, to an incom-
patible system of equations.

In fact, the rank of the coefficients matrix is 4, except in the case
β2 = β3/3 = β4/6 but, in this case the system is incompatible. How-
ever, these relations will prove useful later on.

There are ten possible progressions of length 5 containing both 0
and −b, each of them permitting six different choices for the triple
(β2, β3, β4), which are the permutations of a single choice. From this
60 cases only two led to a compatible system. This two cases, shown
below, prove therefore Theorem 2.

β2 = −4, β3 = −2, β4 = −6
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This triple gives the curve E(−5/3,−1/6) with the following points
lying on it:

{(

0,
1

6

)

,

(

−1

6
, 0

)

,

(

−2

6
,
−2

6

)

,

(

−3

6
,
−1

6

)

,

(

−4

6
,
−3

6

)}

,

which form a simultaneous arithmetic progression of length 5.
Note that, in this case, α2 = −2/3, hence it can be considered as a

subcase of the infinite family of x–arithmetic progressions found with
lenght 4.

β2 = 1, β3 = −1, β4 = −2

The resulting curve is E(−5/16, 1/64) with the following points:

{(

0,
−2

128

)

,

(

1

64
, 0

)

,

(

2

64
,
−1

128

)

,

(

3

64
,

1

128

)

,

(

4

64
,

2

128

)}

,

which form a simultaneous arithmetic progression (note that this curve
also appeared in the previous case). Furthermore, other points lying
on the curve are

(

1

8
,
−4

128

) (

−1

32
,
−3

128

)

,

(

5

64
,
−1

64

)

,

hence as noted above Sx ≥ 6, Sy ≥ 7, although there are no simulta-
neous progressions in the curve of length 6.

Remark.– Please note that, as we mentioned at the beginning of
the section, both examples of simultaneous arithmetic progressions of
length 5 also have arithmetic progressions of length 4. This is also the
case with the nine examples of length 4 found; however, these data
seem to us not enough for conjecturing that this holds in general.

Back to our search, another reasonable way of constructing simul-
taneous arithmetic progressions of length 5 seems to be using 0 and
−b(a + 1) as terms of our progression and again we have 60 possibili-
ties, all of them useless. Most cases can be discarded using one of the
following arguments, explained with two examples.

β2 = 4(a + 1), β3 = 6(a + 1), β4 = 8(a + 1)

If this choice made sense, we would have the y–progression

{0,−b(a + 1),−2b(a + 1),−3b(a + 1),−4b(a + 1)}.
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As we said above, there are 5 more possibilities in order to assure
this sequence, permuting the values of β2, β3 and β4, but this one suits
us well as illustration. Our system matrix is now















−4(a + 1) 0 0 16 0
0 −6(a + 1) 0 72 0
0 0 −8(a + 1) 192 0
3 −2 0 0 2
4 0 −2 0 4















with determinant −3072(a + 1)2. Hence we must take a = −1 if we
want the system to have solution, but this case is degenerate.

β2 = 6(a + 1), β3 = 4(a + 1), β4 = 8(a + 1)

This case is also impossible, but for different reasons: it has a
matrix with determinant 7168(a + 1)2(4a + 5). The choice a = −5/4
leads to a compatible system. But remember that it also must hold

a =
αi + βi − 2

2i
, i = 2, 3, 4,

which is not true in this case. In fact, this extra condition annihilates
the advantage of making a parameter choice, because the value of the
parameter cannot be truly arbitrary.

4 Final remarks

The above arguments, when applied to a length n simultaneous arith-
metic progression lead to n(n−1)/2 progressions with (n−2)! possible
value choices for each one. That is, n!/2 systems have to be checked.
We have done the 360 calculations for n = 6, obtaining no simultane-
ous progressions. Of course, that does not mean that the case n = 7
will also be unsuccessful, as we noted before, but most probably this
kind of search will not produce further results.

As a final comment, we would like to stress possible ways for ex-
panding the results in this paper:

(a) The first obvious thing to do it is enlarging the scope of the
progressions considered. Full generality, although desirable, may
be too messy for dealing with, at least with the current state of
the art. A simpler way could be, for instance, considering x–
progressions in which b appears, although not necessarily as the
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first term. However, this has also proved to be unsuccessful for
n = 6 (at a cost of around 72 CPU hours).

(b) While looking for y–progressions seems difficult, the formulation
used here for the existence of x–progressions of given length can
be found useful. In a future paper, we expect to explore this
presentation of the problem, with the help of elimination theory
and Gröbner bases.
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José M. Tornero (E–mail: tornero@algebra.us.es).
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