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1. Introduction

Suppose that the discrete set IN0 of non-negative integers is embedded IN0 ⊂ X
in a compact metrizable space X , and let E = IN′

0 ⊂ X be the derived set (i.
e. points of X which contain infinitely many points of IN0 in any neighborhood).
Consider the set R(E) of IN0 × IN0 matrices (aij)i,j∈IN0 with entries in a (unital
associative) ring R such that if {in}n∈IN0

, {jn}n∈IN0
⊂ IN0 are sequences convergent

in X to different points then the vector (ainjn)n∈IN0 is almost all zero. This set
is an R-algebra with the usual matrix operations. Any compact metrizable space
can arise as E in this way. In fact the isomorphism class of the algebra R(E) only
depends on E. These algebras are Morita equivalent to some additive categories of
free R-modules continuously controlled at infinity by E appearing in the literature.
These categories play an important role in many areas such as controlled homotopy
theory, proper homotopy theory, C∗-algebra theory, K-theory and L-theory, see for
example [15], [5], [9], [2] and [1].

The elementary properties of the algebras R(E) have been studied by Baues-
Quintero ([2]) for R = ZZ the integers. If E is zero-dimensional, R(E) is a particular
case of the rings considered by Farrell-Wagoner ([7]). When E = ∗ is a singleton
R(E) = RCFM(R) is the well-known algebra of row-column-finite (or locally finite)
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2 FERNANDO MURO

matrices over R. This algebra has been studied from a purely ring-theoretical
point of view, see for example [17]. It was also used by Wagoner ([18]) to construct
deloopings in algebraic K-theory.

In this paper we concentrate on the representation theory of the algebras k(E),
where k is any field.

Representation theory considers the decomposition problem in a small additive
category A. A solution to this problem consists of a set of objects (which we call
elementary objects) and of a set of isomorphisms (elementary isomorphisms) be-
tween finite direct sums of elementary objects. These sets must satisfy the following
properties: any object in A is isomorphic to a finite direct sum of elementary ones,
and any isomorphism relation between two such direct sums can be derived from
the elementary isomorphisms. Notice that this is exactly a presentation of the
abelian monoid Iso(A) of isomorphisms classes of objects in A. The trivial solu-
tion is taking all objects as elementary objects and all isomorphisms as elementary
isomorphisms, however one is often interested in solutions minimizing the cardinal
of the sets of elementary objects and isomorphisms.

We say that A has finite representation type if there exists a finite set of elemen-
tary objects, or equivalently Iso(A) is finitely presented. The representation type
of A is wild if a solution to the decomposition problem in A would yield a solution
to the decomposition problem in the category of finite-dimensional modules over a
polynomial k-algebra in two non-commuting variables. Otherwise A has tame rep-
resentation type. If A has wild representation type the word problem for finitely
presented groups, which is undecidable, can be embedded in the decomposition
problem in A, hence one can not expect to get satisfactory solutions in this case.
The representation type of an algebra A is that of the category fp(A) of finitely
presented (right) A-modules.

One of the main results of this paper is the following theorem, where we compute
the representation type of the algebra k(E) in terms of the cardinal of E, without
restrictions on the ground field k.

Theorem 1.1. The representation type of k(E) is

cardE type
< 4 finite
= 4 tame
> 4 wild

In the finite and tame cases we construct explicit presentations of Iso(fp(k(E))).
Moreover, for E finite, we prove that there are presentations of Iso(fp(k(E))) with
a finite number of elementary isomorphisms and we compute them. These presen-
tations satisfy the next properties.

Theorem 1.2. If cardE is finite there are solutions to the decomposition problem
in fp(k(E)) with the next cardinals of elementary modules and isomorphisms

cardE modules isomorphisms
1 6 6
2 12 12
3 21 18
≥ 4 ≥ ℵ0 6 cardE
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There are two key steps in the proof of these results. The first is to solve the
decomposition problem for finitely presented RCFM(k)-modules. The second is to
relate the decomposition problem in fp(k(E)) when cardE = n is finite to the
decomposition problems in fp(RCFM(k)) and in the category of finite-dimensional
n-subspaces.

We shall use the pro-category of pro-vector spaces and the inverse limit func-
tor to construct invariants detecting isomorphism types of finitely presented k(E)-
modules. Moreover, we shall not usually work directly with the categories of finitely
presented k(E)-modules but with the equivalent categories of finitely presented
modules over certain small additive categories. This setting allows more flexibility
and technical proofs become less complicated than if we use k(E)-modules.

In order to facilitate the reading we now describe the contents of this paper.
In the next section we briefly recall from [12] the basic tools of ringoid theory
that we need. Afterwards, in Section 3, we introduce the ringoids which are Morita
equivalent to the algebras R(E) and establish their basic properties. For this we use
the approach in [2], generalizing some results in this reference for R = ZZ to arbitrary
rings. We put emphasis on the case E finite because we shall always work under this
assumption (even for the proof of Theorem 1.1, see Remark 3.10). In Section 4 we
construct an embedding of the decomposition problem for countably presented R-
modules into the decomposition problem for finitely presentedR(E)-modules, where
E is any non-empty compact metrizable space. Section 5 contains basic facts about
pro-categories. In Section 6 we construct some invariants of the isomorphism class
of a finitely presented k(E)-module, E finite. These invariants are used in Section 7
to classify finitely presented k(E)-modules when E = ∗ is just one point and k(E) =
RCFM(k). In particular we prove that this k-algebra has finite representation type.
The classification theorem (Theorem 7.1) is derived from several technical lemmas.
In Section 8 we recall the definition and representation theory of the n-subspace
quiver. We also define the class of rigid n-subspaces, which plays an important role
in what follows. We show that all but 3n indecomposable representations of the
n-subspace quiver are rigid n-subspaces. In Section 9 we relate the representation
theories of both k(E) and the n-subspace quiver, where n is the cardinal of E. The
properties of this relation are established through many technical results which
lead us to complete the proofs of Theorems 1.1 and 1.2 in Section 10. In this
last section we compute the structure of the monoid Iso(fp(k(E))) (Theorem 10.1)
and give a classification theorem for finitely presented k(E)-modules (Corollary
10.5) for E finite. This classification theorem explicitly describes the (finite) set of
elementary isomorphisms, and also the set of elementary objects when E has less
than 5 points. We include an Appendix with some computations of Ext1 groups of
finitely presented k(E)-modules, E finite. These computations will be applied to
proper homotopy theory in a forthcoming paper ([13]).

1.1. Notation and conventions. In this paper all rings and algebras are as-
sociative with unit. We use bold letters C for categories, R for an arbitrary
(non-commutative) ring, ZZ for the ring of integers, and k for fields. As usual
IN = {1, 2, 3, . . .} is the set of natural numbers, and IN0 = IN∪{0} the free abelian
monoid with one generator.

Capital sans serif letters A are names of matrices with entries in some ring.
Here all matrices are square matrices indexed by IN0, and the entry of a matrix A

corresponding to the subindexes i, j ∈ IN0 is denoted by aij , it is A = (aij)i,j∈IN0 .



4 FERNANDO MURO

The identity matrix is denoted by I, it is defined as iii = 1 (i ∈ IN0) and iij = 0
for i 6= j. The entries of the transposed matrix At = (atij)i,j∈IN0 of A are atij = aji

(i, j ∈ IN0). Vectors are denoted by (vi)
n
i=1 or (vn)n∈IN0 provided they have a finite

or an infinite countable number of entries. We regard vectors as column matrices,
hence matrices act on vectors on the left.

2. Ringoids and modules

A ringoid R is a category whose morphism sets HomR(X,Y ) are abelian groups
in such a way that composition is bilinear. The endomorphism set EndR(X) =
HomR(X,X) of an objectX has a ring structure with product given by composition
of morphisms. Conversely any ring R is identified with the ringoid with a single
object whose endomorphism set is R. An additive category is a ringoid with finite
biproducts (direct sums). In this section we recall basic facts about modules over
a small ringoid. Our main reference for this subject is [12].

An additive functor between ringoids is a functor which induces homomor-
phisms between morphism sets. Let Ab be the category of abelian groups. A
right-R-module M is an additive functor M : Rop → Ab. Morphisms of right-
R-modules are natural transformations, and the category of right-R-modules is
denoted by mod(R) whenever R is small. Left-R-modules are the same thing as
right-Rop-modules, where Rop is the opposite category, so every statement about
right-modules has a convenient translation to left-modules. From now on every
module is a right-module unless we state the contrary.

There is a Yoneda full inclusion of categories R ⊂ mod(R) which sends an
object X in R to the associated contravariant representable functor HomR(−, X).
These R-modules are said to be finitely generated free. They are projective by
Yoneda’s lemma.

An R-module M is finitely presented (f. p.) if it is the cokernel of a morphism
between two finite direct sums of finitely generated free R-modules. The cokernel of
a morphism between f. p. modules is also f. p. In particular direct summands of f.
p. modules are f. p. We write fp(R) ⊂mod(R) for the full subcategory of f. p. R-
modules. If R = A is an additive category, then a f. p. A-module M is in fact the
cokernel in mod(A) of a morphism ϕ : X1 → X0 in A. One can readily check that
if N = Coker[ψ : Y1 → Y0] is another f. p. A-module, any morphism τ : M→ N is
represented by a morphism τ0 : X0 → Y0 such that there exists τ1 : X1 → Y1 with
τ0ϕ = ψτ1. Another morphism τ ′0 : : X0 → Y0 represents τ if and only if there
exists η : X0 → Y1 with τ0 + ψη = τ ′0. More precisely, let pair(A) be the additive
category whose objects are morphisms in A, and morphisms τ = (τ1, τ0) : ϕ → ψ
are commutative squares

X1
ϕ

//

τ1

��

X0

τ0

��

Y1
ψ

// Y0

There is an obvious functor Coker: pair(A) → fp(A) given by taking cokernels.
We define in pair(A) the natural equivalence relation ∼ with τ ∼ τ ′ if there exists
η : X0 → Y1 satisfying τ0 + ψη = τ ′0.

Proposition 2.1. The functor Coker factors through the quotient category pair(A)/∼
and the induced functor Coker: pair(A)/∼ → fp(A) is an equivalence of categories.
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Any additive functor F : R → S between small ringoids induces two “change
of coefficients” additive functors F

∗ : mod(S) → mod(R) and F∗ : mod(R) →
mod(S). The first one is exact and sends an S-module M to the composite F

∗M =
MF. The second one is left-adjoint to F

∗ (F∗ is the left additive Kan extension
along F, see [12] 6) and hence right-exact. Moreover, the next diagram commutes

(2.A) R
F

//

Yoneda

��

S

Yoneda

��

mod(R)
F∗

// mod(S)

In addition if F is full and faithful then so is F∗, and in this case F
∗
F∗ is naturally

equivalent to the identity, see [3] 3.4.1. This follows from the fact that any R-module
admits a projective resolution by (arbitrary) direct sums of finitely generated free
ones. The functor F∗ restricts to the full subcategories of f. p. modules.

If we identify the endomorphism ring EndR(X) of an object X with the full
subcategory of R whose unique object is X the change of coefficients F

∗ induced
by the inclusion F : EndR(X) ⊂ R is the evaluation functor

evX = F
∗ : mod(R) −→mod(EndR(X)) : M 7→M(X).

The next proposition is an useful criterion to detect when a ringoid is Morita
equivalent to a ring. It is a consequence of [12] 8.1.

Proposition 2.2. If every object in R is a retract of X then the evaluation functor
evX is an additive equivalence of abelian categories which restricts to an equivalence
between the full subcategories of finitely presented modules.

In a more categorical language ringoids are defined as categories enriched over
the monoidal category of abelian groups with the usual tensor product, compare
[4] 6.2. For any ring R one can consider the monoidal category of R-R-bimodules
with the R-tensor product and define an R-ringoid as a category enriched over it.
This is the same as an R-category in the sense of [12] when R is commutative. If
R is an R-ringoid the endomorphism ring EndR(X) of an object X is in fact an
R-algebra. In this case R-modules and morphisms between them take values in the
category of (right) R-modules in a natural way.

3. The algebras R(E) and related additive categories

Given a ring R and a set A we write R〈A〉 for the free R-module with basis set A.
Free R-modules are R-R-bimodules, hence the additive category of free R-modules
and right-R-module homomorphisms is an R-ringoid. The carrier of an element
x ∈ R〈A〉 is the (finite) set carr(x) ⊂ A such that z ∈ carr(x) if z appears with a
non-trivial coefficient in the linear expansion of x.

For every non-empty compact metrizable space E there exists another one X
containing E such that the complement Y = X − E is dense in X . The triple
T̄ = (X,Y,E) can always be chosen to be a tree-like space in the sense of [2]
III.1.1. But one can also take X to be the (unreduced) cone over E, X = CE =
E × [0, 1]/E × {1}. Here we identify E with E × {0} inside the cone CE.

A free T̄ -controlled R-module R〈A〉α is a free R-module R〈A〉 together with a
function α : A → Y , called height function, such that α−1(K) is finite for every
compact subspace K ⊂ Y . The set A is necessarily countable and the derived
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set of α(A) in X satisfies α(A)′ ⊂ E. This derived set is the support of R〈A〉α.
Controlled homomorphisms ϕ : R〈A〉α → R〈B〉β are homomorphisms between the
underlying R-modules such that for every x ∈ E and every neighborhood U of x in
X there exists another neighborhood V ⊂ U of x in X such that if a ∈ A satisfies
α(a) ∈ V then β(carr(ϕ(a))) ⊂ U . The category MR(T̄ ) of free T̄ -controlled R-
modules and controlled homomorphisms is a small additive category. Moreover, it
is an R-ringoid. The sum and R-actions on morphism sets are given by those of
the underlying free R-module homomorphisms, and the direct sum of two objects
is R〈A〉α ⊕ R〈B〉β = R〈A ⊔ B〉(α,β), where A ⊔ B is the disjoin union of sets and
(α, β) : A ⊔B → Y is defined as α over A and β over B.

Remark 3.1. The category MR(T̄ ) is defined in [2] III.4.7 for T̄ a tree-like space.
However, as it is pointed out in the Remark after that definition, it is equivalent
to the category B(X,E;R) in [5]. In particular MR(T̄ ) only depends on E up
to equivalence of categories preserving supports of objects (in fact equivalence of
R-ringoids), see 1.23 and 1.24 in [5].

The next proposition shows that free T̄ -controlled R-modules are classified by
the underlying R-module and the support.

Proposition 3.2. Two free T̄ -controlled R-modules R〈A〉α, R〈B〉β are isomorphic
if and only if the next two conditions are satisfied:

(1) The underlying R-modules are isomorphic R〈A〉 ≃ R〈B〉,
(2) both have the same support α(A)′ = β(B)′.

If the supports are non-empty then condition (1) is automatically satisfied. Fur-
thermore, any compact subset K ⊂ E is the support of some free T̄ -controlled
R-module.

In the proof of this proposition we shall use the following

Lemma 3.3. Given an injective controlled homomorphism ϕ : R〈A〉α → R〈B〉β we
have that α(A)′ ⊂ β(B)′.

Proof. For any e ∈ α(A)′ we can take a sequence {an}n∈IN ⊂ A with lim
n→∞

α(an) =

e. Since ϕ is injective carr(ϕ(an)) is non-empty for every n ∈ IN so we can take
elements bn ∈ carr(ϕ(an)). By definition of controlled homomorphism lim

n→∞
β(bn) =

e, hence e ∈ β(B)′ and the inclusion holds. �

Proof of (3.2). The case R = ZZ and T̄ a tree-like space follows from [2] III.4.8
and III.4.16. In general condition (1) is necessary since an isomorphism of free
T̄ -controlled R-modules is also an isomorphism between the underlying R-modules.
Moreover, condition (2) is necessary by (3.3). By Remark 3.1 it is enough to make
the proof for tree-like spaces. In the rest of the proof we shall suppose that T̄ is
tree-like.

If α(A)′ = α(B)′ = ∅ then A and B are both finite and any isomorphism R〈A〉 ≃
R〈B〉 is a controlled isomorphism R〈A〉α ≃ R〈B〉β . If α(A)′ = α(B)′ 6= ∅ then A
and B are infinite countable, so ZZ〈A〉 ≃ ZZ〈B〉. Since the proposition holds for
R = ZZ there is a controlled isomorphism ϕ : ZZ〈A〉α ≃ ZZ〈B〉β . Now one can check
that ϕ⊗R : R〈A〉α ≃ R〈B〉β is an isomorphism of free T̄ -controlled R-modules.

Finally, given K ⊂ E compact, if ZZ〈C〉γ is a free T̄ -controlled ZZ-module whose
support is K then the support of R〈C〉γ is K as well, because it only depends on
γ. The proof is now complete. �
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The next result follows directly from Remark 3.1, Proposition 3.2 and the defi-
nition of controlled homomorphisms.

Proposition 3.4. Up to isomorphism, the endomorphism algebra of a free T̄ -
controlled R-module with support E only depends on E. Moreover, it is isomorphic
to R(E).

The last isomorphism of this proposition is given by the fact that the basis of a
free T̄ -controlled R-module R〈A〉α with support E must be infinite countable, and
hence it can be identified with the non-negative integers A = IN0. Moreover, we
can suppose that α is the inclusion of a discrete subspace α : A ⊂ Y , changing A
by α(A) if necessary. Now we are in the same situation as in the beginning of the
introduction. We also derive from (3.4) that the isomorphism class of the R-algebra
R(E) only depends on E, as we claimed in the introduction.

Proposition 3.5. Every free T̄ -controlled R-module is a retract of any object whose
support is E.

Proof. Recall from (3.2) that all objects with support E are isomorphic. By (3.1)
it is enough to check the proposition for T̄ a tree-like space. For R = ZZ and T̄ tree-
like this proposition is contained in the proof of [2] V.3.4. The result for arbitrary
rings follows from the special case R = ZZ. More precisely, given a free T̄ -controlled
R-module R〈A〉α if the support of R〈B〉β is E then ZZ〈A〉α is a retract of ZZ〈B〉β
(the supports only depend on the height functions) hence we obtain a retraction of
R〈B〉β onto R〈A〉α by tensoring by R. �

As a consequence of this proposition we get by (2.2) the following equivalence of
categories which will be used from now on as an identification.

Corollary 3.6. The evaluation functor in a free T̄ -controlled R-module with sup-
port E induces an additive equivalence of abelian categories mod(MR(T̄ )) ≃mod(R(E))
which restricts to another one fp(MR(T̄ )) ≃ fp(R(E)).

Remark 3.7. If R ≃ Rop, in particular if R is commutative, the transposition of
matrices and an explicit isomorphism R ≃ Rop induce isomorphisms of R-ringoids
MR(T̄ ) ≃MR(T̄ )op (preserving objects) and R-algebras R(E) ≃ R(E)op, compare
[5], so in this case right-modules over MR(T̄ ) or R(E) are the same as left-modules.

In the following proposition we compute the dimension of the k-algebra k(E), k
any field.

Proposition 3.8. dim k(E) = 2ℵ0 .

Proof. The k-vector space of all IN0× IN0 matrices is the direct product of IN0× IN0

copies of k, and it is known that dimΠIN0×IN0k = 2ℵ0 , hence dim k(E) ≤ 2ℵ0 .
Moreover, for any element (an)n∈IN0 ∈

∏

IN0
k the diagonal matrix (bij)i,j∈IN0 with

bnn = an belongs to k(E), therefore k(E) has a vector subspace isomorphic to
∏

IN0
k, and dim

∏

IN0
k = 2ℵ0 as well, so the equality of the statement holds. �

3.1. The special case cardE finite. If cardE is finite, since E is metrizable, it
must have the discrete topology, so E is the discrete set n with n = cardE points.
For this particular space we can take a tree-like space T̄n = (T̂n, Tn,n) where

Tn is a locally compact tree with n Freudenthal ends and T̂n is the Freudenthal
compactification of Tn, see [2] III.1.3. Moreover, if T 0

n is the vertex set of Tn and
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δ : T 0
n ⊂ Tn is the inclusion, the support of R〈T 0

n〉δ is n, in particular R(n) is the
endomorphism ring of this object. Let us fix the following particular tree Tn: the
vertex set of Tn is

T 0
n = {v0} ∪

{

v1
m, . . . v

n
m

}

m≥1
,

and there are edges joining v0 with vi1 and vim with vim+1 (1 ≤ i ≤ n,m ≥ 1). The

additive category MR(T̄n) is equivalent to the full subcategory of objects R〈A〉α
such that α(A) ⊂ T 0

n , compare the proof of [2] V.3.4. From now on we shall always
work in this subcategory, and we denote it by MR(T̄n) as well.

We are going to give an alternative description for controlled homomorphisms
in MR(T̄n). For this we define the following sets for any height function α : A →
T 0
n ⊂ Tn (1 ≤ i ≤ n, j ≥ 1)

Aij =
⋃

l≥j

α−1(vil )

A morphism ϕ : R〈B〉β → R〈A〉α in MR(T̄n) is controlled if and only if for every
m ≥ 1 there exists M ≥ 1 such that ϕ(BiM ) ⊂ R〈Aim〉 for any 1 ≤ i ≤ n. We
shall omit the superindex i when n = 1. Moreover, for the next sections we fix the
following notation (m ≥ 0)

mA = α−1(v0) ∪





⋃

1≤i≤n

⋃

l≤m

α−1(vil )



 , mA
i
j = mA ∩A

i
j .

Remark 3.9. If n = 1, T1 = [0,+∞) is the half-line and T 0
1 = IN0 the non-negative

integers. Moreover R(1) is the R-algebra RCFM(R) of IN0 × IN0 matrices with
entries in R such that every row and every column has a finite number of non-zero
entries (row-column-finite matrices), compare [2] V.3.8.

Remark 3.10. If E is any compact metrizable space with at least n points we
can fully include MR(T̄n) into MR(T̄ ). For this we only need to take n disjoint
sequences

{

vim
}

m≥1
(1 ≤ i ≤ n) contained in Y converging in X to n different

points belonging to E, and an additional point v0 ∈ Y out of the sequences. Now
we identify MR(T̄n) with the full subcategory of MR(T̄ ) given by objects R〈A〉α
with α(A) ⊂ {v0} ∪

{

v1
m, . . . v

n
m

}

m≥1
. If we call F to this full inclusion, we get

another one F∗ : mod(MR(T̄n)) → mod(MR(T̄ )) together with a retraction up
to natural equivalence F

∗ : mod(MR(T̄ )) → mod(MR(T̄n)). Moreover, the first
functor F∗ restricts to the full subcategories of f. p. modules, see Section 2, hence
the decomposition problem for f. p. R(n)-modules is included in the decomposition
problem for f. p. R(E)-modules, in particular we only need to prove Theorem 1.1
for cardE finite.

4. Countably presented R-modules as finitely presented

RCFM(R)-modules

There is a full exact inclusion of abelian categories

i : mod(R) −→mod(RCFM(R))

defined by iM = HomR(R〈IN0〉,M). The ring RCFM(R) acts on iM by endomor-
phisms of R〈IN0〉.
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Let f : MR(T̄1) → mod(R) be the forgetful functor which sends a free T̄1-
controlled R-module to its underlying R-module. The RCFM(R)-module iM can
be regarded as the functor iM = HomR(f,M) : MR(T̄1)

op → Ab.

Proposition 4.1. The functor i has an exact left-adjoint r such that ri is naturally
equivalent to the identity functor. Moreover, r can be chosen to be the evaluation
functor in a free T̄1-controlled R-module with one generator.

Proof. Let R〈e〉φ be a free T̄1-controlled R-module whose basis is a singleton {e}
(all these objects are isomorphic in MR(T̄1) by (3.2)). The endomorphism ring of
this object is R, hence the evaluation functor evR〈e〉φ

takes values in the category
of R-modules. Let us see that the exact functor evR〈e〉φ

is left-adjoint to i. A left-
adjoint for i exists and can be constructed by left additive Kan extension, see [12] 6,
so we have just to check that HomMR(T̄1)(R〈A〉α, iM) = HomR(evR〈e〉φ

R〈A〉α,M)

for any free T̄1-controlled R-module R〈A〉α in a natural way. This follows from the
obvious natural identification evR〈e〉φ

R〈A〉α = R〈A〉 and Yoneda’s lemma. �

Corollary 4.2. If M is an R-module and N an RCFM(R)-module then there are
natural isomorphisms (n ≥ 0)

ExtnR(E)(N, iM) ≃ ExtnR(rN,M).

In particular if R = k is a field the RCFM(k)-modules iM are all injective.

An R-module is countably presented provided it is the cokernel of a morphism
between free R-modules with countable basis. Obviously the cokernel of a mor-
phism between countably presented R-modules is countably presented as well. In
particular direct summands of countably presented R-modules are countably pre-
sented.

Proposition 4.3. The functor i sends countably presented R-modules to finitely
presented RCFM(R)-modules.

In the proof of this proposition we shall use the row-column-finite matrices A

and B defined by

• ai+1,i = 1 (i ∈ IN0) and aij = 0 in other cases,
• bn(n+1)

2 +i, (n−1)n
2 +i

= 1 for any n > 0 and 0 ≤ i < n, and bij = 0 otherwise.

And we regard RCFM(R) as the endomorphism R-algebra of the free T̄1-controlled
R-module R〈IN0〉δ where δ : IN0 ⊂ [0,+∞) is the inclusion, see Remark 3.9 and
Proposition 3.4.

Proof of (4.3). Since i is exact it will be enough to check the proposition for the
countably presentedR-modulesR andR〈IN0〉. Recall that HomMR(T̄1)(R〈IN0〉δ, iM) =

HomR(R〈IN0〉,M) for any R-module M . The RCFM(R)-modules iR and iR〈IN0〉
are the cokernels of (I − A) and (I − B) respectively. The natural projections onto
the cokernel are given by the homomorphisms R〈IN0〉 → R and R〈IN0〉 → R〈IN0〉

defined on generators by n 7→ 1 (n ≥ 0) and n(n+1)
2 + i 7→ i (n ≥ i ≥ 0) respec-

tively. �

As a consequence of Propositions 4.1 and 4.3, and Remark 3.10 we get the next

Corollary 4.4. The representation problem for countably generated R-modules
is contained into the representation problem for finitely presented R(E)-modules,
where E is any non-empty compact metrizable space.
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5. A review on pro-categories

Any partially ordered set (poset) Λ can be regarded as a small category with
a unique morphism u → v provided u ≥ v, u, v ∈ Λ. A poset Λ is directed if
given u, v ∈ Λ there exists w ∈ Λ with w ≥ u, v. Moreover, Λ is cofinite if the set
{u ∈ Λ ; u ≤ v} is finite for every v ∈ Λ.

A pro-object or inverse system X• over a category C is a functor X• : Λ → C

where Λ is a directed cofinite poset. If u ∈ Λ we usually write Xu = X•(u). The
morphisms X•(u → v) (u, v ∈ Λ, u ≥ v) are the bonding morphisms of X•, and Λ
is the indexing set of the inverse system.

The category pro − C has objects inverse systems over C. Morphism sets are
given by the following formula

(5.A) Hompro−C(X•, Y•) = lim
v

colim
u

HomC(Xu, Yv).

We identify any object in C with the inverse system whose indexing set is a
singleton Λ = ∗. This defines a full inclusion of categories C ⊂ pro − C. This
inclusion has a right-adjoint, the (inverse) limit functor lim: pro−C→ C, limX• =
limuXu.

The category pro−C is abelian whenever C is, see [6] 6.4. This will be always
the case, because we are only going to use in this context the category C = mod(k)
of k-vector spaces. If V is a vector space and X• an inverse system of vector spaces,
then by (5.A)

Hompro−mod(k)(V,X•) = lim
v

Homk(V,Xv) = Homk(V, limX•).

Hence, since Homk(V,−) is an exact functor in the category of vector spaces, the
Grothendieck spectral sequence (see [10] 9.3) yields an isomorpshim

(5.B) Ext1pro−mod(k)(V,X•) = Homk(V, lim
1X•).

6. Numerical invariants of finitely presented k(n)-modules

In this section we shall define invariants of the isomorphism class of a f. p. k(n)-
module lying in the abelian monoids IN∞,n (n ≥ 1). The abelian monoid IN∞,n has
n+ 1 generators

1, ∞1, . . . ∞n

and 2n relations

1 +∞i =∞i, ∞i +∞i =∞i, (1 ≤ i ≤ n).

As a set IN∞,n is

IN∞,n = IN0 ⊔

{

∞S =
∑

i∈S

∞i ; ∅ 6= S ⊂ {1, . . . n}

}

.

For the sake of simplicity if n = 1 we write IN∞,1 = IN∞ and ∞1 =∞.
Let ϕ : k〈B〉β → k〈A〉α be a morphism in Mk(T̄n). We define the element

λϕ ∈ IN∞,n in the following way: if the next vector space is finite-dimensional

Lϕ =
k〈A〉

⋂

m≥1

∑n
i=1 [k〈Aim〉+ ϕ(k〈B〉)]

,

then λϕ = dimLϕ, otherwise λϕ = ∞S , where S ⊂ {1, . . . n} is the biggest subset
such that if i /∈ S then there exists M ≥ 1 with k〈AiM 〉 ⊂ ϕ(k〈B〉).
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Proposition 6.1. The element λϕ only depends on the isomorphism class of the
f. p. k(n)-module Cokerϕ, and λϕ⊕ψ = λϕ + λψ.

Proof. One can readily check by using the alternative description of controlled
homomorphisms given in Subsection 3.1 that the correspondence ϕ 7→ Υ(ϕ) = Lϕ
defines an additive functor Υ from pair(Mk(T̄n)) to the category of k-vector spaces.

Moreover, if V ϕ,i• is the inverse system of k-vector spaces indexed by IN and given
by (1 ≤ i ≤ n)

V ϕ,im =
k〈Aim〉+ ϕ(k〈B〉)

ϕ(k〈B〉)
,

and the obvious inclusions as bonding morphisms, the correspondencesϕ 7→ Θi(ϕ) =

V ϕ,i• also define additive functors Θi from pair(Mk(T̄n)) to the pro-category of pro-
vector spaces. Furthermore, it is easy to see that the functors Υ, Θi (1 ≤ i ≤ n)
factor through the natural equivalence relation ∼ in pair(Mk(T̄n)), hence the first
statement of the proposition follows from (2.1) and the fact that λϕ is defined as
dimΥ(ϕ) provided this vector space is finite-dimensional, and otherwise λϕ =∞S

where S = {i ∈ {1, . . . n} ; Θi(ϕ) ≃/ 0}. The second part of the statement follows
from the additivity of the functors Υ, Θi (1 ≤ i ≤ n). �

If the following vector space has finite dimension,

M i
ϕ =

⋂

m≥1

[

k〈Aim〉+ ϕ(k〈B〉)
]

⋂

m≥1

{

[k〈Aim〉+ ϕ(k〈B〉)] ∩
[

∑

j 6=i k〈A
j
m〉+ ϕ(k〈B〉)

]} ,

the element µiϕ ∈ IN∞ (1 ≤ i ≤ n) is defined as µiϕ = dimM i
ϕ, otherwise µiϕ =∞.

Proposition 6.2. The elements µiϕ (1 ≤ i ≤ n) only depend on the isomorphism

class of the f. p. k(n)-module Cokerϕ, and µiϕ⊕ψ = µiϕ + µiψ.

Proof. By using the characterization of controlled homomorphisms given in Sub-
section 3.1 one readily checks that the correspondences ϕ 7→ M i

ϕ define additive

functors from pair(Mk(T̄n)) to the category of k-vector spaces. Moreover, these
functors factor through the natural equivalence relation ∼, hence the proposition
follows from (2.1). �

In order to define elements νiϕ ∈ IN∞ (1 ≤ i ≤ n) we introduce inverse systems

of k-vector spaces Uϕ,i• , indexed by the set IN× IN with the product partial order,
given by

Uϕ,ipq =
k〈Aip〉 ∩ ϕ(k〈B〉)

k〈Aip〉 ∩ ϕ(k〈Biq〉)
,

and bonding homomorphisms induced by the obvious inclusions of vector spaces. If
the limit of Uϕ,i• is finite-dimensional we set νiϕ = dim limUϕ,i• , otherwise νiϕ =∞.

Proposition 6.3. The elements νiϕ (1 ≤ i ≤ n) only depend on the isomorphism

class of the f. p. k(n)-module Cokerϕ, and νiϕ⊕ψ = νiϕ + νiψ.

Proof. One can check by using the description of controlled homomorphisms given
in Subsection 3.1 that the correspondences ϕ 7→ Uϕ,i• are additive functors from
pair(Mk(T̄n)) to the pro-category of pro-vector spaces, and these functors factor
through the natural equivalence relation ∼, hence the proposition follows from
(2.1). �
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The former propositions of this section are summarized in the following

Corollary 6.4. There are well defined morphisms of abelian monoids (n ∈ IN)

Φn : Iso(fp(k(n))) −→ IN∞,n ×
n
∏

i=1

IN∞ ×
n
∏

i=1

IN∞

which send the isomorphism class [M] of a f. p. k(n)-module M = Cokerϕ to

Φn([M]) =
(

λϕ,
(

µiϕ
)n

i=1
,
(

νiϕ
)n

i=1

)

.

From now on we shall write λM = λϕ, µi
M

= µiϕ and νi
M

= νiϕ (1 ≤ i ≤ n) if
M = Cokerϕ and omit the superindex i when n = 1.

Remark 6.5. There are n full inclusions F
i : Mk(T̄1)→Mk(T̄n) (1 ≤ i ≤ n) defined

by identifying T 0
1 = IN0 (see (3.9)) with the subset {v0} ∪

{

vim
}

m≥1
⊂ T 0

n in the

obvious way, see (3.10).

The next proposition can be easily checked by using the commutativity of (2.A)
and the right-exactness of the functors F

i
∗.

Proposition 6.6. If M is a f. p. k(1)-module then for every 1 ≤ i ≤ n

• λFi
∗
M = λM if λM ∈ IN0, and λFi

∗
M =∞i otherwise,

• µi
Fi
∗
M

= µM and µj
Fi
∗
M

= 0 if j 6= i,

• νi
Fi
∗
M

= νM and νj
Fi
∗
M

= 0 if j 6= i.

7. Classification of finitely presented RCFM(k)-modules

Recall from (3.9) that the k-algebra k(1) coincides with RCFM(k), the k-algebra
of matrices A = (aij)i,j∈IN0 with entries in k such that every row and every column
has at most a finite number of non-trivial entries (row-column-finite matrices).
Those matrices are the endomorphisms of the free T̄1-controlled k-vector space
k〈IN0〉δ, where δ : IN0 ⊂ [0,+∞) is the inclusion of the vertex set. The unit element
of the k-algebra RCFM(k) is the identity matrix I with iii = 1 (i ∈ IN0) and iij = 0
if i 6= j. For the sake of simplicity we abbreviate R = RCFM(k).

Consider the matrices A and B used in the proof of (4.3), they are defined as

• ai+1,i = 1 (i ∈ IN0) and aij = 0 in other cases,
• bn(n+1)

2 +i, (n−1)n
2 +i

= 1 for any n > 0 and 0 ≤ i < n, and bij = 0 otherwise.

We define the following R-modules

• A = R

AR
,

• B = R

(I−A)R ,

• C = R

(I−At)R ,

• B∞ = R

(I−B)R ,

• C∞ = R

(I−Bt)R .

The main result of this section is the next

Theorem 7.1 (Classification of f. p. RCFM(k)-modules). There is a solution to
the decomposition problem in the category of f. p. RCFM(k)-modules given by the
following elementary modules

A, R, B, B∞, C, C∞,
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and elementary isomorphisms

A⊕ R ≃ R, R⊕ R ≃ R, B⊕B∞ ≃ B∞,

B∞ ⊕B∞ ≃ B∞, C⊕ C∞ ≃ C∞, C∞ ⊕ C∞ ≃ C∞.

This theorem implies Theorems 1.1 and 1.2 for cardE = 1. It is a direct conse-
quence of the next two results. We shall use the following notation, given n ∈ IN0

we write An, Bn and Cn for the direct sum of n copies of A, B or C, respectively,
and A∞ = R.

Theorem 7.2. For every f. p. R-module M there is an isomorphism

M ≃ AλM
⊕BµM

⊕ CνM
.

Proposition 7.3. We have the following equalities:

• Φ1(A) = (1, 0, 0),
• Φ1(B) = (0, 1, 0),
• Φ1(C) = (0, 0, 1),
• Φ1(R) = (∞, 0, 0),
• Φ1(B∞) = (0,∞, 0),
• Φ1(C∞) = (0, 0,∞).

In particular we have that

Corollary 7.4. The monoid morphism

Φ1 : Iso(fp(k(1))) −→ IN∞ × IN∞ × IN∞

is an isomorphism.

The proof of Proposition 7.3 will be given later. Theorem 7.2 is a direct conse-
quence of Lemmas 7.18, 7.19, 7.20 and 7.22. These are some of the hardest technical
results of this paper. In fact the rest of this long section is highly technical. It is
focused towards proving Theorem 7.2, although some interesting corollaries on the
homological algebra of finitely presented R-modules are derived from the technical
lemmas. These homological results are used in the proof of (7.2) as well as in the
appendix. We advice the reader to skip this material in a first reading.

The next result is an easy computation.

Lemma 7.5. The following equalities hold in R:

(1) AtA = I,
(2) BtB = I.

The next lemma follows directly from (3.2).

Lemma 7.6. Two free T̄1-controlled k-vector spaces k〈A〉α, k〈B〉β are isomorphic
in Mk(T̄1) if and only if A and B have the same cardinal.

Lemma 7.7. The R-module A is isomorphic to any 1-dimensional free T̄1-controlled
k-vector space.

Proof. If k〈e〉φ is a 1-dimensional free T̄1-controlled k-vector space, the cokernel of
A is given by the controlled homomorphism ϕ : k〈IN0〉δ ։ k〈e〉φ defined over the
basic elements as 0 7→ e and n 7→ 0 for n > 0. �

The proof of Proposition 7.3 is as follows.
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Proof of 7.3. In this proof we omit some straightforward but tedious computations
which can be carried out by the interested reader with not too much difficulty. We
shall write INp (p ≥ 1) for the set of naturals ≥ p.

The R-module R corresponds to the free T̄1-controlled k-vector space k〈IN0〉δ
where δ : IN0 ⊂ [0,+∞) is the inclusion, hence it is the cokernel of the trivial mor-
phism 0: 0→ k〈IN0〉δ, and the equalities λR =∞, µR = 0 hold immediately, more-
over, U0

m,n = k〈INm〉 for all m,n ∈ IN, and given M ≥ m, N ≥ n the corresponding

bonding homomorphism in U0
• is the inclusion U0

M,N = k〈INM 〉 ⊂ k〈INm〉 = U0
m,n,

therefore limU0
• =

⋂

m∈IN

k〈INm〉 = 0 and νR = 0.

By (7.7) the Mk(T̄1)-module A is the cokernel of the trivial morphism 0→ k〈e〉φ
where k〈e〉φ is a 1-dimensional free T̄1-controlled k-vector space, hence the equality
Φ1(A) = (1, 0, 0) follows easily.

One can check that k〈INn〉+(I−A)(k〈IN0〉) = k〈IN0〉 for all n ∈ IN, and k〈IN0〉/(I−
A)(k〈IN0〉) ≃ k generated by the class of any n ∈ IN0, so λB = 0 and µB = 1.

Moreover, k〈INn〉 ∩ (I − A)(k〈IN0〉) = (I − A)(k〈INn〉) and hence U
(I−A)
n,n = 0 for all

n ∈ IN, therefore limU
(I−A)
• = 0 since the diagonal subset {(n, n) ; n ∈ IN} ⊂ IN×IN

is cofinal, so νB = 0.
One can see that (I − At)(k〈IN0〉) = k〈IN0〉, hence λC = 0 = µC, moreover

(I − At)(k〈INn〉) is generated by the set {m− (m− 1)}m≥n, therefore U
(I−A

t)
n−1,n ≃ k

generated by the class of any m ≥ n−1 and the bonding homomorphism U
(I−A

t)
n,n+1 →

U
(I−A

t)
n−1,n is an isomorphism, so again by cofinality we see that limU

(I−A
t)

• ≃ k, in
particular νC = 1.

The vector space k〈INn〉 + (I − B)(k〈IN0〉) is the whole k〈IN0〉, so λB∞
= 0,

moreover, a basis of k〈IN0〉/(I − B)(k〈IN0〉) is
{

n(n+3)
2

}

n∈IN0

, hence µB∞
= ∞.

One can check that k〈INn〉∩ (I−B)(k〈IN0〉) = (I−B)(k〈INn〉), therefore U
(I−B)
n,n = 0,

limU
(I−B)
• = 0 and νB∞

= 0.
Finally (I−Bt)(k〈IN0〉) = k〈IN0〉, so λC∞

= 0 = µC∞
, and there are isomorphisms

(n ∈ IN0)

U
(I−B

t)
(n+1)(n+2)

2 ,
n(n+1)

2

≃ k

〈

n(n+ 1)

2
, . . .

n(n+ 1)

2
+ n

〉

,

moreover, the following bonding homomorphism (n > 0)

U
(I−B

t)
(n+1)(n+2)

2 ,
n(n+1)

2

−→ U
(I−B

t)
n(n+1)

2 ,
(n−1)n

2

sends n(n+1)
2 +m to (n−1)n

2 +m if m < n and n(n+1)
2 + n to the trivial element, so

limU
(I−B

t)
• =

∏

IN0
k is the direct product of an infinite countable number of copies

of k and the equality νC∞
=∞ holds. �

Lemma 7.8. There is an R-module isomorphism R

BR
≃ R.

Proof. Let A ⊂ IN0 be the infinite subset A =
{

n(n+3)
2

}

n∈IN0

, and α : A ⊂ IN0 the

inclusion. The next sequence, where ϕ is the obvious projection, is exact

k〈IN0〉δ
B

→֒ k〈IN0〉δ
ϕ
։ k〈A〉α.

Hence the lemma follows from (7.6). �
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Lemma 7.9. Left-multiplication by one of the following matrices induces an injec-
tive right-R-module homomorphism R→ R,

A, (I− A), (I− A
t), (I− B), (I− B

t).

Proof. The matrix A has a left-inverse in R by (7.5). The other matrices have
a left-inverse either in the k-algebra CFM(k) of column-finite matrices or in the
k-algebra RFM(k) of row-finite matrices. Both k-algebras contain R, moreover,
R = CFM(k) ∩ RFM(k). The k-algebra CFM(k) is just the endomorphism ring of
the k-vector space k〈IN0〉, and there is an isomorphism RFM(k) ≃ CFM(k)op given
by transposition. More precisely, let C, D be the matrices in RFM(k) defined by
c1
ij = 1 if i ≥ j and zero otherwise, and d (m−1)m

2 +i,
(n−1)n

2 +i
= 1 (m ≥ n > i ≥ 0) and

trivial in other cases. One can check that C(I− A) = I, Ct(I− At) = I, D(I− B) = I

and Dt(I− Bt) = I, hence the lemma follows. �

Proposition 7.10. There are extensions of R-modules

(1) A →֒ B ։ C,
(2) R →֒ B∞ ։ C∞.

Proof. By using (7.5), (7.8) and (7.9) we get the following equalities, isomorphisms
and short exact sequences, which correspond to the extensions of the statement

R

AR
≃

(I− A
t)R

(I− At)AR
=

(I− A
t)R

(I− A)R
→֒

R

(I− A)R
։

R

(I− At)R
,

R ≃
R

BR
≃

(I− Bt)R

(I− Bt)BR
=

(I− Bt)R

(I− B)R
→֒

R

(I− B)R
։

R

(I− Bt)R
.

�

The proof of the following proposition is contained in the proof of (4.3).

Proposition 7.11. Given a k-vector space V , if dim V < ℵ0 then iV = BdimV ,
and iV = B∞ if dim V = ℵ0.

The next corollary follows from (7.11) and (4.2).

Corollary 7.12. The R-module Bd is injective for every d ∈ IN∞.

In the next lemma we show that one can adapt the basis of a countably generated
vector space to a decreasing filtration.

Lemma 7.13. Let V0 ⊃ V1 ⊃ · · · ⊃ Vn ⊃ Vn+1 ⊃ · · · be a decreasing sequence
of k-vector spaces such that V0 is the union of an increasing sequence of finite-
dimensional subspaces V 0

0 ⊂ V
1
0 ⊂ · · · ⊂ V

n
0 ⊂ V

n+1
0 ⊂ · · · , V0 =

⋃

n∈IN0
V n0 . If we

set V −1
0 = 0, V nm = V n0 ∩ Vm (n+ 1,m ∈ IN0), V∞ =

⋂

n∈IN0
Vn and choose (finite

and possibly empty) sets
{

alnm ; 1 ≤ l ≤ rnm
}

⊂ V nm such that the sets
{

alnm + (V n−1
m + V nm+1) ; 1 ≤ l ≤ rnm

}

are basis of V nm/(V
n−1
m + V nm+1) (n,m ∈ IN0), then given m,n, p ∈ IN0 with m ≤ p

(1)
{

a
lij

ij + V np ; i ≤ n,m ≤ j < p, 1 ≤ lij ≤ rij
}

is a basis of V nm/V
n
p ,

(2)
{

a
lij

ij + V∞ ; i ≤ n,m ≤ j, 1 ≤ lij ≤ rij
}

is a basis of (V nm + V∞)/V∞,

(3)
{

a
lij

ij + V∞ ; i ∈ IN0,m ≤ j, 1 ≤ lij ≤ rij
}

is a basis of Vm/V∞.
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Proof. Since V n0 is a finite-dimensional vector space it is artinian and the decreasing
sequence V n0 ⊃ V

n
1 ⊃ · · · ⊃ V

n
m ⊃ V

n
m+1 ⊃ · · · stabilizes, it is, there exists Mn ∈ IN0

such that V nm = V nMn
for every m ≥Mn, in particular V nMn

= V n0 ∩V∞. If we choose
for every n ∈ IN0 the minimum Mn satisfying this condition then Mn ≤Mn+1 since

V nMn+1
= V nMn+1

∩ V n+1
Mn+1

= V n0 ∩ VMn+1 ∩ V
n+1
0 ∩ V∞ = V n0 ∩ V∞ = V nMn

.

Notice that (1) is trivial form ≥Mn since V nm = V np = V nMn
and

{

alij ; 1 ≤ l ≤ rij
}

=

∅ whenever p ≥ m ≥ Mn, i ≤ n and j ≥ Mn. Therefore the unique elements
(n,m, p) for which we still have to check (1) lie in the set S = {(n,m, p) ; n ∈ IN0, 0 ≤ m ≤Mn, p ≥ m}.
Let us order this set in the following way

(n,m, p) ≤ (n′,m′, p′)⇔























n < n′

or
n = n′ and m > m′

or
n = n′, m = m′ and p ≤ p′.

One readily checks that this is a well order on S, since the second coordinate has an
upper bound (depending on the first one). The minimum of S is (0,M0,M0), more-
over ifm < Mn the element (n,m,m) is the least upper bound of {(n,m+ 1, p) ; p > m},
and given n > 0 the element (n,Mn,Mn) is the least upper bound of the set
{(n− 1,m, p) ; m ≤Mn−1, p ≥ m}. Any other element in S is a successor. We
have already checked (1) for the elements (n,Mn, p) ∈ S, moreover, it is trivial for
(n,m,m) ∈ S, hence (1) holds for the minimum and all limit elements in S. A
generic successor in S has the form (n,m, p + 1) for some p ≥ m. Notice that we
have already check (1) for some successors as well, namely for those with m = Mn.
We are now going to proceed by induction, it is, we shall prove (1) for every succes-
sor in S with m < Mn supposing that (1) holds for all the strictly lower elements.
We are going to distinguish three cases:

For (0,m, p+ 1) (1) follows from the exactness of the sequence

V 0
p

V 0
p+1

→֒
V 0
m

V 0
p+1

։
V 0
m

V 0
p

,

the equality V −1
0 = 0 and the inequality (0,m, p) < (0,m, p+1), and the inequality

(0, p + 1, p) < (0,m, p + 1) if p < M0 or the equalities V 0
p = V 0

p+1 = V 0
M0

and
{

al0p ; 1 ≤ l ≤ r0p
}

= ∅ if p ≥M0.
For (n,m,m+ 1) with n > 0 (1) is a consequence of the exactness of the se-

quence

V n−1
m + V nm+1

V nm+1

→֒
V nm
V nm+1

։
V nm

V n−1
m + V nm+1

,

the obvious isomorphism

V n−1
m

V n−1
m+1

≃
V n−1
m + V nm+1

V nm+1

,

the inequality (n − 1,m,m + 1) < (n,m,m + 1) if m < Mn−1, or the equalities
V n−1
m = V n−1

m+1 = V n−1
Mn−1

and {ain ; 1 ≤ l ≤ rin} = ∅ if i ≤ n− 1 and m ≥Mn−1.
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For (n,m, p+ 1) with n > 0 and p > m (1) follows from the exactness of the se-
quence

V np
V np+1

→֒
V nm
V np+1

։
V nm
V np

,

the inequality (n,m, p) < (n,m, p+1), and the inequality (n, p, p+1) < (n,m, p+1)
if p < Mn or the equalities V np = V np+1 = V nMn

and
{

alip ; 1 ≤ l ≤ rip
}

= ∅ if i ≤ n
and p ≥Mn.

Once we have seen that (1) holds, (2) is a consequence of (1) for p = Mn, the
isomorphism (V nm + V∞)/V∞ ≃ V nm/V

n
Mn

, and the fact that
{

alij ; 1 ≤ l ≤ rij
}

= ∅
is the empty set for i ≤ n and j ≥Mn. Finally (3) follows from (2) and the equality
Vm =

⋃

n∈IN0
V nm. �

The next proposition is an interesting consequence of the previous lemma. It
does not hold in general when the ground ring is not a field, compare [1].

Proposition 7.14. The image of a morphism between finitely generated free Mk(T̄1)-
modules is finitely generated free.

Proof. Let ϕ : k〈B〉β → k〈A〉α be a morphism in Mk(T̄1). If we define the k-vector
spaces V0 = ϕ(k〈B〉), Vn = ϕ(k〈Bn〉) ⊂ k〈A〉 (n ∈ IN) and V n0 = ϕ(k〈nB〉) (n ≥ 0)
we can apply Lemma 7.13. Moreover, with the notation of that lemma V∞ = 0
since for every n ≥ 1 there exists Nn ≥ 1 such that VNn

⊂ k〈An〉 and ∩n≥1k〈An〉 =
0. We define the set B =

{

alij ; i, j ∈ IN0, 1 ≤ l ≤ rij
}

and the function β : B →

IN0 ⊂ [0,+∞) by β(alnm) = m. By (7.13) (3) the set B is a basis of V0 and
Bm a basis of Vm (m ≥ 1) since V∞ = 0. The function β is a height function

because the cardinal of β−1(m) is dimVm/Vm+1 < ℵ0 (m ∈ IN0). Moreover, the
inclusion k〈B〉 = ϕ(k〈B〉) ⊂ k〈A〉 and the projection k〈B〉 ։ ϕ(k〈B〉) = k〈B〉
give rise to controlled homomorphisms k〈B〉β →֒ k〈A〉α and k〈B〉β ։ k〈B〉β which

are an Mk(T̄1)-module monomorphism and epimorphism respectively and their
composition is ϕ, hence k〈B〉β together with these morphisms is the image of ϕ. �

Corollary 7.15. Any finitely presented Mk(T̄1)-module is the cokernel of a monomor-
phism between finitely generated free Mk(T̄1)-modules.

Corollary 7.16. Finitely presented R-modules have projective dimension ≤ 1.

Corollary 7.17. We have Ext1(M,Cd) = 0 for any f. p. R-module M and d ∈ IN∞.

Proof. By (7.16) the functor Ext1(M,−) is right-exact, hence the corollary follows
from (7.10) and (7.12). �

Now we begin with the lemmas which prove Theorem 7.2.

Lemma 7.18. Given any f. p. R-module M, there exists another f. p. R-module
N with λN = 0 such that M ≃ AλM

⊕N.

Proof. Suppose that M = Cokerϕ for some ϕ : k〈B〉β → k〈A〉α in Mk(T̄1). Let us
consider the decreasing sequence of k-vector spaces given by V0 = k〈A〉/ϕ(k〈B〉)
and

Vn =
k〈An〉+ ϕ(k〈B〉)

ϕ(k〈B〉)
, n ∈ IN.
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The vector space V0 is the union of the following sequence of finite-dimensional
k-vector spaces (n ∈ IN0)

V n0 =
k〈nA〉+ ϕ(k〈B〉)

ϕ(k〈B〉)
.

If
{

alnm ; 1 ≤ l ≤ rnm
}

⊂ V nm is a set as in (7.13) we can suppose that alnm =

elnm +ϕ(k〈B〉) for some elnm ∈ k〈nAm〉, here we use the next obvious isomorphism

k〈nAm〉

k〈nAm〉 ∩ ϕ(k〈B〉)
≃
k〈nAm〉+ ϕ(k〈B〉)

ϕ(k〈B〉)
= V nm.

We consider the set C =
{

alnm
nm + V∞ ; n,m ∈ IN0, 1 ≤ lnm ≤ rnm

}

and the func-

tion γ : C → IN0 ⊂ [0,+∞) with γ(alnm
nm + V∞) = m. This function is a height

function, since the set γ−1(m) =
{

alnm
nm + V∞ ; n ∈ IN0, 1 ≤ lnm ≤ rnm

}

is bijective
with a basis of Vm/Vm+1 by (7.13) (3), and we have the following surjection and
isomorphisms

k〈Am〉

k〈Am+1〉
։

k〈Am〉

k〈Am+1〉+ [ϕ(k〈B〉) ∩ k〈Am〉]
≃

k〈Am〉+ ϕ(k〈B〉)

k〈Am+1〉+ ϕ(k〈B〉)
≃

Vm
Vm+1

,

and dim k〈Am〉/k〈Am+1〉 = cardα−1(m) < ℵ0. The underlying k-vector space of
k〈C〉γ is V0/V∞, moreover, the natural projection

(a) k〈A〉։
k〈A〉

⋂

n≥1

[k〈An〉+ ϕ(k〈B〉)]
≃

V0

V∞
= k〈C〉

give rise to a T̄1-controlled homomorphism υ0 : k〈A〉α → k〈C〉γ with υ0ϕ = 0, hence
υ0 induces a morphism υ : M → k〈C〉γ . Furthermore, the section V0/V∞ →֒ k〈A〉
which sends alnm + V∞ to elnm determines another T̄1-controlled homomorphism
τ0 : k〈C〉γ → k〈A〉α with υ0τ0 = 1, in particular if τ : k〈C〉γ →M is the morphism
induced by τ0 we have that υτ = 1, hence M ≃ k〈C〉γ ⊕ N where N = Coker τ .
Notice that the morphism (ϕ, τ0) : k〈B〉β ⊕ k〈C〉γ → k〈A〉α is a finite presentation
of N, and by (a) we have the following equality and inclusions for every m ≥ 1

k〈A〉 =
⋂

n≥1

[k〈An〉+ ϕ(k〈B〉)] ⊕ τ(k〈C〉) ⊂ k〈Am〉+ ϕ(k〈B〉) + τ(k〈C〉) ⊂ k〈A〉,

therefore λN = 0.
Observe that by (7.6) and (7.7) k〈C〉γ is isomorphic to the free T̄1-controlled

k-vector space which corresponds to R provided λM =∞, and to the direct sum of
λM copies of A otherwise. �

Lemma 7.19. Given a f. p. R-module M with λM = 0, there exists another f. p.
R-module N with λN = µN = 0 such that M ≃ BµM

⊕N.

Proof. Suppose that M is the cokernel of ϕ : k〈B〉β → k〈A〉α in Mk(T̄1). Since
λM = 0 we have that k〈A〉 = k〈Am〉 + ϕ(k〈B〉) for every m ∈ IN. Let V• be the
inverse system indexed by IN× IN given by

Vmn =
k〈Am〉

k〈Am〉 ∩ ϕ(k〈Bn〉)
,
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and bonding homomorphisms induced by the obvious inclusions of vector spaces.
There are inclusions Uϕmn ⊂ Vmn with quotients

k〈Am〉

k〈Am〉 ∩ ϕ(k〈B〉)
≃
k〈Am〉+ ϕ(k〈B〉)

ϕ(k〈B〉)
=

k〈A〉

ϕ(k〈B〉)
.

This determines a short exact sequence in the pro-category of pro-vector spaces

(a) Uϕ• →֒ V• ։
k〈A〉

ϕ(k〈B〉)
.

Here we regard k〈A〉/ϕ(k〈B〉) as the inverse system indexed by a singleton.
The vector space Uϕmn is always finite dimensional, because it is contained in

ϕ(k〈B〉)/ϕ(k〈Bn〉) ≃ ϕ(k〈n−1B〉) and n−1B is a finite set. Since finite-dimensional
vector spaces are artinian it is easy to see that Uϕ• satisfies the Mittag-Leffler
property, in particular lim1 Uϕ• = 0 and hence by (5.B) Ext1(k〈A〉/ϕ(k〈B〉), Uϕ• ) =
0, so the sequence (a) admits a splitting s : k〈A〉/ϕ(k〈B〉) →֒ V•. This splitting is
given by splittings smn : k〈A〉/ϕ(k〈B〉) →֒ Vmn of the natural projections Vmn ։

k〈A〉/ϕ(k〈B〉) which are compatible with the bonding homomorphisms of V•.

Let C̃ be a basis of k〈A〉/ϕ(k〈B〉). This basis is either finite C̃ = {b1, . . . bµM
}

if µM ∈ IN0, or infinite countable C̃ = {bn}n∈IN0
if µM = ∞. Moreover, since ϕ

is controlled there exists an increasing sequence of natural numbers {ln}n≥1 with

ϕ(k〈Bln〉) ⊂ k〈An〉. We choose elements bn−1
m ∈ k〈An〉 and yn−1

m ∈ k〈Bln〉 such
that bn−1

m + ϕ(k〈Bln〉) = sn,ln(bm) ∈ Vn,ln = k〈An〉/ϕ(k〈Bln〉) and ϕ(yn−1
m ) =

bnm − b
n−1
m for every n ∈ IN and m in the corresponding range. Furthermore, we

define the sets nC ⊂ k〈An+1〉 and C in the following way: nC = {bn1 , . . . b
n
µM
}

and C =
∐

n∈IN0

nC if µM ∈ IN0, and nC = {bn0 , . . . b
n
n} ∪ {b

m
m ; m > n} and

C =
⋃

n∈IN0

nC = {bnm ; n ≥ m ≥ 0} if µM =∞. Let γ : C → IN0 ⊂ [0,+∞) be the
height function given by γ(bnm) = n and ψ the endomorphism of k〈C〉γ given by
ψ(bnm) = bn+1

m − bnm.
One readily checks that Cokerψ = i(k〈A〉/ϕ(k〈B〉)) and the natural projection

k〈C〉γ ։ i(k〈A〉/ϕ(k〈B〉)) is given by the homomorphism p1 : k〈C〉 → k〈A〉/ϕ(k〈B〉) =

k〈C̃〉 defined by p1(b
n
m) = bm. For this one uses the finite presentations constructed

in the proof of (4.3) and, if µM = ∞, the bijection IN0 ≈ C which sends m ∈ IN0,

with n(n−1)
2 ≤ m < (n+1)n

2 for some n ∈ IN0, to bn−1

m−n(n−1)
2

. Moreover, by (7.11)

Cokerψ = BµM
.

The homomorphism τ0 : k〈C〉 → k〈A〉 induced by the inclusions nC ⊂ k〈An+1〉 ⊂
k〈A〉 determines a controlled homomorphism τ0 : k〈C〉γ → k〈A〉α. Moreover, the
homomorphism τ1 : k〈C〉 → k〈B〉 given by τ1(b

n
m) = ynm defines a controlled homo-

morphism τ1 : k〈C〉γ → k〈B〉β with ϕτ1 = τ0ψ, hence τ0 gives rise to a Mk(T̄1)-
module morphism τ : BµM

→M.
Let us check that τ is a monomorphism. Given a free T̄1-controlled vector space

k〈D〉φ Yoneda’s lemma yields a natural identification HomR(k〈D〉φ, i(k〈A〉/ϕ(k〈B〉))) =
Homk(k〈D〉, k〈A〉/ϕ(k〈B〉)). This identification carries a morphism υ : k〈D〉φ →
i(k〈A〉/ϕ(k〈B〉)) represented by υ0 : k〈D〉φ → k〈C〉γ to the vector space homomor-
phism p1υ0. If p2 : k〈A〉 ։ k〈A〉/ϕ(k〈B〉) is the natural projection then p2ϕ = 0
and p1 = p2τ0. Moreover τυ = 0 if and only if τ0υ0 = ϕη for some controlled
homomorphism η : k〈D〉φ → k〈B〉β , so in this case p1υ0 = p2τ0υ0 = p2ϕη = 0, it
is, υ = 0, therefore τ is a monomorphism.
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By (7.12) if N = Coker τ then M ≃ BµM
⊕ N. The morphism (ϕ, τ0) : k〈B〉β ⊕

k〈C〉γ → k〈A〉α is a finite presentation of N and by construction ϕ(k〈B〉) +
τ0(k〈C〉) = k〈A〉, it is λN = µN = 0. �

Lemma 7.20. Let M be a f. p. R-module with λM = µM = 0 then there exists
another one N with λN = µN = νN = 0 such that M ≃ CνM

⊕N.

In the proof of this lemma we shall use the next one.

Lemma 7.21. Let {dn}n∈IN be an increasing sequence of integers with lim
n→∞

dn =

∞. Consider the set A = {(n,m) ; n ∈ IN,m ≤ dn} ⊂ IN × IN, the height function
α : A → IN0 ⊂ [0,+∞) with α(n,m) = n, and the endomorphism ϕ of k〈A〉α with
ϕ(n,m) = (n,m) if n = 1 or n > 1 and m > dn−1, and ϕ(n,m) = (n,m)−(n−1,m)
otherwise. Then Cokerϕ is isomorphic to C∞.

Proof. Consider the infinite countable subsets

A1 = {(1,m) ; 1 ≤ m ≤ d1} ∪ {(n,m) ; n > 1, dn−1 < m ≤ dn} ⊂ A,

A2 = A−A1, B1 = {(n+ 1)n/2}n∈IN0
⊂ IN0 and B2 = IN0−B1. The lexicographic

order from the left on A is a well order without limit elements, since the second
coordinate of an element (n,m) ∈ A is bounded by dn, hence the restriction of
this order to the subsets A1 and A2 induces enumerations A1 = {en1}n∈IN0

, A2 =
{

e2n
}

n∈IN0
. Similarly the usual order in IN0 induces enumerations in the subsets

B1 = {fn1 }n∈IN0
and B2 = {fn2 }n∈IN0

. Now the theorem follows from the bijection

IN0 ≈ A which sends fni to eni (i = 1, 2;n ∈ IN0). �

Proof of (7.20). If M = Coker[ϕ : k〈B〉β → k〈A〉α] the equalities λM = µM = 0
are equivalent to ϕ(k〈B〉) = k〈A〉. Let φ : limUϕ• → Uϕ• be the canonical pro-
morphism. This pro-morphism is given by vector space homomorphisms φmn : limUϕ• →
Uϕmn compatible with the bonding homomorphisms of Uϕ• . Since ϕ is controlled
there is an increasing sequence of natural numbers {mn}n≥1 such that ϕ(k〈Bmn

〉) ⊂
k〈An〉.

If νM ∈ IN0 and {a1, . . . aνM
} is a basis of limUϕ• we define nC =

{

an1 , . . . a
n
νM

}

⊂
k〈An〉 as a set such that φn,mn

(ai) = ani + ϕ(k〈Bmn
〉) (1 ≤ i ≤ νM), and choose

elements yni ∈ k〈Bmn−1〉 if n > 1 and y1
i ∈ k〈B〉 with ani − an−1

i = ϕ(yni )

(n > 1) and a1
i = ϕ(y1

i ). If νM = ∞ we take nC = {ani }
dn

i=1 ⊂ k〈An〉 such that
{ani + ϕ(k〈Bmn

〉)} is a basis of φn,mn
(limUϕ• ), here we use that Uϕ• is an inverse

system of finite-dimensional vector spaces, compare the proof of (7.19). The bond-
ing homomorphisms of Uϕ• induce surjections φn+1,mn+1(limUϕ• ) ։ φn,mn

(limUϕ• ),
hence dn ≤ dn+1 and we can suppose without loose of generality that there exist
yni ∈ k〈Bmn−1〉 (n > 1) and y1

i ∈ k〈B〉 such that ani − a
n−1
i = ϕ(yni ) if n > 1 and

i ≤ dn−1, and ani = ϕ(yni ) if n > 1 and dn−1 < i ≤ dn or n = 1 and i ≤ d1.
We define the height function γ : C =

∐

n≥1
nC → IN0 ⊂ [0,+∞) as γ(ani ) =

n, and the controlled homomorphisms τ0 : k〈C〉γ → k〈A〉α, τ1 : k〈C〉γ → k〈B〉β ,
ψ : k〈C〉γ → k〈C〉γ by τ0(a

n
i ) = ani , τ1(a

n
i ) = yni , and ψ(ani ) = ani − a

n−1
i if n > 1,

and νM ∈ IN0 or νM =∞ and i ≤ dn−1, and ψ(ani ) = ani otherwise. One can readily
check, by using the bijection IN ≈ IN0 : n 7→ n− 1 if νM ∈ IN0 or (7.21) if νM =∞,
that Cokerψ ≃ CνM

. Moreover, (τ1, τ0) : ψ → ϕ is a morphism in pair(Mk(T̄1))
which induces an R-module morphism τ : CνM

→M.
In order to check that τ is a monomorphism of Mk(T̄1)-modules we are going to

prove that φ is a monomorphism of pro-vector spaces if νM ∈ IN0. In this case Kerφ
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is an inverse system of finite-dimensional vector spaces, in particular it satisfies the
Mittag-Leffler property. If we apply the left-exact functor lim to the exact sequence
of pro-vector spaces

Kerφ →֒ limUϕ•
φ
−→ Uϕ•

we get another one

limKerφ →֒ lim limUϕ•
=
−→ limUϕ• ,

so limKerφ = 0 and hence Kerφ = 0 by [11] II.6.2 Lemma 2, therefore φ is a
monomorphism. In particular there exists N ∈ IN big enough such that φn,mn

is
an injective homomorphism for every n ≥ N . We set N = 1 if νM =∞. Now it is
easy to see that the injection ψn : k〈Cn+1〉 →֒ k〈Cn〉 given by the restriction of ψ
is the kernel of the next composition whenever n ≥ N

k〈Cn〉
τ0→ k〈An〉։

k〈An〉

ϕ(k〈Bmn
〉)

= Uϕn,mn
.

Any morphism υ : k〈D〉χ → CνM
is represented by a controlled homomorphism

υ0 : k〈D〉χ → k〈C〉γ . Suppose that τυ = 0. This means that there exists another
controlled homomorphism η : k〈D〉χ → k〈B〉β with τ0υ0 = ϕη. By the alterna-
tive characterization of controlled homomorphisms given in Subsection 3.1 we see
that there exists an increasing sequence of natural numbers {pn}n≥1 such that

υ0(k〈Dpn
〉) ⊂ k〈Cn〉 and η(k〈Dpn

〉) ⊂ k〈Bmn
〉, hence if n ≥ N then there exists a

unique homomorphism σn : k〈Dpn
〉 → k〈Cn+1〉 such that ψnσn : k〈Dpn

〉 → k〈Cn〉
is the restriction of υ0. If σ′ : k〈pN−1D〉 → k〈C〉 is any homomorphism such that
ψσ′ coincides with the restriction of υ0 to k〈pN−1D〉 we define the controlled ho-
momorphism σ : k〈D〉χ → k〈C〉γ by σ(d) = σn(d) if d ∈ pn+1−1Dpn

(n ≥ N) and
σ(d) = σ′(d) if d ∈ pN−1D. This controlled homomorphism satisfies ψσ = υ0

therefore υ = 0 and hence τ is a monomorphism.
Since τ is a monomorphism if we define N = Coker τ we get by (7.17) that

M ≃ CνM
⊕ N. Now one can check that λN = µN = νN = 0 by using that

N = Coker[(ϕ, τ0) : k〈B〉β ⊕ k〈C〉γ → k〈A〉α]. �

Lemma 7.22. If M is a f. p. R-module with λM = µM = νM = 0 then M = 0.

Proof. If M = Coker[ϕ : k〈B〉β → k〈A〉α] the conditions of the statement are equiv-
alent to ϕ(k〈B〉) = k〈A〉 and limUϕ• = 0. In the proof of (7.19) we checked that
Uϕ• satisfies the Mittag-Leffler property, hence Uϕ• = 0 is a trivial pro-vector space
by [11] II.6.2 Lemma 2. This means that if {mn}n≥1 is an increasing sequence such

that ϕ(k〈Bmn
〉) ⊂ k〈An〉 (see Subsection 3.1) then there exists another increasing

sequence {pn}n≥1 such that the next bonding homomorphisms are trivial

Uϕpn+1,mpn+1
=

k〈Apn+1〉

ϕ(k〈Bmpn+1
〉)

0
−→

k〈Apn
〉

ϕ(k〈Bmpn
〉)

= Uϕpn,mpn
.

It is, k〈Apn+1〉 ⊂ ϕ(k〈Bmpn
〉). Hence we can define a controlled homomorphism

ψ : k〈A〉α → k〈B〉β sending a ∈ pn+2−1Apn+1 (n ≥ 1) to any element b ∈ Bmpn
such

that ϕ(b) = a, and if a ∈ p2A we take any ψ(a) = b ∈ k〈B〉 such that ϕ(b) = a. This
morphism satisfies ϕψ = 1 hence ϕ is an epimorphism and M = Cokerϕ = 0. �
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8. Representations of the n-subspace quiver

The n-subspace quiver Qn is the next directed graph

/.-,()*+0

/.-,()*+1

''
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/.-,()*+2

��

????????

/.-,()*+n

ww
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Fixed any field k, a representation V of Qn is a diagram of k-vector spaces in-
dexed by Qn, it is, n+ 1 vector spaces V0, V1, . . . Vn together with homomorphisms
Vi → V0 (1 ≤ i ≤ n). Morphisms of representations are commutative diagrams.
The category repQn

of representations of Qn is an abelian category. It is equiva-
lent to the category of kQn-modules, where kQn is the path algebra of Qn, whose
dimension is dim kQn = 2n + 1. A representation is said to be finite-dimensional
provided Vi is a finite-dimensional vector space for every 0 ≤ i ≤ n. Finitely
presented (or equivalently finite-dimensional) kQn-modules correspond to finite-
dimensional representations under this equivalence and indecomposable represen-
tations are finite-dimensional, hence by the classical Krull-Schmidt theorem the
monoid Iso(repfin

Qn
) of isomorphisms classes of finite-dimensional representations of

Qn is the free abelian monoid generated by the (isomorphism classes of) indecom-
posable representations. The representation type of the quiver Qn is that of its
path algebra.

An n-subspace V is a representation ofQn such that the homomorphisms Vi → V0

are inclusions of subspaces Vi ⊂ V0 (1 ≤ i ≤ n). The category subn (resp. subfin
n )

of (finite-dimensional) n-subspaces is a full additive subcategory of repQn
(resp.

repfin
Qn

). In fact direct summands in repQn
of n-subspaces are also n-subspaces,

hence

Proposition 8.1. Iso(subfin
n ) is the free abelian monoid generated by the isomor-

phism classes of indecomposable n-subspaces.

Up to isomorphism there are just n indecomposable representations of Qn which
are not n-subspaces, namely those with Vi = k for some 1 ≤ i ≤ n and Vj = 0 if
j 6= i, therefore

Proposition 8.2. The representation type of subfin
n is the same as the n-subspace

quiver.

We say that an n-subspace V is rigid provided Vi ⊂
∑

j 6=0,i Vj (1 ≤ i ≤ n) and

V0 =
∑n

i=1 Vi. As before, the category subrig
n (resp. subfr

n) of (finite-dimensional)

rigid n-subspaces is an additive (small) subcategory of subn (resp. subfin
n ) and

direct summands of rigid n-subspaces are also rigid, so

Proposition 8.3. Iso(subfr
n ) is the free abelian monoid generated by the isomor-

phism classes of indecomposable rigid n-subspaces.

There is an additive “rigidification” functor

subn −→ subrig
n : V 7→ V rig

given by V rig
i = Vi∩

(

∑

j 6=0,i Vj

)

(1 ≤ i ≤ n) and V rig
0 =

∑n
i=1 V

rig
i , which is right-

adjoint to the inclusion sub
rig
n ⊂ subn and preserves finite-dimensional objects.
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The unit of this adjunction is the obvious natural inclusion V rig ⊂ V , which is an
equality if and only if V is already rigid.

In order to determine indecomposable rigid n-subspaces we consider the full
inclusions of additive categories F

i : sub1 → subn (1 ≤ i ≤ n) sending a 1-subspace
W to the n-subspace F

iW = iW with iW0 = W0,
iWi = W1 and iWj = 0 otherwise.

Proposition 8.4. The natural inclusion V rig ⊂ V admits a (not natural) retraction

in subn. More precisely, there exist 1-subspaces V i (1 ≤ i ≤ n) and an isomorphism

V ≃ (
⊕n

i=1 F
iV i) ⊕ V rig such that the natural inclusion V rig ⊂ V corresponds to

the inclusion of the direct summand.

Proof. By using the definition of V rig we see that there is a short exact sequence
of vector spaces

n
⊕

i=1

Vi

V rig
i

→֒
V0

V rig
0

։
V0

∑n
i=1 Vi

.

We define the 1-subspaces V i (1 ≤ i ≤ n) as V 1
0 = V0

∑

n
i=1 Vi

⊕ V1

V
rig
1

, V 1
1 = V1

V
rig
1

and

V i0 = V i1 = Vi

V
rig

i

if 1 < i ≤ n. Now the isomorphism of the statement follows from

the former exact sequence. �

By this proposition an indecomposable n-subspace is rigid unless it is isomorphic
to F

iV for some indecomposable 1-subspace V and 1 ≤ i ≤ n. It is known that such
V must be either k → k or 0→ k, so there are just 2n indecomposable n-subspaces
which are not rigid, and 3n indecomposable representations of Qn which are not
rigid n-subspaces, in particular

Proposition 8.5. The category subfr
n has the same representation type as the n-

subspace quiver.

Remark 8.6. The representation type of the n-subspace quiver is well-known. It is
finite for n < 4, tame for n = 4 and wild if n > 4, see [8] and [14].

In [8] the finite sets of indecomposable representations of Qn are described for
n < 4 hence discarding the 3n indecomposable representations previously described
which are not rigid n-subspaces we get the next result.

Proposition 8.7. The following are complete lists of (representatives of the iso-
morphism classes of) indecomposable rigid n-subspaces for n < 4

• n = 1, none,

• n = 2, V (2,1) = (k → k ← k),
• n = 3,

V (3,1) =





k
↓

k → k ← 0



 , V (3,2) =





0
↓

k → k ← k



 ,

V (3,3) =





k
↓

0 → k ← k



 , V (3,4) =





k
↓

k → k ← k



 ,

V (3,5) =





k〈x+ y〉
↓

k〈x〉 → k〈x, y〉 ← k〈y〉



 .
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Remark 8.8. In [14] there is a (not finite) list of indecomposable representations
of Q4 . We do not include the list here because it is quite tedious to describe,
however the interested reader can easily find and remove the 12 indecomposable
representations of Q4 which are not rigid 4-subspaces, obtaining in this way a
complete list of indecomposable rigid 4-subspaces .

9. Finitely presented k(n)-modules and finite-dimensional n-subspaces

Given an n-subspace V we define MV : Mk(T̄n)
op → Ab as the additive functor

which sends an object k〈A〉α to the vector subspace MV (k〈A〉α) ⊂ Homk(k〈A〉, V0)
formed by the homomorphisms φ : k〈A〉 → V0 such that there exists M ≥ 1 de-
pending on φ satisfying φ(AiM ) ⊂ Vi (1 ≤ i ≤ n). This construction defines an
exact full inclusion of additive categories

(9.A) M : subn →mod(Mk(T̄n)).

Proposition 9.1. If V is a finite-dimensional n-subspace then the Mk(T̄n)-module
MV is finitely presented.

Proof. Let {w1, . . . wd} be a basis of V0,
{

wi1, . . . w
i
di

}

a basis of Vi (1 ≤ i ≤ n), and

φi : Vi → V0 the inclusion. We define the setsD =
{

mw
i
1, . . .mw

i
di

; 1 ≤ i ≤ n,m ≥ 1
}

and C = D ⊔ {w1, . . . wd}, and the height functions γ : C → T 0
n and δ : D → T 0

n

with γ(wj) = v0 (1 ≤ j ≤ d) and γ(mw
i
j) = δ(mw

i
j) = vim (1 ≤ i ≤ n, 1 ≤

j ≤ di,m ≥ 1). Let ρ : k〈D〉δ → k〈C〉γ be the controlled homomorphism defined
as ρ(mw

i
j) = mw

i
j − m−1w

i
j if m > 1 and ρ(1w

i
j) = 1w

i
j − φi(w

i
j) otherwise, and

p : k〈C〉γ → MV the Mk(T̄n)-module morphism determined by the k-vector space
homomorphism p0 : k〈C〉 → V0 with p0(wj) = wj and p0(mw

i
j) = φi(w

i
j). Here we

use that Hom(k〈C〉γ ,MV ) = MV (k〈C〉γ) by Yoneda’s lemma. Now it is immediate
to check that MV = Cokerρ and p is the natural projection. �

One can check by using the finite presentation constructed in the proof of the
former proposition that

Corollary 9.2. If V is a finite-dimensional rigid n-subspace then Φn([MV ]) = 0.

By (9.1) the additive functor in (9.A) restricts to a functor M : subfin
n → fp(Mk(T̄n)).

Now we are going to construct a functor in the opposite direction. For this
if ϕ : k〈B〉β → k〈A〉α is a morphism in Mk(T̄n) we define the k-vector spaces
(1 ≤ i ≤ n)

Wϕ
i =

⋂

m≥1

{

[

k〈Aim〉+ ϕ(k〈B〉)
]

∩
[

∑

j 6=i k〈A
j
m〉+ ϕ(k〈B〉)

]}

ϕ(k〈B〉)
.

Proposition 9.3. The vector space Wϕ
i is finite-dimensional (1 ≤ i ≤ n).

This proposition is an immediate consequence of the next

Lemma 9.4. For any m ≥ 1

dim

[

k〈Aim〉+ ϕ(k〈B〉)
]

∩
[

∑

j 6=i k〈A
j
m〉+ ϕ(k〈B〉)

]

ϕ(k〈B〉)
< ℵ0.
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Proof. One readily checks that

[

k〈Aim〉+ ϕ(k〈B〉)
]

∩





∑

j 6=i

k〈Ajm〉+ ϕ(k〈B〉)



 =

k〈Aim〉 ∩





∑

j 6=i

k〈Ajm〉+ ϕ(k〈B〉)



 + ϕ(k〈B〉),

therefore

(a)

[

k〈Aim〉+ ϕ(k〈B〉)
]

∩
[

∑

j 6=i k〈A
j
m〉+ ϕ(k〈B〉)

]

ϕ(k〈B〉)
≃

k〈Aim〉 ∩
[

∑

j 6=i k〈A
j
m〉+ ϕ(k〈B〉)

]

k〈Aim〉 ∩ ϕ(k〈B〉)
.

Since ϕ is a controlled homomorphism there exists M ≥ 1 such that ϕ(BiM ) ⊂
k〈Aim〉 (1 ≤ i ≤ n), hence

(b)
∑

j 6=i

k〈Ajm〉+ ϕ(k〈B〉) =
∑

j 6=i

k〈Ajm〉+ ϕ(k〈M−1B〉) + ϕ(k〈BiM 〉).

The set M−1B is finite, hence there exists N ≥ 0 big enough with ϕ(M−1B) ⊂
k〈NA〉. Let us check that the next homomorphism induced by the inclusion NA

i
m ⊂

Aim is an isomorphism

(c)
k〈NAim〉 ∩

[

∑

j 6=i k〈A
j
m〉+ ϕ(k〈B〉)

]

k〈NAim〉 ∩ ϕ(k〈B〉)
→

k〈Aim〉 ∩
[

∑

j 6=i k〈A
j
m〉+ ϕ(k〈B〉)

]

k〈Aim〉 ∩ ϕ(k〈B〉)
.

The injectivity is obvious. Now by (b) an arbitrary element in the range of (c) is
represented by an element ai ∈ k〈Aim〉 such that there are aj ∈ k〈Ajm〉 (j 6= i),
a′i ∈ k〈A

i
m〉 ∩ ϕ(k〈B〉), b ∈ ϕ(k〈M−1B〉), and bi ∈ ϕ(k〈BiM 〉) such that

∑

j 6=i

aj + b+ bi = ai + a′i,

but ai + a′i − bi ∈ k〈A
i
m〉, (⊕nj=1k〈A

j
m〉) ∩ k〈NA〉 = ⊕nj=1k〈NA

j
m〉, and

∑

j 6=i aj −

(ai + a′i − bi) = b ∈ k〈NA〉, therefore aj , ai + a′i − bi ∈ k〈NA〉 (j 6= i), and
a′i − bi ∈ k〈A

i
m〉 ∩ ϕ〈B〉, so ai + a′i − bi represents the same element as ai in the

range of (c), hence the homomorphism (c) is surjective. Now the proposition follows
from the isomorphisms (a) and (c), and the finiteness of the set NA

i
m. �

By (9.3) the vector spaceWϕ
0 =

∑n
i=1W

ϕ
i together with the subspacesWϕ

1 , . . .W
ϕ
n

define a finite dimensional n-subspace Wϕ.

Proposition 9.5. There is an additive functor S : fp(Mk(T̄n)) → subfin
n which

sends M = Cokerϕ to SM = Wϕ.

Proof. By using the alternative description of controlled homomorphisms in Mk(T̄n)
given in Subsection 3.1 one can easily check hat the correspondence ϕ 7→ Wϕ is
a functor from pair(Mk(T̄n)) to the category of n-subspaces. Furthermore, this
functor factors through the natural equivalence relation ∼, therefore the proposi-
tion follows by (2.1). �
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The functors S and M are not adjoint. Moreover, one readily checks that

Proposition 9.6. The n-subspace SM is rigid for every f. p. Mk(T̄n)-module M.
Moreover, given a finite-dimensional n-subspace V there is a natural isomorphism
SMV ≃ V rig.

For the second statement of the former proposition one uses the finite presenta-
tions constructed in the proof of (9.1).

Corollary 9.7. The image of the functor S is the category of finite-dimensional
rigid n-subspaces.

Corollary 9.8. For every f. p. Mk(T̄n)-module M there is a natural isomorphism
SMSM ≃ SM.

As we pointed out in the introduction a key step to obtain a presentation of
Iso(fp(Mk(T̄n))) is relating the decomposition problem in fp(Mk(T̄n)) to the de-

composition problem in fp(Mk(T̄1)) and subfin
n . This is what we do in the next

two propositions.

Proposition 9.9. For any f. p. Mk(T̄n)-module M there exists another one N

with SN = 0 such that M ≃ N ⊕MSM.

Proof. Suppose that M is the cokernel of ϕ : k〈B〉β → k〈A〉α in Mk(T̄n). By the
alternative description of controlled homomorphisms given in Subsection 3.1 we
can choose an increasing sequence of natural numbers {Mm}m≥1 with ϕ(BiMm

) ⊂

k〈Aim〉 (1 ≤ i ≤ n). We define the inverse systems of vector spaces X i
•, Y

i
• , Z

i
•

(1 ≤ i ≤ n) indexed by IN in the following way

X i
m =

ϕ(k〈B〉)

ϕ(k〈BiMm
〉)
,

Y im =

[

k〈Aim〉+ ϕ(k〈B〉)
]

∩
[

∑

j 6=i k〈A
j
m〉+ ϕ(k〈B〉)

]

ϕ(k〈BiMm
〉)

,

Zim =

[

k〈Aim〉+ ϕ(k〈B〉)
]

∩
[

∑

j 6=i k〈A
j
m〉+ ϕ(k〈B〉)

]

ϕ(k〈B〉)
.

The bonding homomorphisms are induced by the obvious inclusions of vector spaces.

The short exact sequences X i
m →֒ Y im

pm
i

։ Zim are compatible with the bonding

homomorphisms, so they give rise to short exact sequences X i
• →֒ Y i•

pi

։ Zi• in the
abelian pro-category of pro-vector spaces. Moreover, limZi• = ∩m≥1Z

i
m = Wϕ

i . Let
ψi : W

ϕ
i → Zi• be the canonical pro-morphism, which is induced by the inclusions

Wϕ
i ⊂ Z

i
m. Here we regard Wϕ

i as an inverse system indexed by a singleton.
The bonding homomorphisms of the inverse system X i

• are surjective, therefore

lim1X i
• = 0, and by (5.B) Ext1(Wϕ

i , X
i
•) = 0, so there exists a pro-morphism ψ̃i

such that the next diagram commutes

Wϕ
i

ψi

��

ψ̃i

~~}}
}}

}}
}}

X i
•

�

�

// Y i•
pi

// // Zi•
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The pro-morphism ψ̃i is represented by a sequence of homomorphisms ψ̃mi : Wϕ
i →

Y im (m ≥ 1) which are compatible with the bonding homomorphisms of Y i• , and

such that the composition pmi ψ̃
m
i : Wϕ

i ⊂ Z
i
m is the inclusion.

If
{

ai1, . . . a
i
di

}

is a basis of Wϕ
i we can choose elements

{

ma
i
1, . . .ma

i
di

}

⊂ k〈Aim〉

(m ≥ 1) such that ψ̃mi (aij) = ma
i
j + ϕ(k〈BiMm

〉). In particular, since the homomor-

phisms ψ̃mi are compatible with the bonding homomorphisms of Y i• , we see that
there are elements m+1b

i
j ∈ k〈B

i
Mm
〉 satisfying m+1a

i
j−ma

i
j = ϕ(m+1b

i
j). Moreover,

let {a1, . . . ad} be a basis of Wϕ
0 , σ : k〈A〉/ϕ(k〈B〉) →֒ k〈A〉 a splitting of the natural

projection, and elements 1b
i
j ∈ k〈B〉 such that ϕ(1b

i
j) = 1a

i
j − σ(1a

i
j + ϕ(k〈B〉)).

If ρ is the finite presentation of MSM constructed in the proof of (9.1), there is a
morphism τ : ρ→ ϕ in pair(Mk(T̄n)) given by τ0(wi) = σ(ai), τ0(mw

i
j) = ma

i
j , and

τ1(mw
i
j) = mb

i
j . This morphism induces a Mk(T̄n)-module morphism τ : MSM →

M. Now we are going to construct a retraction of τ .
By (9.4) Zim is always finite-dimensional and Wϕ

i = ∩m≥1Z
i
m, hence there exists

N ≥ 1 such that Wϕ
i = ZiN for every 1 ≤ i ≤ n. Let V be the n-subspace given

by V0 = k〈A〉/ϕ(k〈B〉) and Vi =
[

k〈AiN 〉+ ϕ(k〈B〉)
]

/ϕ(k〈B〉). Clearly SM =

V rig ⊂ V , hence by (8.4) there is a retraction r : V → SM. By Yoneda’s lemma
HomR(k〈A〉α,MV ) = MV (k〈A〉α). The natural projection k〈A〉 ։ V0 give rise
to a Mk(T̄n)-module morphism υ0 : k〈A〉α → MV such that υ0ϕ = 0. Moreover,
since M = Cokerϕ then HomR(M,MV ) = KerHomR(ϕ,MV ), in particular υ0

determines a Mk(T̄n)-module morphism υ : M→MV . One readily checks that the
composition (Mr)υ0τ0 coincides with the natural projection p : k〈C〉γ ։ MSM =
Cokerρ defined in the proof of (9.1), hence (Mr)υτ = 1 is the identity on MSM, and
(Mr)υ is the desired retraction of τ . Now if we take N to be the cokernel of τ the
proposition follows since M = N⊕MSM, by (9.8) SM = SN⊕ SMSM ≃ SN⊕ SM

and hence SN = 0. Here we use that the monoid Iso(subfin
n ) is free and hence

cancelative, compare Section 8. �

In the next proposition we use the change of coefficients F
i
∗ associated to the

additive functors F
i : Mk(T̄1)→Mk(T̄n) in Remark 6.5.

Proposition 9.10. Given a f. p. Mk(T̄n)-module M, SM = 0 if and only if there
exist f. p. Mk(T̄1)-modules Mi (1 ≤ i ≤ n) with M ≃ F

1
∗M1 ⊕ · · · ⊕ F

n
∗Mn.

Proof. It is easy to see that SF
i
∗ = 0 (1 ≤ i ≤ n), and S is additive, so the implication

⇐ follows. Now suppose that M = Coker [ϕ : k〈B〉β → k〈A〉α] and SM = 0. Since
finite-dimensional vector spaces are artinian, by (9.4) there exists m ≥ 1 big enough
such that for every 1 ≤ i ≤ n,

[

k〈Aim〉+ ϕ(k〈B〉)
]

∩
[

∑

j 6=i k〈A
j
m〉+ ϕ(k〈B〉)

]

ϕ(k〈B〉)
= 0,

it is, the following equality holds (the isomorphism on the right always holds)
∑n

i=1 k〈A
i
m〉+ ϕ(k〈B〉)

ϕ(k〈B〉)
=

n
⊕

i=1

k〈Aim〉+ ϕ(k〈B〉)

ϕ(k〈B〉)
≃

n
⊕

i=1

k〈Aim〉

k〈Aim〉 ∩ ϕ(k〈B〉)
.

This is equivalent to state that

(a)

[

n
⊕

i=1

k〈Aim〉

]

∩ ϕ(k〈B〉) =

n
⊕

i=1

[

k〈Aim〉 ∩ ϕ(k〈B〉)
]

.
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By the characterization of controlled homomorphisms in Subsection 3.1 there
exists M ≥ 1 with ϕ(BiM ) ⊂ k〈Aim〉 (1 ≤ i ≤ n). Let K be the kernel of the
vector space homomorphism underlying to ϕ, it is K = ϕ−1(0). There is a finite
set {b1, . . . bd} ⊂ k〈B〉 which projects to a basis of

K +
(
⊕n

i=0 k〈B
i
M 〉
)

⊕n
i=0 k〈B

i
M 〉

≃
K

K ∩
(
⊕n

i=0 k〈B
i
M 〉
) ,

since this vector space is contained in

k〈B〉
⊕n

i=0 k〈B
i
M 〉
≃ k〈M−1B〉,

and M−1B is finite.
There is also a finite set

{

ai1, . . . a
i
di

}

⊂ k〈B〉 which projects to a basis of

ϕ−1
(

k〈Aim〉 ∩ ϕ(k〈B〉)
)

k〈BiM 〉+K
,

because ϕ induces an isomorphism

ϕ−1
(

k〈Aim〉 ∩ ϕ(k〈B〉)
)

k〈BiM 〉+K
≃
k〈Aim〉 ∩ ϕ(k〈B〉)

ϕ(k〈BiM 〉)
,

and always

(b) k〈Aim〉 ∩





∑

j 6=i

k〈Ajm〉



 = 0,

so k〈Aim〉 ∩
[

∑n
j=1 ϕ(k〈BjM 〉)

]

= ϕ(k〈BiM 〉), and hence

k〈Aim〉 ∩ ϕ(k〈B〉)

ϕ(k〈BiM 〉)
=

k〈Aim〉 ∩ ϕ(k〈B〉)

k〈Aim〉 ∩
[

∑n
j=1 ϕ(k〈BjM 〉)

] ⊂
ϕ(k〈B〉)

∑n
i=1 ϕ(k〈BiM 〉)

≃ ϕ(k〈M−1B〉).

By (b) we have that

ϕ−1
(

k〈Aim〉 ∩ ϕ(k〈B〉)
)

∩





∑

j 6=i

ϕ−1
(

k〈Ajm〉 ∩ ϕ(k〈B〉)
)



 = K,

therefore the set
[

⊔ni=1

(

BiM ⊔
{

aij
}di

j=1

)]

⊔{bi}
d
i=1 is linearly independent in k〈B〉.

Moreover, it is a basis of
∑n

i=1 ϕ
−1
(

k〈Aim〉 ∩ ϕ(k〈B〉)
)

, so in order to complete it
to a basis B of k〈B〉 we only need to add a finite set {b′1, . . . b

′
d′} ⊂ k〈B〉 which

projects to a basis of the following vector space

k〈B〉
∑n
i=1 ϕ

−1 (k〈Aim〉 ∩ ϕ(k〈B〉))
.

This vector space is isomorphic to

(c)
ϕ(k〈B〉)

⊕n
i=1 k〈A

i
m〉 ∩ ϕ(k〈B〉)

⊂
k〈A〉

⊕n
i=1 k〈A

i
m〉
≃ k〈m−1A〉,

and hence finite-dimensional. The inclusion (c) follows from (a). Let {a1, . . . ae} ⊂
k〈A〉 be a basis of

k〈A〉

ϕ(k〈B〉) + (
⊕n

i=1 k〈A
i
m〉)

.
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By (c) A =
(

⊔ni=1A
i
m

)

⊔ {ϕ(b′i)}
d′

i=1 ⊔ {ai}
e
i=1 is a basis of k〈A〉. Let α : A → T 0

n ,

β : B → T 0
n be the height functions defined as α and β over ⊔ni=1A

i
m and ⊔ni=1B

i
M

respectively, and constant v0 on the other elements. The identities k〈A〉 = k〈A〉 and
k〈B〉 = k〈B〉 induce controlled isomorphisms φ1 : k〈A〉α ≃ k〈A〉α and φ2 : k〈B〉β ≃

k〈B〉β , so if we define ψ = φ1ϕφ
−1
2 then M ≃ Cokerψ. But if we define the sets

1A = A1
m ⊔ {ϕ(b′i)}

d′

i=1 ⊔ {ai}
e
i=1,

iA = Aim (1 < i ≤ n), 1B = B1
M ⊔

{

a1
j

}d1

j=1
⊔

{bi}
d
i=1 ⊔{b

′
i}
d′

i=1,
iB = BiM ⊔

{

aij
}di

j=1
(1 < i ≤ n), and the height functions iα and

iβ as the restriction of α and β to iA and iB respectively (1 ≤ i ≤ n), then we
observe that (1 ≤ i ≤ n)

iα(iA), iβ(iB) ⊂ {v0} ∪
{

vim
}

m≥1
⊂ T 0

n ,

ψ(iA) ⊂ k〈iB〉,

and the proposition follows. �

10. Classification of finitely presented k(n)-modules

In this final section we complete the proofs of Theorems 1.1 and 1.2. For this,
the crucial result is the next theorem where we compute the monoid Iso(fp(k(n)))

in terms of the free abelian monoid Iso(sub
fr
n ).

Theorem 10.1. The following monoid morphism is an isomorphism for every
n ∈ IN:

(Φn, Iso(S)) : Iso(fp(k(n)))
≃
−→ IN∞,n ×

n
∏

i=1

IN∞ ×
n
∏

i=1

IN∞ × Iso(subfr
n ).

This theorem follows from the strongest results previously proven in this paper.
More precisely, the surjectivity of (Φn, Iso(S)) is a consequence of (6.6), (7.3), (9.2),
(9.7), (9.8) and (9.10). Furthermore, this morphism is injective by the next theorem.
In order to state it we introduce the following notation. Given d ∈ IN∞,n the
k(n)-module Ad is F

1
∗Ad provided d ∈ IN0 and ⊕i∈SF

i
∗R if d = ∞S for some

∅ 6= S ⊂ {1, . . . n}.

Theorem 10.2. Any f. p. k(n)-module M decomposes in the following way

M ≃ AλM
⊕

(

n
⊕

i=1

F
i
∗Bµi

M

)

⊕

(

n
⊕

i=1

F
i
∗Cνi

M

)

⊕MSM.

This theorem follows from (6.6), (7.2), (9.9), (9.10), and the following

Lemma 10.3. Given two f. p. k(1)-modules M and N there exists a k(n)-module

isomorphism F
i
∗M ≃ F

j
∗N (1 ≤ i, j ≤ n) if and only if one of the following conditions

is satisfied:

• i = j and M ≃ N,
• M ≃ N ≃ An for some n ∈ IN0.

Proof. The implication ⇒ follows from (6.6), (7.3) and (7.4). On the other hand

if M ≃ N then obviously F
i
∗M ≃ F

i
∗N. Moreover, F

i
∗An and F

j
∗An are isomorphic

(n ∈ IN0) because both modules are isomorphic to a free T̄n-controlled k-vector
space whose basis is a set with n elements, compare (7.7). �

As a consequence of Proposition 8.5 and Theorem 10.1 we obtain the next
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Corollary 10.4. The algebra k(n) has the same representation type as the n-
subspace quiver.

Now Theorem 1.1 follows from (3.10), (8.6) and (10.4).

We obtain from (6.6), (7.3), (10.1) and (10.2) the following presentation of the
monoid Iso(fp(k(n))).

Corollary 10.5 (Classification of f. p. k(n)-modules). Let
{

V (n,j)
}

j∈Jn

be the

set of indecomposable rigid n-subspaces. There is a solution to the decomposition
problem in the category of f. p. k(n)-modules given by the following 1+5n+cardJn
elementary modules (1 ≤ i ≤ n, j ∈ Jn)

F
1
∗A, F

i
∗R, F

i
∗B, F

i
∗B∞, F

i
∗C, F

i
∗C∞, MV (n,j),

and 6n elementary isomorphisms (1 ≤ i ≤ n)

F
1
∗A⊕ F

i
∗R ≃ F

i
∗R, F

i
∗R⊕ F

i
∗R ≃ F

i
∗R, F

i
∗B⊕ F

i
∗B∞ ≃ F

i
∗B∞,

F
i
∗B∞ ⊕ F

i
∗B∞ ≃ F

i
∗B∞, F

i
∗C⊕ F

i
∗C∞ ≃ F

i
∗C∞, F

i
∗C∞ ⊕ F

i
∗C∞ ≃ F

i
∗C∞.

This classification theorem together with (8.7) and (8.8) complete the proof of
Theorem 1.2.

Appendix A. Some computations of Ext1k(n) groups

The aim of this appendix is to provide with tools and techniques to compute
the Ext1k(n) group of any pair of f. p. k(n)-modules. This group is in fact a k-

vector space, so it is determined by its dimension. Higher Ext∗k(n) groups vanish

over f. p. k(n)-modules by (7.16). Since the functor Ext1k(n) is biadditive we just

have to compute it over pairs of elementary f. p. k(n)-modules, see (10.5). We
shall not make all these computations here for an arbitrary n, but just for n = 1,
k(1) = RCFM(k). In addition we show for any n ∈ IN that the Ext1k(n) of pairs

of f. p. k(n)-modules coming from finite-dimensional n-subspaces via the functor
M in (9.A) coincide with their Ext1kQn

as modules over the path algebra. This last
vector space is much easier to compute, since one can use the integral bilinear form
of the quiver Qn, see [16].

Let R be the k-algebra RCFM(k) as in Section 7. Given two elementary R-
modules R/YR (Y 6= 0) and R/ZR, see (7.1), one can check by using (7.9) and
basic homological algebra that there is an isomorphism of k-vector spaces

(A.A) Ext1R(R/YR,R/ZR) ≃
R

RY + ZR
.

This formula also holds for Z = 0, moreover, in this case it is a left-R-module
isomorphism.

Lemma A.1. We have the following identities

(1) AR = {R ∈ R ; r0j = 0 for all j ∈ IN0},
(2) (I− A)R =

{

R ∈ R ;
∑

i∈IN0
rij = 0 for all j ∈ IN0

}

,

(3) (I−At)R =
{

R ∈ R ; given any i ∈ IN0,
∑

n≥i rnj = 0 for almost all j ∈ IN0

}

,

(4) (I−B
t)R =

{

R ∈ R ; given m ∈ IN0 and i ≤ m,
∑

n≥m r
i+ n(n+1)

2 ,j
= 0 for almost all j ∈ IN0

}

.
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Proof. One can check that the right-hand-side sets of the statement are ideals, hence
in order to establish the inclusions ⊂ it is enough to prove that the matrix defining
each left-hand-side ideal belongs to the corresponding right-hand-side set. This can
be checked by a maybe tedious but straightforward computation. Suppose now that
R is a matrix in the right-hand-side set of (1), (2), (3), or (4) , then one can check

that the matrix C1, C2, C3 or C4 defined as c10j = 0, c1
i+1,j = rij , c2

ij =
∑i

n=0 rnj ,

c3
ij =

∑

n≥i rnj (i, j ∈ IN), c4

i+ m(m+1)
2 ,j

=
∑

n≥m r
i+ n(n+1)

2 ,j
(i, j ∈ IN0,m ≥ i),

belongs to R and satisfies AC1 = R, (I−A)C2 = R, (I−At)C3 = R or (I−Bt)C4 = R,
provided we are in case (1), (2), (3) or (4). Hence we are done. �

By using Lemma A.1 and the involution of the k-vector space R given by trans-
position of matrices, one readily checks that

Lemma A.2. We have the following equalities

(1) R(I−A) =
{

R ∈ R ; given any j ∈ IN0,
∑

n≥j rin = 0 for almost all i ∈ IN0

}

,

(2) R(I− At) =
{

R ∈ R ;
∑

j∈IN0
rij = 0 for all i ∈ IN0

}

,

(3) R(I−B) =
{

R ∈ R ; given m ∈ IN0 and j ≤ m,
∑

n≥m r
i,j+ n(n+1)

2

= 0 for almost all i ∈ IN0

}

.

Proposition A.3. We have that

(1) dim Ext1R(B,R) = 2ℵ0 ,
(2) dim Ext1R(C,R) = 2ℵ0 ,
(3) dim Ext1R(B∞,R) = 2ℵ0 ,
(4) dim Ext1R(C∞,R) = 2ℵ0 ,
(5) dim Ext1R(B,A) = 0,
(6) dim Ext1R(C,A) = 1,
(7) dim Ext1R(B∞,A) = 0,
(8) dim Ext1R(C∞,A) = ℵ0.

Proof. One can check by using (A.2) (1), (A.1) (1) and (A.2) (2), and (A.1) (1)
and (A.2) (3), that there are k-vector space isomorphisms

R

R(I− A)
≃

∏

i∈IN0
k

⊕

i∈IN0
k
, R + R(I− A) 7→





∑

j∈IN0

rij





i∈IN0

+
⊕

i∈IN0

k,

R

R(I− At) + AR
≃ k , R + (R(I − A

t) + AR) 7→
∑

j∈IN0

r0j ,

R

R(I− Bt) + AR
≃
⊕

j∈IN0

k , R + (R(I− B
t) + AR) 7→





∑

n≥j

r
0,j+ n(n+1)

2





j∈IN0

,

hence (1), (6) and (8) follow from (A.A).
For any pair of elementary f. p. R-modules the inequality dimExt1R ≤ 2ℵ0

follows from (A.A) and (3.8). Now (2) is a consequence of (1) and (7.10) (1), (3)
follows from (1) and the fact that B is a direct summand of B∞, see (7.1), and (4)
is a consequence of (3) and (7.10) (2).

Given any matrix R ∈ R, if R1,R2 ∈ R are the matrices defined by r10j = r0j ,

r2ij = rij (i > 0), and rnij = 0 otherwise, then R = R1 + R2, R1 ∈ R(I − B) and

R
2 ∈ AR, by (A.1) (1) and (A.2) (3), hence R = R(I − B) + AR and (7) follows
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by (A.A). Moreover, since B is a direct summand of B∞ by (7.1) then (5) also
follows. �

By (7.1), (7.12) and (7.17) the Ext1R group of any other pair of elementary f. p.
R-modules is zero, hence the first extension groups are now completely computed
for f. p. R-modules.

Proposition A.4. For any pair of finite-dimensional n-subspaces there is a natural
isomorphism

Ext1kQn
(V ,W ) ≃ Ext1k(n)(MV ,MW ).

Proof. Projective representations of Qn are (arbitrary) direct sums of the following
n+ 1 indecomposable n-subspaces,

F
1(0→ k), F

i(k → k) (1 ≤ i ≤ n).

Since M is an exact full inclusion of categories and any finite-dimensional rep-
resentation of Qn admits a length-one projective resolution by finite-dimensional
projective representations it is enough to check that

(1) Ext1k(n)(MF
1(0→ k),MF

1(0→ k)) = 0,

(2) Ext1k(n)(MF
1(0→ k),MF

i(k → k)) = 0 (1 ≤ i ≤ n),

(3) Ext1k(n)(MF
i(k → k),MF

1(0→ k)) = 0 (1 ≤ i ≤ n),

(4) Ext1k(n)(MF
i(k → k),MF

j(k → k)) = 0 (1 ≤ i, j ≤ n).

The resolution constructed in the proof of (9.1) shows that MF
1(0→ k) is a projec-

tive k(n)-module isomorphic to a 1-dimensional T̄n-controlled k-vector space, hence
(1) and (2) hold. Moreover, one can easily check (3) and (4) by using the definition
of M in (9.A) and the resolutions of MF

i(k → k) = 0 (1 ≤ i ≤ n) in the proof of
(9.1). �
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