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TODA BRACKETS AND CUP-ONE SQUARES FOR RING

SPECTRA

HANS-JOACHIM BAUES AND FERNANDO MURO

Abstract. In this paper we prove the laws of Toda brackets on the homotopy
groups of a connective ring spectrum and the laws of the cup-one square in
the homotopy groups of a commutative connective ring spectrum.
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Introduction

Secondary homotopy operations such as triple Toda brackets are defined on the
homotopy groups of a ring spectrum R enriching the ring structure of π∗R. Toda
established in [Tod62] a set of relations for Toda brackets in the stable homotopy
groups of spheres, Alexander claimed these relations for some cobordism rings in
[Ale72], and we show here that the Toda relations are, in fact, satisfied for any
connective ring spectrum R (Definition 1.2 and Theorem 1.3). Moreover, if the
ring spectrum R is commutative further relations proved by Toda for the sphere
spectrum, such as the Jacobi identity, are shown to be satisfied in general (Definition
1.8 and Theorem 1.9).

If R is commutative a new secondary homotopy operation appears, namely the
cup-one square. This operation was studied in [BMMS86] in the context of H∞-ring
spectra. The operation in [BMMS86] is, however, only defined up to an indeter-
minacy. We show that one can extract from this undetermined operation a fully
determined cup-one square and we compute its behaviour with respect to sums
and products in π∗R, as well as its relation to Toda brackets (Definition 1.8 and
Theorem 1.9). This is done by carrying out a careful analysis in the “symmetric
track groups” introduced in [BM06c]. In this way we are able to compute explicitly
the deviation of the cup-one square from additivity and from being a quadratic
derivation, which was only computed in [BMMS86] up to an unknown constant, see
(T11) and (T12) in Definition 1.8.
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2 HANS-JOACHIM BAUES AND FERNANDO MURO

For the proofs we use the algebraic framework of (E∞-)quadratic pair algebras,
which are algebraic models of (commutative) ring spectra extending the homotopy
groups and codifying all secondary operations, see [BM06a].

The statements of the homotopical results are in the first section, which can be
regarded as a continuation of this introduction. The rest of sections are purely
algebraic and contain all proofs.

1. Secondary operations and their laws

A (commutative) ring spectrum is a (commutative) monoid in the closed symmet-
ric monoidal model category of symmetric spectra of compactly generated topolog-
ical spaces defined in [MMSS01, 12]. The monoidal structure is given by the smash
product X∧Y and the unit object is the sphere spectrum S. A symmetric spectrum
is connective if its homotopy groups vanish in negative dimensions.

The homotopy groups of a connetive ring spectrum π∗R form an N-graded ring,
where N = {0, 1, 2, . . .}. All rings and modules in this paper will be N-graded
and the degree of a homogeneous element x will be denoted by |x|. Ungraded
objects are regarded as graded objects concentrated in degree 0. The degree of a
homogeneous element a ∈ π∗R is denoted by |a|. The ring π∗R is equipped with
secondary homotopy operations called Toda brackets. The Toda bracket of three
homogeneous elements

〈a, b, c〉 ⊂ π|a|+|b|+|c|+1R

is a coset of
(π|a|+|b|+1R) · c + a · (π|b|+|c|+1R)

which is defined whenever ab = 0 and bc = 0. This operation was first considered
by Toda for the sphere spectrum S, see [Tod62]. In [Ale72] one finds a construction
of Toda brackets for various cobordism spectra under the name of Massey prod-
ucts. We consider in [BM06a] two equivalent definitions of Toda brackets on the
homotopy groups of a ring spectrum R. Both definitions use the model category
of right R-modules, see [MMSS01, 12]. One of the definitions uses Toda brackets
for triangulated categories in the sense of [Hel68] applied to the homotopy category
of R-modules. This is also the definition adopted in [Sag06]. The alternative def-
inition uses tracks, i.e. homotopy classes of homotopies, in the model category of
R-modules. We now recall this definition.

The homotopy group πnR coincides with the group of morphisms from the n-
fold suspension ΣnR → R in the homotopy category of right R-modules. We can
suppose without loss of generality that R is a fibrant ring spectrum. In that case the
elements a, b, c ∈ π∗R can be realized by maps ā, b̄, c̄ in the category of R-modules.
The vanishing hypothesis ab = 0 and bc = 0 imply the existence of null-homotopies

(1.1) R Σ|a|R
āoo Σ|a|+|b|RΣ|a| b̄

oo

0

__ Σ|a|+|b|+|c|R
Σ|a|+|b| c̄

oo

0

{{
f

JR
����
����

e
��
""
""
""
""

.

The pasting of this diagram is a self-track of the trivial map 0: Σ|a|+|b|+|c|R → R.
Such a self-track is the same as a homotopy class

Σ|a|+|b|+|c|+1R −→ R,

which by definition is a generic element of the Toda bracket 〈a, b, c〉.
The next definition encodes the secondary algebraic structure of the homotopy

ring π∗R endowed with the Toda brackets.
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Definition 1.2. Let A be a ring and let M be an A-bimodule. We say that A has
secondary oprations with coefficients in M if there is given a bimodule homomor-
phism

· η : A ⊗ Z/2 −→ M,

and for any three homogeneous elements a, b, c ∈ A with ab = 0 and bc = 0 there is
defined a coset (the bracket operation)

〈a, b, c〉 ⊂ M|a|+|b|+|c| of M|a|+|b| · c + a · M|b|+|c|

satisfying the following relations (whenever the brackets are defined):

(T1) 0 ∈ 〈a, b, c〉 provided a, b or c is zero.
(T2) 〈a, b, c〉 is linear in each variable, i.e.

〈a + a′, b, c〉 ⊂ 〈a, b, c〉 + 〈a′, b, c〉,

〈a, b + b′, c〉 = 〈a, b, c〉 + 〈a, b′, c〉,

〈a, b, c + c′〉 ⊂ 〈a, b, c〉 + 〈a, b, c′〉.

(T3) a · 〈b, c, d〉 ⊂ 〈a · b, c, d〉 and 〈a, b, c〉 · d ⊂ 〈a, b, c · d〉.
(T4) 〈a · b, c, d〉 ⊂ 〈a, b · c, d〉 ⊃ 〈a, b, c · d〉.
(T5) 0 ∈ 〈a, b, c〉 · d + a · 〈b, c, d〉,
(T6) a · η ∈ 〈2, a, 2〉.

The desuspension Σ−1A of a ring A is the A-bimodule with (Σ−1A)n = A1+n

and bimodule structure

a · (Σ−1b) · c = (−1)|a|Σ−1(a · b · c).

Here a, b, c ∈ A are homogeneous elements and given x ∈ An with n ≥ 1 we denote
by Σ−1x to the corresponding element in (Σ−1A)n−1. One can similarly define
the desuspension of a right A-module, for which there are no signs involved in the
action.

Theorem 1.3. Let R be a connective ring spectrum. The ring π∗R has secondary
operations with coefficients in Σ−1π∗R, in the sense of Definition 1.2. The homo-
morphism · η is defined by multiplication from the right by the image of the stable
Hopf map 0 6= η ∈ π1S ∼= Z/2 under the ring homomorphism π∗S → π∗R induced
by the unit S → R of the ring spectrum, and the bracket operation is given by Toda
brackets.

This theorem follows from Theorems 3.4 and 3.5 below.

Remark 1.4. Alexander considered in [Ale72, Definition 2.1] a notion of a ring with
secondary operations similar to Definition 1.2. Our relations (T1)–(T5) correspond
to relations (1)–(5) in [Ale72, Definition 2.1] if M = Σ−1A. The homomorphism
η, and therefore (T6) above, are not considered in [Ale72, Definition 2.1], although
they appear in particular examples, see [Ale72, Theorem 6.2]. Relation (6) in
[Ale72, Definition 2.1] is not codified by Definition 1.2 since it is not a secondary
relation, it has higher order. Alexander’s relations are claimed in [Ale72] for some
cobordism rings. These rings may arise as the homotopy groups of connective
spectra, see [Ale72, Section 4], which may be given the structure of ring spectra as
in [Sch04, Example 4.15].

Alexander’s relations (1)–(6) coincide with the relations (3.5)–(3.8) in [Tod62]
previously proved by Toda for the sphere spectrum.

The homotopy groups π∗M of a connective right R-module M form a right
π∗R-module which is also endowed with Toda brackets

〈a, b, c〉 ∈ π|a|+|b|+|c|+1M,
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defined for homogeneous elements a ∈ π∗M and b, c ∈ π∗R whenever ab = 0 and
bc = 0, which is a coset of

(π|a|+|b|+1M) · c + a · (π|b|+|c|+1R)

These Toda brackets are defined replacing R by M on the left hand side of diagram
(1.1).

The folowing definition codifies the algebraic structure of Toda brackets in π∗M .

Definition 1.5. Let A be a ring with secondary operations with coefficients in the
A-bimodule M and let N and L be right A-modules. We say that N has secondary
operations with coefficients L if a right A-module homomorphism

· : N ⊗A M −→ L

is given and for any three homogeneous elements a ∈ N , b, c ∈ A with ab = 0 and
bc = 0 there is defined a coset (the bracket operation)

〈a, b, c〉 ⊂ L|a|+|b|+|c| of L|a|+|b|c + aM|b|+|c|

satisfying relations (T1)–(T5) in Definition 1.2 for a, a′ ∈ N and b, b′, c, c′, d ∈ A.

Theorem 1.6. Let R be a connective ring spectrum and let K be a connective right
R-module. The right π∗R-module π∗K has secondary operations with coefficients
in Σ−1π∗K, in the sense of Definition 1.5. The homomorphism

· : π∗K ⊗π∗R Σ−1π∗R −→ Σ−1π∗K

is defined by the right π∗R-module structure of π∗K according to the formula

m · (Σ−1a) = (−1)|m|Σ−1(m · a),

and the bracket operation is given by Toda brackets.

This theorem follows from Theorems 4.3 and 4.4 below.
The homotopy groups of a commutative ring spectrum π∗R form a commutative

ring (in the graded sense) which carries, appart from Toda brackets, an additional
operation called cup-one square,

Sq1 : π2nR −→ π4n+1R,

defined as follows. Let LR be a fibrant replacement of R in the category of all
ring spectra. The ring spectrum LR is no longer commutative, but it remains
commutative up to a coherent track α1 (i.e. a homotopy class of homotopies)
satisfying the idempotence and the hexagon axioms for symmetric monoidal cate-
gories, compare [BM06a, Lemma 16.2]. Given a ∈ π2nR we take a representative
ā : S2n → LR where the spectrum Sm is the m-fold suspension of the sphere spec-
trum S, Sm = ΣmS. The symmetry isomorphism for the smash square of an
even-dimensional sphere τ∧ : S2n ∧ S2n ∼= S2n ∧ S2n is homotopic to the identity.
We can choose a track τ̂2n,2n : τ∧ ⇒ 1S2n∧S2n , there are two such choices. Consider
the following diagram where µ is the product in LR.

(1.7) S2n ∧ S2n

τ∧

��

1

##

ā∧ā // LR ∧ LR

τ∧

��

µ

%%JJJ
JJJ

JJJ
J

LR

S2n ∧ S2n
ā∧ā

// LR ∧ LR

µ

99tttttttttt

ks
τ̂2n,2n α1

7?vvv vvv
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The pasting of this diagram is a self-track of µ(ā∧ ā). The classical Barcus-Barratt-
Rutter isomorphism allows us to identify this self-track with a homotopy class

Sq1(a) : S4n+1 = Σ(S2n ∧ S2n) −→ R

measuring the difference between the pasting of (1.7) and the identity self-track on
µ(ā∧ ā). This element Sq1(a) ∈ π4n+1R is the cup-one square of a. One can check
that Sq1(a) does not depend on the representative ā. However in general it does
depend on the choice of τ̂2n,2n. The difference bewteen the two possible definitions
of Sq1, depending on the choice of τ̂2n,2n, is computed in [BM06a, Lemma 9.11],
see Lemma 6.2.

The relations between Toda brackets and cup-one squares in the homotopy
groups of a commutative ring spectrum is algebraically encoded by the following
definition.

Definition 1.8. A commutative ring A with commutative secondary operations
with coefficients in an A-module M is a ring with secondary operations in the sense
of Definition 1.2 together with maps

Sq1 : A2n −→ M4n, n ≥ 0,

such that the following further axioms hold:

(T7) 〈a, b, c〉 = (−1)|a||b|+|b||c|+|c||a|+1〈c, b, a〉.
(T8) 0 ∈ (−1)|a||c|〈a, b, c〉 + (−1)|b||a|〈b, c, a〉 + (−1)|c||b|〈c, a, b〉,
(T9) for |a| odd 〈a, b, a〉 ∩ (−1)|a||b|〈b, a, 2a〉 6= ∅,

(T10) for |a| even (−1)|a||b|b · Sq1(a) ∈ 〈a, b, a〉,

(T11) Sq1(a + b) = Sq1(a) + Sq1(b) +
(

|a|
2 + 1

)
· a · b · η,

(T12) Sq1(a · b) = a2 · Sq1(b) + Sq1(a) · b2 + |a||b|
4 · a2 · b2 · η.

Theorem 1.9. Let R be a connective commutative ring spectrum. The ring π∗R
has commutative secondary operations with coefficients in Σ−1π∗R, in the sense of
Definition 1.8. The operation Sq1 is the cup-one square for an explicit choice of
tracks τ̂2n,2n, n ≥ 0, and the rest of the structure is given by Theorem 1.3.

This theorem follows from Theorems 6.3 and 6.4 below.

Remark 1.10. There is also a notion of a commutative ring with commutative
secondary operations in [Ale72, Definition 2.1]. This notion however does not codify
the operation Sq1. Our relations (T7) and (T8) correspond to relations (7) and (8)
in [Ale72, Definition 2.1] if M = Σ−1A. These relations are claimed in [Ale72]
for some commutative cobordism rings which may arise as the homotopy groups
of commutative connective ring spectra, see Remark 1.4. Notice that there is a
misprint in the exponent of (−1) in relation (8) of [Ale72, Definition 2.1]. It does
not include the summand +1. This misprint does not appear in Toda’s relations
for the case of the sphere spectrum, see (3.9) in [Tod62]. Relation (T9) corresponds
to the first half of Toda’s (3.10) in [Tod62]. The second half is a weak version of
(T10) which avoids the use of Sq1.

H∞-ring spectra in the sense of [BMMS86] are an early version of commutative
ring spectra “up to homotopy”. The operations Sq1 are closely related to the power
operations for H∞-ring spectra considered in [BMMS86, V.1]. More precisely, the
operation Pn+1 in [BMMS86, V] on πn for p = 2 and n = 2k corresponds to
the set Pn+1(a) =

{
Sq1(a), Sq1(a) + a2 · η

}
. Then relation (T11) above implies

the deviation from additivity indicated in [BMMS86, V Table 1.3] and relation
(T12) implies the first equation of [BMMS86, Proposition V.1.10] and gives the
explicit value for the constant cn,m which is not determined in [BMMS86]. Maybe
one of the most surprising implications of Theorem 1.9 is the existence of choices
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Sq1(a) ∈ Pn+1(a), for p = 2, n = 2k, and k ≥ 0, satisfying relations (T11) and
(T12).

Any commutative ring A with commutative secondary operations with coef-
ficients in an A-module M has the following remarkable property. If we define
Sqω

1 (a) = Sq1(a) + a2 · η, then Sqω
1 also satisifies the axioms in Definition 1.8.

In the following proposition we record some additional relations between cup-one
squares derived from Definition 1.8.

Proposition 1.11. Let A be a commutative ring with commutative secondary op-
erations with coefficients in the A-module M . Then

(1) Sq1(1) = 0,
(2) Sq1(2) = 1 · η,

(3) 2 · Sq1(a) = |a|
2 · a2 · η,

(4) Sq1(2 · a) = a2 · η.

Proof. Equation (1) follows from (T12) applied to a = b = 1, and (2) follows from
(T11) and (1). Applying (T11) to a + a and (T12) to 2 · a we obtain the equation

2 · Sq1(a) +

(
|a|

2
+ 1

)
· a2 · η = 4 · Sq1(a) + a2 · η.

Here we use (2) to identify Sq1(2) · a2 = a2 · η. Equation (3) follows from this one.
Finally (4) follows from (T11) and (3). �

Similar relations are shown in [BMMS86, V.1] for the power operations on the
homotopy groups of H∞-ring spectra.

Remark 1.12. By Proposition 1.11 (2) the structure homomorphism · η of a commu-
tative ring with commutative secondary operations is determined by the operation
Sq1, so one could restate Definition 1.8 just in terms of the bracket and Sq1.

2. Quadratic pair modules

The topological theorems of this paper are proved by using the quadratic alge-
braic models for ring and module spectra defined in [BM06a]. In this section we
recall the basics on the necessary quadratic algebra, see [BP99, BJP05].

A quadratic pair module C is a diagram

Cee

P

}}{{
{{

{{
{{

C1
∂

// C0

H

aaCCCCCCCC

where C0 and C1 are groups, Cee is an abelian group, P and ∂ are homomorphisms,
and H is a quadratic map, i.e. the crossed efect

(x1|x2)H = H(x1 + x2) − H(x2) − H(x1), xi ∈ C0,

is bilinear. Moreover, the following equations hold for x, xi ∈ C0, si ∈ C1 and
a ∈ Cee.

PH∂P (a) = P (a) + P (a),(M1)

H(x + ∂P (a)) = H(x) + H∂P (a),(M2)

PH(∂(s1) + ∂(s2)) = PH∂(s1) + PH∂(s2) + [s1, s2],(M3)

∂PH(x1 + x2) = ∂PH(x1) + ∂PH(x2) + [x1, x2],(M4)

see [BJP06, 2.4]. Here [α, β] = −α− β + α + β denotes the commutator bracket of
two elements α, β ∈ G in a group G.
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It follows from the axioms that C0 and C1 are groups of nilpotency class 2, so
commutators are central and bilinear, ∂(C1) is a normal subgroup of C0, and P
and Ker ∂ are central. The quadratic map H satisfies

H(0) = 0,

H(−x) = −H(x) + (x|x)H .

For any quadratic pair module the function

T = H∂P − 1: Xee −→ Xee

is an involution, i.e. a homomorphism with T 2 = 1. Using (M4) cone can check
that

T (x1|x2)H = −(x2|x1)H .

By (M1) T satisfies PT = P , therefore

P (x1|x2)H = −P (x2|x1)H .

Moreover,

∆: C0 −→ Cee : x 7→ (x|x)H − H(x) + TH(x)

is a homomorphism which satisfies P∆(x) = P (x|x)H .
The homology of a quadratic pair module C is given by the abelian groups defined

as

h0C = Coker (∂ : C1 → C0) ,

h1C = Ker (∂ : C1 → C0) .

The k-invariant of C is the natural homomorphism

· η : h0C ⊗ Z/2 −→ h1C

given by the formula

x · η = P (x|x)H = P∆(x).

A morphism f : C → D of quadratic pair modules is given by three homo-
morphisms fi : Ci → Di, i = 0, 1, ee, commuting with the structure maps, i.e.
f0∂ = ∂f1, f1P = Pfee, feeH = Hf0. Morphisms of quadratic pair modules are
also compatible with T , ∆, and · η. A quasi-isomorphism is a morphism inducing
isomorphisms in h0 and h1.

3. Quadratic pair algebras

In this section we recall the nature of the quadratic algebraic models for ring
spectra constructed in [BM06a] and we prove Theorem 1.3.

A quadratic pair algebra is an N-graded quadratic pair module B = {Bn,∗}n∈N,
together with multiplications, n, m ∈ N,

Bn,0 × Bm,0
·

−→ Bn+m,0,

Bn,0 × Bm,1
·

−→ Bn+m,1,

Bn,1 × Bm,0
·

−→ Bn+m,1,

Bn,ee × Bm,ee
·

−→ Bn+m,ee,

and an element 1 ∈ B0,0 with H(1) = 0 which is a (two-sided) unit for the first
three multiplications and such that (1|1)H ∈ B0,ee is a (two-sided) unit for the
fourth multiplication. These multiplications are associative in all possible ways.
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Moreover, the following lists of equations are satisfied for x, xi ∈ B∗,0, s, si ∈ B∗,1

and ai ∈ B∗,ee. The multiplications · are always right linear

x1 · (x2 + x3) = x1 · x2 + x1 · x3,(A1)

x · (s1 + s2) = x · s1 + x · s2,

s · (x1 + x2) = s · x1 + s · x2,

a1 · (a2 + a3) = a1 · a2 + a1 · a3.

The multiplications · satisfy the following left distributivity laws

(x1 + x2) · x3 = x1 · x3 + x2 · x3 + ∂P ((x2|x1)H · H(x3)),(A2)

(x1 + x2) · s = x1 · s + x2 · s + P ((x2|x1)H · H∂(s)),

(s1 + s2) · x = s1 · x + s2 · x + P ((∂(s2)|∂(s1))H · H(x)),

(a1 + a2) · a3 = a1 · a3 + a2 · a3.

The homomorphisms ∂ are compatible with the multiplications · in the following
sense

∂(x · s) = x · ∂(s),(A3)

∂(s · x) = ∂(s) · x,

∂(s1) · s2 = s1 · ∂(s2).

And finally, we have compatibility conditions for the multiplications · and the maps
P , H , ∆, and (−|−)H ,

P ((x|x)H · a) = x · P (a),(A4)

P (a · ∆(x)) = P (a) · x,(A5)

H(x1 · x2) = (x1|x1)H · H(x2) + H(x1) · ∆(x2),(A6)

H∂P (a1 · a2) = H∂P (a1) · a2 + a1 · H∂P (a2)(A7)

−H∂P (a1) · H∂P (a2),

(x1 · x2|x3 · x4)H = (x1|x3)H · (x2|x4)H .(A8)

Ungraded quadratic pair algebras were first considered in [BJP06] in order to
represent classes in third Mac Lane cohomology. The graded notion, which is the
one we mainly use in this paper, was introduced in [BM06a].

A morphism of quadratic pair algebras is a morphism of graded quadratic pair
modules which preserves the products · . A quasi-isomorphism is a morphism
inducing isomorphisms in h0 and h1.

For B a quadratic pair algebra h0B is a ring (N-graded) and h1B is an h0B-
bimodule in a natural way. Moreover, the k-nvariant

(3.1) · η : h0B −→ h1B

is an h0B-bimodule homomorphism by (A4,A5,A8).
The relations in the following lemma are consequences of (A2).

Lemma 3.2. With the notation above the following equations hold.

(1) 0 · x2 = 0,
(2) (−x1) · x2 = −x1 · x2 + ∂P ((x1|x1)H · H(x2)),
(3) (−x) · s = −x · s + P ((x|x)H · H∂(s)).

Definition 3.3. Let B be a quadratic pair algebra. Given elements a, b, c ∈ h0B,
of degree p, q, r ∈ N with ab = 0 and bc = 0 the Massey product is the subset

〈a, b, c〉 ⊂ h1Bp+q+r ,

which is a coset of the subgroup

(h1Bp+q) · c + a · (h1Bq+r),
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defined as follows. Given ā ∈ Bp,0, b̄ ∈ Bq,0, c̄ ∈ Br,0 representing a, b, c, there

exist ab ∈ Bp+q,1, bc ∈ Bq+r,1 such that ∂(ab) = ā · b̄, ∂(bc) = b̄ · c̄ and one can
easily check that

−ab · c̄ + ā · bc ∈ h1Bp+q+r ⊂ Bp+q+r,1.

The coset 〈a, b, c〉 ⊂ h1Bp+q+r coincides with the set of elements obtained in this

way for all different choices of ā, b̄, c̄, ab and bc.

In [BM06a] we prove the following theorem as a main result.

Theorem 3.4 ([BM06a, Theorem 6.4]). There is a functor

π∗,∗ : (connective ring spectra) −→ (quadratic pair algebras)

together with natural isomorphisms

h0π∗,∗R ∼= π∗R, of rings,

h1π∗,∗R ∼= Σ−1π∗R, of bimodules,

such that the Massey products in π∗,∗R coincide with the Toda brackets in π∗R.
Moreover, using the isomorphisms as identifications the algebraically-defined k-
invariant of the quadratic pair algebra π∗,∗R

· η : π∗R ⊗ Z/2 −→ Σ−1π∗R,

coincides with the multiplication by the image of the stable Hopf map under the
homomorphism π∗S → π∗R induced by the unit S → R.

Theorem 1.3 will then follow from the following one.

Theorem 3.5. If B is a quadratic pair algebra then the k-invariant (3.1) and the
Massey products in Definition 3.3 endow h0B with the structure of a ring with
secondary operations with coefficients in h1B in the sense of Definition 1.2.

For the sake of simplicity in the proof of Theorem 3.5 we will use assume that
B satisfies the property (H).

(H) Any element in x ∈ h0B is the image of an element x̄ ∈ B∗,0 with H(x̄) = 0.

This property is not unusual. For instance, given a ring spectrum R the qua-
dratic pair algebra π∗,∗R defined by Theorem 3.4 satisfies property (H). Indeed the
following lemma holds.

Lemma 3.6. Given a quadratic pair algebra B there is another one B̂ satisfying

property (H) and a natural quasi-isomorphism B → B̂.

Here B̂ is a fibrant replacement of B in the cofibration category of quadratic pair
algebras and is obtained “attaching cells” to B. We will not discuss the homotopical
aspects of quadratic pair algebras in this paper, so we leave the proof of Lemma
3.6 to the interested reader. This lemma shows that there is no loss of generality if
we only prove Theorem 3.5 for quadratic pair algebras satisfying property (H).

Remark 3.7. Before beginning the proof of Theorem 3.5 we want to remark that
in orther to check the inclusions and equalities in Definition 1.2 it is enough to
check that the brackets have an alement in common. Then the inclusion (resp.
equality) follows from the obvious analogous inclusion (resp. equality) between
the indeterminacies which is clear in all cases. The same applies to the proof of
Theorem 6.4.
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Proof of Theorem 3.5. We assume that all representatives chosen in B∗,0 are in
KerH . Let us check that equations (T1)–(T6) hold.

(T1) If a = 0 we can take ā = 0 and ab = 0 so −ab · c̄ + ā · bc = 0. Similarly in
the other two cases.

(T2) We can take a + a′ = ā+ā′ and by (A2) we can also take (a + a′)b = ab+a′b,
therefore

−(a + a′)b · c̄ + a + a′ · bc
(A2)
= −a′b · c̄ − ab · c̄ + ā · bc + ā′ · bc − P ((a′|a)H · H(b̄ · c̄)︸ ︷︷ ︸

(A6) =0

)

(M3) = −a′b · c̄ + ā · bc − ab · c̄ + ā′ · bc − P (ā · b̄ · c̄|ā · b̄ · c̄)H︸ ︷︷ ︸
= a·b·c·η = 0

.

One proceeds similarly with the two other variables.
(T3) By (A3) ∂(ā · bc) = ā · b̄ · c̄, hence the first equation in (T3) follows from

ā · (−bc · d̄ + b̄ · cd)
(A1)
= −(ā · bc) · d̄ + (ā · b̄) · cd.

The second one follows similarly.
(T4) By (A3) ∂(b̄ · cd) = b̄ · c̄ · d̄ therefore −abc · d̄ + ā · b̄ · cd lies in both 〈ab, c, d〉

and 〈a, bc, d〉. Similarly the element −ac · c̄ · d̄ + ā · bcd belongs to the other two
Massey products.

(T5) This follows from

(−ab · c̄ + ā · bc) · d̄ + ā · (−bc · d̄ + b̄ · cd)
(A1,A2)

= −ab · c̄ · d̄ + ā · bc · d̄

−ā · bc · d̄ + ā · b̄ · cd

= −ab · c̄ · d̄ + ā · b̄ · cd

= −ab · ∂(cd) + ∂(ab) · cd

(A3) = 0.

Finally (T6) follows from [BM06a, Proposition 6.6]. �

4. Modules over quadratic pair algebras

The quadratic algebraic models of module spectra leading to Theorem 1.6 are
as follows.

Let B be a quadratic pair algebra. A right B-module is an N-graded quadratic
pair module M = {Mn,∗}n∈N together with multiplications, n, m ≥ 0,

Mn,0 × Bm,0
·

−→ Mn+m,0,

Mn,0 × Bm,1
·

−→ Mn+m,1,

Mn,1 × Bm,0
·

−→ Mn+m,1,

Mn,ee × Bm,ee
·

−→ Mn+m,ee.

These multiplications are associative with respect to the multiplications in B. More-
over, 1 ∈ B0,0 acts trivially on M∗,0 and M∗,1, and (1|1)H ∈ B0,ee acts trivially on
M∗,ee. Furthermore, equations (A1)–(A8) hold when we replace the elements on
the left of any multiplication · by elements in M .

If M is a right B-module then h0M and h1M are right h0B-modules and there
is a natural right h0B-module homomorphism

(4.1) h0M ⊗h0B h1B
·

−→ h1M,

see [BM06a, 7], extending the k-invariant since x · η = x · P (1|1)H for x ∈ h0M by
(A4). The k-invariant of a right B-module M is a right h0B-module homomorphism
by (A4,A5,A8).
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Definition 4.2. Given a right B-module M and elements a ∈ h0M , b, c ∈ h0B, of
degree p, q, r, such that ab = 0 and bc = 0 there is defined a Massey product

〈a, b, c〉 ⊂ h1Mp+q+r

by the same procedure as in Definition 3.3 which is a coset of

(h1Mp+q) · c + a · (h1Bq+r).

We show the following theorem in [BM06a].

Theorem 4.3 ([BM06a, Theorem 7.4]). Let R be a connective ring spectrum. There
is a functor

π∗,∗ : (connective right R-modules) −→ (right (π∗,∗R)-modules) .

Here the quadratic pair algebra π∗,∗R is obtained by using the functor in Theorem
3.4. Moreover, if we use the isomorphisms in Theorem 3.4 as identifications then
for any right R-module K there are natural isomorphisms of right π∗R-modules

h0π∗,∗K ∼= π∗K,

h1π∗,∗K ∼= Σ−1π∗K.

Using these isomorphisms as identifications the algebraically-defined homomorphism
(4.1) associated to π∗,∗K

· : π∗K ⊗π∗R Σ−1π∗R −→ Σ−1π∗K

is defined by the right right π∗R-module structure of π∗K according to the formula

m · (Σ−1a) = (−1)|m|Σ−1(m · a).

In particular the k-invariant of π∗,∗K coincides with the multiplication by the stable
Hopf map η. Furthermore, Massey products in π∗,∗K coincide with Toda brackets
in π∗K.

Now Theorem 1.6 follows from the following theorem.

Theorem 4.4. If B is a quadratic pair algebra and M is a right B-module then
(4.1) and the Massey products in Definition 4.2 endow h0M with the structure of a
module with secondary operations with coefficients in h1M in the sense of Definition
1.5.

The proof is completely analogous to the proof of Theorem 3.5 so we leave it to
the reader.

5. Symmetric track groups

In order to describe the quadratic algebraic models associated to commutative
ring spectra we need to endow quadratic pair modules with symmetries coming
from the action of sign groups as we describe in this section.

A sign group is a diagram in the category of groups

{±1}
ı
→֒ G�

δ
։ G

ε
−→ {±1}

where the first two morphisms form an extension. By abuse of notation we denote
this sign group just by G�. The group law of the groups defining a sign group is
denoted multiplicatively.

Given a sign group G� the “group ring” A(G�) is the ungraded quadratic pair
algebra with generators

• [g] for any g ∈ G on the 0-level,
• [t] for any t ∈ G� on the 1-level,
• no generators on the ee-level,
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satisfying the following relations for g, h ∈ G, s, t ∈ G� and ω = ı(−1).

H [g] = 0,(S1)

[1] = 1 for 1 ∈ G,(S2)

[gh] = [g] · [h],(S3)

∂[t] = −[δ(t)] + εδ(t),(S4)

[st] = [δ(s)] · [t] + εδ(t) · [s] +

(
εδ(s)

2

)(
εδ(t)

2

)
P (1|1)H ,(S5)

[ω] = P (1|1)H .(S6)

Sign groups were introduced in [BM06c], and the “group ring” of a sign group
was first considered in [BM06b].

The following lemma follows easily from (S1,S3) and the fact that H is quadratic.

Lemma 5.1. Given t ∈ G� the following equation holds.

H∂[t] = ([δ(t)]| − ∂[t])H +

(
εδ(t)

2

)
(1|1)H .

The following useful relation follows from (S2,S5).

Lemma 5.2. For 1 ∈ G� we have [1] = 0.

The action of A0(G�) on the left of A1(G�) is dertermined by relation (S5) in
terms of the group structure of G� since δ is surjective. The right action is given
by the following lemma.

Lemma 5.3. For s, t ∈ G� the following relation holds in A(G�).

[st] = [s] · [δ(t)] + εδ(s) · [t].

Proof. On one hand by (S4,A1,3.2.3)

[s] · ∂[t] = −[s] · [δ(t)] + εδ(t) · [s] −

(
εδ(t)

2

)
PH∂[s].

On the other hand by (S4,A2,3.2.3,5.1,A8,M3,A3)

∂[s] · [t] = −[δ(s)] · [t] + εδ(s) · [t] + P ((−∂[s]|[δ(s)])H · H∂[t])

= −[s] · [δ(t)] − [δ(s)] · [t] + [s] · [δ(t)] + εδ(s) · [t]

+

(
εδ(t)

2

)
P (−∂[s]|[δ(s)])H .

By (A3) ∂[s] · [t] = [s] · ∂[t], hence by using the two previous equations together
with (5.1) one obtains

[δ(s)] · [t] + εδ(t) · [s] +

(
εδ(s)

2

)(
εδ(t)

2

)
P (1|1)H = [s] · [δ(t)] + εδ(s) · [t].

Now the lemma follows from (S5). �

The homology of “group rings” of sign groups can be easily computed.

Lemma 5.4. There are natural isomorphisms

h0A(G�) ∼= Z,

h1A(G�) ∼= Z/2.

The first one is induced by [g] 7→ ε(g), and h1A(G�) is generated by [ω].
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The main examples of sign groups are the symmetric track groups Sym�(n)
associated to the sign homomorphism of the symmetric groups

ε = sign: Sym(n) → {±1} .

The group Sym�(n) has a presentation with generators ω, ti, 1 ≤ i ≤ n − 1, and
relations

t2i = 1 for 1 ≤ i ≤ n − 1,

(titi+1)
3 = 1 for 1 ≤ i ≤ n − 2,(5.5)

ω2 = 1,

tiω = ωti for 1 ≤ i ≤ n − 1,

titj = ωtjti for 1 ≤ i < j − 1 ≤ n − 1.

Moreover, the structure of sign group is given by ı(−1) = ω, δ(ω) = 0, and δ(ti) =
(i i + 1), the permutation exchanging i and i + 1 in {1, . . . , n}.

Below we use the homomorphisms

Sn ∧ − : Sym�(m) −→ Sym�(n + m),

− ∧ Sm : Sym�(n) −→ Sym�(n + m),

defined on generators by

ti ∧ Sm = ti, 1 ≤ i ≤ n − 1,

ω ∧ Sm = ω,

Sn ∧ ti = tn+i, 1 ≤ i ≤ m − 1,

Sn ∧ ω = ω.

These homomorphisms are related by the following formula.

Lemma 5.6. Let τn,m ∈ Sym(n+m) be the permutation exchanging the first block
of n elements with the last block of m elements and let τ̂n,m ∈ Sym�(n + m) be an
element with δ(τ̂n,m) = τn,m. Then for any t ∈ Sym�(n) we have

(Sm ∧ t)τ̂n,m = τ̂n,m(t ∧ Sm)ωnm(εδ(t)
2 ).

Notice that Lemma 5.6 does not depend on the choice of τ̂n,m since the two
possible choices differ in ω, which is central. For the proof of Lemma 5.6 we choose

τ̂n,m =

n groups of m generators︷ ︸︸ ︷
tm · · · t1︸ ︷︷ ︸

m generators

· · · · · · tn+m−1 · · · tn︸ ︷︷ ︸
m generators

.(5.7)

Proof of Lemma 5.6. The equation holds for t = ω, which is central, therefore we
can restrict to the case t = ti, 1 ≤ i ≤ n − 1. We check by induction in j that

(a) ti+j · · · ti+1titi+1 · · · ti+j = ti · · · ti+j−1ti+jti+j−1 · · · ti.

For j = 1 this is follows from (5.5), and if it is true for j − 1 then

ti+jti+j−1 · · · ti+1titi+1 · · · ti+j−1ti+j = ti+jti · · · ti+j−2ti+j−1ti+j−2 · · · titi+j

= ti · · · ti+j−2ti+jti+j−1ti+jti+j−2 · · · ti

(5.5) = ti · · · ti+j−2ti+j−1ti+jti+j−1ti+j−2 · · · ti.

Equation (a) is equivalent to

(b) ti+j−1 · · · titi+j · · · ti+1ti = ti+jti+j−1 · · · titi+j · · · ti+1.

One can now easily check by using the other relations of the symmetric track groups
that (b) for j = m implies

τ̂n,mti = ti+mτ̂n,mωm(n−2),
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hence the lemma follows. �

Remark 5.8. The symmetric track groups were defined in [BM06c, 5] in a geometric
way in terms of tracks. In [BM06c, 6] we relate them to the positive pin group,
obtaining in this way the presentation above, see [BM06c, Theorem 6.11]. The
homomorphisms Sn ∧− and −∧Sm were geometrically defined in [BM06b, 8]. We
also give formulas for Sn ∧ − in terms of the positive pin group in [BM06b, 17],
from wich we derive the formulas for Sn ∧ − in terms of the presentation. The
formulas for −∧ Sm in terms of the presentation follow then from the definition of
− ∧ Sm in [BM06b, 8] and from Lemma 5.6.

The next lemma encodes some relevant properties of the choices in (5.7).

Lemma 5.9. The following equations hold for the elements in (5.7).

(1) τ̂p,q τ̂q,p = ω(p

2)(
q

2),
(2) (Sr ∧ τ̂p,s ∧ Sq)(Sr+p ∧ τ̂q,s)(τ̂p,r ∧ Sq+s)(Sp ∧ τ̂q,r ∧ Ss) =

τ̂p+q,r+sω
rs((p

2)+(q

2)+pq).

The proof only uses the presentation of the symmetric track groups as in Lemma
5.6. We leave it to the reader.

Relation (S5) and Lemmas 5.3 and 5.6 yield the following result.

Lemma 5.10. With the notation of Lemma 5.6 the equation

[Sm ∧ t] · [τn,m] = [τn,m] · [t ∧ Sm]

holds.

We also use below the well-known cross product homomorphisms

Sym(n)× Sym(m) −→ Sym(n + m) : (σ, τ) 7→ σ × τ.

Here σ × τ permutes the first n elements {1, . . . , n} of {1, . . . , n, n + 1, . . . , n + m}
according to σ and the last m elements {n + 1, . . . , n + m} according to τ . These
homomorphisms satisfy τn,m(σ × τ) = (τ × σ)τn,m. Moreover, if 1m ∈ Sym(m)
denotes the unit of the symmetric group then δ(Sm∧t) = 1m×δ(t) and δ(t∧Sm) =
δ(t) × 1m.

6. E∞-quadratic pair algebras

An E∞-quadratic pair algebra is a quadratic pair algebra B together with a
cup-one product operation

⌣1 : Bn,0 × Bm,0 −→ Bn+m,1, n, m ≥ 0,

such that the quadratic pair module Bn,∗ is a right A(Sym�(n))-module and the
following compatibility conditions hold. Let xi ∈ Bni,0, si ∈ Bni,1, ai ∈ Bni,ee,
gi, g

′
i ∈ Sym(ni), and ri ∈ Sym�(ni). The product in the quadratic pair algebra

B is equivariant with respect to the right A(Sym�(n))-module structures in the
following way

(x1 · [g1]) · (x2 · [g2]) = (x1 · x2) · [g1 × g2],(E1)

(s1 · [g1]) · (x2 · [g2]) = (s1 · x2) · [g1 × g2],

(a1 · ([g1]|[g
′
1])H) · (a2 · ([g2]|[g

′
2])H) = (a1 · a2) · ([g1 × g2]|[g

′
1 × g′2])H ,

x1 · (x2 · [r2]) = (x1 · x2) · [S
n1 ∧ r2].

The cup-one product measures the lack of commutativity, i.e. if τp,q ∈ Sym(p + q)
denotes the permutation exchanging the blocks {1, . . . , p} and {p + 1, . . . , p + q},
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p, q ≥ 0, then

(E2)

(x2 · x1) · [τn1,n2 ] + ∂(x1 ⌣1 x2) = x1 · x2 + ∂P (H(x2) · TH(x1)) · [τn1,n2 ],

(x2 · s1) · [τn1,n2 ] + ∂(s1) ⌣1 x2 = s1 · x2 + P (H(x2) · TH∂(s1)) · [τn1,n2 ].

The cup-one product is itself commutative in the following sense

(x2 ⌣1 x1) · [τn1,n2 ] + x1 ⌣1 x2 = −P (TH(x1) · H(x2))(E3)

+P (H(x2) · TH(x1)) · [τn1,n2 ].

Let 1n ∈ Sym(n) be the unit element. The cup-one product also satisfies the
following rules with respect to addition

x1 ⌣1 (x2 + x3) = x1 ⌣1 x2 + x1 ⌣1 x3(E4)

+P (∂(x1 ⌣1 x2)|(x3 · x1) · [τn1,n3 ])H ,

multiplication

(E5)

(x1 · x2) ⌣1 x3 = ((x1 ⌣1 x3) · x2) · [1n1 × τn2,n3 ] + x1 · (x2 ⌣1 x3)

+P ((∂(x1 ⌣1 x3)|(x3 · x1) · [τn1,n3 ])H · H(x2)) · [1n1 × τn2,n3 ]

+P (H(x3) · (x1|x1)H · TH(x2)) · [τn1+n2,n3 ]

−P ((x1|x1)H · H(x3) · TH(x2)) · [1n1 × τn2,n3 ],

and symmetric group action

(x1 · [g1]) ⌣1 (x2 · [g2]) = (x1 ⌣1 x2) · [g1 × g2].(E6)

If B is an E∞-quadratic pair algebra then h0B is a commutative ring and h1B
is an h0B-module, see [BM06a, Lemma 9.9].

Appart from Massey products the homology of an E∞-quadratic pair algebra is
endowed with the following secondary operation.

Definition 6.1. Let B be an E∞-quadratic pair algebra. Given an element a ∈
h0B2n,∗ we define the cup-one square of a

Sq1(a) ∈ h1B4n,∗

in the following way. Choose a representative ā ∈ B2n,0 of a and an element in the
symmetric track group τ̂ ∈ Sym�(4n) whose boundary is the shuffle permutation
δ(τ̂ ) = τ2n,2n. Then

Sq1(a) = −ā2 · [τ̂ ] + ā ⌣1 ā − P (H(ā) · TH(ā)) · [τ2n,2n] ∈ h1B4n,∗.

We leave it to the reader to check that the cup-one square does not depend on
the choice of ā. However it does depend on the choice of τ̂ . There are two possible
choices, namely τ̂ and ωτ̂ . The difference between the two possible cup-one squares
is computed in the following lemma.

Lemma 6.2 ([BM06a, Lemma 9.11]). Let Sq1 be cup-one square in an E∞-quadratic
pair algebra B associated to the lift τ̂ of the shuffle permutation and let Sqω

1 be the
cup-one square associated to ωτ̂ . Then given a ∈ h0B2n,∗

Sqω
1 (a) = Sq1(a) + a2 · η.

The main result in [BM06a] concerning E∞-quadratic pair algebras and ring
spectra is the following.
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Theorem 6.3 ([BM06a, Theorem 9.12]). There is a commutative diagram of func-
tors

(
connective commutative

ring spectra

)

inclusion

��

π∗,∗
// (E∞-quadratic pair algebras)

forget

��

(connective ring spectra)
π∗,∗

// (quadratic pair algebras)

Here the lower arrow is the functor in Theorem 3.4. Moreover, for a commu-
tative ring spectrum R the algebraic cup-one squares in π∗,∗R correspond to the
topologically-defined cup-one squares in π∗R.

Theorem 1.9 follows from Theorem 6.3 and from the following result.

Theorem 6.4. If B is an E∞-quadratic pair algebra then the k-invariant (3.1),
the Massey products in Definition 3.3, and the cup-one squares in Definition 6.1
associated to the choices of τ̂2n,2n in (5.7) endow h0B with the structure of a com-
mutative ring with commutative secondary operations with coefficients in h1B in
the sense of Definition 1.8.

In order to prove this theorem we need a technical lemma. E∞-quadratic pair
algebras are defined above by using a minimal set of equations. Some other useful
equations are listed in the following lemma.

Lemma 6.5. With the notation above the following equations are also satisfied in
the E∞-quadratic pair algebra B for elements with H(xi) = 0.

(1) (x1 · [g1]) · (s2 · [g2]) = (x1 · s2) · [g1 × g2],
(2) (x1 · [r1]) · x2 = (x1 · x2) · [r1 ∧ Sn2 ],
(3) (s2 · x1) · [τn1,n2 ] + x1 ⌣1 ∂(s2) = x1 · s2,
(4) (x1+x2) ⌣1 x3 = x1 ⌣1 x3+x2 ⌣1 x3+P (∂(x1 ⌣1 x3)|(x3 ·x2)·[τn2,n3 ])H ,
(5) x1 ⌣1 (x2 · x3) = (x2 · (x1 ⌣1 x3)) · [τn1,n2 × 1n3 ] + (x1 ⌣1 x2) · x3,
(6) x1 ⌣1 (x2 · x3) = ((x3 · x1) ⌣1 x2) · [τn1+n2,n3 ] + (x1 · x2) ⌣1 x3.

Proof. The following equations hold.

((x1 · [g1]) · (s2 · [g2])) · [τn2,n1 ]
(E2) = (s2 · [g2]) · (x1 · [g1]) − ∂(s2 · [g2]) ⌣1 (x1 · [g1])

+P (H(x1 · [g1])︸ ︷︷ ︸
(A6,S1) =0

·TH∂(s2 · [g2])) · [τn2,n1 ]

(E1,A3,E6) = (s2 · x1) · [g2 × g1] − (∂(s2) ⌣1 x1) · [g2 × g1]
(A2,S1) = (s2 · x1 − ∂(s2) ⌣1 x1) · [g2 × g1]
(E2) = (x1 · s2) · [τn2,n1 ] · [g2 × g1]
(S3) = (x1 · s2) · [g1 × g2] · [τn2,n1 ].

Now we obtain (1) multiplying by [τn1,n2 ] on the right and using (S3).
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Equation (2) follows from

(x1 · x2) · [r1 ∧ Sn2 ]
(E2)
= ((x2 · x1) · [τn1,n2 ] + ∂(x1 ⌣1 x2)) · [r1 ∧ Sn2 ]

(A2,E3) = (x2 · x1) · [τn1,n2 ] · [r1 ∧ Sn2 ] + ∂(x1 ⌣1 x2) · [r1 ∧ Sn2 ]

+

=(a)
︷ ︸︸ ︷
P ((∂(x1 ⌣1 x2)|(x2 · x1) · [τn1,n2 ])H · H∂[r1 ∧ Sn2 ])

(5.10,E1,A3,S3,A1) = (x2 · (x1 · [r1])) · [τn1,n2 ] ±︸︷︷︸
according to εδ(r1)

(x1 ⌣1 x2)

−(x1 · [δ(r1)]) ⌣1 x2 + (a)

(A8,6.5.4,A3,S3,A4,A8,5.1) = (x2 · (x1 · [r1])) · [τn1,n2 ] + (x1 · ∂[r1]) ⌣1 x2

(E2,A3) = (x1 · [r1]) · x2.

Equation (3) follows from

x1 ⌣1 ∂(s2)
(E3)
= −(∂(s2) ⌣1 x1) · [τn1,n2 ]

(E2) = −(−(x1 · s2) · [τn2,n1 ] + s2 · x1) · [τn1,n2 ]

(A2, S1, S3) = −(s2 · x1) · [τn1,n2 ] + x1 · s2.

Equation (4) follows from

(x1 + x2) ⌣1 x3
(E2)
= −(x3 ⌣1 (x1 + x2)) · [τn1,n3 ]

(E4,A2,S1) = −(x3 ⌣1 x2) · [τn1,n3 ] − (x3 ⌣1 x1) · [τn1,n3 ]

−P (∂(x3 ⌣1 x1)|(x2 · x3) · [τn3,n1 ])H · [τn1,n3 ]

(E3,A5,A8,S1,S3) = x2 ⌣1 x3 + x1 ⌣1 x3

−P (∂(x3 ⌣1 x1) · [τn1,n3 ]|x2 · x3)H

(M3) = x1 ⌣1 x3 + x2 ⌣1 x3

−P (∂(x1 ⌣1 x3)| ∂(x2 ⌣1 x3)︸ ︷︷ ︸
(E2) =−(x3·x2)·[τn1,n3 ]+x2·x3

)H

−P (∂((x3 ⌣1 x1) · [τn1,n3 ])|x2 · x3)H

(E3) = x1 ⌣1 x3 + x2 ⌣1 x3

+P (∂(x1 ⌣1 x3)|x3 · x2 · [τn2,n3 ])H .

Equation (5) follows from

x1 ⌣1 (x2 · x3)
(E3)
= −((x2 · x3) ⌣1 x1) · [τn1,n2+n3 ]

(E5,A2,S1) = −(x2 · (x3 ⌣1 x1)) · [τn1,n2+n3 ]

−((x2 ⌣1 x1) · x3) · [1n2 × τn3,n1 ] · [τn1,n2+n3 ]

(E3,E1,A1,A2,S1) = (x2 · (x1 ⌣1 x3)) · [1n2 × τn3,n1 ] · [τn1,n2+n3 ]

+((x1 ⌣1 x2) · x3) · [τn2,n1 × 1n3 ] · [1n2 × τn3,n1 ] · [τn1,n2+n3 ]

(S3) = (x2 · (x1 ⌣1 x3)) · [τn1,n2 × 1n3 ] + (x1 ⌣1 x2) · x3.
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Equation (6) follows from

((x3 · x1) ⌣1 x2) · [τn1+n2,n3 ] + (x1 · x2) ⌣1 x3

(E5) = ((x3 ⌣1 x2) · x1) · [1n3 × τn1,n2 ] · [τn1+n2,n3 ] + (x3 · (x1 ⌣1 x2)) · [τn1+n2,n3 ]
+((x1 ⌣1 x3) · x2) · [1n1 × τn2,n3 ] + x1 · (x2 ⌣1 x3)

(6.5.5) = −((x2 ⌣1 x3) · x1) · [τn1,n2+n3 ]
+(x1 ⌣1 (x3 · x2)) · [1n1 × τn2,n3 ] + x1 · (x2 ⌣1 x3)

(M3) = (x1 ⌣1 (x3 · x2)) · [1n1 × τn2,n3 ] + x1 ⌣1 ∂(x2 ⌣1 x3)
+P (∂(x1 ⌣1 (x3 · x2)) · [1n1 × τn2,n3 ]|∂((x2 ⌣1 x3) · x1) · [τn1,n2+n3 ])H

(E2,E4,E6) = x1 ⌣1 (x2 · x3)

�

We are now ready to prove Theorem 6.4.

Proof of Theorem 6.4. We assume without loss of generality that all representatives
chosen in B∗,0 are in KerH .

(T7) By (E2, A3) we can take

ab = ba · [τ|a|,|b|] + ā ⌣1 b̄,

bc = cb · [τ|b|,|c|] + b̄ ⌣1 c̄,

and so we do in this proof, therefore

(a) − ab · c̄ + ā · bc
(E2,6.5.3)

= −(ā · b̄) ⌣1 c̄ − (c̄ · ab) · [τ|a|+|b|,|c|]

+(bc · ā) · [τ|a|,|b|+|c|] + ā ⌣1 (b̄ · c̄)

= −(ā · b̄) ⌣1 c̄ − (c̄ · (ba · [τ|a|,|b|] + ā ⌣1 b̄)) · [τ|a|+|b|,|c|]

+((cb · [τ|b|,|c|] + b̄ ⌣1 c̄) · ā) · [τ|a|,|b|+|c|] + ā ⌣1 (b̄ · c̄)

(A1,A2,E1,6.5.1) = −(ā · b̄) ⌣1 c̄ − (c̄ · (ā ⌣1 b̄)) · [τ|a|+|b|,|c|]

+(−c̄ · ba + cb · ā) · [τ|b|,|c| × 1|a|] · [τ|a|,|b|+|c|]

+((b̄ ⌣1 c̄) · ā) · [τ|a|,|b|+|c|] + ā ⌣1 (b̄ · c̄)

The element −c̄ · ba + cb · ā represents −〈c, b, a〉, so it is in Ker ∂, in particular by
Lemma 5.4

(−c̄ · ba + cb · ā) · [τ|b|,|c| × 1|a|] · [τ|a|,|b|+|c|] = (−1)|a||b|+|b||c|+|c||a|+1(−cb · ā + c̄ · ba).

Since Ker∂ is central we only need to see that the rest of factors in the previous
equation cancel, and this follows from (6.5.6) since

−(c̄ · (ā ⌣1 b̄)) · [τ|a|+|b|,|c|] + ((b̄ ⌣1 c̄) · ā) · [τ|a|,|b|+|c|]
(E3) = −(c̄ · (ā ⌣1 b̄)) · [τ|a|+|b|,|c|] − ((c̄ ⌣1 b̄) · ā) · [τ|b|,|c| × 1|a|] · [τ|a|,|b|+|c|]
(E5) = −((c̄ · ā) ⌣1 b̄) · [τ|a|+|b|,|c|].

(T8) The following equation is obtained from the first equality in (a) above by
inserting in the middle two elements which cancel

−ab · c̄ + ā · bc = −(ā · b̄) ⌣1 c̄ − (c̄ · ab) · [τ|a|+|b|,|c|] + (ca · b̄) · [τ|a|+|b|,|c|]

− (ca · b̄)︸ ︷︷ ︸
(E2) =(b̄·ca)·[τ|c|+|a|,|b|]+(c̄·ā)⌣1b̄

·[τ|a|+|b|,|c|] + (bc · ā) · [τ|a|,|b|+|c|] + ā ⌣1 (b̄ · c̄).

By Lemma 5.4

(−c̄ · ab + ca · b̄) · [τ|a|+|b|,|c|] ∈ −(−1)|a||c|+|b||c|〈c, a, b〉,

(−b̄ · ca + bc · ā) · [τ|a|,|b|+|c|] ∈ −(−1)|a||b|+|a||c|〈b, c, a〉,

therefore, since Ker ∂ is central, (T8) follows from (6.5.6).
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Let us now check simultaneously (T9) and (T10). By (E2, A3) we can take

(2a) = ā + ā.

Moreover, by (S4,E2,A3,A1) for |a| odd we can take

a(2a) = (2a)a = −ā2 · [τ̂|a|,|a|] + ā ⌣1 ā.

−ab · ā + ā · ba = −(ā ⌣1 b̄) · ā − (ba · ā) · [τ|a|,|b| × 1|a|]

(A1,E1,6.5.3) +(ba · ā) · [τ|a|,|b|+|a|]︸ ︷︷ ︸
(S3) =[1|b|×τ|a|,|a|]·[τ|a|,|b|×1|a|]

+ā ⌣1 (b̄ · ā)

(A1,S4) = −(ā ⌣1 b̄) · ā − (c)} =

{
(ba · (ā + ā)) · [τ|a|,|b| × 1|a|], |a| odd,
0, |a| even.

−(ba · ā) · ∂[S|b| ∧ τ̂|a|,|a|] · [τ|a|,|b| × 1|a|] + ā ⌣1 (b̄ · ā)

(A3,E1,E5) = −(ā ⌣1 b̄) · ā − (c) − (b̄ · (ā2 · [τ̂|a|,|a|])) · [τ|a|,|b| × 1|a|]

+(b̄ · (ā ⌣1 ā)) · [τ|a|,|b| × 1|a|] + (ā ⌣1 b̄) · ā

(A1,A2,S1) = −(ā ⌣1 b̄) · ā − (c)

+(b̄ · (−ā2 · [τ̂|a|,|a|] + ā ⌣1 ā)) · [τ|a|,|b| × 1|a|] + (ā ⌣1 b̄) · ā

Ker ∂ central,

(5.4)






=

∈

(−1)|a||b|b · Sq1(a), for |a| even,

(−1)|a||b|〈b, a, 2a〉, for |a| odd.

In order to check (T11) let a, b ∈ h0B2n,∗, τ = τ2n,2n, and τ̂ = τ̂2n,2n. Using the
“bilinearity mod P” of the product and the cup-one product we obtain

(a)
−(ā + b̄)2 · [τ̂ ] + (ā + b̄) ⌣1 (ā + b̄)
(A1,A2,E4,6.5.4) = −b̄2 · [τ̂ ] − (ā · b̄) · [τ̂ ] − (b̄ · ā) · [τ̂ ] − ā2 · [τ̂ ] − (b)

+ā ⌣1 ā + b̄ ⌣1 ā + ā ⌣1 b̄ + b̄ ⌣1 b̄ + (c).

The central elements (b) and (c) are

(b) = P ((b̄ · ā + ā · b̄ + b̄2|ā2)H · H∂[τ̂ ]) + P ((ā · b̄ + b̄2|b̄ · ā)H · H∂[τ̂ ])

+P ((ā · b̄ + b̄2|ā · b̄)H · H∂[τ̂ ]),

(c) = P (∂(ā ⌣1 ā)|(ā · b̄) · [τ ])H + P (∂(ā ⌣1 b̄)|b̄2 · [τ ])H

+P (∂((ā + b̄) ⌣1 ā)|(b̄ · (ā + b̄)) · [τ ])H .

In the middle of equation (a) we find the formula for Sq1(a) which is central in
B4n,1, so we can move it to the end of the equation, as (b) and (c). Moreover, by
[BM06c, Lemma 7.4] and (S5,S6) we have

(d) n P (1|1)H = [τ ] · [τ̂ ] + [τ̂ ].
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This formula is used in the following equation.

b̄ ⌣1 ā + ā ⌣1 b̄
(E3)
= −(ā ⌣1 b̄) · [τ ] + ā ⌣1 b̄

(A1) = (ā ⌣1 b̄) · (−[τ ] + 1)

(S4) = (ā ⌣1 b̄) · ∂[τ̂ ]

(A3,E2) = (−(b̄ · ā) · [τ ] + ā · b̄) · [τ̂ ]

(A2) = −(b̄ · ā) · ([τ ] · [τ̂ ]) + (ā · b̄) · [τ̂ ]

+ P ((−ā · b̄ + (b̄ · ā) · [τ ]|(b̄ · ā) · [τ ])H · H∂[τ̂ ])︸ ︷︷ ︸
=(e)

(d,A4,A8) = (b̄ · ā) · [τ̂ ] + (ā · b̄) · [τ̂ ] + (e) + n P (b̄ · ā|b̄ · ā)H︸ ︷︷ ︸
=a·b·η

.

This shows that (a) simplifies to give the following equation

Sq1(a + b) = Sq1(a) + Sq1(b) + n · a · b · η + (b) + (c) + (e).

Now one uses (A8,S3,5.1) and the elementary properties of quadratic pair modules
to check that

(b) + (c) + (e) = P (b̄ · ā|b̄ · ā)H = a · b · η,

hence we are done.
Finally (T12) will follow from (5.9,6.2) once we check that for the cup-one square

Sq1(a · b) associated to the following lift of τ|a|+|b|,|a|+|b|

τ̃ = (S|a| ∧ τ̂−1
|b|,|a| ∧ S|b|)(S2|a| ∧ τ̂|b|,|b|)(τ̂|a|,|a| ∧ S2|b|)(S|a| ∧ τ̂|b|,|a| ∧ S|b|)

the following formula holds.

Sq1(a · b) = a2 · Sq1(b) + Sq1(a) · b2.

The following equation holds.

[τ̃ ]
(S5)
= [1|a| × τ|a|,|b| × 1|b|] · [(S

2|a| ∧ τ̂|b|,|b|)(τ̂|a|,|a| ∧ S2|b|)(S|a| ∧ τ̂|b|,|a| ∧ S|b|)]

+[S|a| ∧ τ̂−1
|b|,|a| ∧ S|b|]

(5.3,A1) = [1|a| × τ|a|,|b| × 1|b|] · [(S
2|b| ∧ τ̂|b|,|b|)(τ̂|a|,|a| ∧ S2|b|)] · [1|a| × τ|b|,|a| × 1|b|]

+ [1|a| × τ|a|,|b| × 1|b|] · [S
|a| ∧ τ̂|b|,|a| ∧ S|b|] + [S|a| ∧ τ̂−1

|b|,|a| ∧ S|b|]
︸ ︷︷ ︸

(5.2,S5) =0

(S5) = [1|a| × τ|a|,|b| × 1|b|] · ([12|a| × τ|b|,|b|] · [τ̂|a|,|a| ∧ S2|b|]

+[S2|a| ∧ τ̂|b|,|b|]) · [1|a| × τ|b|,|a| × 1|b|].

This equation is used below. We will also use the notation

(*) = P ((ā · ∂(b̄ ⌣1 ā) · b̄|(ā2 · b̄2) · [1|a| × τ|b|,|a| × 1|b|])H · H∂[τ̃ ])

(M3,5.1,A8) = [(ā · (b̄ ⌣1 ā) · b̄) · [τ|a|+|b|,|a|+|b|],−(ā2 · b̄2) · [1|a| × τ|b|,|a| × 1|b|] · [τ̃ ]].
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Now the formula follows from the following equations.

−(ā · b̄)2 · [τ̃ ] + (ā · b̄) ⌣1 (ā · b̄)(
E2,A1,A2,E1,

E5,6.5.4,A6,E6

)
= −((ā2 · b̄2) · [1|a| × τ|b|,|a| × 1|b|] + ā · ∂(b̄ ⌣1 ā) · b̄) · [τ̃ ]

+ (ā · (ā ⌣1 b̄) · b̄) ·

(S3) =[1|a|×τ|b|,|a|×1|b|]·[τ|a|+|b|,|a|+|b|]︷ ︸︸ ︷
[τ|a|,|a| × 12|b|] · [1|a| × τ|b|,|a|+|b|]︸ ︷︷ ︸

=(a)

+((ā ⌣1 ā) · b̄2) · [1|a| × τ|b|,|a|+|b|]︸ ︷︷ ︸
(S3) =[12|a|×τ|b|,|b|]·[1|a|×τ|b|,|a|×1|b|]

+(ā2 · (b̄ ⌣1 b̄)) · [1|a| × τ|b|,|a| × 1|b|]
+ ā · (b̄ ⌣1 ā) · b̄︸ ︷︷ ︸

=(b)






= (c)

(A2,5.1) = −(ā · ∂(b̄ ⌣1 ā) · b̄) · [τ̃ ]︸ ︷︷ ︸
(A3) =(ā·(b̄⌣1ā)·b̄)·∂[τ̃ ]

(S4,A1) =−(ā·(b̄⌣1ā)·b̄)·[τ|a|+|b|,|a|+|b|]︸ ︷︷ ︸
cancels with (a) and (*) by (E1,E3,A1,A2)

+ (ā·(b̄⌣1ā)·b̄)︸ ︷︷ ︸
cancels with (b)

−(ā2 · b̄2) · [1|a| × τ|b|,|a| × 1|b|] · [τ̃ ]

−(*) + (c)
(E1,6.5.2,A1,A2) = (−ā2 · (b̄2 · [τ̂|b|,|b|]) − (ā2 · [τ̂|a|,|a|]) · (b̄

2 · [τ|b|,|b|])
+(ā ⌣1 ā) · (b̄2 · [τ|b|,|b|]) + ā2 · (b̄ ⌣1 b̄)) · [1|a| ×|b|,|a| τ × 1|b|]

(A6,A1,A2) = (ā2 · (−b̄2 · [τ̂|b|,|b|] + b̄ ⌣1 b̄)
+(−ā2 · [τ̂|a|,|a|] + ā ⌣1 ā) · (b̄2 · [τ|b|,|b|])) · [1|a| × τ|b|,|a| × 1|b|]

(5.4) = a2 · Sq1(b) + Sq1(a) · b2.

�
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