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Hervé Queffélec and Luis Rodŕıguez-Piazza

(Communicated by Nigel Kalton)

2000 Mathematics Subject Classification. Primary: 46E30; Secondary:

46B20.

Keywords and phrases. Morse-Transue space, Orlicz space, weakly compact

operators.

Abstract. We give a criterion of weak compactness for the operators on the

Morse-Transue space MΨ , the subspace of the Orlicz space LΨ generated by L∞ .

1. Introduction and Notation

In 1975, C. Niculescu established a characterization of weakly compact
operators T from C(S), where S is a compact space, into a Banach space
Z ([14, 15], see [3] Theorem 15.2 too): T : C(S) → Z is weakly compact if
and only if there exists a Borel probability measure μ on S such that, for
every ε > 0, there exists a constant C(ε) > 0 such that:

‖Tf‖ ≤ C(ε) ‖f‖L1(μ) + ε ‖f‖∞ , ∀f ∈ C(S).

The same kind of result was proved by H. Jarchow for C∗ -algebras in [7],
and by the first author for A(D) and H∞ (see [11]). The criterion for H∞
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played a key role to give an elementary proof of the equivalence between
weak compactness and compactness for composition operators on H∞ .

Beside these spaces, one natural class of Banach spaces is the class of
Orlicz spaces LΨ . Unfortunately, we shall see that the above criterion is
in general not true for Orlicz spaces. However, it remains true when we
restrict ourselves to subspaces of the Morse-Transue space MΨ . This space
is the closure of L∞ in the Orlicz space LΨ .

In this paper, we first give a characterization of the operators from a
subspace of MΨ which fix no copy of c0 . When the complementary function
of Ψ satisfies Δ2 , that gives a criterion of weak compactness. If moreover
Ψ satisfies a growth condition, that we call Δ0 , the criterion has a more
usable formulation, analogous to those described above.

As in the case of H∞ (but this is far less elementary), this new version
obtained for subspaces of Morse-Transue spaces (Theorem 4), combined
with a study of generalized Carleson measures, may be used to prove the
equivalence between weak compactness and compactness for composition
operators on Hardy-Orlicz spaces (see [13]), when Ψ satisfies Δ0 .

However, we think that this characterization has an intrinsic interest for
Orlicz spaces, and will be useful not only for composition operators (see
Remark 5 at the end of the paper).

In this note, we shall consider Orlicz spaces defined on a probability space
(Ω,P), that we shall assume non purely atomic.

By an Orlicz function, we shall understand that Ψ: [0,∞] → [0,∞] is a
non-decreasing convex function such that Ψ(0) = 0 and Ψ(∞) = ∞ . To
avoid pathologies, we shall assume that we work with an Orlicz function Ψ
having the following additional properties: Ψ is continuous at 0, strictly
convex (hence strictly increasing), and such that

Ψ(x)
x

−→
x→∞∞.

This is essentially to exclude the case of Ψ(x) = ax . The Orlicz space LΨ(Ω)
is the space of all (equivalence classes of) measurable functions f : Ω → C

for which there is a constant C > 0 such that
∫

Ω

Ψ
( |f(t)|

C

)
dP(t) < +∞

and then ‖f‖Ψ (the Luxemburg norm) is the infimum of all possible
constants C such that this integral is ≤ 1.
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To every Orlicz function is associated the complementary Orlicz function
Φ = Ψ∗ : [0,∞] → [0,∞] defined by:

Φ(x) = sup
y≥0

(
xy − Ψ(y)

)
.

The extra assumptions on Ψ ensure that Φ is itself strictly convex.

Throughout this paper, we shall assume, except explicit mention of the
contrary, that the complementary Orlicz function satisfies the Δ2 condition
(Φ ∈ Δ2 ), i.e., for some constant K > 0, and some x0 > 0, we have:

Φ(2x) ≤ K Φ(x), ∀x ≥ x0.

This is usually expressed by saying that Ψ satisfies the ∇2 condition
(Ψ ∈ ∇2 ). This is equivalent to say that for some β > 1 and x0 > 0, one
has Ψ(x) ≤ Ψ(βx)/(2β) for x ≥ x0 , and that implies that Ψ(x)

x −→
x→∞∞ . In

particular, this excludes the case LΨ = L1 .

When Φ satisfies the Δ2 condition, LΨ is the dual space of LΦ .

We shall denote by MΨ the closure of L∞ in LΨ . Equivalently (see [16],
page 75), MΨ is the space of (classes of) functions such that:

∫
Ω

Ψ
( |f(t)|

C

)
dP(t) < +∞, ∀C > 0.

This space is the Morse-Transue space associated to Ψ, and (MΨ)∗ = LΦ ,
isometrically if LΦ is provided with the Orlicz norm, and isomorphically if
it is equipped with the Luxemburg norm (see [16], Chapter IV, Theorem
1.7, page 110).

We have MΨ = LΨ if and only if Ψ satisfies the Δ2 condition, and LΨ

is reflexive if and only if both Ψ and Φ satisfy the Δ2 condition. When the
complementary function Φ = Ψ∗ of Ψ satisfies it (but Ψ does not satisfy
this Δ2 condition, to exclude the reflexive case), we have (see [16], Chapter
IV, Proposition 2.8, page 122, and Theorem 2.11, page 123):

(∗) (LΨ)∗ = (MΨ)∗ ⊕1 (MΨ)⊥,

or, equivalently, (LΨ)∗ = LΦ⊕1 (MΨ)⊥ , isometrically, with the Orlicz norm
on LΦ .

For all the matter about Orlicz functions and Orlicz spaces, we refer
to [16], or to [9].
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2. Main result

Our goal in this section is the following criterion of weak compactness for
operators. We begin with:

Theorem 1. Let Ψ be an arbitrary Orlicz function, and let X be a
subspace of the Morse-Transue space MΨ . Then an operator T : X → Y

from X into a Banach space Y fixes no copy of c0 if and only if for each
ε > 0 , there exists Cε > 0 such that

(1) ‖Tf‖ ≤
[
Cε

∫
Ω

Ψ
(
ε

|f |
‖f‖Ψ

)
dP + ε

]
‖f‖Ψ, ∀f ∈ X.

Recall that saying that T fixes a copy of c0 means that there exists a
subspace X0 of X isomorphic to c0 such that T realizes an isomorphism
between X0 and T (X0).

Before proving that, we shall give some consequences. First, we have

Corollary 2. Assume that the complementary function of Ψ has Δ2

(Ψ ∈ ∇2 ). Then for every subspace X of MΨ , and every operator
T : X → Y , T is weakly compact if and only if it satisfies (1).

Proof. When the complementary function of Ψ has Δ2 , one has the
decomposition (∗), which means that MΨ is M -ideal in its bidual (see [6,
Chapter III]); this result was first shown by D. Werner [17] (see also [6,
Chapter III, Example 1.4 (d), page 105]) by a different way, using the ball
intersection property; note that in these references, it is moreover assumed
that Ψ does not satisfy the Δ2 condition, but if it satisfies it, the space
LΨ is reflexive, and so the result is obvious. But every subspace X of a
Banach space which is M -ideal of its bidual has Pe�lczyńki’s property (V )
([4, 5]; see also [6], Chapter III, Theorem 3.4), which means that operators
from X are weakly compact if and only if they fix no copy of c0 . �

With Ψ satisfying the following growth condition, the characterization
(1) takes on a more usable form.

Definition 3. We say that the Orlicz function Ψ satisfies the Δ0

condition if for some β > 1

lim
x→+∞

Ψ(βx)
Ψ(x)

= +∞.

This growth condition is a strong negation of the Δ2 condition and it implies
that the complementary function Φ = Ψ∗ of Ψ satisfies the Δ2 condition.

Note that in the following theorem, we cannot content ourselves with
Ψ /∈ Δ2 (i.e. lim supx→+∞ Ψ(βx)/Ψ(x) = +∞), instead of Ψ ∈ Δ0 (see
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Remark 3 in Section 3). An interesting question is whether the condition
Ψ ∈ Δ0 is actually necessary for this characteriztion.

Theorem 4. Assume that Ψ satisfies the Δ0 condition, and let X be
a subspace of MΨ . Then every linear operator T mapping X into some
Banach space Y is weakly compact if and only if for some (and then for
all) 1 ≤ p <∞ and all ε > 0 , there exists Cε > 0 such that

(W) ‖T (f)‖ ≤ Cε‖f‖p + ε ‖f‖Ψ, ∀f ∈ X.

Remark 5. This theorem extends [12] Theorem II.1. As in the case of
C∗ -algebras (see [3], Notes and Remarks, Chap. 15), there are miscellaneous
applications of such a characterization.

Remark 6. Contrary to the Δ2 condition where the constant 2 may
be replaced by any constant β > 1, in this Δ0 condition, the constant β
cannot be replaced by another, as the following example shows.

Example 7. There exists an Orlicz function Ψ such that

(2) lim
x→+∞

Ψ(5x)
Ψ(x)

= +∞,

but

(3) lim inf
x→+∞

Ψ(2x)
Ψ(x)

< +∞.

Indeed, let (cn)n be an increasing sequence of positive numbers such that
lim
n→∞

cn+1

cn
= +∞ , take ψ(t) = cn for t ∈ (4n, 4n+1] and Ψ(x) =

∫ x
0
ψ(t) dt .

Then (2) is verified. On the other hand, if xn = 2 · 4n , one has Ψ(xn) ≥
cn4n , and Ψ(2xn) ≤ cn4n+1 , so we get (3).

Before proving Theorem 4, let us note that it has the following
straightforward corollary.

Corollary 8. Let X be like in Theorem 4, and assume that F is a family
of operators from X into a Banach space Y with the following property:
there exists a bounded sequence (gn)n in X such that limn→∞ ‖gn‖1 = 0
and such that an operator T ∈ F is compact whenever

lim
n→∞ ‖Tgn‖ = 0.

Then every weakly compact operator in T ∈ F is actually compact.

In the forthcoming paper [13], we prove, using a generalization of the
notion of Carleson measure, that a composition operator Cφ : HΨ → HΨ
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(HΨ is the space of analytic functions on the unit disk D of the complex
plane whose boundary values are in LΨ(∂D), and φ : D → D is an analytic
self-map) is compact whenever

lim
r→1−

sup
|ξ|=1

Ψ−1
(
1/(1 − r)

)‖Cφ(uξ,r)‖Ψ = 0,

where
uξ,r(z) =

( 1 − r

1 − ξ̄rz

)2

, |z| < 1,

and we have

lim
r→1−

sup
|ξ|=1

Ψ−1
(
1/(1 − r)

)‖Cφ(uξ,r)‖Ψ = 0

when Cφ is weakly compact and Ψ ∈ Δ0 .

Though the situation does not fit exactly as in Corollary 8 (not because
of the space HΨ , which is not a subspace of MΨ : we actually work in
HMΨ = HΨ ∩MΨ since uξ,r ∈ HMΨ , but because of the fact that we
ask a uniform limit for |ξ| = 1), the same ideas allow us to get, when Ψ
satisfies the condition Δ0 , that Cφ is compact if and only if it is weakly
compact.

Proof of Theorem 4. Assume that we have (W). We may assume
that p > 1, since if (W) is satisfied for some p ≥ 1, it is satisfied for

all q ≥ p . Moreover, we may assume that LΨ j
↪→ Lp since Ψ satisfies

condition Δ0 (since we have: limx→+∞
Ψ(x)
xr = +∞ , for every r > 0).

Then T
[
(1/Cε)BLp ∩ (1/ε)BX

] ⊆ 2BY . Taking the polar of these sets, we
get T ∗(BY ∗) ⊆ (2Cε)Bj∗[(Lp)∗] + (2ε)BX∗ , for every ε > 0. By a well-
known lemma of Grothendieck, we get, since Bj∗[(Lp)∗] is weakly compact,
that T ∗(BY ∗) is relatively weakly compact, i.e. T ∗ , and hence also T , is
weakly compact.

Conversely, assume in Theorem 4 that T is weakly compact. We are
going to show that (W) is satisfied with p = 1 (hence for all finite p ≥ 1).
Let ε > 0. Since the Δ0 condition implies that the complementary function
of Ψ satisfies the Δ2 condition, Corollary 2 implies that, when ‖f‖Ψ = 1

‖Tf‖ ≤ Cε/2

∫
Ω

Ψ
(
(ε/2)|f |) dP + ε/2.

As Ψ satisfies the Δ0 condition, there is some β > 1 such that
Ψ(x)

Ψ(βx)
→ 0

as x → ∞ ; hence, with κ = ε/2Cε/2 , there exists some xκ > 0 such
that Ψ(x) ≤ κΨ(βx) for x ≥ xκ . By the convexity of Ψ, one has
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Ψ(x) ≤ Ψ(xκ)
xκ

x =: Kκx for 0 ≤ x ≤ xκ . Hence, for every x ≥ 0
Ψ(x) ≤ κΨ(βx) +Kκx . It follows that, for f ∈ X , with ‖f‖Ψ = 1

∫
Ω

Ψ
(
(ε/2)|f |) dP ≤ κ

∫
Ω

Ψ
(
β(ε/2)|f |) dP +Kκ

ε

2
‖f‖1 ≤ κ+Kκ

ε

2
‖f‖1

if we have chosen ε ≤ 2/β . Hence

‖Tf‖ ≤ Cε/2

(
κ+Kκ

ε

2
‖f‖1

)
+
ε

2
= Cε/2

ε

2
Kκ‖f‖1+

(
Cε/2κ+

ε

2

)
= C′

ε‖f‖1+ε,

which is (W). �

Remark 9. The sufficient condition is actually a general fact, which
is surely well known (see [11], Theorem 1.1, for a similar result, and [3],
Theorem 15.2 for C(K); see also [8], page 81), and has close connection
with interpolation (see [2], Proposition 1), but we have found no reference,
and so we shall state it separately without proof (the proof follows that
given in [3], page 310).

Proposition 10. Let T : X → Y be an operator between two Banach
spaces. Assume that there is a Banach space Z and a weakly compact map
j : X → Z such that: for every ε > 0 , there exists Cε > 0 such that

‖Tx‖ ≤ Cε‖jx‖Z + ε ‖x‖X , x ∈ X.

Then T is weakly compact.

Note that, by the Davis-Figiel-Johnson-Pe�lczyński factorization theorem,
we may assume that Z is reflexive. We may also assume that j is injective,
because ker j ⊆ kerT , so T induces a map T̃ : X/ ker j → Y with the same
property as T . Indeed, if jx = 0, then ‖Tx‖ ≤ ε‖x‖ for every ε > 0, and
hence Tx = 0.

Proof of Theorem 1. Assume first that T fixes a copy of c0 . There are
hence some δ > 0 and a sequence (fn)n in X equivalent to the canonical
basis of c0 such that ‖fn‖Ψ = 1 and ‖Tfn‖ ≥ δ . In particular, there is
some M > 0 such that, for every choice of εn = ±1

∥∥∥
N∑
n=1

εnfn

∥∥∥
Ψ
≤M, N ≥ 1.

Let (rn)n be a Rademacher sequence. We have, first by Khintchine’s
inequality, then by Jensen’s inequality and Fubini’s Theorem
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∫
Ω

Ψ
(

1
M

√
2

( N∑
n=1

|fn|2
)1/2

)
dP ≤

∫
Ω

Ψ
[

1
M

∫ 1

0

∣∣∣
N∑
n=1

rn(t)fn
∣∣∣ dt

]
dP

≤
∫

Ω

∫ 1

0

Ψ
[

1
M

∣∣∣
N∑
n=1

rn(t)fn
∣∣∣ dt

]
dP

=
∫ 1

0

∫
Ω

Ψ
[

1
M

∣∣∣
N∑
n=1

rn(t)fn
∣∣∣ dP

]
dt ≤ 1.

The monotone convergence Theorem gives then

∫
Ω

Ψ
(

1
M

√
2

( ∞∑
n=1

|fn|2
)1/2

)
dP ≤ 1.

In particular,
∑∞

n=1 |fn|2 is finite almost everywhere, and hence fn → 0

almost everywhere. Since Ψ
(

1
M

√
2

( ∑∞
n=1 |fn|2

)1/2
)

∈ L1 , by the above
inequalities, Lebesgue’s dominated convergence Theorem gives

∫
Ω

Ψ
( |fn|
M

√
2

)
dP −→

n→∞ 0.

But that contradicts (1) with ε ≤ 1/M
√

2 and ε < δ , since ‖Tfn‖ ≥ δ .

The converse follows from the following lemma.

Lemma 11. Let X be a subspace of MΨ , and let (hn)n be a sequence
in X , with ‖hn‖Ψ = 1 for all n ≥ 1 , and such that, for some M > 0

∫
Ω

Ψ(|hn|/M) dP −→
n→∞ 0.

Then (hn)n has a subsequence equivalent to the canonical basis of c0 .

Indeed, if condition (1) is not satisfied, there exist some ε0 > 0 and
functions hn ∈ X with ‖hn‖Ψ = 1 such that ‖Thn‖ ≥ 2n

∫
Ω

Ψ(ε0|hn|) dP+
ε0 . That implies that

∫
Ω

Ψ(ε0|hn|) dP tends to 0, so Lemma 11 ensures
that (hn)n has a subsequence, which we shall continue to denote by
(hn)n , equivalent to the canonical basis of c0 . Then (Thn)n is weakly
unconditionally Cauchy. Since ‖Thn‖ ≥ ε0 , (Thn)n has, by Bessaga-
Pe�lczyński’s Theorem, a further subsequence equivalent to the canonical
basis of c0 . It is then obvious that T realizes an isomorphism between the
spaces generated by these subsequences. �
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Proof of Lemma 11. The proof uses the idea of the construction made
in the proof of Theorem II.1 in [12], which it generalizes, but with some
additional details.

By the continuity of Ψ, there exists a > 0 such that Ψ(a) = 1. Then,
since Ψ is increasing, we have, for every g ∈ L∞ ,

∫
Ω

Ψ
(
a |g|

‖g‖∞

)
dP ≤ 1 ,

and so ‖g‖Ψ ≤ (1/a) ‖g‖∞ . Now, choose, for every n ≥ 1, positive numbers
αn < a/2n+2 such that Ψ(αn/2M) ≤ 1.

We are going to construct inductively a subsequence (fn)n of (hn)n , a
sequence of functions gn ∈ L∞ and two sequences of positive numbers βn
and εn ≤ min{1/2n+1,M/2n+1} , such that, for every n ≥ 1

(i) if we set M1 = 1 and, for n ≥ 2

Mn = max
{

1,Ψ
(‖g1‖∞ + · · · + ‖gn−1‖∞

2M

)}
,

then Mnβn ≤ 1/2n+1 ;

(ii) ‖fn‖Ψ = 1;

(iii) ‖fn − gn‖Ψ ≤ εn , with εn such that βnΨ(αn/2εn) ≥ 2;

(iv) P({|gn| > αn}) ≤ βn ;

(v) ‖ğn‖Ψ ≥ 1/2, with ğn = gn 1I{|gn|>αn} .

We shall give only the inductive step, since the starting one unfolds
identically. Suppose hence that the functions f1, . . . , fn−1 , g1, . . . , gn−1 and
the numbers β1, . . . , βn−1 and ε1, . . . , εn−1 have been constructed. Choose
then βn > 0 such that Mnβn ≤ 1/2n+1 . Note that Mn ≥ 1 implies that
βn ≤ 1/2n+1 . Since

∫
Ω Ψ(|hk|/M) dP → 0 as n→ ∞ , we can find fn = hkn

such that ‖fn‖Ψ = 1, and moreover

P({|fn| > αn/2}) ≤ 1
Ψ(αn/2M)

∫
Ω

Ψ
( |fn|
M

)
dP ≤ βn

2
·

Take now εn ≤ min{1/2n+1,M/2n+1} such that 0 < εn ≤ αn/2Ψ−1(2/βn)
and gn ∈ L∞ such that ‖fn − gn‖Ψ ≤ εn . Then, since

P({|fn − gn| > αn/2})Ψ
( αn

2εn

)
≤

∫
Ω

Ψ
( |fn − gn|

εn

)
dP ≤ 1,

we have

P({|gn| > αn}) ≤ P({|fn| > αn/2}) + P({|fn − gn| > αn/2})

≤ βn
2

+
1

Ψ(αn/2εn)
≤ βn.
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To end the construction, it remains to note that

‖fn − ğn‖Ψ ≤ ‖fn − gn‖Ψ + ‖ğn − gn‖Ψ ≤ εn +
1
a
‖ğn − gn‖∞

≤ 1
2n+1

+
αn
a

≤ 1
2n

≤ 1
2

and so

‖ğn‖Ψ ≥ ‖fn‖Ψ − ‖fn − ğn‖Ψ ≥ 1 − 1
2

=
1
2
·

This ends the inductive construction.

Consider now

ğ =
+∞∑
n=1

|ğn| .

Set An = {|gn| > αn} and, for n ≥ 1

Bn = An \
⋃
j>n

Aj .

We have P
(

lim supAn
)

= 0, because

∑
n≥1

P(An) ≤
∑
n≥1

βn ≤
∑
n≥1

1
2n

< +∞.

Now ğ vanishes out of
⋃
n≥1

Bn ∪ (
lim supAn

)
and we have

∫
Bn

Ψ
( |ğn|

2M

)
dP ≤

∫
Ω

Ψ
( |gn|

2M

)
dP

≤
∫

Ω

Ψ
( |gn − fn|

2M
+

|fn|
2M

)
dP

≤ 1
2

∫
Ω

Ψ
( |gn − fn|

M

)
dP +

1
2

∫
Ω

Ψ
( |fn|
M

)
dP.

The first integral is less than εn/M , because Ψ(at) ≤ aΨ(t) for 0 ≤ a ≤ 1
and εn/M ≤ 1, so that

∫
Ω

Ψ
( |gn − fn|

M

)
dP ≤ εn

M

∫
Ω

Ψ
( |gn − fn|

εn

)
dP ≤ εn

M
≤ 1

2n+1

since ‖fn − gn‖Ψ ≤ εn . Since
∫

Ω

Ψ
( |fn|
M

)
dP ≤ βn

2
Ψ

(
αn/2M) ≤ βn/2,
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we obtain ∫
Bn

Ψ
( |ğn|

2M

)
dP ≤ 1

2n+2
+
βn
4

·

Therefore, since P(Bn) ≤ P(An) ≤ βn , we have

∫
Ω

Ψ
( |ğ|

4M

)
dP =

+∞∑
n=1

∫
Bn

Ψ
( |ğ|

4M

)
dP

≤
+∞∑
n=1

∫
Bn

1
2

[
Ψ

(‖g1‖∞ + · · · + ‖gn−1‖∞
2M

)
+ Ψ

( |ğn|
2M

)]
dP

by convexity of Ψ and because ğj = 0 on Bn for j > n

≤ 1
2

+∞∑
n=1

(
Mnβn +

1
2n+2

+
βn
4

)

≤ 1
2

+∞∑
n=1

( 1
2n+1

+
1

2n+2
+

1
2n+2

)
≤ 1

which proves that ğ ∈ LΨ , and consequently that the series
∑

n≥1 ğn is
weakly unconditionally Cauchy in LΨ :

sup
n≥1

sup
θk=±1

∥∥∥
n∑
k=1

θkğk

∥∥∥
Ψ
≤ sup
n≥1

∥∥∥
n∑
k=1

|ğk|
∥∥∥

Ψ
≤ ‖ğ‖Ψ ≤ 4M.

Since ‖ğn‖ψ ≥ 1/2, (ğn)n≥1 has, by Bessaga-Pe�lczyński’s theorem, a
subsequence (ğnk

)k≥1 which is equivalent to the canonical basis of c0 . The
corresponding subsequence (fnk

)k≥1 of (fn)n≥1 remains equivalent to the
canonical basis of c0 , since

+∞∑
n=1

‖fn − ğn‖Ψ ≤
+∞∑
n=1

εn +
αn
a

≤
+∞∑
n=1

1
2n+1

+
1

2n+2
< 1

and the assertion follows. �

3. Comments

Remark 12. Let us note that the assumption X ⊆ MΨ in Theorem 4
cannot be relaxed in general. In fact, suppose that X is a subspace of LΨ

containing L∞ , and let ξ ∈ (Mψ)⊥ ⊆ (LΨ)∗ , ξ �= 0. Being of rank one, ξ
is trivially weakly compact. Suppose that it satisfies (W). Let f ∈ X with
norm 1, and let ε > 0. For t large enough and ft = f1I{|f |≤t} , we have
‖f − ft‖2 ≤ ε/Cε . Moreover, ft ∈ L∞ ⊆ X and ‖ft‖Ψ ≤ ‖f‖Ψ = 1. Since
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ξ vanishes on L∞ and f − ft ∈ X , we get

|ξ(f)| = |ξ(f − ft)| ≤ Cε‖f − ft‖2 + ε‖f − ft‖Ψ ≤ 3ε.

This implies that ξ(f) = 0. Since this occurs for every ξ ∈ (MΨ)⊥ , we get
that X ⊆MΨ (and actually X = MΨ since X contains L∞ ).

In particular Theorem 4 does not hold for X = LΨ .

Remark 13. However, condition (W) remains true for bi-adjoint
operators coming from subspaces of MΨ : if T : X ⊆ MΨ → Y satisfies
the condition (W), then T ∗∗ : X∗∗ → Y ∗∗ also satisfies it. Indeed, for every
ε > 0, we get an equivalent norm ‖| . |‖ε on X by putting

‖|f |‖ε = Cε‖f‖2 + ε‖f‖Ψ.

Hence if f ∈ X∗∗ , there exists a net (fα)α of elements in X , with
‖|fα|‖ε ≤ ‖|f |‖ε which converges weak-star to f . Then (Tfα)α converges
weak-star to T ∗∗f , and

‖T ∗∗f‖ ≤ lim inf
α

‖Tfα‖ ≤ lim inf
α

(Cε‖fα‖2 + ε‖fα‖Ψ)

= lim inf
α

‖|fα|‖ε ≤ ‖|f |‖ε = Cε‖f‖2 + ε‖f‖Ψ.

Hence, from Proposition 10 above, for such a T , T ∗∗ is weakly compact
if and only if it satisfies (W). We shall use this fact in the forthcoming
paper [13].

Remark 14. In Theorem 4, we cannot only assume that Ψ /∈ Δ2 ,
instead of Ψ ∈ Δ0 , as the following example shows. It also shows that
in Corollary 2, we cannot obtain condition (W) instead of condition (1).

Example 15. Let us define

ψ(t) =
{

t for 0 ≤ t < 1,
(k!)(k + 2)t− k!(k + 1)! for k! ≤ t ≤ (k + 1)!, k ≥ 1,

(ψ(k!) = (k!)2 for every integer k ≥ 1 and ψ is linear between k! and
(k + 1)!), and Ψ(x) =

∫ x
0 ψ(t) dt. Since t2 ≤ ψ(t) for all t ≥ 0, one has

x3/3 ≤ Ψ(x) for all x ≥ 0. Then

Ψ(2.n!) ≥
∫ 2.n!

n!

ψ(t) dt = n!(n+ 2)
3
2

(n!)2 − (n!)2(n+ 1)! = (n!)3
(n

2
+ 2

)
,

whereas

Ψ(n!) =
∫ n!

0

ψ(t) dt ≤ (n!)2 n! = (n!)3 ;



P. Lefèvre et. al. 289

hence
Ψ(2.n!)
Ψ(n!)

≥ n

2
+ 2,

and so

lim sup
x→+∞

Ψ(2x)
Ψ(x)

= +∞,

which means that Ψ /∈ Δ2 . On the other hand, for every β > 1

Ψ(n!/β) ≥ 1
3

( n!
β

)3

=
(n!)3

3β3
,

so
Ψ(n!)

Ψ(n!/β)
≤ (n!)3

(n!)3/3β3
= 3β3 ;

hence

lim inf
x→+∞

Ψ(2x)
Ψ(x)

≤ 3β3 ,

and Ψ /∈ Δ0 (actually, this will follow too from the fact that Theorem 4 is
not valid for this Ψ).

Moreover, the conjugate function of Ψ satisfies the condition Δ2 . Indeed,
since ψ is convex, one has ψ(2u) ≥ 2ψ(u) for all u ≥ 0, and hence:

Ψ(2x) =
∫ 2x

0

ψ(t) dt = 2
∫ x

0

ψ(2u) du ≥ 2
∫ x

0

2ψ(u) du = 4Ψ(x),

and as it was seen in the Introduction that means that Ψ ∈ ∇2 .
Now, we have x3/3 ≤ Ψ(x) for all x ≥ 0; therefore ‖ . ‖3 ≤ 31/3‖ . ‖Ψ .

In particular, we have an inclusion map j : MΨ ↪→ L3 , which is, of course,
weakly compact. Nevertheless, assuming that P is diffuse, condition (W)
is not verified by j , when ε < 1. Indeed, as we have seen before, one
has Ψ(n!) ≤ (n!)3 . Hence, if we choose a measurable set An such that
P(An) = 1/Ψ(n!) , we have

‖1IAn‖Ψ =
1

Ψ−1
(
1/P(An)

) =
1
n!

;

whereas

‖1IAn‖3 = P(An)1/3 =
1

Ψ(n!)1/3
≥ 1
n!

and

‖1IAn‖2 = P(An)1/2 ≤
[

3
(n!)3

]1/2

=
√

3
(n!)3/2

·



290 Weak compactness for operators on subspaces of Orlicz spaces

If condition (W) were true, we should have, for every n ≥ 1

1
n!

≤ Cε

√
3

(n!)3/2
+ ε

1
n!

,

that is
√
n! ≤ √

3 Cε

1−ε ,which is of course impossible for n large enough.

Remark 16. In the case of the whole space MΨ , we can give a direct
proof of the necessity in Theorem 4. Indeed, suppose that T : MΨ → X is
weakly compact. Then T ∗ : X∗ → LΦ = (MΨ)∗ is weakly compact, and so
the set K = T ∗(BX∗) is relatively weakly compact.

Since Φ satisfies the Δ0 condition, it follows from [1] (Corollary 2.9) that
K has equi-absolutely continuous norms. Hence, for every ε > 0, we can
find δε > 0 such that:

m(A) ≤ δε ⇒ ‖g1IA‖Φ ≤ ε/2 , g ∈ T ∗(BX∗).

But (the factor 1/2 appears because we use the Luxemburg norm on the
dual, and not the Orlicz norm: see [16], Proposition III.3.4)

sup
g∈T∗(BX∗ )

‖g1IA‖Φ ≥ 1
2

sup
u∈BX∗

sup
‖f‖Ψ≤1

| < f, (T ∗u)1IA > |

=
1
2

sup
u∈BX∗

sup
‖f‖Ψ≤1

∣∣∣
∫
f(T ∗u)1IA dm

∣∣∣
=

1
2

sup
u∈BX∗

sup
‖f‖Ψ≤1

| < T (f1IA), u > | =
1
2

sup
‖f‖Ψ≤1

‖T (f1IA)‖;

so
m(A) ≤ δε ⇒ sup

‖f‖Ψ≤1

‖T (f1IA)‖ ≤ ε.

Now, we have

m(|f | ≥ ‖f‖2/δε) ≤ δε
‖f‖2

∫
|f | dm =

δε
‖f‖2

‖f‖1 ≤ δε;

hence, with A = {|f | ≥ ‖f‖2/δε} , we get, for ‖f‖Ψ ≤ 1:

‖Tf‖ ≤ ‖T (f1IA)‖ + ‖T (f1IAc)‖ ≤ ε+ ‖T ‖‖f‖2

δε

since |f1IAc | ≤ ‖f‖2/δε implies ‖f1IAc‖Ψ ≤ ‖f1IAc‖∞ ≤ ‖f‖2/δε .

Remark 17. Conversely, E. Lavergne ([10]) recently uses our Theorem 4
to give a proof of the above quoted result of J. Alexopoulos ([1],
Corollary 2.9), and uses it to show that, when Ψ ∈ Δ0 , then the reflexive
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subspaces of LΦ (where Φ is the conjugate of Ψ) are closed for the L1 -
norm.
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[11] P. Lefèvre, Some characterizations of weakly compact operators on H∞

and on the disk algebra. Application to composition operators, Journal
of Operator Theory, 54 (2005), 229–238.



292 Weak compactness for operators on subspaces of Orlicz spaces
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Luis Rodŕıguez-Piazza
Universidad de Sevilla
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