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Abstract

This PhD dissertation arises with the idea of studying nuclear systems of
astrophysical interest. Understanding of nucleosynthesis processes requires
a deep connection between nuclear physics and astrophysics. In general,
the reaction networks describing the evolution in composition and energy
production of different astrophysical scenarios rely on the properties of the
involved nuclei. Reaction rates at stellar burning phases can be very slow,
thus involving stable nuclei only. However, nucleosynthesis paths in explosive
scenarios at the final stages of stellar evolution require also reactions with
exotic nuclei far from stability.

Within this broad field, this work focuses on the structure of weakly-
bound Borromean nuclei and the description of reactions involving them.
Borromean nuclei are three-body systems whose binary subsystems are un-
bound. This is, for instance, the case of 9Be (α+α+n). In order to describe
properly the properties and dynamics of weakly-bound nuclei, a reasonable
treatment of continuum states is required. However, the asymptotic behavior
of continuum states for systems comprising several charged particles is not
known in general. A possibility to address approximately this problem is the
pseudo-state method, in which the system Hamiltonian is diagonalized in a
basis of square-integrable functions. In this work, the analytical transformed
harmonic oscillator (THO) basis serves as the main tool for this purpose.

Starting with a general introduction, the first chapter is intended to
provide a brief overview regarding some recent advances and challenges in
nuclear physics. Special attention is paid to halo nuclei, which consist of a
core surrounded by one or more nucleons that form a diffuse nuclear cloud.
Two-neutron halo nuclei such as 6He (α + n + n) and 11Li (9Li + n + n)
present a Borromean structure. The relevance of Borromean nuclei in astro-
physics is discussed along a brief introduction to nucleosynthesis, focusing
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xii Abstract

on the case of radiative capture reactions. In order to describe three-body
capture processes, a proper three-body model is required. In this regard, the
formalisms used along this work are presented.

The bulk of this thesis is structured in three parts. In chapter 2, the
analytical THO basis for three-body systems is introduced, and the com-
putation of the Hamiltonian matrix elements is discussed. The formalism
is applied to describe the structure of three Borromean systems comprising
one, two and three-charged particles, respectively: the two-neutron halo
nucleus 6He, the weakly-bound 9Be and the candidate for two-proton halo
17Ne (15O + p + p). The eigenfunctions obtained upon diagonalization of
the three-body Hamiltonian enable the evaluation of different observables,
such as matter and charge radii or transition probabilities. The comparison
with experimental data supports the robustness of the method in describing
Borromean systems.

The three-body radiative capture reactions to produce these nuclei are
studied in chapter 3. While the production of 6He and 9Be have been linked
to the r-process in neutron rich environments, the formation of 17Ne has
been proposed to play a role in the rp-process. The production of Bor-
romean nuclei in astrophysical environments has traditionally been studied
as sequential processes. At low temperatures, however, the three particles
may have no access to intermediate configurations and therefore they can fuse
directly. This leads to an enhancement of the corresponding reaction rates at
relatively low temperatures, which may have an impact on nucleosynthesis.

Reaction rates for three-body processes, which cannot be measured di-
rectly, carry an uncertainty related to the discrepancies between different
theoretical approaches. An alternative procedure is proposed to estimate re-
action rates from inclusive Coulomb breakup measurements. The method is
tested for 11Li, for which recent data on inclusive breakup data are available.

In chapter 4, direct reactions induced by three-body projectiles are
studied within a four-body reaction framework. The continuum-discretized
coupled-channel (CDCC) method is applied to describe the scattering of
9Be on 208Pb, 120Sn and 27Al at energies around the Coulomb barrier.
Due to the weakly-bound nature of the projectile, continuum effects play
an important role. The agreement with the available experimental data
confirms the reliability of the method in describing reactions induced by
three-body projectiles comprising more than one charged particle.



Abstract xiii

The main results and conclusion of this work are summarized in chap-
ter 5, with solid remarks for future research. Preliminary calculations for
the structure of 12C and its formation via the famous triple-α process are
presented in an additional chapter after the summary.

The document concludes with three formal appendixes which contain
the mathematical derivations of some expressions and formulae presented
throughout the main chapters. These appendixes are integral parts of this
PhD thesis, since they include important results which have been developed
along the doctoral period. They are presented in a compact manner at the
end of the document so as not to obscure the main discussion thread in the
chapters of this dissertation.

In addition to the physical and mathematical contents in this work, the
computing aspects have been very important. A comprehensive three-body
code has been developed to carry out calculations with the analytical THO
basis. Subroutines from the FaCE code have been modified and integrated
in the new code in order to enable the treatment of systems comprising
two or three identical particles. The coupling-channel problem for reaction
calculations has been solved using the FRESCO code, including coupling
potentials generated externally. Original codes have also been developed for
other general purposes, such as the computation of probabilities and cross
section within the semiclassical Coulomb excitation theory or the generation
of two- and three-dimensional wave-function probability plots.
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Chapter 1

Introduction

While knowledge can create problems, it
is not through ignorance that we can

solve them.

Isaac Asimov

The present work covers a series of theoretical studies concerning the
properties of three-body Borromean nuclei. These systems have changed
our understanding of nucleosynthesis processes, acquiring a well-deserved
position among the most studied nuclei over the past few years. A general
overview, regarding the experimental and theoretical advances that have
pushed forward our knowledge in nuclear physics, is given in section 1.1.
Some general astrophysical questions concerning the origin of elements in
the Universe are given in section 1.2. The theoretical models to describe the
particular case of three-body systems are introduced in section 1.3, where
the importance of continuum states is also discussed. In section 1.4, the
description of direct reactions including continuum couplings is introduced.
Finally, a brief outline is presented.

1.1 Background

The first studies on the atomic nucleus date back to the early 20th century,
when Geiger and Marsden conducted the famous Rutherford experiment.
The scattering of alpha particles on a gold target led Rutherford to formulate
his atomic model, in which the nucleus contained almost all the atomic mass

1
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in a tiny region compared to the size of the atom. Since then, every step
towards a better understanding of the nuclear properties has brought new
questions and motivations to carry out challenging experiments. The atomic
nucleus provides a unique system to learn about the competition between
the strong, weak and electromagnetic forces. As basic constituents of matter,
understanding the nucleus structure and reaction mechanisms is essential
for other fields, e.g. standard model and interaction theories, astrophysical
questions such as nucleosynthesis, and a variety of medical and industrial
applications.

In order to get reliable information from experiments carrying out nuclear
reactions, theoretical models need to incorporate a detailed description of the
interacting nuclei. The atomic nucleus, however, is a many-body system of
strong-interacting particles. The strong interaction and the finite number
of nucleons make difficult to address the problem by means of perturbative
theories or statistical approaches, of great interest in other fields. This reveals
that, in a quantum-mechanical perspective, the nucleus is one of the most
challenging problems Nature has to offer.

While the chemical behavior of the atom is essentially determined by
its atomic number Z defining the element, isotopes with different neutron
number N may exhibit completely different nuclear properties. The nuclear
chart1 arranges the different isotopes according to their Z and N , out to
the limits imposed by the neutron and proton driplines. Beyond them,
no bound nuclei can exist. Among the more than three thousand known
nuclei, only a few hundred are stable or have a half-life long enough to
occur naturally. The remaining are known as exotic nuclei, and some of
them appear as intermediate steps in the reaction networks that govern the
evolution in composition and energy production in different astrophysical
scenarios. In order to study exotic nuclei on Earth, they need to be artificially
produced and characterized in Radioactive Ion Beam (RIB) facilities. Over
the past decades, the advances in accelerator technologies, particle detectors
and instrumentation for the production and detection of exotic nuclei have
allowed nuclear physicists to explore regions of the nuclear chart far from the
so-called valley of stability. Whenever novel techniques have been developed,
new and often unexpected features have shown up. The experimental and

1Also referred to as Segrè chart. See, for instance, the updated database by the NNDC
Brookhaven National Laboratory, http://www.nndc.bnl.gov/chart/.

http://www.nndc.bnl.gov/chart/
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theoretical efforts in this field are motivated by the necessity to assess the
nuclear structure knowledge gained from stable nuclei, to explore the edges
of the nuclear landscape, and to study the extremes of stability [1].

In an attempt to sort and classify nuclei, the Shell Model [2] was proposed
in the 40s and developed in 50s by several physicists, most notably Eugene
P. Wigner, Maria G. Mayer and Hans D. Jensen, who shared the 1963 Nobel
Prize for their contributions. Searching the analogy with the atomic shell
model, which describes the arrangement of electrons in an atom, in the
nuclear shell model neutrons and protons fill successive layers according to
specific ordering rules. A totally filled shell results in greater stability, so
adding more nucleons decreases the binding energy of the system (and can
potentially lead to an unstable nucleus). The numbers corresponding to
closed shells received the name of magic numbers. Although the prevalence of
the established magic numbers for stable nuclei is remarkable, the predictive
capabilities of the Shell Model began to diminish when exotic nuclei came
into play. Separation energies and spin-parity assignments suggested the
disappearance of magic numbers and changes in the filling order for exotic
nuclei, revealing that the simple ideas behind the periodic table in atomic
physics were not sufficient to build up a similar picture in nuclear physics.

The complexity of the nuclear many-body problem has made nuclear
physics a phenomena-driven research field. Discoveries in RIB facilities have
revealed a substantial variety of exotic properties for nuclei far from stability.
The theoretical efforts to describe these features have been mostly based
on phenomenological principles. One of the observed features that have
attracted more interest in the recent years is the appearance of nuclear halos
for light nuclei close to the driplines. This term was introduced in 1969 [3]
and established shortly thereafter. Halo nuclei consist of a core surrounded
by one or more nucleons which are far from typical nuclear distances. When
the binding energy of these nucleons is small, a significant part of the wave
function describing its relative motion may define a diffuse nuclear cloud,
which is typically called nuclear halo. The first experimental evidences for
nuclear halos were found in the 80s, pointed out by an unexpectedly large
dipole response for 11Be [4], and large interaction cross sections for 6He,
8He and 11Li [5]. Today, the 11Be nucleus is understood as a one-neutron
halo system on top of a 10Be core, while 6He and 11Li are clear examples
of two-neutron halos on 4He and 9Li, respectively. The nucleus of 8He is
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Figure 1.1: Nuclear chart for Z ≤ 10, N ≤ 14. Stable, unbound, neutron-
and proton-rich nuclei are shown. One- and two-nucleon halo systems are
highlighted with rings. See the legend for color reference.

proposed to have a four-neutron halo. The unexpectedly large interaction
cross sections were associated to either large deformations or a spatially-
extended matter distribution. Another experiment in 1992 [6] confirmed
that the quadrupolar deformation of the 9Li and 11Li were quite similar,
concluding that the diffuse neutron cloud was responsible for this large cross
section. The properties of these nuclei and the mechanisms that govern
nuclear reactions involving them have been extensively studied [7–11] and
keep being the subject of many publications [12–14]. Other examples of
halo nuclei are shown in Fig. 1.1, including the one-proton halo 8B and the
candidate for two-proton halo 17Ne.

The case of two-nucleon halo systems, such as 6He (α + n + n)2 or 11Li
(9Li + n+ n), deserves special attention. They are what we call Borromean
nuclei, or three-body systems whose binary subsystems are not bound [11].
The term Borromean is named after a Renaissance heraldic symbol consisting
of three bound rings, but without bound pairs. This is schematically shown
in Fig. 1.2. Other examples of three-body Borromean halo nuclei are 14Be

2An α-particle is simply a 4He nucleus.
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Figure 1.2: Borromean rings.

(12Be+n+n) and 17Ne (15O+p+p). Well studied and characterized stable
nuclei such as 9Be (α + α + n) or 12C (α + α + α) have also a Borromean
structure, so this feature is not restricted to exotic systems. The relevance of
these systems in nucleosynthesis has motivated past and ongoing researchs
(see Section 1.2).

From a theoretical perspective, the description of halo and Borromean
systems can be addressed within few-body models, in which the internal
degrees of freedom of the particles that compose the system can be neglected
or simplified. One- and two-nucleon halo nuclei have been described in two-
[15–18] and three-body [19–25] models, respectively, and the effect of core
excitations on structure and reaction observables has also been studied [26,
27]. In general, systems far from stability are weakly-bound and exhibit
a large breakup probability in nuclear reactions. In order to account for
this effect, the theoretical models describing these systems need to include
a proper description of continuum or scattering states. This is explained in
detail in section 1.3.

Halo and Borromean nuclei are just a small piece within the nuclear
landscape. The nuclear physics community has devoted enormous efforts to
address several subjects of key importance to understand nuclear interactions
and dynamics [28]. Nuclei far from stability enable to amplify and isolate
particular features, helping to build up a unified theory of the nuclear matter
and finite nuclei, from deeply- to weakly-bound systems, and from light to
heavy elements. This objective requires a large network of research groups,
working both in theory and experiments, to map the different features that
appear at the very limits of the nuclear chart. The present contribution to
the field addresses some specific questions that will be outlined at the end
of this chapter.
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1.2 Nucleosynthesis

The origin of nuclei in the Universe is one of the key questions in nuclear
astrophysics. As a result of the extensive experimental and theoretical ac-
tivity in the field, our current understanding of nucleosynthesis processes
recognizes three main scenarios [29]: i) Big Bang nucleosynthesis (BBN),
also called primordial nucleosynthesis, concerning nuclear reactions which
occurred in the first few minutes of the Universe. ii) Hydrostatic equilibrium
nucleosynthesis, or stellar nucleosynthesis. This covers the reactions which
occur during the life of a star, providing the energy which prevents its grav-
itational collapse. iii) Explosive nucleosynthesis, involving more complex
reactions at the final stages of stellar evolution, such as supernovae, X-ray
bursts or neutron star mergers.

Primordial nucleosynthesis is one of the evidences supporting the Big
Bang model. Observations of primitive astrophysical sites enable to de-
duce the primordial abundances of hydrogen (H, D), helium (3He, 4He) and
lithium (7Li) produced in the first nuclear reactions. Most of the reactions
responsible for the production of these nuclei have been measured at the
relevant energies, and the agreement between the BBN calculations and the
observed abundances is remarkable [28]. The gradual transformation of these
light elements into heavier ones is achieved through nuclear reactions in stars.

Stellar nucleosynthesis is driven by the balance between the gravitational
contraction and an outward flow of energy produced by nuclear reactions.
Stars burn H to produce He through the well known p-p chain and CNO
cycles (see Ref. [29] for a detailed review). When the star exhausts its
hydrogen fuel, gravity tends to collapse the system. This produces an en-
hancement of the star inner temperature, up to the point where He begins
to fuse producing C and O. The process continues in a series of advanced
burning phases involving C, O, Ne and finally Si. Beyond the synthesis
of Fe, fusion reactions can no longer maintain the equilibrium against the
gravitational collapse, leading to the final stage of the star. The rates at
which the reactions occur depend on the temperature in the environment.
At the (relatively) low temperatures during early stellar burning phases the
rates can be very low, with nuclei existing for millions of years before being
changed in a reaction. For this reason only stable nuclei are important. After
the hydrogen burning, the formation of heavier nuclei needs to overcome
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the instability gaps at mass numbers A = 5 and A = 8 [30]. This means
that, within a stellar environment where mainly α-particles and nucleons are
present, the formation of 9Be or 12C can proceed avoiding the unbound nuclei
5He and 8Be. At the helium burning phase of stars, the low neutron density
makes the triple-α reaction for the formation of 12C the main nucleosynthesis
process [31]. Then, the α-particle capture on 12C to produce 16O is also
considered to be crucial, as it occurs during the helium-burning phase and
determines the abundance ratio between two elements which are fundamental
for life: C and O. This process, in turn, influences the timescales of stellar
evolution up to the final stages when the fuel burning ends. Despite the
importance of the triple-α reaction, the production rate of such process has
not yet been determined accurately (nor uniquely) for the entire temperature
range relevant in astrophysics (see the relative differences in Refs. [32–36]).
This is due to experimental problems to measure these processes as well as to
discrepancies in the theoretical predictions about the structure of 12C. Other
reactions beyond O and C complete the cases of astrophysical interest, but it
will not be discussed here. They account for the production of light elements
via proton- and α-particle capture at thermal equilibrium conditions.

As heavier nuclei are formed, the Coulomb repulsion decreases drasti-
cally the capture cross sections. For this reason, charged-particle reactions
at moderate stellar temperatures are not sufficient to explain the observed
solar system abundances of nuclides with masses beyond A ' 56. It is
therefore reasonable to assume that heavy nuclides can be synthesized by
exposing lighter seed nuclei to a source of neutrons. About half of the ele-
ment abundances between Fe and Bi are produced via slow neutron capture
nucleosynthesis (s-process) during the hydrostatic burning phase of a star.
Starting at iron seed nuclei, the s-process path runs close to the the valley
of stability via a sequence of neutron captures and β-decays. This path will
eventually reach 209Bi, which is the most massive stable nuclide. Further
neutron captures produce radioactive species that decay by α-particle emis-
sion, so Bi represents the termination point of the s-process. Neutrons are
not stable3, and they need to be produced during nuclear reactions in the
stellar medium. Thus, the neutron flux for the s-process is small and cannot
populate nuclei close to the driplines.

3The neutron has a lifetime of about ten minutes.
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In more exotic, neutron-rich environments such as the cataclysmic events
that follow the gravitational collapse of the star, the alternative rapid neu-
tron capture nucleosynthesis (r-process) comes into play. Nucleosynthesis
paths in explosive scenarios have the added complexity of requiring unstable
nuclei. The networks of nuclear reactions to describe the evolution of classical
novae, type Ia and type II supernovae or neutron stars involve thousands of
nuclides [28, 37]. Although the site for the r-process is still unclear, the
promising candidates are the neutrino-driven winds after core-collapse in
type II supernovae [38, 39], prompt supernova explosions [40] or neutron star
mergers [41]. In these neutron-rich environments, the formation of 9Be and
6He can proceed overcoming the instability gaps and affect the abundances
of seed material for the r-process [42]. The process α + α + n → 9Be + γ

is key among the reactions involving light nuclides, since it provides an
alternative path to 12C via the capture of another α particle [37, 43], and
it has been linked to the r-process in type II supernovae [37]. The reaction
α + n + n → 6He + γ may have an impact on nucleosynthesis models for
neutron star mergers [42].

It is interesting that the solar system abundances in the A > 60 range
can be accounted for in terms of two extreme pictures, that is, by relatively
low neutron densities achieved in the s-process and by very high neutron
exposures characteristic of the r-process [44]. However, these processes have
no access to the neutron-deficient4 region in the nuclear chart. The path to
reach these nuclides requires another type of reactions, the so-called rapid
proton capture (rp-process) [45]. Explosive H and He burning at high tem-
peratures can trigger the rp-process in Type I X-ray bursts. These are binary
systems consisting of a red giant and a neutron star, where the neutron star
accretes H-rich matter from the companion star. The proton flux is heated
and compressed, leading the rp-process to potentially populate nuclides off
the CNO cycle, i.e. Ne, F, Na [29, 45] via breakout reactions. Among the
relevant reactions, the two-proton capture on 15O to produce 17Ne has been
proposed as a key ingredient towards the production of heavier, neutron-
deficient nuclei [46, 47].

Stellar models aiming to describe the evolution in composition, energy
production and temperature of the different astrophysical environments rely
on the knowledge of the reaction rates for the relevant processes. The direct

4Also commonly called proton-rich nuclei, although this term is not completely correct.
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experimental measurement of the cross sections is, in principle, possible for
two-body reactions, both for charged particles and neutrons. In many cases,
however, reaction cross sections may not be measured directly. This may
occur if the initial nucleus is short-lived [48], or when the capture process is a
three-body reaction [49]. Theoretical models providing a reliable description
of the system are then necessary. The formation of 6He, 9Be and 17Ne, as in
the case of 12C, involve the description of a Borromean system. Radiative
capture reactions for three-body Borromean nuclei have traditionally been
studied as sequential processes [42, 49, 50]. For instance, in a first step
towards the production of 12C, two α-particles fuse to form 8Be. This system
is unbound but has a long enough lifetime to capture another α-particle
producing 12C. At low temperatures, however, the three particles may have
no access to intermediate resonances and therefore they can fuse directly [34,
35]. A complete three-body formulation is needed to describe properly the
reaction rates of such nuclei in the entire temperature range.

1.3 Three-body systems

In the case of Borromean nuclei, different approaches have been developed
to describe structure and scattering observables [11]. Three-body models
typically assume a simple cluster configuration, where the excitation of one
of the particles, if applicable, can be taken into account [51]. The simpli-
fied three-body picture avoids some computational limitations behind more
fundamental few-body ab initio approaches based on nucleon-nucleon inter-
actions between all A constituents [52]. In turn, strict three-body models
can be applied, from a practical purpose, to relatively heavier nuclei.

A common characteristic of exotic nuclei is their small separation energy
and hence their large breakup probability in scattering processes. This can
be understood as an excitation of the nucleus to unbound states that form
a continuum of energies [53]. On the other hand, the synthesis of nuclei in
stellar environments can be described as a decay from an unbound state of
several particles that fuse together producing a bound system [54]. Both
processes demand a reasonable treatment of continuum states.

In general, the treatment of unbound states of a quantum-mechanical
system deals with the drawback that the corresponding wave functions are
not square normalizable and their energies are not discrete values. Solving
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this problem is a difficult task, especially as the number of charged particles
increases, since the asymptotic behavior of continuum states is not known in
general. Nevertheless, there are various procedures to address this problem
such as the R-matrix method [24, 55, 56], not without difficulties. Another
approach to solve the continuum problem consists in using the so-called
discretization methods. These methods replace the actual continuum by a
finite set of normalizable states, i.e., a discrete basis that can be truncated
to a relatively small number of states providing a reasonable description
of the system. Several discretization methods have been proposed [21, 55].
For instance, one can solve the Schrödinger equation in a box [54], being the
energy level density governed by the size of the box. As this is larger, the level
density increases but numerical problems begin to appear. Another method
is the binning procedure, used traditionally in the continuum-discretized
coupled-channels formalism [57]. In this method the continuum spectrum is
truncated at a maximum energy and divided into a finite number of energy
(or momentum) intervals or bins. For each bin, a normalizable state is
constructed by superposition of the scattering states within that interval.
This approach requires the calculation of unbound states with the correct
asymptotic behavior. As mentioned above, the calculation of this asymptotic
behavior for a three-body system with more than one charged particle is by
no means an easy task.

An alternative method to obtain a discrete representation of the con-
tinuum spectrum is the so-called Pseudo-State (PS) method. This approach
consists in diagonalizing the Hamiltonian of the system in a complete basis of
square-integrable functions. The negative-energy solutions of that problem
describe the bound states of the system, while positive-energy solutions are
taken as a discrete representation of the continuum [58]. The PS method pro-
vides a unified description of bound, resonant and non-resonant continuum
states in terms of discrete functions. A variety of bases have been proposed
for two-body [15–17, 59] and three-body systems [19, 22, 23, 25], for which
this method can be especially useful.

1.3.1 The Pseudo-State (PS) method

In order to describe three-body systems, Jacobi coordinates {xk,yk} are
introduced. The variable xk is proportional to the relative coordinate be-
tween two particles and yk is proportional to the distance from the center
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Figure 1.3: The three sets of scaled Jacobi coordinates.

of mass of the x-subsystem to the third particle, both with a scaling factor
depending on their masses [21]. The label k identifies one the three possible
Jacobi systems, as shown in Fig. 1.3. For convenience, the notation assumes
that, for example, the Jacobi-1 system corresponds to the system where the
particles (2,3) are related by coordinate x1. From the Jacobi coordinates it
is possible to define the hyperspherical coordinates {ρ, αk, x̂k, ŷk}, where the
hyperradius (ρ) and the hyperangle (αk) are given by

ρ =
√
x2k + y2k, (1.1)

αk = tan

(
xk
yk

)
, (1.2)

and {x̂k, ŷk} are the two-dimensional angular variables associated to {xk,yk}.
Note that, while the hyperangle depends on k, the hyperradius is the same
for the three Jacobi systems. More details about Jacobi and hyperspherical
coordinates are shown in appendix A.1.

Using hyperspherical coordinates, the solutions of the Schrödinger equa-
tion in one of the Jacobi systems can be expanded as (k is not specified when
it is fixed)

φnjµ(ρ,Ω) = ρ−5/2
∑
β

Rjµnβ(ρ)Yβjµ(Ω), (1.3)

where n labels the eigenstate with associated eigenvalue εnj , Ω ≡ {α, x̂, ŷ}
is introduced for the angular dependence and β ≡ {K, lx, ly, l, Sx, jab} is a
set of quantum numbers called channel. In this set, K is the hypermomen-
tum, lx and ly are the orbital angular momenta associated with the Jacobi
coordinates x and y, respectively, l is the total orbital angular momentum
(l = lx + ly), Sx is the spin of the particles related by the coordinate x,
and jab results from the coupling jab = l + Sx. If I denotes the spin of the
third particle, which is assumed to be fixed, the total angular momentum
j is given by j = jab + I. The functions Yβjµ(Ω) are states of good total
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angular momentum j, expanded in Hyperspherical Harmonics (HH) Υ
lxly
Klm

as [11]

Yβjµ(Ω) =

{[
Υ
lxly
Klm ⊗ κSx

]jab
⊗ ξI

}j
. (1.4)

This expression follows the angular momentum couplings described in the
preceding lines, being κ and ξ the spin functions. The HH are the eigenfunc-
tions of the hypermomentum operator K̂, as shown in appendix A.2. The
hyperradial functions Rjµnβ(ρ) are expanded in a basis of square-integrable
functions,

Rjµnβ(ρ) =

imax∑
i=0

Ciβjn Uiβ(ρ), (1.5)

where i denotes the hyperradial excitation, so that (imax + 1) represents the
number of hyperradial functions included for each channel, and Ciβjn are the
diagonalization coefficients. Inserting Eq. (1.5) in Eq. (1.3), the eigenstates
of the system are given by

φnjµ(ρ,Ω) = ρ−5/2
∑
β

imax∑
i=0

Ciβjn Uiβ(ρ)Yβjµ(Ω). (1.6)

The hyperspherical formalism is an ideal tool to describe three-body
Borromean systems [11, 21], since it considers the three components on an
equal footing assuming no specific two-body structure. In principle, expan-
sion (1.6) includes an infinite number of channels β, which account for all
possible system configurations. However, the Hamiltonian diagonalization
is performed in a truncated basis with a maximum hypermomentum Kmax,
which limits the number of channels included in the calculations and has to
be large enough to provide converged results. Different PS methods differ
in the basis choice. Different bases can be found in the literature, each one
with its advantages and drawbacks. The results and the properties of the
system are not dependent on the basis choice, provided the model space is
large enough.

1.3.2 Three-body Hamiltonian

The specific properties of a system are described by its Hamiltonian. Using
Jacobi coordinates, it is possible to express the Hamiltonian of a three-body
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system as
Ĥ(x,y) = T̂ (x,y) + V̂ (x,y), (1.7)

where the center of mass term has been subtracted and T̂ , V̂ are the typical
kinetic energy and potential operators. The kinetic energy has two terms,
each one that can be separated into a radial part and an angular part,

T̂ (x,y) = t̂x(x) + t̂y(y) = − ~2

2m

[(
1

x

d2

dx2
x− l̂2x

x2

)
+

(
1

y

d2

dy2
y −

l̂2y
y2

)]
,

(1.8)
where l̂x and l̂y are the angular momentum operators associated to x and y,
and m is a normalization mass which, for nuclear systems, is usually taken
as the atomic mass unit. It is convenient, however, to write the Hamiltonian
in hyperspherical coordinates. In appendix B.1 it is shown that the kinetic
energy operator can be written equivalently as

T̂ (ρ,Ω) = − ~2

2m

[
∂2

∂ρ2
+

5

ρ

∂

∂ρ
− 1

ρ2
K̂2(Ω)

]
, (1.9)

where K̂ represents the hypermomentum operator. This expression is a
specific case of the more general N-dimensional problem [21].

Concerning the potential V̂ , the general expression for a three-body sys-
tem can be written by means of binary terms as fundamental interactions,

V̂ (ρ,Ω) = V̂12 + V̂13 + V̂23, (1.10)

each one including different contributions depending on the particles in-
volved. Calling r the modulus of the coordinate relating two particles, the
general binary interaction has the form

V̂ij = Vc(r) + Vso(r)ŜO + Vq(r)Q̂+ Vt(r)T̂ + Vss(r)ŜS, (1.11)

where

• Vc(r) is the central term,

• ŜO and Vso(r) are the spin-orbit operator and its radial form factor,

• Q̂ and Vq(r) are the tensor operator and the radial form factor for a
deformed potential if the excitation of one of the particles is considered,
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• T̂ and Vt(r) are the standard tensor operator and the radial form factor
for the nucleon–nucleon (NN) interaction, and

• ŜS and Vss(r) are the spin-spin operator and its corresponding radial
dependence.

Preceding expressions assume that the binary interactions Vij are local,
and they are adjusted to reproduce the phenomenology of the two-body
subsystems, when experimental data is available. However, since three-body
models are an approximation to the full many-body problem, including only
binary interactions may lead to deviations from the experimental three-body
energies [23, 51, 54]. Therefore, it is usual to add a structureless hyperradial
three-body force V3b in Eq. (1.10), whose parameters can be fixed to adjust
the energy of the system without distorting its structure. Specific forms of
this phenomenological force will be shown in the following chapters.

1.3.3 Pauli blocking

The solution of the Schrödinger equation,(
T̂ + V̂12 + V̂13 + V̂23 + V3b − εnj

)
φnjµ = 0, (1.12)

does not take any account of Pauli blocking effects. In general, some compo-
nents of the wave function would disappear under full antisymmetrization of
the A–nucleon system. This problem is a common issue in few-body theories,
where the Pauli principle can only be treated approximately.

The antisymmetrization of the full many-nucleon system would lead to
exchange terms which are nonlocal in the two-body subsystem relative co-
ordinates [60, 61]. These terms produce an l–dependence of the local phase-
equivalent potentials Vij included in Eqs. (1.10), (1.12), which accounts for
the Pauli principle within the two-body subsystems. This is usually needed
for the binary local potentials to be able to reproduce the two-body exper-
imental phase shifts. However, the l–dependent local interactions typically
have unphysical bound states that represent already occupied states of one
of the clusters. An approximate way to deal with the antisymmetrization
problem is to remove these two-body forbidden states prior to solving the
three-body equation. For this, several different methods have been devel-
oped [24].
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• Projection operators. It consists in projecting out the two-body
unphysical states. The three-body Schrödinger equation is then
solved within the allowed subspace. This can be done by using the
pseudo-potential method [62] or directly with nonlocal projection
operators [63].

• Phase-equivalent potential. It is possible to introduce an auxiliary
repulsive interaction in the partial components of the local potential be-
tween clusters where forbidden states appear. The interaction defined
in this way is fitted to reproduce the experimental phase shifts. Due
to its application to systems formed by a core surrounded by valence
nucleons which cannot enter the occupied core states, this method is
typically called repulsive core.

• Supersymmetric transformation. For a potential having a two-body for-
bidden state, it is possible to use a supersymmetric transformation [64]
to obtain a spectrally equivalent interaction without this state but with
a repulsive singularity at the origin.

• Adiabatic projection. Projecting onto the hyperangular part of the
wave function, it is possible to write down an adiabatic equation involv-
ing a hyperradial coupling matrix, which contains both the potential
and centrifugal terms. Its eigenvalues define the adiabatic energy sur-
faces or adiabatic potentials. Those associated with unphysical bound
states can be projected out, providing an effective coupling matrix
without forbidden states [65].

These approaches provide essentially the same results when computing
three-body bound states [11, 66], but may show differences for continuum-
dependent observables like transition probability distributions [24]. This is
a price one has to pay in order to simplify the complex many-body problem
by a much simpler few-body picture. In some cases, a clever choice of the
Jacobi set to describe the system simplifies the antisymmetrization between
identical particles by removing components of the wave function with for-
bidden angular momenta. This will be clarified with specific examples in
chapter 2.
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1.4 Continuum-Discretized Coupled Channels

The Continuum-Discretized Coupled-Channel (CDCC) method [57, 67] was
developed as a natural extension of the Coupled-Channel (CC) method,
widely used to study the effect of (bound) excited states on reactions with
stable nuclei. The explicit inclusion of states that are strongly coupled to
the ground state of the system enables to evaluate the relevance of inelastic
channels, in which either the projectile or the target ends up in an excited
state. The influence of excitations on the elastic channel can also be studied.
In the case of weakly-bound projectiles, continuum couplings may play an
important role, and therefore the CC method cannot be applied directly.
The CDCC method is an extension of the CC method to include continuum
states in the formalism. Roughly speaking, the CDCC method consists in
expanding the total wave function in a basis of projectile or target inter-
nal states, including both bound and continuum states. The method was
originally introduced to address deuteron breakup in a three-body model,
(p + n) + X. Typical examples that can be addressed with the CDCC
method are reactions induced by 6Li, by the proton-rich nucleus 8B and
by the neutron-rich nuclei 11Be or 19C, which contain only a single bound
state characterized by a small binding energy. Then, the applicability of the
method relies on a good description of the states (bound and continuum) of
the involved nuclei.

The CDCC approach, however, solves an effective few-body problem
approximately, via the expansion of the full wave function in a selected
set of continuum wave functions of a given subsystem Hamiltonian. It was
introduced as a practical way of solving the complicated scattering problem,
avoiding the exact Faddeev equations [68] for the wave function components
or the equivalent Alt, Grassberger and Sandhas (AGS) equations for the
transition operators [69]. It has been argued that the CDCC solution ap-
proaches the exact (Faddeev or AGS) solution as the model space to describe
the internal states is increased, but still some differences may appear. For
11Be+p, the three-body CDCC based on a pn or 10Be+n expansion showed
a good agreement with the exact AGS solutions only in certain angular
regions depending on the basis choice [70]. In the case of reaction induced
by weakly-bound projectiles on heavy, deeply-bound targets with large gaps
between their ground state and the first excited state, the total wave function
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is expanded in internal states of the projectile and this problem is typically
ignored. But a word of caution is required for reactions where this separation
is not evident.

Considering an N -body projectile colliding with a structureless target,
the total scattering wave function (N + 1) will be solution of

[H− E]Ψ
(+)
K ({rq},R) = 0, (1.13)

whereR represents the projectile-target relative motion, {rq} are the (N−1)
internal coordinates describing the projectile, and K is the incident wave
vector in the center of mass frame. The total Hamiltonian is given by

Ĥ = T̂R + Ûpt + ĥ, (1.14)

being T̂R the kinetic energy operator associated to the projectile-target rel-
ative motion and ĥ the internal Hamiltonian describing the projectile. The
term Ûpt is the interaction between projectile and target, which depends on
the position of the N particles with respect to the center of mass of the
target, {Ri}. It is assumed that each particle i interacts with the target
through a potential Vit(Ri), which implies

Ûpt =
N∑
i=1

Vit(Ri). (1.15)

Here, Vit(Ri) can be taken as the optical potential describing the elastic
scattering for the i-target subsystem. These are typically central potentials
with imaginary parts that account for the absorption from the elastic chan-
nel. Therefore, they describe implicitly the possible excitations of the target
due to the interaction with each projectile component i. The projectile
Hamiltonian ĥ must satisfy

ĥφnjµ = εnjφnjµ, (1.16)

where φnjµ are the projectile states labeled by its angular momentum j and
corresponding projection µ. Notice that index n assumes implicitly a discrete
representation. For simplicity, w ≡ {njµ} is introduced to denote the states
with definite labels. The projectile collides with the target being initially in a
state φω, that will be strongly distorted by the projectile-target interaction.
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The solutions of Eq. (??) must reflect the nature of a scattering process, and
therefore have the asymptotic form5

Ψ
(+)
K,ω ({rq},R) = eiK·Rφω + {outgoing waves}, (1.17)

where the second term on the right side will be a linear combination of
scattered spherical waves in the different states φω′ accessible to the projec-
tile. The coefficients in that expansion are the scattering amplitudes and
determine the cross sections.

System wave functions for a definite initial state φω = φnjµ and total
angular momentum J = j + L, where L is the orbital angular momentum
associated to the relative motion, can be expanded as

ΨJM
Lnj ({rq},R) =

∑
L′n′j′

iL

R
χJLnj,L′n′j′(R)

[
YL′(R̂)⊗ φn′j′({rq})

]JM
, (1.18)

which assumes an expansion in terms of excited states of the projectile.
Defining a channel wave function

ΦJM
Lnj(R̂, {rq}) =

[
YL(R̂)⊗ φnj({rq})

]JM
, (1.19)

and introducing c ≡ {Lnj}, Eq. (1.18) can be written as

ΨJM
c ({rq},R) =

∑
c′

iL

R
χJc,c′(R)ΦJM

c′ (R̂, {rq}). (1.20)

This notation is introduced to distinguish between ω, that represents the
state of the projectile with fixed projection µ, and c, which is the reaction
channel associated to ω that includes also the relative angular momentum
L. Inserting expansion (1.20) in the Schrödinger equation leads to the set of
coupled equations for the radial functions

[
− ~

2mr

(
d2

dR2
− L(L+ 1)

R2

)
+ Eω − E

]
χJc,c(R)

+
∑
c′

iL
′−LV JM

c,c′ (R)χJc,c′(R) = 0, (1.21)

5The plane wave to describe the relative motion at large distances is valid only in
absence of Coulomb interaction between projectile and target. The general case involves
additional phase factors.
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where Eω is defined from εnj by subtracting the ground state energy, and
mr is the projectile-target reduced mass. In this expression, V JM

c,c′ (R) are the
coupling potentials that contain all the information related to the projectile
internal states,

V JM
c,c′ (R) = 〈ΦJM

c |Ûpt|ΦJM
c′ 〉. (1.22)

The coupled-channel problem given by Eq. (1.21) must be solved for positive
scattering energies E > 0. At large distances, the radial functions for open
channels (E > Eω) are given by a combination of incoming (H(−)

c ) and
outgoing (H(+)

c ) Coulomb functions [71],

χJc,c′(R) −→ i

2

[
H(−)
c (KcR)δc,c′ − SJc,c′H(+)

c (KcR)
]
, (1.23)

where c and c′ refer to the entrance and exit channels, respectively. Here Kc

is the wave vector and SJc,c′ is the scattering matrix. The coupled equations
have to be integrated up to a maximum distance Rmax, which has to be
large enough before matching with the asymptotic form to extract the S-
matrix. Convergence with respect to this parameter must be checked. Then,
elastic, inelastic, and breakup cross sections are derived from the scattering
matrices. A detailed review is available in Refs. [72–75].

Note that ΨJM
c ({ri},R) are not the general solutions of the scattering

problem, but solutions for a given entrance channel and total angular mo-
mentum. The actual solutions of Eq. (1.13) will be a combination of these
wave functions,

Ψ
(+)
K,ω ({rq},R) =

∑
c

∑
JM

CJMc (K)ΨJM
c ({ri},R) , (1.24)

where the initial state ω is fixed. This means that the sum over entrance
channels c is equivalent to a summation over L only. Coefficients CJMc are
obtained with the condition that, in absence of interactions, Eq. (1.24) must
reduce to the expansion of a plane wave times the initial state. For simplicity,
let assume that these coefficients are known. Expanding explicitly the states
ΨJM
c , the previous scattering solution with the asymptotic conditions (1.23)

is given by
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Ψ
(+)
K,ω ({rq},R) =

∑
c

∑
JM

CJMc (K)

[∑
c′

iL

R
ΦJM
c′ (R̂, {rq})

× i

2

(
H(−)
c (KcR)δc,c′ − SJc,c′H

(+)
c′ (Kc′R)

)]
. (1.25)

This expansion remains to be compared with the general solutions introduced
by Eq. (1.17),

Ψ
(+)
K,ω ({rq},R) = eiK·Rφω +

∑
ω′

fω′,ω(θ)φω′e
iK′·R. (1.26)

For that, the channel wave functions ΦJM
c′ have to be decoupled, the ex-

plicit expressions of the Coulomb functions H(−)
c and H

(+)
c′ are required,

and coefficients CJMc need to be known. The general expression for the
angular-dependent scattering amplitude6 fω′,ω(θ) to the projectile state ω′

from initial state ω can be written as

fω′ω(θ) = δω′ωFcoul(θ) +
∑
L′

AL
′

ω′ωP
µ′−µ
L′ (cos θ), (1.27)

where Fcoul(θ) is the Rutherford amplitude for pure Coulomb scattering
(with no e2iσ0 factor),

Fcoul(θ) = − η

2K

exp(−2iη ln(sin θ/2))

sin2 θ/2
, (1.28)

η is the Sommerfeld parameter and AL
′

ω′ω are the Legendre coefficients of
Pµ
′−µ

L′ (cos θ). These coefficients are given by

AL
′

ω′ω =
∑
LJ

〈L0jµ|Jµ〉〈L′M ′Lj′µ′|J(M ′L + µ′)〉 4π

K

√
K ′

K
(1.29)

× ei(σL−σ0)ei(σ
′
L′−σ

′
0)

(
i

2

)[
δc′,c − SJc′,c

]√2L+ 1

4π
Ycoef(L

′,M ′L),

6The scattering amplitudes depend, in general, on both spherical angles (θ, ϕ). When
the colliding nuclei have no spin or the corresponding interaction are spin-independent,
then scattering process possesses azimuthal symmetry and the scattering amplitude de-
pends only on θ.



1.4. Continuum-Discretized Coupled Channels 21

where Ycoef(L,ML) is the coefficient of P |ML|
L (cos θ)eiMLφ in YML

L (θ, φ), σL =

arg [Γ(1 + L+ iη)] is the Coulomb phase shift, and (c, c′) refer to the en-
trance and exit channels associated to initial and final states (ω, ω′), respec-
tively. The differential cross section is obtained in terms of the scattering
amplitudes in Eq. (1.27) as

dσ(θ)

dΩ
=

1

2j + 1

∑
µ′µ

|fµ′µ(θ)|2. (1.30)

Note that, in the previous equation, ω has been replaced by µ, as the re-
maining labels nj are fixed. Thus, it requires only a summation over the
projections. The S-matrix elements can also be used to directly calculate
the integrated cross sections

σn′(E) =
4π

K2

K ′

K

∑
JLL′

2J + 1

2j + 1

∣∣SJLnj,L′n′j′∣∣2 . (1.31)

This expression provides directly the inelastic scattering from the initial
state nj to a final state n′j′. In the case of excitations to unbound states,
which represents the breakup of the projectile, the specific cross section to
a single continuum-discretized state has no physical meaning. However, the
total breakup cross-section can be approximated by the contribution of all
continuum states as

σBU (E) =
∑
n′

σn′(E). (1.32)

Previous expressions assume a process in which the target has no spin and
there is no particle transfer between projectile and target. More general
expressions can be found in Ref. [73].
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This work is structured as follows. Chapter 2 introduces the analytical
transformed harmonic oscillator (THO) basis to describe three-body systems
using pseudo-states (PS). The method is applied to 6He, 9Be and 17Ne
(comprising one, two and three charged particles, respectively), for which
structure observables are calculated. The radiative capture reaction rates
for these systems are obtained in chapter 3. Since reaction rates have an
important uncertainty related to the discrepancies in the different theoret-
ical approaches, an alternative procedure to estimate them from inclusive
breakup measurements is proposed. The method is tested for 11Li, for which
data on inclusive breakup has been measured recently. In chapter 4, the THO
method is applied to describe reactions induced by three-body projectiles,
focusing on the 9Be case. Finally, chapter 5 summarizes the main results of
this work and establishes an outlook for future research.

An additional chapter, regarding the structure and formation of 12C, is
presented after the summary. This is a work in progress whose final conclu-
sions have not yet been inferred. The document ends with three appendixes,
which supplement the expressions and mathematical derivations included in
the main chapters. They show important results that are presented at the
end of the document so as not to obscure the discussion thread.



Chapter 2

Description of three-body
Borromean systems

It seems to be one of the fundamental
features of nature that fundamental

physical laws are described in terms of a
mathematical theory of great beauty and

power.

Paul Dirac

In this chapter, the main features of the theoretical formalism used
throughout the work is presented. First, the analytical Transformed Har-
monic Oscillator (THO) basis is introduced. Then, expressions for the corre-
sponding Hamiltonian matrix elements in the THO basis are shown. Finally,
the calculation of different observables in the Pseudo-State (PS) basis is
discussed, and the relevant expressions for the matter radius, charge radius
and electromagnetic transition probabilities between states are obtained. The
formalism is applied to different cases of astrophysical interest: 6He, 9Be and
17Ne.

2.1 The analytical transformed harmonic oscillator
(THO) basis

The Transformed Harmonic Oscillator (THO) basis is based on a Local
Scale Transformation (LST) of the Harmonic Oscillator (HO) functions. The

23
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transformation is chosen to change the Gaussian asymptotic behavior of the
HO functions into an exponential decay, which is the known behavior for
physical bound systems. This relation is given by

UTHO
iβ (ρ) =

√
ds

dρ
UHO
iK [s(ρ)], (2.1)

being s(ρ) the transformation which provides the desired asymptotic behav-
ior. As originally developed, this transformation was defined so that from
the HO ground state one could recover the ground state of the system under
study [76]. This provided a numerical transformation. By construction, the
numerical THO reproduced the ground state of the system, independently
on the size of the basis. The method was applied to two-body [16, 77, 78] and
later to three-body systems [23, 79] in structure and reaction calculations.
A different approach consists in defining an analytic LST, which presents
several advantages over the numerical THO: i) The previous knowledge
of the ground state of the system is not required. ii) The analytical form
can be easily implemented in numerical codes. iii) The parameters of the
transformation govern the radial extension of the THO basis functions. The
analytical form of the transformation was proposed by Karataglidis et al. [80],

s(ρ) =
1√
2b

 1(
1
ρ

)ξ
+
(

1
γ
√
ρ

)ξ


1
ξ

, (2.2)

depending on parameters ξ, γ, and the oscillator length b. The role of the
parameter ξ is related to the rate at which the analytic form of the LST
deviates from the linear behavior at ρ → 0. Previous works found a very
weak dependence of the results on this parameter. It is then customary to
fix it to ξ = 4. The HO hyperradial variable s is dimensionless accord-
ing to the transformation defined by Eq. (2.2). In this way, b is taken as
another parameter of the transformation. Note that the THO hyperradial
wave functions depend, in general, on all the quantum numbers included in
a channel β, however the HO hyperradial wave functions only depend on
the hypermomentum K (see appendix A.3). This analytical transformation
provides a suitable representation of bound and unbound states to calculate
structure and scattering observables. The method was applied first to de-
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Figure 2.1: Analytic LST for three different values of the γ parameter, keep-
ing the oscillator length fixed to b = 1 fm. As γ decreases, a given value of
s(ρ) corresponds to a larger hyperradius.

scribe two-body systems [17, 18], and it is generalized here for three-body
problems. Using the transformation defined by Eq. (2.1), the basis states in
hyperspherical coordinates are given by

ψTHO
iβjµ (ρ,Ω) = ρ−5/2UTHO

iβ (ρ)Yβjµ(Ω), (2.3)

where Yβjµ are states of good total angular momentum j given by Eq. (1.4).
The previous expression, together with the general Eq. (1.6), provide the fol-
lowing system wave function after diagonalization of the three-body Hamil-
tonian:

φnjµ(ρ,Ω) =
∑
β

imax∑
i=0

Ciβjn ψTHO
iβjµ (ρ,Ω). (2.4)

The function s(ρ) behaves asymptotically as
γ

b

√
ρ

2
and hence the ana-

lytical THO hyperradial wave functions obtained behave at large distances
as exp (−γ2ρ/2b2). Therefore, the ratio γ/b governs the asymptotic behavior
of the THO functions: as γ/b increases, the hyperradial extension of the
basis decreases and some of the eigenvalues obtained by diagonalizing the
Hamiltonian explore higher energies [17]. That is, γ/b determines the density
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Figure 2.2: Hyperradial THO functions corresponding to analytical trans-
formations with different γ parameters, keeping b = 1 fm. The original HO
function is also shown. It is clear that the asymptotic behavior of the THO
functions is an exponential decay, while that of the original HO function is
Gaussian. As the parameter γ decreases, the THO functions explore larger
distances.
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Figure 2.3: PS energy spectra for a given system and jπ configuration, as a
function of the γ parameter, keeping b fixed. The only negative eigenvalue
corresponds to a bound state, and the positive energy solutions are a rep-
resentation of the continuum in the analytical THO basis. The level density
close to the break-up threshold is strongly dependent on the γ parameter.
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of PSs as a function of the energy. This allows to select an optimal basis
depending on the observable of interest. In Figs. 2.1 and 2.2 the analytical
form of the transformation and the corresponding extension of the hyperra-
dial basis functions are shown for different values of the γ parameter, fixing
the oscillator length b to 1 fm. For comparison, a HO function is also shown
in Fig. 2.2. As an example, in Fig. 2.3, the resulting PS energy spectra for
a given system are shown. The PS level density is very different for different
values of these parameters, and a good γ/b choice can reduce noticeably the
basis size needed to achieve converged calculations.

It is worth mentioning that the role of the ratio γ/b is somehow equiv-
alent to the size of a box when solving the Schrödinger equation with box
boundary conditions. The level density in that case is proportional to the size
of the box. However, very large boxes lead typically to numerical instabilities
solving the equation, so achieving large level densities at low energies can
be a problem [54]. This limitation is absent when using the analytical THO
method to solve the problem.

2.1.1 Hamiltonian matrix elements

Diagonalization of the three-body Hamiltonian requires the calculation of its
matrix elements in the chosen basis. The kinetic energy and potential matrix
elements can be computed separately. As shown in the previous chapter,
the kinetic energy operator is given by Eq. (1.9) and involves the hyper-
momentum operator K̂. The matrix elements are calculated between basis
states that separate in a hyperradial part and an angular part (Eq. (2.4)),
represented in ket notation by

|iβjµ〉 = ρ−5/2Uiβ(ρ)Yβjµ(Ω). (2.5)

It is shown in appendix B.1 that the kinetic energy matrix elements can be
easily written as

〈iβj|T̂ (ρ,Ω)|i′β′j〉 = 〈iβj|T̂U (ρ)|i′β′j〉δββ′ =

∫
dρ Uiβ(ρ)T̂U (ρ)Ui′β′(ρ)δββ′ ,

(2.6)
where projection µ has been omitted, and

T̂U (ρ) = − ~2

2m

(
d2

dρ2
− 15/4 +K(K + 4)

ρ2

)
. (2.7)
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This implies explicitly that the kinetic energy does not connect different
channels β. It is, however, non diagonal with respect to index i.

The potential matrix elements are computed in two steps. First, the
hyperradial coupling matrix is defined by integrating the potential V̂ between
the basis angular functions (see appendix B.2),

V j
ββ′(ρ) = 〈Yβjµ|V̂12(r12) + V̂13(r13) + V̂23(r23) + V3b(ρ)|Yβ′jµ〉. (2.8)

Then, this coupling matrix is integrated between the hyperradial functions,
providing the potential matrix elements

〈iβj|V̂ (ρ,Ω)|i′β′j〉 = 〈Uiβ|V j
ββ′(ρ)|Ui′β′〉 =

∫
dρ Uiβ(ρ)V j

ββ′(ρ)Ui′β′(ρ).

(2.9)
The preceding expression does connect different channels, and can include
different contributions according to the potential decomposition given by
Eq. (1.11). In the present work, the angular integration is performed fol-
lowing the prescriptions in the FaCE code [51]. The matrix elements given
by Eqs. (2.6) and (2.9) can be calculated numerically using Gauss-Laguerre
quadratures with the analytical THO basis functions UTHO

iβ .

2.2 Three-body observables

Diagonalization of the three-body Hamiltonian provides the eigenenergies
and corresponding eigenfunctions. The wave functions so obtained enable
the calculation of different observables by using the appropriate quantum
operators. Comparison of these observables with the available experimental
data for a given system will determine the degree of suitability of the model.

2.2.1 Matter and charge radius

The matter radius for an A-nucleon system is given by

r2 =
1

A

A∑
i=1

r2i , (2.10)

where ri is the position of each nucleon with respect to the center of mass of
the system. Considering a three-cluster system, this vector can be separated



2.2. Three-body observables 29

into two parts,
ri = Rq + ri(q). (2.11)

Here, Rq are the position of the clusters and ri(q) are the positions of each
nucleon with respect to the center of mass of its cluster. Inserting Eq. (2.11)
in (2.10) leads, after a simple derivation, to the final expression

rmat =
√
〈r2〉 =

√√√√√ 1

A

 3∑
q=1

Aq〈r2Aq〉

+ 〈ρ2〉

, (2.12)

where Aq and 〈r2Aq〉 are the mass number and known squared radius of each
cluster, respectively, and 〈ρ2〉 remains to be calculated in the state of interest.
Concerning the charge radius, the general definition gives

r2ch =
1

Z

Z∑
i=1

r2i , (2.13)

where ri is now the position of each proton with respect to the center of mass
of the system. In this sense, this is a point-nucleon charge radius. Following
a similar procedure, the final expression in this case reads

rch =
√
〈r2ch〉 =

√√√√√ 1

Z

 3∑
q=1

Zq〈r2Zq〉

+ 〈f(x, y)〉

, (2.14)

where Zq and 〈r2Zq〉 are the charge and squared charge radius of each cluster,
respectively, and f(x, y) is a function with a different form depending on
the number of charged and/or identical clusters in the system. All details
concerning the derivation and computation of the preceding formulae can be
found in appendix B.3.

2.2.2 Electromagnetic transition probabilities

Electromagnetic observables probe the structure of the wave functions
through multipole moments and gamma transitions. Both multipole de-
formations and electromagnetic transition probabilities can be measured
experimentally, providing data to compare with. The electromagnetic radia-
tion field is usually expanded in multipoles containing spherical harmonics,
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and electric and magnetic terms can be treated separately. A transition from
an initial nuclear state to a final state is, in this picture, mediated by one of
the multipole terms [81]. Following the notation of Brink and Satchler [82],
the reduced transition probability between two states labeled nj and n′j′ is
defined as

B(Oλ)nj,n′j′ ≡ B(Oλ;nj → n′j′)

= |〈nj‖Ôλ‖n′j′〉|2
(

2λ+ 1

4π

)
,

(2.15)

where ÔλMλ
is the electric or magnetic multipole operator of order λ, and

|njµ〉 denotes the wave function given by Eq. (2.4).

For electric transitions, the electric multipole operator for a general three-
body system takes the form in the Jacobi-k set

Q̂λMλ
(xk,yk) =

(
4π

2λ+ 1

)1/2 3∑
q=1

Zq e r
λ
q YλMλ

(r̂q), (2.16)

where Zq is the atomic number of particle q, e is the electron charge, and rq

is the position of particle q with respect to the center of mass of the system.
In the case of magnetic transitions, the magnetic multipole operator can be
expressed as a sum of two terms: the orbital and spin parts [83]. Following
again the notation of Brink ans Sachtler, these two terms are

M̂orb
λMλ

(xk,yk) =
e~

2mc

√
4πλ

∑
q

rλ−1q

2g
(q)
l

λ+ 1
[Yλ−1l]

(q)
(λ−1,1)λ,Mλ

,

M̂ spin
λMλ

(xk,yk) =
e~

2mc

√
4πλ

∑
q

rλ−1q g(q)s [Yλ−1s]
(q)
(λ−1,1)λ,Mλ

.

(2.17)

Here gl and gs are the orbital and spin g-factors, and [Yλ−1j](λ−1,1)λMλ
is a

tensorial product of order one,

[Yλ−1j](λ−1,1)λ,Mλ
≡ [Yλ−1 ⊗ j](λ−1,1)λ,Mλ

=
∑
ην

Y(λ−1)η ĵν 〈(λ− 1)η1ν|λMλ〉. (2.18)
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The position rq appearing in both electric and magnetic operators are
given in the Jacobi-q system by Eq. (A.7),

rq =

√
m

mq

(MT −mq)

MT
yq, (2.19)

where MT is the total mass of the system. This means that, in the Jacobi-q
system, the position of particle q is given by a vector proportional to yq.
However, wave functions are obtained in a preferred Jacobi-k system. For
that reason, the wave functions |njµ〉 have to be rotated from Jacobi-k to
Jacobi-q for each summand (i.e. for each particle) in Eq. (2.16), making use
of the transformations between different Jacobi sets. For that, it is possible
to write the wave functions using the notation

|k;njµ〉 =
∑
βk

∑
i

Ciβkjn |iβkjµ〉 =
∑
βk

∑
i

Ciβkjn |iβk〉 ⊗ |k;βkjµ〉, (2.20)

where the basis states separate in its radial part |iβk〉 and its angular part
|k;βkjµ〉. Note that index k just labels the preferred Jacobi set in which the
Hamiltonian has been diagonalized. Taking into account that the angular
functions are a complete basis of the angular subspace, it is clear that

|k;βkjµ〉 =
∑
βq

|q;βqjµ〉〈q;βqjµ|k;βkjµ〉 =
∑
βq

Nβkβq |q;βqjµ〉. (2.21)

The matrix elements Nβkβq are related to the Raynal-Revai coefficients [84]
and are given by Eqs. (B.37) and (B.38). This transformation preserves the
hypermomentum K and the total orbital angular momentum l. Inserting
Eq. (2.21) in (2.20),

|k;njµ〉 =
∑
βk

∑
i

Ciβkjn |iβk〉
∑
βq

Nβkβq |q;βqjµ〉. (2.22)

The electric and magnetic multipole operator matrix elements by means
of the basis states require some non-trivial algebra. The full derivation as
well as the corresponding guides and references are shown with detail in
appendixes B.4 and B.5. In practice, label k standing for the preferred Jacobi
set can be omitted, making the notation much simpler. Doing so, the final



32 Chapter 2. Description of three-body Borromean systems

expression for the electric multipole operator reduced matrix element is

〈nj||Q̂λ||n′j′〉 =
∑
q

Zqe

(√
mayq
mq

)λ∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

∑
βqβ′q

NββqNβ′β′q

× δlxq l′xq δSxqS′xq l̂yq l̂
′
yq l̂q l̂

′
q ĵabq ĵ

′
abq ĵ

′(−1)
j+lxq+lyq+l

′
yq

+Sxq−jabq+j
′
abq
−Iq

×

(
lyq λ l′yq
0 0 0

)
W (lql

′
qlyq l

′
yq ;λlxq )W (jabqj

′
abq lql

′
q;λSxq )W (jj′jabqj

′
abq ;λIq)

×
∫

(sinα)
2

(cosα)
2
dα dρ ϕ

lxq lyq
Kq

(α)UTHOiβ (ρ)yλqU
THO
i′β′ (ρ)ϕ

l′xq l
′
yq

K′q
(α). (2.23)

and the magnetic orbital and spin parts are

〈nj||M̂orb
λ ||n′j′〉 =

e~
2mc

√
λ

λ+ 1
ˆ(λ− 1)λ̂ĵ′(−1)λ

∑
q

(
MT −mq

MT

)λ(
m

ayq

)λ−1
2

2g
(q)
l

×
∑
ββ′

∑
βqβ′q

NββqNββ′qδSxqS′xq δlxq l′xq × (−1)
2j−j′+l′yq−lyq+lxq−Sxq+jabq+j

′
abq
−Iq

×
√
l′yq

(
l′yq + 1

)
l̂yq l̂
′2
yq ĵabq ĵ

′
abq l̂q l̂

′
q

(
lyq λ− 1 l′yq
0 0 0

)
W (lyq l

′
yq (λ− 1)1;λl′yq )

×W (lql
′
qlyq l

′
yq ;λlxq )W (lql

′
qjabqj

′
abq ;λSxq )W (jabqj

′
abqjj

′;λIq)
∑
ii′

Ciβjn C ′i
′β′j′

n

×
∫ ∫

dαdρ(sinα)2(cosα)2Uiβ(ρ)ϕ
lxq lyq
Kq

(α)yλ−1Ui′β′(ρ)ϕ
l′xq l
′
yq

K′q
(α), (2.24)

〈nj||M̂ spin
λ ||n′j′〉 =

e~
2mc

√
λ ˆ(λ− 1)λ̂ĵ′

∑
q

(
MT −mq

MT

)λ−1(
m

ayq

)λ−1
2

g(q)s

×
∑
ββ′

∑
βqβ′q

NββqNββ′qδSxqS′xq δlxq l′xq (−1)j+j
′+lxq−Sxq−jabq+2Iq

×
√
Iq (Iq + 1)Îq l̂yq l̂

′
yq ĵabq ĵ

′
abq l̂q l̂

′
q

(
lyq λ− 1 l′yq
0 0 0

)
W (lql

′
qlyq l

′
yq ; (λ− 1)lxq )

×W (lql
′
qjabqj

′
abq ; (λ− 1)Sxq )


j j′ λ

jabq j′abq λ− 1

Iq Iq 1


∑
ii′

Ciβjn C ′i
′β′j′

n

×
∫ ∫

dαdρ(sinα)2(cosα)2Uiβ(ρ)ϕ
lxq lyq
Kq

(α)yλ−1Ui′β′(ρ)ϕ
l′xq l
′
yq

K′q
(α). (2.25)
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In these expressions, ayq is the Jacobi y-coordinate scale (see ap-
pendix A.1), ĵ represents a reduced form for the factor

√
2j + 1, and

W (abcd; ef) is a Racah coefficient. Concerning the g-factors, it is known
that their effective values in the nuclear medium are rather uncertain [85].
This will be discussed in the following chapters.

An alternative way to calculate the electric transition probability consists
in expanding the harmonic polynomials yλq YλMλ

(ŷq) in Eq. (2.16) in terms
of the Jacobi-k system. This can be done by using the relation between
harmonic polynomials in different Jacobi sets [86],

yλq YλMλ
(ŷq) =

λ∑
l=0

(−1)λ xλ−lk (sinϕqk)
λ−l ylk (cosϕqk)

l

×

√
4π (2λ+ 1)!

(2l + 1)! (2λ− 2l + 1)!

× [Yλ−l (x̂k)⊗ Yl (ŷk)]λMλ , (2.26)

with

tanϕqk = (−1)P

√
mpMT

mqmk
, (2.27)

depending on the mass of the particles and the parity (−1)P of the permu-
tation P of {k, p, q}. The identity transformation is given by ϕkk = π. Using
Eq. (2.26) it is possible to rewrite the harmonic polynomial for each particle
q, as a function of the Jacobi coordinates in the preferred Jacobi system
k. This provides an expression for the electric operator to be used directly
between the states in the Jacobi–k system, and is equivalent to the result
given by Eq. (2.23). When the final expression for the operator so obtained
has a simple form, this procedure is much more efficient computationally.

Electromagnetic transitions of a given multipolarity λ from an initial
state labeled |n0j0µ0〉 to final states |njµ〉 define a total probability strength

ST (Eλ) =
∑
nj

B (Eλ)n0j0,nj
=

(
2λ+ 1

4π

)∑
nj

|〈n0j0||Ôλ||nj〉|2. (2.28)

The reduced matrix element can be related to the projection-dependent
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matrix element by [82]

|〈n0j0||Ôλ||nj〉|2 =
∑
µMλ

|〈n0j0µ0|ÔλMλ
|njµ〉|2, (2.29)

which, together with Eq. (2.28), leads to

ST (Eλ) =

(
2λ+ 1

4π

)∑
nj

∑
µMλ

|〈n0j0µ0|ÔλMλ
|njµ〉|2

=

(
2λ+ 1

4π

)∑
nj

∑
µMλ

〈n0j0µ0|Ô†λMλ
|njµ〉〈njµ|ÔλMλ

|n0j0µ0〉

=

(
2λ+ 1

4π

)∑
Mλ

〈n0j0µ0|Ô†λMλ
ÔλMλ

|n0j0µ0〉. (2.30)

For a given operator, this expression is completely determined by the proper-
ties of the initial state |n0j0µ0〉, and defines the corresponding sum rule [87,
88]. Specific closed expressions can be obtained for different operators, which
provide a quantity to compare with the total strength and allow to check
the completeness of the basis used to diagonalize the Hamiltonian. See ap-
pendix B.4.1 for details.

Due to the discrete nature of the PS basis, transition probabilities given
by Eq. (2.15) are a set of discrete values. In order to obtain a continuous
energy distribution, in some cases one can calculate the actual continuum
wave functions by solving the Schrödinger equation with the right asymp-
totic boundary conditions [89]. The PS energy distributions can be obtained
by doing the overlap with these continuum wave functions, and enable the
smoothing of the transition probability discrete values. However, the asymp-
totic behavior of continuum states for systems with several charged particles
is not known in general, so this procedure is only applicable in very limited
cases. An approximation to describe these distributions consists in consid-
ering that a PS with energy εn is the superposition of continuum states in
the vicinity. Then, for each discrete value of B(Oλ)g.s.→nj ≡ B(Oλ)(εn) it
is possible to assign an energy distribution D(ε; εn, w) with a Poisson form

D(ε; εn, w) = C(εn, w)εw exp [−κ(εn, w)ε] , (2.31)
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being C(εn, w) and κ(εn, w) totally determined by the following conditions∫ ∞
0

D(ε; εn, w)dε = 1, (2.32)

∫ ∞
0

εD(ε; εn, w)dε = εn. (2.33)

In this way the distributions are normalized to one and centered at the corre-
sponding energy. Using these conditions, the distributions can be expressed
as

D(ε, εn, w) =
(w + 1)w+1

εw+1
n Γ(w + 1)

εw exp

(
−w + 1

εn
ε

)
,

so, finally, the smoothed transition probability distribution is given by

dB(Ôλ)

dε
(ε, w) =

∑
n

D(ε; εn, w) B(Ôλ)(εn). (2.34)

Poisson distributions tend smoothly to zero at the origin, which is the physi-
cal behavior expected for the energy distributions of the PSs. But this choice
is not unique, and different distributions can be used to smear the discrete
values [90, 91]. The parameter w controls the width of the distributions; as
w decreases, the width of the distributions increases. The prescription to fix
an appropriate w parameter consists in choosing the value of w that ensures
a smooth B(E1) distribution without spreading it unphysically. More details
and a practical example are shown in the following sections.

2.3 Application to 6He

The 6He nucleus was produced for the first time back in 1936 [92], only a
few years after the discovery of the neutron, although its halo features had
to wait a few decades to be appreciated [5]. This system has attracted a lot
of attention, especially in the recent few decades. After remarkable experi-
mental and theoretical work, valuable information is available on the ground
state of 6He: total angular momentum 0+, experimental binding energy of
0.975 MeV below the three-body threshold [93], a rms point nucleon matter
radius of 2.5-2.6 fm [94], and a charge radius of 2.06 fm [95]. It shows also a
well-known 2+ resonance at 0.824 MeV over the breakup threshold [93].
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Figure 2.4: The Jacobi-T system used to describe the 6He nucleus.

In a theoretical perspective, 6He is the simplest halo, Borromean nuclei
that has been studied. Described as an α particle and two neutrons, it
comprises a single charged particle. In this case, the comparison with actual
continuum wave functions (not always available) may serve as a reference
for any other calculation. The α core is tightly bound and therefore can be
considered inert, so its excited states will not play any role at the energies of
interest. This assumption may not be valid for more complex exotic nuclei.
Due to its relative simplicity, it provides an excellent case for benchmark
calculations. Two-body models to describe the structure of 6He must rely
on the properties of either 5He or the dineutron [42], none of which are
bound. In a full three-body model, such as the one presented in this work,
both configurations (and their relative importance in describing the system)
are included consistently. It is worth noting that more fundamental few-
body methods can be applied to 6He considered as a six-nucleon system,
such as the resonating group method [96] or the Lorentz integral transform
method [97]. Recently, ab initio calculations based on NN and 3N interactions
between all constituents have been used to describe both bound [52] and
continuum [98] states of 6He by means of the no-core shell model combined
with the resonating-group method. The applicability of these methods to
heavier nuclei faces computational limitations due to the complexity of the
calculations, although important progress has been achieved in recent years.
Moreover, ab initio approaches for Borromean nuclei need to include three-
cluster dynamics to account for the intrinsic three-body nature of the sys-
tems.

The strict three-body picture provides a more intuitive description and,
as will be shown, leads to reliable structure and scattering observables for
nuclei of key importance in astrophysics. The Jacobi-T set, where the two



2.3. Application to 6He 37

neutrons are related by coordinate x, is used to describe 6He. This is shown
in Fig. 2.4 and enables the proper treatment of the Pauli principle between
identical valence neutrons. This results in the suppression of specific channels
of the wave function (1.6), since antisymmetrization can be achieved by
imposing lx + Sx + Tx to be odd [51]. Here, Tx = 1 is the isospin of the two-
neutron subsystem, and therefore the channels characterized by odd values
of lx + Sx will be removed. The model Hamiltonian includes two-body n-n
and α-n potentials. These interactions are typically adjusted to reproduce
the phenomenology of the two-body scattering problems. In this work, the
following interactions are used:

• The n-n GPT potential [99], with central Vc(r), spin-orbit Vso(r) and
tensor Vt(r) components in Eq. (1.11). Each component is defined as
a sum of Gaussian-shaped potentials,

V (l)
c (r) =

3∑
k=1

v(l)ck exp

[
−
(
r/r(l)ck

)2]
, (2.35)

Vso(r) = vso exp
[
− (r/rso)

2
]
, (2.36)

Vt(r) =
3∑

k=1

vtk exp
[
− (r/rtk)2

]
. (2.37)

The parameters for the central part are l-dependent, as shown in the
following table:

l vc1 (MeV) rc1 (fm) vc2 (MeV) rc2 (fm) vc3 (MeV) rc3 (fm)

s, d +560.0 0.8109 −390.7 1.031 −1.501 3.205
p +9.335 1.184 −1.37 2.099 +0.1663 3.193

The spin-orbit term is given by a single Gaussian potential defined by
parameters:

vso (MeV) rso (fm)

−114.5 0.9296

The parameters for the tensor potential are:

vt1 (MeV) rt1 (fm) vt2 (MeV) rt2 (fm) vt3 (MeV) rt3 (fm)

+12.24 1.539 −31.64 0.4039 +0.8111 3.015
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• The α-n potential from Refs. [24, 100], with central Vc(r) and spin-orbit
Vso(r) terms which are expressed as Woods-Saxon potentials,

Vc(r) =
v
(l)
c

1 + exp
(
r−r(l)c
a
(l)
c

) , (2.38)

Vso(r) =
vso
raso

exp
(
r−rso
aso

)
[
1 + exp

(
r−rso
aso

)]2 . (2.39)

Again, the parameters for the central part are l-dependent:

l vc (MeV) rc (fm) ac (fm)

s +48.0 2.0 0.7
p −43.0 2.0 0.7
d −21.5 2.0 0.7

The spin-orbit potential is given by:

vso (MeV fm2) rso (fm) aso (fm)

−40.0 1.5 0.35

In section 1.3.3, the problem of the Pauli blocking for three-body systems
was discussed. As already stated, two-body forbidden states that would
disappear under full antisymmetrization need to be removed for proper com-
putation of three-body observables. In this work, the α-n potential includes
a repulsive s-wave component to forbid the valence neutrons to enter the
occupied α core states. The repulsive-core potential is introduced with the
requirement that the experimental phase shifts are correctly reproduced [24].
This kind of interactions are sometimes called shallow potentials, as the
counterpart of deep potentials including unphysical bound states.

As already discussed in the introduction (section 1.3.2), strict three-body
models with binary interactions only may lead to deviations from the experi-
mentally known energies. Therefore, it is customary to include a structureless
hyperradial three-body force in order to adjust the energy of the system to
experimental data, when available. As in Ref. [23], a possibility is to consider

V3b(ρ) =
v3b

1 +
(

ρ
r3b

)a3b . (2.40)



2.3. Application to 6He 39

There are other choices in the literature, but the specific form of this interac-
tion plays a negligible role on the final results. In this case, the parameters of
the three-body force are chosen to adjust the energy of the 0+ ground state
and the 2+ resonance in 6He, -0.9736 and 0.824 MeV with respect to the
three-body threshold [93], respectively. In the case of 1− states, no low-lying
resonance is available to fit the three-body force. A possible choice consists
in accepting, for 1− states, the same three-body interaction used to fit the
2+ states. The following table shows the relevant parameters for each jπ

configuration:

jπ v3b (MeV) r3b (fm) a3b

0+ -2.45 5.0 3
1− -0.90 5.0 3
2+ -0.90 5.0 3

The 0+ states are obtained by diagonalizing the Hamiltonian in an an-
alytical THO basis defined by parameters b = 0.7 fm and γ = 1.4 fm1/2

(see Eq. (2.2)), trying to minimize the size of the basis needed to reach
convergence of the ground state. It is found that a basis with a larger γ/b
ratio has a too small hyperradial extension to provide a fast convergence for
the ground state. On the other hand, a basis with smaller γ/b has a very
large hyperradial extension and does not describe properly the interior region
of the potential where the ground state probability is larger. In Fig. 2.5, the
first THO hyperradial wave functions for the channel β ≡ {2, 0, 0, 0, 0, 0},
using the given analytical transformation, are shown. This channel is the
most important ground-state channel, with a 78.6% contribution to the total
norm. The figure shows that, as i increases, the functions are more oscillatory
and explore larger distances.

In Fig. 2.6 the Hamiltonian eigenvalues for jπ = 0+, for an increasing
number of hyperradial excitations, imax, are presented up to 10 MeV. The
calculated ground state is stable with respect to the size of the basis and
has a binding energy of |εB| = 0.9749 MeV. With this value of the energy,
and assuming that the α particle point nucleon matter and charge radii are
1.47 and 1.6755 fm [101], respectively, the computed matter and charge radii
of the 6He ground state are rmat = 2.554 fm and rch = 2.09 fm. These
values are in good agreement with the available experimental data [94, 95].
In Table 2.1 the ground state energy and the matter and charge radii are
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Figure 2.5: First five THO hyperradial wave functions for the channel β ≡
{2, 0, 0, 0, 0, 0}, the most important channel in the g.s. wave function.

imax εB (MeV) rmat (fm) rch (fm)

5 −0.9452 2.511 2.069
10 −0.9744 2.552 2.085
15 −0.9748 2.554 2.090
20 −0.9749 2.554 2.090
25 −0.9749 2.554 2.090

Table 2.1: Ground-state energy εB, matter radius rmat and charge radius rch
of 6He as a function of imax. A fast convergence is observed.

shown as a function of the maximum number of hyperradial excitations imax.
A fast convergence is observed for both ground state observables within this
THO basis. The model space in which the three-body wave functions are
expanded is truncated by fixing a maximum value of the hypermomentum
Kmax. In this case, a value of Kmax = 20 is sufficient to get convergence for
the ground state energy and radius. This is shown in Figs. 2.7 and 2.8.

The first three hyperradial components of the ground state wave function
for imax = 20 are presented in Fig. 2.9. The curves match a reference calcu-
lation of the ground state wave function corresponding to the same model
Hamiltonian. This is presented in Ref. [24] and implemented in the codes
FaCE [51] and sturmxx [102], using a suitable basis for bound states, the
so-called Sturmian basis. The dominance of s waves in the Jacobi-T set is
clear.
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Figure 2.6: 6He eigenvalues for jπ = 0+ up to 10 MeV, as a function of
the size of the basis given by imax. Calculations are truncated at maximum
hypermomentum Kmax = 20, which is large enough to reach convergence of
the ground state properties.
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lx ly l Sx W (6He)

0 0 0 0.0 84.0
1 1 1 1.0 12.4
2 2 0 0.0 2.4

Table 2.2: Angular components included for the 0+ ground state of 6He.
W (6He) indicates the contribution to the total norm of the wave function.
Only those components contributing more than 1% are given.

In Table 2.2, the percentage of the total norm provided by each an-
gular component {lx, ly, l, Sx} to the ground state, is shown. Notice that
the quantum number jab is not included since, for 6He described in the
Jacobi-T system, it is zero in all channels. The main contribution of 84% is
from s waves, and less than 13% comes from p waves. Contributions from
d waves and higher angular momenta are almost negligible. In particular,
the two most important channels shown in Fig. 2.9, corresponding to lx = 0

waves with K = 0 and K = 2, contain the 5% and 79% of the total norm,
respectively. This dominance prevails when rotating the wave function to the
Jacobi set where x connects the α core and one neutron, and is a signal of
the dilute halo tail of the wave function.

Fig. 2.9 shows the ground state wave function hyperradial components,
which hinders the visualization of the system spatial configuration. A de-
tailed view is shown in Fig. 2.10, where the square of the three-body wave
function is integrated over the direction of the two Jacobi coordinates. This
gives the system probability. Here, rx represents the distance between the
two valence neutrons in 6He, while ry corresponds to the distance between
the two-neutron center of mass and the α core. The probability shows a
prominent peak for distances rx ' 2 fm and ry ' 2.5 fm. Another peak is
found for corresponding distances of about 4.5 and 1 fm, respectively. These
two shapes can be described as two neutrons either on the same side of the
α core (at some distance apart) or at almost opposite sides of the core. In
the literature, these peaks have been referred to as dineutron- and cigar-like
configurations, respectively [11]. The shapes in this plot carry information
about the underlying correlations in the system, halo particle correlations
in this case, so they are mainly connected with the details of the binary
potentials used to describe the system.
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Figure 2.10: Probability distribution of the 6He ground state.

The first resonance in 6He is a 2+ state at 0.824 MeV over the two-
neutron separation energy [93]. The 2+ states can be described in a basis
defined by parameters b = 0.7 fm and γ = 2.0 fm1/2. This basis has a small
hyperradial extension and therefore spreads the eigenvalues obtained upon
diagonalization at higher energies. This choice enables to have only one pseu-
dostate presenting the features of the resonance, since the rest of states are
sufficiently above the resonance energy for medium-size bases. In this way, it
is possible to adjust the resonance energy to the experimentally known value
using the phenomenological three-body force. In Fig. 2.11, the eigenvalues of
the Hamiltonian for jπ = 2+ states, for an increasing number of hyperradial
excitations, are shown. Calculations use, again, Kmax = 20. Note that the
lowest state is rather stable. In Fig. 2.12, the hyperradial probability density
of the 2+ pseudostate representing the resonance is shown, compared with the
0+ ground state probability. The contributions of the three most important
channels for each one are shown. The 2+ state has a large probability in the
interior part, similar to a bound state. Note the different scales.
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Figure 2.11: 6He eigenvalues for jπ = 2+ up to 10 MeV.
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Figure 2.13: 6He eigenvalues for jπ = 1− up to 10 MeV.

Dipole excitations from the ground state to continuum states are the most
relevant dynamics in low-energy reactions involving halo nuclei [79, 103].
Thus, excitations from the 0+ ground state to 1− continuum states in 6He
will be of key importance in describing the system. This is typically reflected
by relatively large electric dipolar transition probability strengths, B(E1), at
low energies. The Hamiltonian for 1− states is diagonalized following the al-
ready shown prescriptions. Since no reference is available to fit the three-body
force for 1−, the same strength used for 2+ states is considered. Calculations
in this case use an analytical THO basis defined by parameters b = 0.7 fm and
γ = 1.0 fm1/2. This choice concentrates a large level density near the origin,
and enables to build up a very detailed transition probability distribution at
low energies. The eigenvalues of the Hamiltonian in this case are presented
for different imax values in Fig. 2.13. The comparison of this figure with those
for 0+ and 2+ states points out the sensitivity of the pseudostate density on
the parameters of the analytical transformation defining the basis.

For the evaluation of the transition probabilities, it is convenient to in-
crease further the number of hyperradial excitations included in the calcula-
tions. This, together with the hyperradial extension of the basis, ensures
a detailed description of the low-energy part of the B(E1) distribution.
As previously discussed, the transition probabilities obtained by using a
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imax

∑
B(E1) (e2fm2)

5 1.402
10 1.489
15 1.492
20 1.492
25 1.493
30 1.493
35 1.493

Table 2.3: Sum of B(E1) discrete values, from the 0+ ground state to 1−

continuum states in 6He, as a function of imax.

discretization method to treat continuum states are a set of discrete values.
Before any smoothing procedure, the completeness of the discrete, truncated
basis must be evaluated. This can be done by comparing the sum over the
discrete B(E1) values, Eq. (2.28), with the sum rule provided by Eq. (2.30),
which depends only on the properties of the ground state. For the particular
case of a system comprising a charged core and two valence neutrons, the
electric operator for dipolar transition (2.16) can be expressed as

Q1M1(y) =

(
4π

3

)1/2

Ze

√
may

mc
yY1M1(ŷ), (2.41)

where mc is the mass of the core and Z its charge. Inserting the previous
expression in Eq. (2.30) imposes (see appendix B.4.1)

ST (E1) =
∑
n

B(E1)g.s.,n1 =
3

4π

Z2e2may
m2
c

〈g.s.|y2|g.s.〉. (2.42)

Table 2.3 shows the sum of B(E1) discrete values between the 0+ ground
state and 1− continuum states as a function of the number of hyperradial
excitations included, imax. The summation converges to the exact value given
by the sum rule, 1.493 e2fm2.

The B(E1) distribution up to 6 MeV, after smoothing using Poisson
distributions (see Eq. 2.34) on the discrete values given by Eq. (2.23), is
shown in Fig. 2.14. The present calculation, given by the solid black line, uses
imax = 35. Fig 2.14 also contains a reference calculation obtained by using
the actual three-body continuum wave functions which, in this simple case,
can be computed easily [24] (dashed red line). To generate the continuum
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Figure 2.14: B(E1) distribution for 6He up to 6 MeV.

wave functions the codes FaCE [51] and sturmxx [102] have been used, for the
same model Hamiltonian. If the smoothing of the THO calculation is done
using the overlap with the continuum wave functions, the obtained B(E1)

distribution is indistinguishable from the reference one. This guarantees that
the formalism presented here works correctly. However, in the case of other
systems for which the actual continuum wave functions are difficult to ob-
tain, the alternative smoothing procedure following Eq. (2.34) can provide a
reasonable description. The Poisson distribution width parameter has been
set to w = 30

√
εn, such that ensures a smooth B(E1) distribution without

spreading it unphysically. Due to the large number of basis states near the
threshold, an energy dependence of w is convenient to produce a smooth
distribution in that region. The total B(E1) strength is the same for both
calculations (solid and dashed lines) and the behavior is similar, although
small differences are observed in the medium energy range.

It is also included in Fig. 2.14 a calculation taken from Ref. [104]. In
that work, the hyperspherical adiabatic expansion method is used instead
of the hyperspherical harmonic expansion. Then, the three-body states are
calculated by box boundary conditions, obtaining a discrete spectrum. The
discrete B(E1) values are smoothed using the finite energy interval approx-
imation. This calculation clearly have a different behavior at low energies.
The difference comes from the difficulty to have a large energy level density
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Figure 2.15: B(E1) distribution for 6He up to 6 MeV as Kmax increases.

at low energies solving the problem in a box. It is also apparent that the
total B(E1) from this calculation is considerably lower than that of the
THO method and the reference calculation. In the literature, one can find
other B(E1) distributions for 6He using different three-body formalisms,
such as [105] and [106], which globally agree with the results here presented.
It is worth mentioning that the available experimental data [107] (not shown
in Fig. 2.14) differ significantly from all published theoretical calculations.
In particular the data do not show the enhancement at energies around 1
MeV. Either new experiment or reanalysis of the existing data is clearly
needed. In order to show the convergence of calculations with Kmax and
that Kmax = 20 is sufficient to provide converged results, Fig. 2.15 shows
the B(E1) distribution for different Kmax values. In these calculations the
same two- and three-body forces are kept fixed. It is clear from the figure
that the calculations for Kmax = 20, 22, and 24 are very close together.

These results for 6He encourage the application of the analytical THO
method to more complex three-body systems. The features and properties
discussed here (and in the following sections) will be essential to describe
nuclear reactions involving three-body nuclei. In particular, as will be de-
rived in chapter 3, a reliable description of the B(E1) distribution is a key
ingredient for the computation of astrophysical three-body reaction rates.
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Figure 2.16: Low-lying states of 9Be with respect to the two- and three-body
thresholds.

2.4 Application to 9Be

The 9Be nucleus can be described as a three-body system, comprising two α
particles and one neutron. Therefore, it shows a Borromean structure, since
none of the binary subsystems, 5He nor 8Be, are bound. Unlike 6He, the 9Be
nucleus lies on the stability line. Its 3/2− ground state, however, has a small
binding energy of 1.5736 MeV below the α+α+n threshold [108]. Information
about the matter radius [109, 110], charge radius [101] and quadrupolar
deformation [111] of 9Be is also available in the literature, providing an
excellent test to the THO method for systems comprising more than one
charged cluster. This nucleus presents several low-energy resonances above
the two- and three-body thresholds, as shown in Fig. 2.16. The lowest is a
genuine three-body 1/2+ resonant state around 0.11 MeV with a relatively
large width [112]. The spin-parity assignment of other low-lying resonances
is still under debate [113].

Although 9Be is not an exotic system in the same sense as 6He and
other halo nuclei, its weakly-bound nature and intrinsic three-body structure
demand also a proper treatment of continuum states for describing structure
and reaction observables. The Jacobi-T set, now connecting the two identi-
cal α particles, is used to describe 9Be. This is shown in Fig. 2.17. The α
particles are two identical bosons with spin 0+, so they couple to Sx = 0.
The symmetry of the wave function under permutation of the two identical
particles can be fixed in this case by considering only even lx components. In
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order to treat properly identical bosons, the FaCE subroutines regarding the
generation of the channels β required some changes to distinguish between
fermions and bosons. The model Hamiltonian includes α+n and α+α binary
interactions adjusted to reproduce the experimental two-body phase shifts.
The α + n interaction is the same used for 6He calculations. For the α + α

interaction, an Ali-Bodmer-like [114] interaction is used, with only a central
term defined by the sum of two Gaussian-shaped functions,

V (l)
αα(r) = v

(l)
R exp

[
− (r/1.53)2

]
− 30 exp

[
− (r/2.85)2

]
. (2.43)

Here, v(l)R are repulsive terms that account for the α-α Pauli states and need
to be different in order to reproduce the experimental phase shifts. Thus, as
in the case of the α − n potential, this is an l-dependent interaction. The
strength v(l)R of the potential is taken as 125 MeV for l = 0, 20 MeV for l = 2,
and 0 for the remaining l > 2 components. This potential, together with a
hard-sphere Coulomb interaction with a Coulomb radius of rCoul = 2.94 fm,

V Coul
αα (r) = Z2e2 ×


(
3
2 −

r2

2r2Coul

)
1

rCoul
; r ≤ rCoul,

1
r ; r > rCoul,

(2.44)

reproduces the exact position of the two-body s-wave 8Be resonance. This is
crucial to obtain the right behavior of the low-lying 9Be continuum.

As in the previous example of application, the binary interactions need
to be complemented by a structureless hyperradial three-body force in order
to fit the known states of the system to their experimentally known energies.
The parameters for the three-body force, Eq. (2.40), are fixed to reproduce
the energies of the 9Be ground state and the 1/2+, 3/2+, 5/2+, 5/2−, and
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jπ v3b (MeV) r3b (fm) a3b

3/2− +1.11 6.1 5
1/2+ −2.45 6.1 5
3/2+ −1.60 6.1 5
5/2+ −0.18 6.1 5
5/2− +1.65 6.1 5
1/2− +0.20 6.1 5

Table 2.4: Three-body force parameters for each jπ configuration in 9Be.

1/2− resonances. The values of these parameters are again different for each
jπ, and they are given in Table 2.4.

The 3/2− states are described with an analytical THO basis defined by
parameters b = 0.7 fm, and γ = 1.4 fm1/2, which minimizes the size of the
basis needed to reach convergence of the ground state. In Figs. 2.18 and 2.19,
the convergence of the ground-state energy and the matter and charge radii
with respect to the maximum hypermomentum Kmax is shown, with imax

fixed to 20. From Fig. 2.18, the value Kmax = 30 provides a well converged
ground state with energy εB = –1.5736 MeV, fixed to the experimental value
in Ref. [108]. Assuming that the α particle matter and charge radii are
1.47 and 1.6755 fm, respectively, the computed 9Be ground state charge and
matter radii are rch = 2.508 fm and rmat = 2.466 fm. For the charge radius,
calculations are in agreement with the experimental value of 2.519 ± 0.012

fm [101]. This reveals that the method is rather accurate. For the matter
radius, the computed value is larger than that given in Ref. [109], 2.38±0.01

fm, obtained with Glauber-model calculations from interaction cross sections
at high energies. A different estimation from a simple microscopic model by
using cross sections at intermediate energies gives a radius of 2.53 ± 0.07

fm [110], in better agreement with the present results. It has been pointed
out [115] that the optical limit approximation of Glauber models, such as in
Ref. [109], may underestimate the radius of loosely bound systems. In halo
nuclei, the few-body structure implies strong spatial correlations between
the core and valence nucleons, so the optical limit fails. 9Be is not a halo
system but it shows a strong few-body intrinsic configuration with the two α
particles loosely bound by the remaining neutron, so the usual estimations
of its radius from interaction cross sections may be misleading.

In this case, the system comprises two charged particles, and therefore
the expression for the electric operator is not as simple as in the case of
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imax εB (MeV) rmat (fm) rch (fm) ST (E1) (e2fm2)

5 −1.5659 2.453 2.502 0.5565
10 −1.5734 2.465 2.507 0.5760
15 −1.5736 2.466 2.508 0.5762
20 −1.5736 2.466 2.508 0.5762
25 −1.5736 2.466 2.508 0.5762

Table 2.5: 9Be ground-state energy εB, matter radius rmat, charge radius
rch and sum rule ST (E1) as a function of imax with Kmax = 30. A fast
convergence is observed.

6He. Using the relationship between harmonic polynomials in different Jacobi
sets, given by Eq. (2.26), the electric operator for dipolar transitions can be
written as

Q1M1(y) = −
(

4π

3

)1/2

2(cosϕ23)Z2e

√
may2

m2
yY1M1(ŷ), (2.45)

where indexes 2 and 3 refer to the α particle and the neutron labeled in
Fig. 2.17, and ϕ23 is the mass-dependent phase given by Eq. (2.27). This ex-
pression is analogous to Eq. (2.41) for the case of 6He, but including a factor
2(cosϕ23) which, for 9Be, equals 2/

√
10. With the above-given definition,

the sum rule (2.30) for electric dipolar transitions from the ground state is
given by

ST (E1) =
∑
nj

B(E1)g.s.,nj =
3

4π

Z2
2e

2may2
m2

2

(2 cosϕ23)
2〈g.s.|y2|g.s.〉. (2.46)

The convergence of the ground-state energy, its matter radius, the charge
radius and the sum rule for electric dipolar transitions, as the number of
hyperradial excitations imax increases, is shown in Table 2.5. Calculations
are performed for a fixed value of Kmax = 30, for which a rapid convergence
is observed.

One of the consequences of the three-body structure of 9Be is its large
quadrupolar deformation, given by the system quadrupole moment Q = 5.29
± 0.04 e fm2 [111]. The quadrupole moment is defined as

Q =

√
16π

5
〈n0j0j0|Q̂′20|n0j0j0〉, (2.47)



2.4. Application to 9Be 55

where |n0j0j0〉 represents the ground-state wave function with angular mo-
mentum j0 and maximum projection. This is the usual definition of Q, where
the quadrupolar operator Q̂′20 does not include the factor

√
4π/(2λ+ 1) used

in the notation from Brink and Satchler [82]. For a system comprising two
identical charged particles described in the Jacobi-T set, this operator is

Q̂′2Mλ
= 2Z2e

may2
m2

2

[
(sinϕ23)

2 x2Y2Mλ
(x̂) + (cosϕ23)

2 y2Y2Mλ
(ŷ)
]
. (2.48)

For 9Be, cosϕ23 = 1/
√

10 and sinϕ23 = 3/
√

10. Inserting (2.48) into Eq. (2.47)
leads to the final expression

Q =

√
16π

5
〈n0j0j0|Q̂′20|n0j0j0〉 =

√
16π

5
2Z2e

may2
m2

2

× 〈n0j0j0| (sinϕ23)
2 x2Y20(x̂) + (cosϕ23)

2 y2Y20(ŷ)|n0j0j0〉.
(2.49)

The full derivation of this and other electromagnetic operator expressions,
as well as its corresponding expansions in the THO basis, are shown with
detail in appendix B. The three-body model provides a good description of
the system deformation due to the alpha-alpha cluster configuration, and
gives a quadrupole moment of 4.91 e fm2, which is close to the experimental
value. The system deformation can be clearly appreciated by plotting the
probability distribution of the ground state. This is shown in Fig. 2.20, in a
two-dimensional plot where rx = rα-α and ry = r(αα)-n. The figure shows a
maximum near rx ' 3 fm and ry ' 2.5 fm. This α-α distance is similar to
the value found for the ground state of 12C [22], and is also consistent with
previous estimations for 9Be [116].

Unlike 6He, the 9Be nucleus has half-integer angular momenta. This re-
sults in a splitting of theB(Oλ) strength from the ground state to different jπ

contributions. For instance, the B(E1) strength will be distributed between
1/2+, 3/2+, and 5/2+ states, all connected to the ground state by electric
dipolar transitions. The first resonance in 9Be is a 1/2+ state at 0.11 MeV
above the three-body threshold [108]. The structure of this state arises from
three-body spatial correlations, and previous studies considering a two-body
8Be-n resonance or a virtual state are inconsistent [112]. Only a three-body
model can account for its relatively large width. The corresponding B(E1)

distribution from the ground state will show a broad peak just above the
breakup threshold, with a large tail exploring higher energies. This is not the
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Figure 2.20: Two-dimensional probability of the 9Be ground state.

typical behavior of low-energy resonances, which present usually a narrow
distribution.

To get a well defined B(E1) distribution at low energies, the Hamil-
tonian is diagonalized in a THO basis defined by parameters b = 0.7 fm
and γ = 0.7 fm1/2. Calculations, however, show a very slow convergence
with respect to Kmax for the low-energy 1/2+ continuum. The structure
of the 1/2+ resonance is not well described with Kmax values around 30-
40, and going to larger hypermomenta involves the computation of very
large basis sets, which is limited by computer power and calculation times.
Since the 1/2+ resonance decay is known to proceed mainly through the
two-body low-lying s-wave 8Be resonance [112], the three-body resonance
is expected to be mainly governed by α-α s-wave components. Thus, Kmax

can be fixed to 40, and the maximum hypermomentum for s-waves, Ks
max, is

further increased. Fig. 2.21 shows the B(E1) distribution to 1/2+ states, as
a function of Ks

max. For these calculations, the THO basis includes imax = 30

hyperradial excitations, and the discrete values are smoothed using Poisson
distributions with a width parameter w = 30. It can be clearly seen that
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the structure of the resonance is strongly dependent on Ks
max and very large

values are needed to reach convergence. For this reason, Ks
max is fixed to 140,

maintaining the global Kmax = 40 for all the other partial waves.

Concerning the width of the Poisson distributions, w, note that it must
ensure a smooth B(E1) distribution without spreading it unphysically. As
an example, Fig. 2.22 shows the B(E1) distribution to the 1/2+ states
calculated with different width parameters. For w values smaller than 30,
the distributions are too wide to represent the PS energy distributions,
and consequently the final distributions will not be able to reproduce the
experimental width. For much larger values, however, the final distributions
are distorted and show unphysical oscillations or peaks. This provides a
possible prescription to select the optimal w value, choosing w as large as
possible. In this case w = 30 is a reasonable choice.

The 3/2+, 5/2+, 1/2− and 5/2− resonances in 9Be have excitation ener-
gies of 3.131, 1.475, 1.206 and 0.856 MeV, respectively [108]. The positive-
parity states, as in the case of 1/2+, are connected to the ground state by E1
transitions. The sum over discrete B(E1) values for the three contributions
converges to the value given by the sum rule in Table 2.5, 0.576 e2fm2.
However, to populate 5/2− or 1/2− states one needs M1 or E2 transitions.
The 5/2− resonance presents a small width, which implies a very narrow peak
in the corresponding transition probability. To illustrate this, the B(M1)

distribution will be shown.

The 5/2− states are described with a THO basis defined by parameters
b = 0.7 fm and γ = 1.0 fm1/2, that ensures enough states at low energies.
The maximum hypermomentum is fixed to Kmax = 30, large enough to get
converged strength distributions in this case, and imax is taken as 30. The
convergence problem shown in the previous case is absent here, since the
properties of the resonance are less sensitive to the α-α s-wave contribution.
Notice that, in order to fit the resonance to its experimentally known en-
ergy, the three-body potential strength v3b has to be different. Section 2.2.2
provides all necessary expressions to compute magnetic transitions, which
depend on the orbital and spin g factors of each particle. The α particles
have spin zero, so it is reasonable to fix g(α)s = 0, and g

(α)
l is taken as its

charge. For the neutron it is customary to use the free value of g(n)s = −3.82,
and no effective charge is assigned, i.e., g(n)l = 0. It is known that the effective
g factor are rather uncertain [85], especially g(n)s which could be reduced by
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Figure 2.22: B(E1) distribution to the 1/2+ states in 9Be as a function of
the Poisson width parameter w.
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Figure 2.23: B(M1) distribution to the 5/2− states in 9Be. The narrow peak
corresponds to the experimental resonance at 0.856 MeV.

a factor of 2 due to spin polarization. This introduces an uncertainty in the
corresponding magnetic transition probabilities which, in any case, will not
change the order of magnitude. For the 5/2− states a larger width parameter,
which produces narrower distributions, is required, since the experimental
width for the 5/2− resonance is known to be extremely small. This was
previously reported in Ref. [23], where a value of w = 1300 was used to
describe properly the width of the narrow 2+ resonance in 6He. Thus, it is
convenient fix w = 10000 around the resonance energy, keeping w = 30 for
the non-resonant region. The magnetic transition probability distribution so
obtained is shown in Fig. 2.23, which is consistent with the narrow 5/2−

state reported in the literature [117].

The present results support the reliability of the method in describing
the 9Be wave functions within a three-body approach. The pseudostate
method in an appropriate Jacobi set enables the proper treatment of a system
comprising two identical charged bosons. The formation of this nucleus will
be addressed in the next chapter considering different jπ configurations. In
chapter 4, the 9Be wave functions will be used to describe reactions induced
by this nucleus in a four-body framework, considering a three-body projectile
plus a structureless target.
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2.5 Application to 17Ne

The 17Ne nucleus can be seen as a three-body system comprising an 15O
core and two valence protons. It is a Borromean system, since 16F and the
diproton are not bound. This nucleus has attracted special interest over the
last few years for two main reasons: i) it is the most promising known candi-
date to present a two proton halo, and ii) its formation through two proton
capture can break out of the hot CNO cycle, with important implications
for the rp-process. Despite the remarkable theoretical efforts to address the
structure of 17Ne, controversy still exists [118, 119]. The halo nature of 17Ne
has not yet been confirmed.

Compared with the previous cases of 6He and 9Be, a three-body model for
17Ne needs to deal with the complication that the corresponding 15O core has
non-vanishing spin. Core excitations could play a relevant role in describing
the structure and dynamics of 17Ne. However, all the lowest excited states in
the 15O-core occur with positive parities between 5 and 9 MeV, with a single
exception of 3/2− about 6 MeV [120]. The ground state, first and second
resonances in 17Ne have negative parity and energies of -0.94 (1/2−), 0.34
(3/2−) and 0.82 MeV (5/2−) from the two-proton separation threshold [121,
122]. This is shown in Fig. 2.24. These energies are small compared to the
lowest-lying core-excited state, which would need to be combined with proton
valence states of negative parity, only available in the next shell, to contribute
in the states of 17Ne [118]. Contributions to negative-parity 17Ne states from
the 3/2− core-state at 6 MeV are the most likely, but its energy is relatively
high. The same applies for contributions to the third excited, 1/2+ state in
17Ne, from the other core states. Therefore, the assumption of a structureless
core seems to be a reliable picture, although the effect of core excitations
should be explicitly studied.

The same method applied to 6He and 9Be in the preceding sections will
be employed to describe the structure of 17Ne. Notice that, in addition to
the core-excitation problem, a three-body model for 17Ne comprises three
charged particles. The computation of actual continuum states for a system
of three-charged particles has no general solution. For that reason, the pseu-
dostate method will be tested against this more complicated system. The
Jacobi-T system is again used in this case, as shown in Fig. 2.25, where
the two identical protons are related by coordinate x. This choice enables
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Figure 2.24: Low-lying states of 17Ne and the 16F (p + 15O) subsystem. The
energies are given with respect to the 2p and p thresholds, respectively.
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Figure 2.25: The Jacobi-T system used to describe the 17Ne nucleus.

the proper treatment of the Pauli principle by removing the corresponding
components of the wave functions that would disappear under antisym-
metrization (see the case of two identical neutrons for 6He). The model
Hamiltonian for 17Ne uses the p-p GPT potential [99], formally equivalent
to the n-n interaction but including also the Coulomb repulsion. For the
15O-p interaction, some prescription is needed to fit the potentials. Since
there is no available experimental information on the scattering phase shifts,
a possibility is to select the potential to fit the known resonances of the
unbound system 16F. The lowest negative-parity states in 16F are shown
together with the 17Ne states in Fig. 2.24. Higher-energy states are also
considered to adjust the potential. The available experimental data [123] on
these states is shown in Table 2.6. The resulting 15O-p interaction has central
Vc, spin-orbit Vso, and spin-spin Vss components. The central part follows
the Woods-Saxon form in Eq. (2.38), with l-dependent strengths:
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jπ (ER,Γ) (MeV) jπ (ER,Γ) (MeV)

0− (0.535, 0.040) 1+ (4.29, < 0.040)
1− (0.728, < 0.040) 2+ (4.41, < 0.020)
2− (0.959, 0.040) 1− (5.81, –)
3− (1.256, < 0.015) 2− –

Table 2.6: Experimental two-body spectrum for 16F [123]. Since the system is
unbound, the values are given as the resonance energy and the corresponding
width, (ER,Γ).

l vc (MeV) rc (fm) ac (fm)

s −50.0 3.13 0.67
p −11.0 3.13 0.67
d −48.4 3.13 0.67

The spin-orbit potential for the proton spin, lx · sp, is given by a Woods-
Saxon form in Eq. (2.39) with parameters:

vso (MeV fm2) rso (fm) aso (fm)

−30.0 3.13 0.67

Finally, the spin-spin potential, score·sp, is a Woods-Saxon with the following
parameters for each l component:

l vss (MeV) rss (fm) ass (fm)

s 0.7 3.13 3.13
p 1.0 3.13 3.13
d 2.0 3.13 3.13

This potentials present unphysical bound states that correspond to the
s1/2 states occupied in the 15O core. The Pauli principle has to be taken
into account by forbidding these two-body states within the three-body cal-
culations. This is achieved by using the adiabatic projection method [65]
to eliminate the Pauli forbidden states. This potential, together with a
hard-sphere Coulomb interaction (see Eq. (2.44)) with a Coulomb radius
of rCoul = 3.13 fm, reproduces the experimental energies of the two-body
16F resonances.

The three-body force used in this case has a Gaussian form,

V3b(ρ) = v3b exp
[
− (ρ/ρ0)

2
]
, (2.50)
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which parameters are fixed to reproduce the energies of the 17Ne ground
state and the 3/2−, 5/2−, 1/2+, 5/2+ resonances. The 3/2+ is very high and
its position is therefore not crucial. For that reason, no three-body force is
included for 3/2+ states. The values of the three-body force parameters are:

jπ v3b (MeV) ρ0 (fm)

1/2− −1.94 5
3/2− −2.40 5
5/2− −4.25 5
1/2+ −6.75 5
5/2+ −1.00 5
3/2+ – –

To describe the ground state of 17Ne, the 1/2− states are obtained in an
analytical THO basis defined by parameters b = 0.7 fm and γ = 1.4 fm1/2.
The convergence of the ground state with respect to the size of the model
space, given by the maximum hypermomentum Kmax, is found to be slower
than in the previous examples. This is shown in Fig 2.26 for the ground
state energy. This behavior is associated to the presence of three charged
particles, which enhances Coulomb effects, and therefore the convergence of
the hyperspherical expansion becomes slower. In Fig. 2.27, the convergence of
the matter and charge radii is shown. These calculations are performed with
a fixed value of imax = 20. To achieve converged energy and radii, Kmax has
to be fixed to 30. With a ground state energy of -0.943 MeV, the computed
matter and charge radii of 17Ne result 2.78 and 2.92 fm, respectively. The
calculated matter radius is in good agreement with the available experimen-
tal data of rmat = 2.75(7) fm [124]. For the charge radius, the present result
underestimate the experimental value of rch = 3.042(21) fm [125]. This could
be a consequence of the approximations within the model. Nevertheless, the
three-body model with the two-body interactions presented above describe
the overall features of the system spatial distribution, with a charge radius
being substantially large than the matter radius, as expected for a system
comprising two valence protons. The ground-state probability distribution
for 17Ne in the Jacobi-T set is shown in Fig. 2.28, where rx refers to the
distance between the two valence proton. A prominent peak is observed for
rx ' 2.5 fm and ry ' 3 fm. Another smaller peak is found for corresponding
distances of about 5 and 1 fm, respectively. The third peak between the
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Figure 2.26: Convergence of the ground-state energy of 17Ne with respect to
the maximum hypermomentum Kmax.

other two is defined by rx ' 4 fm and ry ' 2 fm. The first two peaks can
be described as two protons either on the same side of the core or at almost
opposite sides. The third peak accounts for intermediate configurations.

In this case, the system includes three charged particles. If the two par-
ticles related by coordinate x are identical, such as the two protons in 17Ne,
the electric dipolar operator in the Jacobi-T set can be obtained as a sum of
the Eqs. (2.41) and (2.45),

Q̂1Mλ
=

(
4π

3

)1/2 [
Z3e

√
may3
m3

− 2 Z2e (cosϕ23)

√
may2
m2

]
yY1Mλ

(ŷ),

(2.51)
where the charge and mass factors are different for the 15O (labeled as 3) and
the protons (labeled as 2). Then, the sum rule for dipolar transition (2.30)
in this case is

ST (E1) =
3

4π

[
Z3e

√
may3
m3

− 2 Z2e (cosϕ23)

√
may2
m2

]2
〈n0j0µ0|y2|n0j0µ0〉.

(2.52)
Here, Z3,m3 and Z2,m2 are the charge and mass numbers of 15O and the
proton, respectively, ay3 and ay2 are the Jacobi y-coordinate scales in the T
and Y1 sets, and cosϕ23 is simply given by Eq. (2.27).

1For halo nuclei, it is common to call Jacobi-Y set the system where one valence nucleon
is out the x coordinate.



2.5. Application to 17Ne 65

8 10 12 14 16 18 20 22 24 26 28 30 32
K

max

2.75

2.8

2.85

2.9

2.95

3
r 

 (
fm

)

charge radius

matter radius

Figure 2.27: Convergence of the matter radius (solid line) and the charge
radius (dashed line) of 17Ne with respect to the maximum hypermomentum
Kmax.

 0

 5

 10

 15

rx (fm)

 0

 2

 4

 6

ry (fm)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

|φ
 (

x
,y

)|
2

Figure 2.28: Probability distribution of the 17Ne ground state.



66 Chapter 2. Description of three-body Borromean systems

imax εB (MeV) rmat (fm) rch (fm) ST (E1) (e2fm2)

5 −0.5260 2.805 2.968 1.820
10 −0.8959 2.778 2.923 1.690
15 −0.9351 2.776 2.922 1.689
20 −0.9431 2.776 2.922 1.687
25 −0.9431 2.776 2.922 1.687

Table 2.7: 17Ne ground-state energy εB, matter radius rmat, charge radius
rch and sum rule ST (E1) as a function of imax with Kmax = 30.

lx ly l Sx jab W (17Ne)

0 0 0 0.0 0.0 82.0
1 1 1 1.0 0.0 12.9
2 2 0 0.0 0.0 4.5

0 0 0 0.0 0.0 9.7
0 0 0 1.0 1.0 32.1
2 2 0 0.0 0.0 10.4
2 2 1 1.0 0.0 2.9
2 2 1 0.0 1.0 3.7
2 2 0 1.0 1.0 28.1
2 2 1 1.0 1.0 6.6
1 1 0 0.0 0.0 1.5
1 1 0 1.0 1.0 4.5

Table 2.8: Angular components included for the 1/2− ground state of 17Ne
in the Jacobi-T (upper part) and Jacobi-Y (lower part) sets. W (17Ne) indi-
cates the contribution to the total norm of the wave function. Only those
components contributing more than 1% are given.

The convergence of the ground-state energy of 17Ne, its matter radius, the
charge radius and the sum rule for electric dipolar transitions, as the number
of hyperradial excitations imax increases, is shown in Table 2.7. Calculations
are performed for a fixed value of Kmax = 30.

As in the case of 6He previously presented, the ground state wave function
of 17Ne is dominated, in the Jacobi-T set, by s-wave components. This is
shown in the upper part of Table 2.8, where the percentage of the total norm
provided by each angular components {lx, ly, l, Sx, jab} is given. The main
contribution of 82% corresponds to lx = ly = 0 components, while lx = ly = 2

contains less than 5% of the norm. This does not provide information about
the l content of the single particle proton wave function, which is hindered
in the Jacobi-T set. To see these contributions, a rotation to the Jacobi-Y
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set, where x connects the 15O core and one proton, can be performed. This
has already been used for the computation of electromagnetic transition
probabilities (see section 2.2.2). The results are also shown in the lower part
of Table 2.8. In that case, d waves contribute with roughly 52%, while 42%

of the norm comes from s waves. A similar result was found previously by
Garrido et al. [118] for the ground state of 17Ne. Even though d waves have a
important contribution, these numbers support the existence of a proton halo
in 17Ne [126], which is only suppressed for larger d-wave norms. This is also
consistent with the experimental evidences of this nucleus showing a halo-
like dilute tail in the density and charge distributions [119, 125]. However,
previous data on reaction cross sections suggested that 17Ne is not as large
as typical halo nuclei [127]. This debate about the structure of 17Ne is still
unresolved. Since the Coulomb barrier prevents proton-halo formation, the
number of known halo nuclides on the neutron-deficient side is smaller than
that on the neutron-rich side. More experimental and theoretical efforts are
required to shed some light on these questions.

The 3/2−, 5/2−, 1/2+, 5/2+ and 3/2+ states in 17Ne can also been
computed with the analytical THO method. For 3/2−, 5/2− and 1/2+,
the system exhibit narrow resonances at 0.34, 0.82 and 0.97 MeV, respec-
tively [122]. The 5/2+ and 3/2+ resonances appear at higher energies and
therefore have a broad energy distribution [121]. A good knowledge of the
transition probabilities between these states and the ground state of the
system can be essential to describe different processes where the continuum
is involved. Considering only E1, M1 and E2 transitions, as in the case of
9Be, electromagnetic excitations from the 1/2− ground state can populate
all the above-mentioned jπ states but 5/2+.

In this section, the case of 1/2+ states will be addressed in detail. The oth-
ers will be relevant in chapter 3 and will be discussed therein. To isolate and
identify the resonance, 1/2+ states are computed in an analytical THO basis
defined by parameters b = 0.7 fm and γ = 2.0 fm1/2. This choice decreases
the level density at lower energies, implying that a single pseudostate carries
the resonant behavior. Calculations are performed with Kmax = 30, and the
corresponding spectra for an increasing number of hyperradial excitations
imax is shown in Fig. 2.29. After fitting the spectrum with the three-body
force, the lowest state stabilizes around the experimental resonance energy,
0.97 MeV.
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Figure 2.29: 17Ne eigenvalues for jπ = 1/2+ up to 10 MeV, as a function of
the size of the basis given by imax. Calculations are truncated at maximum
hypermomentumKmax = 30. The lowest state, using a proper basis, is stable
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Figure 2.30: B(E1) transition probability distribution from the 1/2− ground
state to 1/2+ continuum states in 17Ne. The discrete values are smoothed
using a Poisson distribution defined by w = 60.
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In order to compute the corresponding transition probabilities between
the ground state and 1/2+ states, the analytical basis parameter γ is changed
from 1.4 to 1.0 fm1/2. This produces a larger level density around the reso-
nance, and allow to map the low-energy continuum with detail. The discrete
values are then smoothed by using Poisson distributions with a width pa-
rameter of w = 60. The results are shown in Fig. 2.30. From this figure, it
is clear that almost all the E1 strength goes to the resonance. The sum over
all B(E1) discrete values for transitions to 1/2+ states is 0.562 e2fm2. This
value is far below the result provided by the sum rule in Table 2.7, 1.687
e2fm2. It has been checked that the remaining E1 strength is covered by
transitions to 3/2+ states at higher energies.

In this chapter, the analytical THO method for three-body systems has
been presented and applied to three different nuclei: 6He, 9Be and 17Ne,
comprising one, two and three-charged particles, respectively. The resulting
wave functions provide a good description of the nuclear properties of these
nuclei, and the comparison with experimental data (when available) supports
the reliability of the method to describe Borromean systems. The three-body
wave functions and transition probability distributions obtained here will
be used as key ingredients for the applications presented in the following
chapters.





Chapter 3

Radiative capture reactions

The cosmos is also within us. We’re
made of star-stuff. We are a way for the

cosmos to know itself.

Carl Sagan

In this chapter, results from chapter 2 are used to calculate reaction rates
of astrophysical interest. First, the three-body radiative capture reaction rate
is obtained from the inverse photodissociation process. Then, the formation
of 6He, 9Be and 17Ne is studied in a common framework, paying special
attention to the different nuclear structure properties of these nuclei. Finally,
an alternative procedure to estimate reaction rates from inclusive Coulomb
breakup measurements is proposed and applied to 11Li, for which recent
experimental data is available.

3.1 Three-body radiative capture reaction rates

As discussed in chapter 1, some weakly-bound nuclei are important for nu-
cleosynthesis processes, and an accurate knowledge of their reaction and
production rates in different scenarios is essential to understand the origin
of the different elements in the Universe. We focus on radiative capture
reactions of three particles, (abc), into a compound nucleus A of binding
energy εB, i.e.

a+ b+ c −→ A+ γ.

71



72 Chapter 3. Radiative capture reactions

0

εB

ε
εγ

Figure 3.1: Schematic representation of the notation used for the different
energies involved in the radiative capture reaction process (or in the inverse
photodissociation process).

The energy-averaged reaction rate for such process, 〈Rabc(ε)〉, can be ob-
tained from the inverse photodissociation process and is given as a function
of the temperature T by the expression [34, 54] (see appendix C)

〈Rabc(ε)〉(T ) = ν!
~3

c2
8π

(axay)3/2
gA

gagbgc

1

(kBT )3
e
|εB |
kBT

×
∫ ∞
|εB |

ε2γ σγ(εγ)e
−εγ
kBT dεγ , (3.1)

where ε = εγ + εB is the initial three-body kinetic energy, εγ is the energy
of the photon emitted, εB is the binding energy of the compound nucleus
below the three-body threshold (see Fig. 3.1), gi are the spin degeneracy
of the particles, ν is the number of identical particles in the three-body
system, and ax and ay are the reduced masses of the subsystems related to
the Jacobi coordinates {x,y} (see Eqs. (A.3) and (A.4) in appendix A). The
photodissociation cross-section σγ(εγ) of the nucleus A can be expanded into
electric and magnetic multipoles, λ, as [128, 129]

σ(λ)γ (εγ) =
(2π)3(λ+ 1)

λ[(2λ+ 1)!!]2

(εγ
~c

)2λ−1 dB(Oλ)

dε
. (3.2)

Here, B(Oλ) is the electric or magnetic transition probability (O = E,M)
of order λ. This means that the total photodissociation cross section is a
sum over electric and magnetic terms of multipolarity λ. Accordingly to the
traditional literature [130], the first multipole is the dominant one and the
electric contribution dominates over the magnetic one at the same order.
Then, processes sensitive to the B(Oλ) transition probabilities are governed
by E1 contributions, while M1 and E2 contributions compete at a lower level.
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Higher order contributions are typically ignored. The photodissociation cross
section enables the comparison between different B(Oλ) terms1 with a single
observable that can be measured experimentally. This can be achieved only
for stable nuclei such as 9Be [49]. The Oλ contribution to the total reaction
rate is given by

〈Rabc(ε);Oλ〉(T ) = Nλ(T )

∫ ∞
|εB |

dεγ ε
2λ+1
γ

dB(Oλ)

dε
e
−εγ
kBT , (3.3)

where Nλ(T ) is a function of the temperature to be obtained directly from
Eqs. (3.1) and (3.2). The previous expressions makes no assumption concern-
ing the reaction mechanism, and therefore sequential and direct reactions are
included implicitly on an equal footing.

The use of Eq. (3.3) relies on the knowledge of the B(Oλ) energy dis-
tributions or the corresponding photodissociation cross sections. This can
be available experimentally although in most cases of astrophysical interest
it has not been measured (e.g. 17Ne [131]) or there are different measure-
ments with important discrepancies among them (e.g. 9Be [49, 117]). Then,
a reliable theoretical prediction of the electromagnetic transition probability
distribution can provide a reaction rate estimation to be used within stellar
evolution models. A possibility has been presented in chapter 2, using the
analytical transformed harmonic oscillator (THO) method to describe the
bound and continuum states of a system.

Note that the exponential in Eq. (3.3) determines the relevant energy
range when computing the reaction rate from a given transition probability
distribution. For a given temperature T , only energies of the order of kBT will
be relevant. For instance, at T = 1010 K (i.e. 10 GK), only the energies up to a
few MeV will contribute to the integral. Temperatures at different astrophys-
ical scenarios range from 10−2 GK in the center of a typical main-sequence
star, to temperatures around 10 GK in explosive environments [132, 133].
This means that nucleosynthesis is driven by low-energy nuclear reactions.
A reliable estimation of the reaction rate requires then a detailed description
of the transition probability distributions at low energies. In this sense, the
analytical THO method described in the preceding chapter allows to build
up an optimal basis concentrating a large number of pseudo-states near the
breakup threshold.

1Notice that the units of B(Oλ) depend on λ.
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3.2 Application to 6He

The structure of 6He has been addressed in chapter 2 using the analytical
THO method. As already discussed, it is a Borromean system comprising an
α particle and two valence neutrons, and its ground state is a 0+ state at
0.973 MeV below the two-neutron separation threshold [93]. The halo nature
of this nucleus entails a relatively large radius and a large B(E1) distribution
at low excitation energies. It also presents a quadrupolar resonance at 0.83
MeV above the threshold.

In nuclear astrophysics, the 4He(2n, γ)6He reaction is of particular im-
portance. It was suggested first that a series of dineutron capture processes
on 4He and 6He might contribute to nucleosynthesis in neutron-rich envi-
ronments for the r-process [38, 134]. It was shown later that the rates for
these reactions could change the abundance predictions for heavier element
production only in low-entropy neutron-rich environments, such as super-
novae or neutron star mergers [42]. The formation of 6He, and 9Be via the
6He(α, n)9Be reaction, could bridge the instability gaps at mass numbers
A = 5 and A = 8, affecting the production mechanism of seed material and
the subsequent r-process abundance predictions. Thus, a reliable description
of the three-body reaction 4He(2n, γ)6He can be of key importance for the
stellar models of these cataclysmic events.

The radiative capture of two neutrons by an α particle producing 6He
is dominated, according to Eq. (3.2), by electric dipolar transitions from
the 1− continuum to the 0+ ground state. No dipolar resonances have been
observed for 6He. However, due to the presence of a well known 2+ resonance
of 6He, the electric quadrupolar contribution from 2+ states could play a role.
The B(E1) distribution for 6He was presented in the preceding chapter,
Fig 2.14, using the analytical THO basis to achieve a detailed description at
low energies. The transition probability distribution can be then inserted in
Eq. (3.3) to obtain the corresponding reaction rate.

In Fig. 3.2, the reaction rate as a function of the temperature in GK
for the radiative capture reaction 4He(2n, γ)6He is shown. Although it is
not shown in the figure for clarity, E2 contribution from 2+ states is of
about five orders of magnitude smaller than the presented calculations. The
result from the analytical THO method (black solid line) is compared to the
reaction rate obtained using the actual three-body continuum wave functions
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Figure 3.2: Reaction rate for 4He(2n, γ)6He as a function of the temperature
in GK, with different models: this work (black solid), a reference calcula-
tion using the actual three-body continuum wave functions (red dashed),
the results from Ref. [54] (blue dotted) and the results from a sequential
calculation assuming a dineutron capture [42] (orange dot-dashed).

(red dashed line). Both calculations are in good agreement, although a small
difference is observed in the region between 0.1 and 1.5 GK. Calculation from
Ref. [54] is also shown (blue dotted line), which exhibits a different behavior
at low energies. This is due to the difference of the B(E1) distributions of
the corresponding models at energies below 0.5 MeV. It has been checked
that the differences in the B(E1) distribution between 0.5 and 3.5 MeV do
not affect the calculated reaction rate, provided the same total strength.
Fig. 3.2 includes also the results from a sequential model for the radiative
capture [42] (orange dot-dashed line). This calculation presents the same
behavior as the THO but is a factor of two larger above 0.2 GK. Note that
this sequential calculation assumes first the formation of a dineutron, which
is controversial, and then the capture of this by an α particle. An alternative
sequential process, presented also in [42], starts from a neutron capture by
the α particle to give 5He followed by the capture of a second neutron. This
provides a reaction rate more than two orders of magnitude smaller in all
studied ranges of temperatures. The separation between these two processes
is not required within a full three-body model as presented in this work,
which provides a consistent description of the reaction with no assumptions.
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3.3 Application to 9Be

Details about the structure of 9Be using a three-body model have been shown
in chapter 2. Reactions induced by 9Be within a four-body framework will
be addressed in chapter 4. The analytical THO method provides a proper
description of the 3/2− ground state of the system and, as will be shown, a
reasonable agreement with the available experimental data on elastic scat-
tering.

In astrophysics, the reaction α(αn, γ)9Be followed by 9Be(α, n)12C may
provide an alternative path towards the production of heavier elements be-
yond the instability gaps at mass numbers A = 5 and A = 8 [49]. This
process, however, competes with the triple-α reaction and will be impor-
tant only in highly neutron-rich environments. The relevance of this pro-
cess has been linked to the r-process in type II supernovae [37]. The for-
mation of 9Be has been addressed in several works assuming a sequential
process [49, 117, 135, 136], but more recently it was suggested that the
direct three-body capture could enhance the reaction rate at low temper-
atures [34, 54] by several orders of magnitude. In this temperature region,
calculations on the reaction rate are extremely sensitive to the transition
probability distributions at low energies. Thus, a detailed description of these
distributions is required to study the effect of the three-body capture. It
was shown in the preceding chapter that the low energy spectrum of 9Be
presents a series of resonances near the three-body threshold. These states
are connected to the 3/2− ground state of the system by electric (E1) and
magnetic (M1) dipolar transitions. For the computation of σγ , only dipo-
lar transitions are considered, since the λ-factors in Eq. (3.2) reduces the
relevance of quadrupolar contributions. The cases of 1/2+ (E1) and 5/2−

(M1) were shown in the preceding chapter. For the remaining jπ states, the
same THO basis used for 5/2− states in chapter 2 is employed. The B(E1)

and B(M1) discrete values are smoothed using Poisson distributions with a
width parameter w = 30, 60, 30 for 3/2+, 5/2+, 1/2−, respectively.

In Fig. 3.3, the three electric dipolar contributions to the photodissocia-
tion cross section of 9Be from 1/2+ (solid line), 3/2+ (dotted line) and 5/2+

states (dashed line), are shown. Magnetic dipolar contribution from 5/2−

states (dot dashed) and 1/2− states (double dot dashed) are also given. The
total cross section is represented by a thick solid line. It is clear that, at very



3.3. Application to 9Be 77

0 1 2 3 4

ε  (MeV)

0

0.5

1

1.5
σ

γ
  
(m

b
)

1/2
+

3/2
+

5/2
+

5/2
-

1/2
-

Total
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low energies, only the 1/2+ states contribute to the cross section. The total
photodissociation cross section is compared, in Fig. 3.4, with the experimen-
tal data from Arnold et al. [117] and Sumiyoshi et al. [49]. The agreement
is quite good. The result is also in good agreement with other experimental
data available in the literature [135, 136], although they are not shown in
the figure for clarity. Recent calculations by de Diego et al. [54, 137], using
a similar three-body model, are also shown. In those works, the continuum
problem is solved by imposing box boundary conditions, for which obtaining
a large density of states at the lowest energies is numerically challenging. So,
the 1/2+ resonance peak for energies below 1.2 MeV is replaced by an energy-
dependent Breit-Wigner distribution with the proper resonance parameters
to reproduce the data. In Ref. [54], the 1/2+ parameters are adjusted to
reproduce the 2002 data, while in Ref. [137] are fixed to describe the 2012
data. This procedure is applied by Garrido et al. [34] to fit the total cross
section including Breit-Wigner distributions for the lowest 9Be resonances,
also presented in Fig 3.4. This calculation is adjusted to reproduce the data
from Sumiyoshi et al.

In contrast, the present result for the 1/2+ peak is directly obtained by
smoothing the transition strength with Poisson distributions, using a THO
basis that concentrates a large density of states near the breakup threshold.
In this sense, this model provides the first full three-body calculation of
the 9Be photodissociation cross section in the whole energy range. The ex-
perimental data for the 1/2+ contribution is underestimated (in particular
compared to 2012 data), but it shows the right low-energy behavior and
the corresponding tail of the resonance. The narrow 5/2− resonance is also
well reproduced. This contribution is not computed in Refs. [34, 54, 137].
Concerning the 5/2+ broad resonance, the present estimations agree better
with Sumiyoshi et al. [49] than with those from the more recent experiment
of Arnold et al. [117], in which a rather narrow peak is obtained. For that
reason the position of the 5/2+ resonance is fixed to Sumiyoshi et al. data.
In the calculations by de Diego et al., the 5/2+ resonance is adjusted to the
energy given by Sumiyoshi et al., however due to the smoothing procedure the
maximum is shifted to lower energies. The 3/2+ resonance plays a minor role
and its contribution affects only in the high energy region. At these energies,
the results here presented agree better with both sets of experimental data
than those by de Diego et al. The overall difference between both calculations
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could be associated to the different discretization methods and different two-
body potentials. Concerning the M1 contribution to the 1/2− states, it has
a small effect on the cross section, as shown in Fig. 3.3.

Although the overall behavior is very similar in both sets of experimental
data, there are important discrepancies between them. The accuracy of these
experiments could then be questioned, since experimental normalization fac-
tors may lead to very different results. In Refs. [49] and [117], for instance,
the energy and width of the 1/2+ resonance are found to be the same, but
with different gamma widths by a factor of 1.3. This results in a different
height for the resonant peak. For that reason it is not trivial to find an
explanation to the differences between theory and experiment. On the other
hand, three-body models are an approximation to the actual many-body
problem, and consequently there might be effects on the cross section that are
not considered explicitly, e.g. dynamical effects within the clusters or full an-
tisymmetrization problems. Both calculations (this work and Refs. [54, 137])
are systematically above the data at energies larger than 2 MeV, but at
this level it is not possible to determine whether this difference is related to
many-body corrections or a possible normalization uncertainty of the data.
Nevertheless, the overall agreement between the present calculations and
the available experimental data supports the reliability of the method in
describing the 9Be wave functions within a three-body approach.

In Fig. 3.5, the contribution to the α(αn, γ)9Be reaction rate from 1/2+

(solid line), 3/2+ (dotted line), 5/2+ (dashed line), 5/2− (dot dashed) and
1/2− (double dot dashed) states is shown as a function of the temperature in
GK. As expected, the 1/2+ contribution dominates almost in the whole tem-
perature range, with other contributions being relevant only at temperatures
above 3 GK.

The total reaction rate is compared in Fig. 3.6 with sequential estimations
from experimental cross sections from Refs [49] (triangles), [117] (circles)
and [33] (squares). The present result converges to the sequential estimations
at high temperatures, where the direct capture plays a minor role. Three-
body calculations by de Diego et al. [54, 137] were included for the photodis-
sociation cross section in Fig. 3.4. The subsequent results for the reaction rate
are not included in Fig. 3.6 for clarity, but they agree with the present results
in the temperature region between 0.1 and 5 GK. At low temperature, below
0.1 GK, the three-body capture enhances the reaction rate by several orders
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of magnitude, in good agreement with three-body Breit-Wigner estimations
by Garrido et al. [34]. This confirms that the uncertainty related to the 1/2+

peak shown in chapter 2 is not crucial when computing the reaction rate.
At such low temperatures, the three-body system has no energy to populate
the two-body 8Be resonance and, as expected, the direct capture begins to
dominate. This effect cannot be described within sequential models.

3.4 Application to 17Ne

As in the previous cases, the structure of 17Ne has been addressed in chap-
ter 2. This nucleus is a Borromean system with two valence protons on top
of a 15O core. Accordingly to the available experimental data, whether this
system presents or not a halo structure is still an open problem.

Under the astrophysical conditions in X-ray bursts, the breakout from
the hot CNO cycle can trigger the rp-process. Among the possible breakout
reactions, 15O(2p, γ)17Ne has been proposed to play a significant role towards
the production of heavier, neutron-deficient nuclei along the proton dripline.
Experimental effort has been devoted to obtain the photodissociation cross
section of 17Ne from a Coulomb dissociation experiment at GSI, although
conclusive results have not yet been published [131]. The resonant [47] and
non-resonant [138] capture processes for the production of 17Ne have been
studied theoretically by Grigorenko et al., showing the relevance of the three-
body direct capture compared to sequential estimations [46].

As shown in the preceding chapter, the 17Ne low-energy spectrum
presents several resonances near the two-proton separation threshold. The
analytical THO method presented in this work enables the description
of resonant and non-resonant capture on the same footing. Therefore, the
method provides a different approach to compare with the theoretical results
in Refs. [47, 138]. Considering only dipolar transitions from the 1/2− ground
state, this requires the computation of the photodissociation cross section
including 3/2− (M1), 1/2+ (E1) and 3/2+ (E1) states. Electric quadrupolar
transition (E2) to 3/2− and 5/2− could also compete with the M1 contri-
bution, while is reasonable to neglect higher order multipoles. The case of
1/2+ (E1) was shown in the preceding chapter. For the remaining jπ states,
the same THO basis is employed. The B(E1) and B(M1) discrete values
are smoothed using Poisson distributions with a proper width parameter.
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In Fig. 3.7, the E1 contributions to the photodissociation cross section of
17Ne from 1/2+ (thin solid line) and 3/2+ (dotted line) are shown. The M1
contribution from the 3/2− states (dot-dashed line) is also given. The total
cross section is represented by a dashed line. The cross section is presented
in linear (upper panel) and logarithmic scale (lower panel). Electric dipolar
contributions, especially of 1/2+ states, dominate the photodissociation cross
section. However, the lower panel suggests a non-negligible M1 contribution
from 3/2− states, which can affect the reaction rate at very low temperatures.
No data is available on σγ to compare with the present calculations of 17Ne.
The distributions have been obtained following the same prescription pre-
sented in the previous cases, i.e., by selecting the Poisson width parameters
to be as large as possible.

From the photodissociation cross section, the 15O(2p, γ)17Ne reaction
rate can be easily calculated. In Fig. 3.8, the contribution from 1/2+ (thin
solid line), 3/2+ (dotted line) and 1/2− (dot-dashed line) states to the total
reaction rate for 17Ne formation (thick solid), is shown as a function of the
temperature in GK. The 1/2+ contribution dominates at high temperatures,
while the low-temperature tail is governed by transitions from 3/2− states.

The reaction rate is compared in Fig. 3.9 (thick black solid) with previous
calculations by Grigorenko et al. [138] (thick gray solid), which consider the
resonant and non-resonant contributions separately. These are not actual
three-body calculations, as the resonant part is estimated from experimental
data on 17Ne excited states and the non-resonant contribution is obtained
by assuming specific s2 and d2 weights of the system ground state. It is
remarkable that just the 1/2+ contribution in the present work (red solid) is
noticeably larger than the total rate in Ref. [138] at high temperatures. The
addition of 3/2− states increases further this difference at low temperatures,
while 3/2+ states play a negligible role in the whole temperature range. It is
worth mentioning that E2 contributions have also been estimated, being even
smaller. To asses the origin of these differences and the validity of the method
here presented, a calculation by Garrido et al. [139] for the 1/2+ contribution
is also shown (orange dashed). This corresponds to a three-body calculation
similar to the present work, using different binary interactions and solving
the Schrödinger equation with box boundary conditions to describe the 17Ne
states. Both approaches agree above 0.5 GK and question the results in
Ref. [138].
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The temperature range of astrophysical interest in novae and X-ray bursts
is of the order of 0.3-3 GK (see, for instance, Ref. [140]). In this range, both
three-body approaches (the present work and calculations by Garrido at al.)
agree and provide a reaction rate several orders of magnitude larger than
that in Ref. [138]. This could imply important differences in the temperature-
density profile that determines the conditions for the 15O(2p, γ)17Ne reaction
to be relevant. At lower temperatures, calculations show important differ-
ences that may be related to the discretization method or specific features
of the system ground state derived from the different binary interactions.
Nevertheless, this region is not important for the astrophysical site and, even
though the origin of these differences should be investigated, implications in
nucleosynthesis are expected to be small.

3.5 Capture reaction rates from inclusive Coulomb
breakup

Reaction rates presented in previous sections for 6He, 9Be and 17Ne have
uncertainties related to the theoretical model used to describe the systems.
Radiative capture reactions take place in stellar environments at very low
energies, leading to very small productions rates, thus making them very
difficult for direct measurements. Moreover, when the capture process is a
three-body reaction or involves exotic nuclei, direct measurements are not
feasible. Alternative procedures to estimate reaction rates are a necessity. In
this section, a relationship between the inclusive Coulomb breakup proba-
bility and the radiative capture reaction rate for weakly-bound three-body
projectiles is established. First, the semiclassical model for Coulomb exci-
tation is introduced, and the breakup probability in the equivalent photon
model (EPM) is obtained. Then, a direct link between the so-called reduced
breakup probability and the three-body reaction rate is developed. Finally,
the method is applied to 11Li, for which recent data on inclusive breakup are
available.

3.5.1 Semiclassical Coulomb excitation theory

Weakly-bound nuclei can be easily excited or dissociated in the presence of
a strong electromagnetic field, such as the one generated by a heavy target.
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Therefore, the properties of these nuclei can be accessed from the analysis
of collisions at energies below the Coulomb barrier.

The semiclassical description of Coulomb excitation is largely due to
Alder and Winther [141]. The theory considers classical trajectories and a
quantum model for nuclear excitations. This enables the obtention of simple
formulae for the scattering cross sections when the process is electromagnet-
ically dominated. This applies at energies below the Coulomb barrier, or at
higher energies in the angular region corresponding to large impact parame-
ters. Within this approximation, the breakup cross section of the projectile
due to the electromagnetic interaction with the target can be written as(

dσ

dΩ

)
BU

=

(
dσ

dΩ

)
Ruth

P (Ω), (3.4)

where P (Ω) is the breakup probability. The Rutherford cross section, which
corresponds to a pure Coulomb trajectory, is simply given by(

dσ

dΩ

)
Ruth

=
a20

4 sin4 (θ/2)
(3.5)

being θ the scattering angle in the center of mass frame and a0 the half the
distance of closest approach,

a0 =
ZpZte

2

2E
. (3.6)

Here, Zp and Zt are the charge numbers of the projectile and the target,
respectively, and E is the energy in the center of mass frame. Considering
only electric excitations, the λ contribution to the breakup cross section can
be written as(

dσEλ
dΩdεγ

)
BU

=

(
Zte

~v

)2

a−2λ+2
0

dB(Eλ)

dε

dfEλ(θ, ξ)

dΩ
, (3.7)

where εγ is the excitation energy2, v is the relative velocity between projectile
and target, ξ is a dimensionless variable given by ξ = a0εγ/~v, and fEλ(θ, ξ)

represents the number of equivalent photons incident on the projectile due to
the interaction with the target. This quantity names the Equivalent Photon

2This section follows the same notation than section 3.1. See Fig. 3.1.
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Model (EPM) and is given by

dfEλ(θ, ξ)

dΩ
=

4π2

(2λ+ 1)3
1

sin4 (θ/2)

∑
µ

∣∣∣Yλµ (π
2
, 0
)∣∣∣2 ∣∣Iλµ(θ,ξ)∣∣2 . (3.8)

Here, Iλµ(θ, ξ) are the Coulomb integrals, and

Yλµ

(π
2
, 0
)

=


(

2λ+ 1

4π

)1/2 [(λ− µ)!(λ+ µ)!]1/2

(λ− µ)!!(λ+ µ)!!
(−1)

(λ+µ)
2 ; λ+ µ even

0 ; λ+ µ odd.

Thus, in the case that dipolar excitations (E1) dominate, the breakup prob-
ability in Eq. (3.4) can be written as

P (Ω) =

(
Zte

~va0

)2 2π

9

∫ ∞
|εB |

dεγ
dB(E1)

dε

(
I21,1 + I21,−1

)
, (3.9)

where εB is the ground state energy from the separation threshold, and
therefore |εB| represents the breakup energy. Note that this probability is
explicitly proportional to (Zt)

2, and implicitly proportional to (Zp)
2 via

the transition probability B(E1). As a consequence, the cross section (3.4)
increases with the Coulomb repulsion, and the breakup of the projectile is
enhanced for reactions on heavy targets.

A detailed description of the Coulomb integrals in Eqs. (3.8), (3.9) is
available in Refs. [141, 142]. In the small angle limit, these integrals can be
approximated as [103]

I21,1 + I21,−1 ≈
8πa0
~v

sin (θ/2) εγ exp

[
− a0
~v

(
π +

2

sin (θ/2)

)
εγ

]
. (3.10)

Inserting this result in Eq. (3.9) leads to

P (Ω) ≈ 16π2

9

(Zte)
2 sin2 (θ/2)

(~v)3a0

∫ ∞
|εB |

dεγ εγ
dB(E1)

dε
e
−a0~v

(
π+ 2

sin(θ/2)

)
εγ .

(3.11)
It is convenient to introduce a collision time

t =
a0
~v

(
π +

2

sin (θ/2)

)
, (3.12)
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in terms of which a reduced breakup probability Pr(t) can be defined as

Pr(t) = P (Ω)
9t2(~v)3a0

16π2 (Zte)
2 sin4 (θ/2)

=

∫ ∞
|εB |

dεγ εγ
dB(E1)

dε
e−tεγ t2. (3.13)

With the collision time t defined in Eq. (3.12), Pr(t) is independent of the
collision parameters. This makes t a scaling variable in such a way that
experimental data on a given reaction at different energies can be merged
together and analyzed using a single quantity, Pr(t). At the right conditions,
i.e., low incident energies and small scattering angles, the reduced breakup
probability is then totally determined by the electric dipolar transition prob-
ability distribution of the projectile.

3.5.2 Reaction rate from break-up probability

The applicability of Eq. (3.13) relies on the knowledge of the B(E1) distri-
bution. This problem was also present in section 3.1 for the astrophysical
reaction rate. Transition probability distributions are typically model de-
pendent and introduce an uncertainty in both observables. When accurate
reaction rates are needed to compute full nucleosynthesis networks in astro-
physics, this can be a problem. A demanding reference is required to asses
the validity of the different theoretical approaches that have been used to
calculate reaction rates. Recently, it was proposed that inclusive Coulomb
breakup measurements can provide information on the B(E1) distribution of
weakly-bound projectiles [103]. These results are used in the present work to
establish a relationship between the inclusive Coulomb breakup probability
and the three-body radiative capture reaction rate.

Accordingly to section 3.1 and following the same notation, the three-
body radiative capture reaction rate can be written, in leading order, as

〈Rabc(ε)〉(T ) ' N1(T )

∫ ∞
|εB |

dεγ ε
3
γ

dB(E1)

dε
e
−εγ
kBT , (3.14)

where Nλ(T ) is a function of the temperature to be obtained directly from
Eqs. (3.1) and (3.2). This, for electric dipolar transitions, gives

N1(T ) = C 1

(kBT )3
e
|εB |
kBT , (3.15)

and C represents all the projectile-related constants,
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C = ν!
~2

c3
27π4

32(axay)3/2
gA

gagbgc
. (3.16)

At energies around the Coulomb barrier and at very forward angles, the
reduced breakup probability of weakly-bound nuclei is given by Eq. (3.13)
and also depends, in leading order, on the B(E1) distribution. It is then
clear that Eqs. (3.13) and (3.14) are formally equivalent except for a factor
ε2γ . This means that both observables, reaction rate and reduced breakup
probability, are strongly correlated in the range for which the EPM holds.
This opens the possibility of getting reliable information on the astrophysical
reaction rate from experimental measurements of the breakup probability.
The maximum correlation is established when the exponentials in Eqs. (3.13)
and (3.14) are equal, i.e.,

t =
1

kBT
, (3.17)

which, together with Eq. (3.12), establishes a direct correspondence between
the scattering angle θ and the temperature T . This relation is not unique
since it depends on the bombarding energy through the parameter a0 and
the velocity v. This enables the possibility of exploring different temperature
ranges of relevance in astrophysics by measuring breakup probabilities at dif-
ferent energies. For larger energies, one gets information for the same angle on
shorter collision times, which corresponds to exploring higher temperatures.
It is straightforward to see from Eqs. (3.13), (3.14) and (3.17) that

〈Rabc(ε)〉(T ) = C t3e|εB |t d
2

dt2

(
1

t2
Pr(t)

)
. (3.18)

This equation is the main result of this section. The reaction rate in a stellar
environment at a given temperature T is related with the inclusive reduced
break-up probability Pr(t) obtained in a Coulomb scattering experiment, for
certain collision times corresponding to given scattering angles and energies.

To evaluate from a practical purpose the second derivative in Eq. (3.18)
it is convenient to fit a suitable function to the experimental data. The main
t-dependence of Pr(t) is through the exponential factor e−|εB |t, as it can be
deduced from Eq. (3.13). Thus, without any loss of generality, Pr(t) can be
expressed as an expansion,

Pr(t) ' e−|εB |t
(
b0 + b1t+ b2t

2 + . . .
)
. (3.19)
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The parameters b0, b1, b2, . . . are fitted to the experimental values of Pr(t)e|εB |t,
over the range which is Coulomb dominated. From these values, the reaction
rate given by Eq. (3.18) is

〈Rabc(ε)〉(T ) = C
[
b0
(
|εB|2kBT + 4|εB|+ 6/(kBT )

)
+ b1

(
|εB|2(kBT )2 + 2|εB|kBT + 2

)
+ b2

(
|εB|2(kBT )3

)
+ . . . ] . (3.20)

The parameters b0, b1, b2, . . . fitted in Eq. (3.19) will have some uncertainties,
given by a covariance matrix. These uncertainties can be implemented in
Eq. (3.20) to estimate the uncertainties in the reaction rate.

3.5.3 Example of application: 11Li

The breakup of 11Li on 208Pb was recently measured at TRIUMF [103].
Experimental breakup cross sections can be used to illustrate the method,
evaluating the two-neutron radiative capture by 9Li to produce 11Li. This
reaction, 9Li(2n, γ)11Li, could appear in the α-process in type II supernovae
or in the Inhomogeneous Big Bang [143]. Although 9Li radiative capture
might not be a key reaction in astrophysical sites, this case is chosen to show
a procedure that can be used in general for three-body capture reactions.

The 11Li nucleus is a two-neutron halo system with a Borromean struc-
ture, comprising a 9Li core surrounded by two loosely-bound neutrons. The
reported values of the B(E1) of 11Li deduced from exclusive breakup mea-
surements (i.e., all outgoing fragments are detected) give a large E1 strength
at low excitation energies. However, there are considerable discrepancies in
the absolute values between breakup cross sections in different experiments
(see, for instance, Refs. [144, 145]). Structure models for 11Li differ also in
their predictions, leading to uncertainties on the B(E1) distribution. As a
consequence, the 9Li(2n, γ)11Li reaction rate, which relies on the transition
probability distribution, is not well determined. Similar problems have been
shown in this chapter for nuclei of astrophysical interest.

Information on the B(E1) distribution, and consequently on the reaction
rate, can also be obtained from inclusive measurements in which only a heavy
fragment is detected. In the case of 11Li breakup, this implies to measure the
9Li fragments. For weakly-bound systems such as 11Li colliding on heavy
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targets, the strong Coulomb repulsion decreases the elastic cross section
and produces large breakup probabilities, even at low incident energies. At
energies around the Coulomb barrier, the method presented in the previous
section can be used within a wide angular range where the Coulomb interac-
tion dominates. This enables the use of Eq. (3.17) to find a correspondence
between scattering angles (or collision times) in the breakup process and
temperatures for the radiative capture reaction. Note that the expressions
in the previous section are referred to the center of mass of 11Li fragments,
but inclusive measurements imply to detect only the core fragment. It was
checked in Ref. [103] that the effect of taking this angle instead of the ex-
perimentally determined 9Li scattering angle is negligible. This is somehow
expectable, since at low incident energies and small scattering angles the
center of mass of the system and the core fragment are close enough.

In Fig. 3.10, the 11Li + 208Pb reduced break-up probability is presented.
It is clear that, in the region from t = 5 to 15 MeV−1, data are reasonably
smooth and follow an exponential decay. The product of the break-up prob-
ability Pr(t) times e|εB |t is fitted by a second degree polynomial, Eq. (3.19),
obtaining the values b0 = 7.8 e2fm2MeV−1, b1 = −0.4 e2fm2, b2 = 0.02

e2fm2MeV, with the corresponding covariance matrix, which is given in Ta-
ble 3.1. In this fit, |εB| has been taken as 0.37 MeV, the experimental two-
neutron separation energy of 11Li [146]. In Fig. 3.10 the solid black line is
the result of the quadratic fit and the shadow region around is the 1-σ region
coming from the uncertainties in the determination of the parameters. This
is given by

σ2P = (Fχ2 e−|εB |t)2σ2
(
b0 + b1t+ b2t

2
)

= (Fχ2 e−|εB |t)2
[
σ2(b0) + σ2(b1)t

2 + σ2(b2)t
4

+ 2σ(b0, b1)t+ 2σ(b0, b2)t
2 + 2σ(b1, b2)t

3 ] .

(3.21)

Here, the factor Fχ2 is simply the square root of the reduced χ2 of the fit
and enhances the uncertainty band, accounting for the experimental data
dispersion and the possible degree of unsuitability of the quadratic model.
For comparison, Fig. 3.10 shows also the results obtained by integrating two
different B(E1) distribution directly through Eq. (3.13): i) the experimental
B(E1) measured at RIKEN [144] (dot-dashed red line), and ii) a theoretical
calculation of the B(E1) in a three-body model [103] (dashed blue line). It
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is shown that the quadratic fit reproduces fairly well the experimental data
on the break-up probability.

From the knowledge of parameters b0, b1 and b2, the reaction rate for
the two-neutron capture by 9Li can be estimated using Eq. (3.20) in the
range of temperatures from 0.7 to 2.3 GK, corresponding to collision times
from t = 15 to t = 5 MeV−1. This range of temperatures is relevant since
it corresponds to the burning of elements ranging from helium to silicon in
a typical massive star [147]. One could try to explore a larger temperature
range by doing Coulomb excitation experiments at different energies. The
present work requires to be certain that nuclear effects, or higher order
Coulomb effects, do not affect significantly the break-up cross sections. This
can be checked using reliable reaction calculations, as shown in Ref. [103].

The reaction rate so obtained is shown in Fig. 3.11 as a function of the
temperature in GK. The results from the quadratic fit and its corresponding
1-σ uncertainty band are shown by the full black line and the shaded region
around, respectively. In the same figure, the results obtained by inserting
different B(E1) energy distributions in Eq. (3.14) are also shown: i) the
experimental RIKEN data [144] (dot-dashed red line), ii) a theoretical three-
body model of 11Li which presents a resonance at 0.69 MeV [103] (dashed blue
line), and iii) a theoretical two-body model of 11Li with a dipolar resonance
at the same position [148] (dotted green line). The results obtained from
the RIKEN experimental data include an estimation of the uncertainty in
the reaction rate, which is due to the statistical uncertainties of the B(E1)

points, and also to the uncertainty in the break-up energy, which is given [144]
as ∆E = 0.17

√
ε, with ε in MeV. This uncertainty is especially important,

in relative terms, for the energies close to the threshold, which are the most
relevant for the reaction rate.

As shown in Fig 3.11, the reaction rate extracted from this work is sig-
nificantly larger than the reaction rate extracted from the RIKEN B(E1)

values, although these have considerable uncertainties. The difference is also
seen in the break-up probability, in Fig. 3.10. This discrepancy may be an
indication that the 11Li reaction mechanism at the energies involved is not
fully described by the one-photon method. Indeed, continuum-discretized
coupled channels [103] indicate that higher order coupling effect may play a
role. On the other hand, the B(E1) values close to the threshold, and the
corresponding energies, have uncertainties. However, it should be remarked
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Figure 3.10: 11Li + 208Pb reduced break-up probability as a function of
the collision time, t. Data are from Ref. [103], at two different incident
energies. The continuous black line is the result of the fit with Eq. (3.19) and
the shadow marks the 1-σ region around the fit. The results integrating in
Eq. (3.13) theB(E1) energy distribution from RIKEN data [144] (dot-dashed
red line) and a theoretical three-body B(E1) distribution [103] (dashed blue
line) are also shown for comparison.

b0 b1 b2

b0 3.893 -1.064 0.068

b1 0.296 -0.019

b2 0.001

Table 3.1: Covariance matrix of quadratic fit.
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Figure 3.11: Reaction rate as a function of temperature (in GK). The estima-
tion from inclusive break-up data using the quadratic fit, given by Eq. (3.20),
is shown by the full black line. The shaded region around corresponds to the
1–σ uncertainty related to the fit. Other lines are calculations using different
B(E1) energy distributions directly in Eq. (3.14) (See text for details).

that both sets of experimental data allow to extract information on the
astrophysical reaction rate, and give results in the same order of magnitude.
It is seen in Fig 3.11 that the three-body calculation of [103] is in very good
agreement with the reaction rate calculated in this work in the region of
temperatures for which the EPM model holds. On the contrary, the two-
body calculation [148] including a resonance at the same energy that the
three-body model is clearly out of the values and trend calculated by the
method here presented.
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In this chapter, radiative capture reactions for the formation of 6He, 9Be
and 17Ne have been studied, making use of the results and considerations
given in chapter 2. The reaction rates so obtained treat the resonant and
non-resonant, sequential and direct contributions on an equal footing. Full
nucleosynthesis network calculations are asked for to test the sensitivity of
r-process (6He, 9Be) and rp-process models (17Ne) to these updated reaction
rates.

In the last section, a relation between the astrophysical reaction rate and
the inclusive Coulomb break-up probability for three-body systems has been
established, in the region in which first order dipole Coulomb interaction is
dominant. The temperature of the stellar environment is directly related to
the collision time of the reaction, which depends on the scattering angle and
the incident energy. This implies that detailed measurements on inclusive
break-up probabilities of these systems will provide a direct estimation of
the corresponding reaction rates of astrophysical interest in a given range
of temperatures. This result provides a new experimental tool to determine
astrophysical reaction rates for short-lived three-body nuclei and provides
an additional motivation to carry out Coulomb scattering experiments of
exotic nuclei in radioactive ion beam facilities. The method could be used,
for instance, to assess the validity of the reaction rates presented for the
4He(2n, γ)6He and 15O(2p, γ)17Ne capture process. Experimental data on
6He or 17Ne breakup could help in estimating the corresponding reaction
rate. There are experimental data on 6He inclusive Coulomb breakup at low
energies [149, 150], but not in the angular region required by the new method.
Dedicated experiments are desirable.





Chapter 4

Direct reactions induced by
three-body projectiles

Experiments are the only means of
knowledge at our disposal. The rest is

poetry, imagination.

Max Planck

In this chapter, reactions induced by three-body projectiles are described
within a four-body framework. The general expansion of the scattering wave
functions by means of projectile internal states was presented in section 1.4,
leading to a coupled-channel problem. The relevant expressions for the par-
ticular case of three-body projectiles are given in this chapter. The method
is applied to reactions induced by 9Be, for which some of the results and
considerations presented in chapter 2 will be of key importance.

4.1 Three-body projectiles

The Continuum-Discretized Coupled-Channel (CDCC) method was intro-
duced originally for two-body projectiles, in particular for deuteron (p+ n)
induced reactions. The traditional discretization method for two-body pro-
jectiles, whose continuum states can be easily calculated, is the binning
procedure, in which the continuum spectrum is truncated at a maximum
excitation energy and divided into energy (or momentum) intervals. For
each interval, or bin, a normalizable state is built up by superposition of

97
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the scattering states within the interval. This method has been extended
to three-body projectiles such as the halo nuclei 6He [151] and 11Li [103],
which consist of a core and two valence neutrons. However, as discussed in
chapter 2, the calculation of actual continuum states for three-body systems
comprising more than one charged particle is a very involved problem, since
the asymptotic behavior of the wave functions is not known in general. An
alternative to the binning procedure is the Pseudo-State (PS) method pre-
sented in chapter 2. The three-body projectile states will be then described
approximately as square-integrable functions.

All the expressions in section 1.4 were presented with a general notation,
and therefore can be applied for the case of three-body projectiles. Although
the same ideas prevail, typical level densities in the description of three-
body projectiles are much larger than that for two-body projectiles. As
three-body wave functions contain many components (see chapter 2), the
Schrödinger equation associated with the internal degrees of freedom of the
projectile (1.16) provides many eigenvalues. The three-body continuum is
therefore approximated by a large number of square-integrable wave func-
tions. It was shown in Ref. [79] that the level densities for 6He (α+n+n) were
much higher than for two-body projectiles. As a consequence, the coupled-
channel system in Eq. (1.21) involves a large number of equations. Moreover,
the final expressions for the coupling potentials given by Eq. (1.22) in the
case of three-body projectiles are rather complicated, as will be shown.

In the literature, the application of the method for three-body projectiles
is typically referred to as four-body CDCC. The method is an ideal tool
to describe reactions induced by Borromean nuclei, as it does not assume
any specific two-body structure based on the properties of unbound nuclei.
Fig. 4.1 shows schematically the four-body framework, where Jacobi coordi-
nates {x,y} are used to describe the projectile.

Expanding the angular couplings in Eq. (1.19), the four-body wave func-
tion in Eq. (1.18) can be written as

ΨJM (R,x,y) ≡
∑

njµLML

φTHO
njµ (x,y)〈LMLjµ|JM〉

× iLYLML
(R̂)

1

R
χJLnj(R), (4.1)

where the projectile states φTHO
njµ are obtained by diagonalizing the three-
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Figure 4.1: Scattering of a three-body projectile by a structureless target.

body internal Hamiltonian in an analytical transformed harmonic oscilla-
tor (THO) basis. This is a particular choice, although other bases can be
used [116].

To generate the coupling potentials (1.22), a multipole expansion of the
projectile-target interaction is introduced. According to Eq. (1.15), this in-
teraction is the sum of the interaction between each projectile particle and
the target, Vqt(Rq), with q = 1, 2, 3. For each pair potential, the appropriate
Jacobi set is chosen so that the corresponding coordinate Rq depends only
on vectors R and yq. Assuming central potentials, each component can be
expanded as

V (q)(rq) =
∑
Q

(2Q+ 1)V(q)Q (R, yq)PQ(zq), (4.2)

where Q denotes the multipole, PQ(zq) is a Legendre polynomial, and zq =

ŷq · R̂ is the cosine of the angle between yq and R. In this expansion,
V(q)Q (R, yq) are the multipole coefficients given by

V(q)Q (R, yq) =
1

2

∫ +1

−1
dzqV

(q)(rq)PQ(zq). (4.3)

Using the above-given definitions, and after some algebra, the coupling po-
tentials can be expressed as

V JM
Lnj,L′n′j′(R) =

∑
Q

(−1)J−jL̂L̂′

(
L Q L′

0 0 0

)
×W (LL′jj′, QJ)FQnj,n′j′(R), (4.4)
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where all the dependence on the projectile states is contained in the radial
form factors FQnj,n′j′(R) given by

FQnj,n′j′(R) = (−1)Q+2j−j′ ĵĵ′ (2Q+ 1)
∑
ββ′

3∑
q=1

∑
βqβ′q

NββqNβqβ′q

× (−1)
lxq+Sxq+j

′
abq
−jabq−Iqδlql′qδSxqS′xq l̂yq l̂

′
yq l̂q l̂

′
q ĵabq ĵ

′
abq

×

(
lyq Q l′yq
0 0 0

)
W (lql

′
qlyq ly′q , Qlxq)W (jabqj

′
abq lql

′
q, QSxq)

×W (jj′jabqj
′
abq , QIq)

[∫ ∫
(sinαq)

2(cosαq)
2dαqdρ

× RTHO
nβj (ρ)ϕ

lxq lyq
Kq

(αq)V(q)Q (R, yq)ϕ
lxq l
′
yq

K′q
(αq)RTHO

n′β′j′(ρ)

]
. (4.5)

Here, RTHO
nβj (ρ) are the hyperradial functions of the projectile wave func-

tions, which can be expanded in the corresponding THO basis using the
diagonalization coefficients Ciβjn (see (Eq. 1.5)). As already mentioned, for
each particle q composing the projectile, the wave function components
β = {K, lx, ly, l, Sx, jab} obtained in a preferred Jacobi set are rotated to the
corresponding Jacobi-q set so that the interactions can be easily calculated.
This requires the components βq and the transformations between Jacobi
sets Nββq . These transformations were already introduced in chapter 2. More
details are provided in appendix B.

Once the coupling potentials V JM
Lnjµ,L′n′j′µ′(R) are calculated, the coupled

equations (1.21) can be solved. This can be achieved, for instance, by means
of the Numerov method or using the R-matrix theory [152, 153]. The later
is more time consuming but has the advantage of being numerically more
stable. In this work, the integration of the coupled-channel problem is ad-
dressed by using the FRESCO code [73], which can employ both approaches.
The code is prepared to read and use the form factors calculated externally
via Eq. (4.5)

4.2 Application to reactions induced by 9Be

The structure of 9Be has been addressed in chapter 2. It can be described
in a three-body model as two alpha particles loosely bound by the remain-
ing neutron, and has a Borromean structure. The ground state of 9Be has
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total angular momentum jπ = 3/2− and a separation energy of 1.5736
MeV [108]. 9Be shows several low-energy resonances with angular momenta
jπ = 1/2+, 5/2−, 1/2−, 5/2+, 3/2+ and possibly others, whose positions and
widths have been studied by many authors in different experiments [49, 117,
136]. The spin-parity assignment for some of these states is still under discus-
sion [113], although there are no implications for the lowest 1/2+ and 5/2−

resonances. The states of the system were described using the analytical THO
method, and the agreement with the available experimental data on 9Be
radius and deformation revealed the suitability of the three-body description.
The details concerning the interactions, ground state observables and energy
distributions are omitted here.

Calculations shown in chapter 2 truncate the maximum hypermomentum
at large values of Kmax, which determines the size of the model space.
For 9Be, it is necessary to consider Kmax ≥ 30 in order to obtain a well
converged ground state, and more importantly to achieve converged energy
distributions. However, such values imply to work with very large basis sets
when considering several jπ configurations for the coupled-channels problem,
which is computationally challenging. It is convenient then to fix smaller
Kmax values, and adjust the three-body force parameters to recover the
same energy and radius of the relevant states. In the following, unless stated
otherwise, the calculations presented are performed with Kmax = 10. This
value provides converged results with respect to the hypermomentum, as will
be shown in the following section.

With the analytical THO basis, it is possible to adjust the parameters
of the local scale transformation in order to concentrate more states at low
energy. However, if the level density is very high, coupled-channel calcula-
tions will become more and more demanding computationally. The THO
parameters are fixed to b = 0.7 fm and γ = 1.2 fm1/2 for all the jπ states
considered. These values ensure a fast convergence of the ground state with
respect to the number of hyperradial excitations imax, and also allows to
concentrate a reasonable number of continuum states close to the breakup
threshold. As an example, Fig. 4.2 shows the energy spectra for different
jπ configurations calculated with imax = 8. The only negative eigenstate
for jπ = 3/2− corresponds to the bound state, and the positive energy
eigenvalues represent the continuum in the THO basis up to 10 MeV.

In the following sections, four-body CDCC calculations are performed for
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Figure 4.2: Energy spectra for 9Be states with jπ = 3/2−, 1/2+, 5/2− up
to 10 MeV. Calculations are performed for an analytical THO basis with
Kmax = 10 and imax = 8.

9Be-induced reactions on 208Pb, 27Al and 120Sn, for which elastic scattering
and breakup data are available in the literature.

4.2.1 9Be on 208Pb

In this section, the scattering of 9Be on a 208Pb target at different energies
is addressed. There are two different experiments available in the literature
for this reaction [154, 155]. The 9Be projectile wave functions are described
as the eigenstates obtained with the analytical THO method. States with
very high excitation energies will not be relevant for the description of the
scattering process, since their couplings will be weak. Thus, only the states
up to a given cutoff energy are included in the CDCC calculations. This
parameter has to be large enough to provide converged results.

The Coulomb barrier for the 9Be + 208Pb system is around 47 MeV.
Coupled-channels calculations have been performed at energies above,
around and below the barrier. Since 9Be is a weakly-bound system, a strong
absorption is expected even at low energies, with an important coupling
to breakup channels. This effect is widely known for exotic systems such
as halo nuclei [12, 79]. The coupling potentials in Eq. (4.4) are generated
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Figure 4.3: Convergence of the angular distribution of the elastic cross section
relative to Rutherford with respect to Kmax for the reaction 9Be + 208Pb
at Elab = 60 MeV. Calculations are performed with imax = 6 and εmax = 6
MeV.

considering the n-208Pb potential from the Koning and Delaroche global
parametrization [156] and the α-208Pb interaction from Ref. [157]. Note that
these potentials are in general energy-dependent. The coupled equations are
solved up to J = 301/2, including projectile-target interaction multipole
couplings to all orders.

The model space to describe the 9Be projectile includes jπ = 3/2±, 1/2±

and 5/2± states up to a maximum energy εmax. The states are obtained with
a THO basis with maximum hypermomentum Kmax and imax hyperradial
excitations in each channel. First, the the convergence of calculations with
respect to the hypermomentum must be checked. In Fig. 4.3, the elastic cross
section at Elab = 60 MeV is shown for different values of Kmax = 6, 8, 10

using the same value of imax = 6. In all cases, the three-body force in the
model Hamiltonian is adjusted in order to recover the same energy and
radius of the 3/2− ground state and the same position of different projectile
resonances. Calculations with Kmax = 8 and 10 are almost identical, con-
firming the convergence of the results with respect to this parameter. For
the reaction at lower energies, the same behavior is observed. At Elab = 60

MeV, calculations show a very fast convergence with respect to imax and
the cutoff energy εmax. For the reaction at energies around and below the
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Figure 4.4: Convergence of the angular distribution of the elastic cross section
relative to Rutherford with respect to εmax for the reaction 9Be + 208Pb at
Elab = 44 MeV. Calculations are performed with imax = 6.

Coulomb barrier, however, a slower convergence is observed. To illustrate this
point, Fig. 4.4 shows the convergence of the elastic cross section at Elab = 44

MeV with respect to εmax, for a fixed value of imax = 6. Calculations with
εmax = 8 MeV and 10 MeV are almost indistinguishable. For calculations
with larger imax values, the same behavior is observed. The dependence
of the calculations at Elab = 44 MeV on the parameter imax is shown in
Fig. 4.5, with a fixed cutoff energy of 8 MeV. Calculations are very close, with
small differences only in the angular region between 60◦ and 90◦. Working
with imax > 10 is computationally very time-consuming, and no significant
changes are expected. The same features are observed at lower energies,
far below the Coulomb barrier. The slower convergence at low energies was
already reported for reactions induced by weakly-bound projectiles on heavy
targets [79].

Once convergence with respect to all relevant parameters has been
checked, calculations can be confronted with experimental data at energies
above, around and below the Coulomb barrier to assess the validity of
the model. Fig. 4.6 shows the final results at Elab = 60, 44 and 38 MeV
compared with the experimental data from Refs. [154, 155]. The error bars
are very small and, for clarity, they are not shown. Calculations use imax = 6,
εmax = 6 MeV for the reaction at Elab = 60 MeV and imax = 10, εmax = 8
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Figure 4.5: Convergence of the angular distribution of the elastic cross section
relative to Rutherford with respect to imax for the reaction 9Be + 208Pb at
Elab = 44 MeV. Calculations are performed with εmax = 8 MeV.

MeV at Elab = 44 and 38 MeV. In this figure, dashed lines correspond
to calculations including the ground state only, and solid lines are the
full CDCC calculations. In all cases, the agreement between the present
calculations and the data is improved when the coupling to breakup channels
is included. Calculations describe reasonably well the experimental data in
the complete angular range. Around (Elab = 44 MeV) and below (38 MeV)
the Coulomb barrier, there is an uncertainty related to the difference between
the two data sets. This indicates a possible data normalization problem. At
Elab = 44 MeV, the calculation underestimates the data between 60 and
90◦, i.e. in the nuclear-Coulomb interference region. At Elab = 38 MeV, the
calculation seems to overestimate the data at backward angles and slightly
underestimate the data in the nuclear-Coulomb interference region.

It is worth mentioning that these features were not observed in a re-
cent work by Descouvemont et al. [158] using also pseudo-states to describe
the continuum. In that work, the Lagrange-mesh basis was used, and dif-
ferent α–n, α–α potentials were considered. Calculations in [158] seem to
match the experimental data in the nuclear-Coulomb interference region
at both Elab = 44 and 38 MeV. However, these calculations involve only
jπ = 3/2−, 1/2+, 5/2− states. If the present calculations are performed
including the same 9Be angular momenta, the experimental data in the
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Figure 4.6: Angular distribution of the elastic cross section relative to Ruther-
ford for the reaction 9Be + 208Pb at Elab = 60, 44 and 38 MeV. Dashed lines
correspond to calculations including the ground state only, and solid lines are
the full CDCC calculations. The experimental data are shown with circles
(Wolliscroft 2004: [154]) and squares (Yu 2010: [155]).
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Figure 4.7: Effect of the model space truncation on the elastic cross section
relative to Rutherford for the reaction 9Be + 208Pb at Elab = 44 MeV.
Calculations use imax = 10 and εmax = 8 MeV.

rainbow region is also reproduced. This is shown for clarity in Fig. 4.7. How-
ever, in the most recent publication by the same authors [116], calculations
involve the same model space (jπ = 3/2±, 1/2±, 5/2± states) included in
the present work. Results therein are in good agreement with calculations
here presented and show the above-mentioned underestimation of the data
in the interference region. Thus, both theoretical approaches are consistent
if the same model space is used. A limited model space including only
jπ = 3/2−, 1/2+, 5/2− states is not sufficient to reach convergence.

The source of the discrepancies, between the converged calculations
(Ref. [116] and the present work) and the experiment in the nuclear-Coulomb
interference region, could be due to either the experimental data analysis
or the theoretical models used. First, we expect that the scattering of a
weakly-bound nucleus such as 9Be on a heavy target at energies around
and below the Coulomb barrier follows the same behavior reported both,
experimentally and theoretically, for other weakly-bound nuclei such as
6He [159, 160], 11Li [12] and 11Be [161]. All these nuclei present a suppression
of the rainbow at the interference region when colliding with heavy targets,
at energies around and below the Coulomb barrier. This is due to the strong
dipolar Coulomb coupling to the continuum states. This suppression is not
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present in the experimental data on 9Be+208Pb at Elab = 44 MeV and is
smaller than the theoretical predictions at Elab = 38 MeV.

Concerning the data analysis, a small uncertainty in the angle determi-
nation can produce an important deviation on the measured elastic cross
section with respect to Rutherford at small angles. This is due to the elastic
cross section behavior (sin−4(θ/2)). In particular, it is necessary to be ex-
tremely careful with the beam misalignment. This issue has been addressed
in different experimental works (see for example Refs. [12, 160, 162]) and
could imply a slope change in the elastic cross section in the rainbow region.
On the theoretical side, models describing this kind of reactions depend on
several approximations, including the use of optical potentials between the
projectile fragments and the target and a truncation of the model space
describing the projectile states. At this point we cannot asses whether the
source of the discrepancy arises from experimental problems or theoretical
issues. However, CDCC calculations agree with the experimental data, elastic
and breakup, in the rainbow region for other weakly-bound projectiles un-
der similar scattering conditions (heavy target, energy around the Coulomb
barrier). This is the case of 11Li+208Pb [12, 103] and 11Be+197Au [161], in
which the observed enhancement of the breakup cross section in the nuclear-
Coulomb interference region produces a systematic reduction of the elastic
cross section at the same angles. Regardless, differences between the data
on 9Be+208Pb and the four-body CDCC calculations at this region are
below 6%, and the overall agreement is quite good considering that there
is no parameter fitting. This affirms the reliability of a three-body model in
describing the structure of 9Be.

CDCC calculations involve a large set of coupled equations with coupling
multipolarities Q, which determine the allowed transitions between projectile
states. In order to study the effect of the jπ contributions and coupling
multipolarities Q on the results, Fig. 4.8 shows different calculations at
Elab = 44 MeV. The monopolar (Q = 0) contribution allows to connect
the 3/2− ground state to the 3/2− continuum. Then, the dipolar (Q = 1)
contribution connects the ground state with 1/2+, 3/2+ and 5/2+ states.
From them, dipolar and higher order contributions introduce couplings be-
tween all jπ configurations considered. This figure reveals that the main
contributions to reducing the cross section, the monopole and dipole terms,
are of the same order. This result differs from the case of 6He and 11Li
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on 208Pb, where dipolar contributions produce the largest reduction with
respect to the calculation without continuum couplings [12, 79]. This dipole
effect in halo nuclei, such as 6He and 11Li, is due to the deviation of the
center of charge with respect to the center of mass because of the presence
of two valence particles far away from the charged core (4He or 9Li). This
produces a strong dipole moment and large B(E1) strengths at low energy.
On the contrary, the 9Be system is not a halo nucleus and does not present
such a large deviation; so dipolar effects, although present, are smaller. This
is related to the fact that the sum rule for dipolar transitions is smaller
in this case. Higher order contributions, especially the quadrupolar terms,
produce a correction which improves the description of the experimental data
at backward angles.

The 9Be system has some low-energy resonances, characterized by differ-
ent angular momenta, which have an important impact on the reaction mech-
anism. This effect has been reported for both elastic and breakup processes
involving weakly-bound nuclei [12]. To illustrate this point, the resonance
positions can be changed by introducing a different three-body strength in
the model Hamiltonian for the 1/2±, 5/2± and 3/2+ states. Fig. 4.9 shows the
result of a calculation “without” resonances, i.e. including a strong repulsive
three-body force so that the resonances appear at very high energies and play
no role in the CDCC calculations. In that case the cross section exhibits a
smaller reduction than the calculation with the resonance positions fitted to
the experimental values. Although the resonant and non-resonant parts of
the spectrum cannot be separated directly, these calculations clearly show
the relevance of the resonance positions for the reaction mechanism.

In light of these results, the influence of breakup channels on the elastic
scattering is clear. The explicit inclusion of continuum states in the formalism
enables a proper description of the elastic cross section at energies around
the Coulomb barrier. Most of the absorbed flux will then go to the breakup of
the projectile, and this will be reflected by large breakup cross sections and
probabilities [103]. Fig. 4.10 shows the breakup angular distributions in the
center of mass frame at 44 and 38 MeV. The large breakup probability in the
nuclear-Coulomb interference region is associated with the reduction of the
elastic cross section at the corresponding angles (see Fig. 4.6). No data are
available in the literature on this quantity. However it could be measured
by performing an exclusive Coulomb dissociation experiment. This would
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Figure 4.10: Breakup angular distribution 9Be + 208Pb at 44 MeV (red
dashed) and 38 MeV (black solid).

allow to asses the validity of the model to describe the elastic and breakup
processes on the same footing. The integrated breakup cross sections at 44
and 38 MeV are 112.0 and 80.5 mb, respectively. These values are in fair
agreement with the experimentally reported values of 92.1 and 84.1 mb [163].
As expected, the total breakup increases with the incident energy. Breakup
effects are important even below the Coulomb barrier, as already shown for
the elastic scattering.

4.2.2 9Be on 27Al

In order to study the effect of the target mass on the reaction mechanism, it
is convenient to study the scattering of 9Be on a lighter target using the same
formalism. For 27Al, elastic scattering data are available in the literature at
near barrier energies [164]. In this reference it is shown that the coupling to
breakup and/or transfer channels may be relevant even at energies below the
Coulomb barrier.

For the coupling potentials, the n–target interaction from Ref. [156]
already used for 208Pb is adjusted for 27Al. For the α−27Al interaction,
the code by S. Kailas [165] provides suitable optical model parameters for
α particle scattering using the results from Ref. [166]. Calculations with
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light targets converge faster with respect to parameters Kmax, imax and
εmax, due to the weaker Coulomb interaction. The results here presented
correspond to Kmax = 10, imax = 6 and εmax = 6 MeV, including again
jπ = 3/2±, 1/2±, 5/2± continuum states to describe the projectile. These
values ensure convergence at the energies considered, Elab = 12, 14, 22 and
32 MeV. In this section only final results are shown, although a convergence
analysis similar to the case of the 208Pb target has been carried out.

In Fig. 4.11 we show the elastic cross section above (32, 22 MeV) and
around (14, 12 MeV) the Coulomb barrier. In all cases, the differences be-
tween calculations including only the ground state (dashed lines) and full
CDCC calculations (solid lines) are significantly smaller with respect to the
reaction on 208Pb. This indicates that breakup effects are less important with
light targets and confirms that Coulomb breakup is the dominant process at
low incident energies. The agreement with the experimental data is reason-
able but our calculations underestimate the elastic cross section at backward
angles, especially at 14 and 22 MeV. For light targets the Coulomb repulsion
is weak, so nuclear effects begin to dominate, and the internal structure of the
target plays a more important role. This problem may be neglected for heavy
targets, but a comprehensive study for light targets is needed. Moreover, the
nuclear-dominated region depends on the features of the phenomenological
optical potentials between the projectile fragments and the target at the cor-
responding energy per nucleon. This produces an uncertainty in the nuclear
potential that makes difficult, in general, to reproduce with high precision
the backward-angle region, where nuclear effects dominate.

4.2.3 9Be on 120Sn

Preceding sections address the scattering of 9Be on two different targets
(heavy 208Pb and a light 27Al). The convergence of the calculations with
heavy target has been shown to be slower, due to the large Coulomb breakup
effects. Continuum couplings for the light target are much less relevant, and
nuclear effects could play a more significant role. An interesting case between
these two limits is the scattering on an mid-mass target.

Quasielastic scattering of 9Be on 120Sn has been recently measured at
TANDAR laboratory [167]. In this case, the first 2+ excited state of the target
lies at 1.2 MeV above its 0+ ground state. The charge of Sn is significantly
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Figure 4.11: Angular distribution of the elastic cross section relative to
Rutherford for the reaction 9Be + 27Al at Elab = 32, 22, 14 and 12 MeV.
Calculations use imax = 6 and εmax = 6 MeV. The experimental data are
shown with circles (Gomes 2004: [164]).



114 Chapter 4. Direct reactions induced by three-body projectiles

smaller than that of Pb, so the Coulomb repulsion should be weaker and
therefore the internal structure of the target may play an important role.
Thus, reactions at energies around and above the Coulomb barrier will likely
excite the target. As in the case of 27Al, this effect cannot be explicitly
included within the CDCC method as presented in this work, where the
scattering wave functions are expanded in internal states of the projectile
and the target is considered to be inert. Nevertheless, comparison between
the CDCC results and experimental data can still provide insight into the
reaction mechanism.

The coupling potentials are generated considering again the global
parametrizations of Koning-Delaroche [156] and Kailas et al. [165] for the
n-target and α-target interactions, respectively. To get convergence of the
calculations in this case, a 9Be basis with Kmax = 10, imax = 8 and εmax = 8

MeV is required. As in the previous cases, all jπ = 3/2±, 1/2±, 5/2± contin-
uum states are considered to describe the projectile excitations. These values
ensure convergence of the calculation at the different energies considered and,
as in the case of the 27Al target, the corresponding convergence analysis is
not shown.

The experimental data on this reaction is still to be published in col-
laboration with the Sevilla group. The preliminary results at energies below
the Coulomb barrier are compared with the four-body CDCC calculations in
Fig. 4.12. Continuum effects are not as large as in the case of 208Pb, but larger
than in the 27Al case. This is another indication that the dominating process
at low energies is Coulomb breakup. The agreement between calculations
and the preliminary data is rather accurate and suggests that the explicit
inclusion of target excitations is not required to cover the main features of
the reaction.

As the incident energy Elab is increased, the reaction approaches the
Coulomb barrier and this behavior no longer holds. The experimental data at
29.5, 31 and 42 MeV, compared with the corresponding CDCC calculations,
are shown in Fig. 4.13. Calculations show a suppression of the rainbow at 29.5
MeV, and the nuclear-Coulomb interference pattern begins to form at higher
energies. The experimental data, however, presents a pronounced rainbow
at 29.5 MeV, in disagreement with the CDCC calculations. This apparent
difference is not shown at 31 and 42 MeV. The experimental data give a
rainbow-like structure at 29.5 MeV but not so pronounced at 31 MeV. The
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Figure 4.12: Angular distribution of the elastic cross section relative to
Rutherford for the reaction 9Be + 120Sn at Elab = 26 and 27 MeV. Cal-
culations use imax = 8 and εmax = 8 MeV. The experimental data are shown
with squares (Arazi et al., preliminary).

rainbow is expected to appear as the incident energy increases and nuclear
effects begin to have a relevance in the nuclear-Coulomb interference region,
as indicated by the trend in the CDCC calculations. This issue at energies
around the Coulomb barrier has already been discussed in the case of the
208Pb target. At energies closer to the Coulomb barrier, technical problems
related to the beam misalignment [12, 160, 162] could imply an slope change
in the elastic cross section at the nuclear-Coulomb interference region. The
different behaviors shown by the data at increasing energies supports this
argument.



116 Chapter 4. Direct reactions induced by three-body projectiles

Apart from that difference at 29.5 MeV in the rainbow region, which
could be due to a problem with the data, the agreement with the CDCC
calculations is remarkable. Nevertheless, CDCC calculations do not consider
explicitly inelastic excitations of the target. This effect, which becomes more
relevant as the incident energy increases, could explain the small difference in
the angular position of the rainbow between calculations and the data at 31
and 42 MeV. A proper treatment of target excitations should be employed in
order to study this effect on the reaction mechanism. This has been addressed
for the scattering of 6He on 9Be at energies above the barrier [168] by using a
simple coupled-channel calculation, showing that the effect of 9Be excitation
was negligible compared to that of the 6He projectile. However, in that work
only the rotational states on top of the 3/2− states were considered, with the
first one being at around 2.5 MeV over the ground state of 9Be. In the case
of the 120Sn target, the lowest excited state at around 1 MeV belongs to the
ground-state rotational band, which could imply an important difference in
terms of influence on the elastic cross section.
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In this chapter, the four-body CDCC framework has been presented as
a method to describe reactions induced by three-body projectiles. Including
explicitly the continuum states of the projectile, the influence of breakup
channels on the elastic cross section can be studied. For that, projectile
states have been described using the analytical THO method as presented in
chapter 2. The method has been applied to reactions induced by the weakly-
bound Borromean nucleus 9Be on three different targets: 208Pb, 27Al and
120Sn, at energies around the Coulomb barrier. Continuum effects indicate
that the dominating process at low energies is Coulomb breakup of the
projectile. The agreement with the available experimental data is remarkable
considering that there is no parameter fitting, and supports the reliability of
the method (CDCC + analytical THO) in describing reactions induced by
three-body projectiles comprising more than one charged particle.



Chapter 5

Summary and conclusions

An expert is a person who has found out
by his own painful experience all the

mistakes that one can make in a very
narrow field.

Niels Bohr

Along the pages of this work, theoretical approaches to study the struc-
ture and reactions of three-body Borromean nuclei have been presented.
These are three-body systems whose binary subsystems are unbound, which
has important consequences on the theoretical description. The hyperspher-
ical formalism is an ideal tool to describe three-body Borromean systems,
since it considers the three components on an equal footing assuming no
specific two-body structure.

A particular case of Borromean nuclei are those presenting a two-nucleon
halo. Close to the driplines, some valence nucleons are so barely bound that,
in some cases, they can explore large distances giving rise to a dilute matter
cloud around a more compact structure or core. Halo nuclei are weakly-
bound systems characterized by large interaction cross sections and impor-
tant breakup effects in scattering processes even at Coulomb-barrier energies.
This is the case of the 2n halo nuclei 6He and 11Li, and the candidate for
2p halo 17Ne. The Borromean structure, however, is not restricted to exotic
systems, and also appears for nuclei along the stability line such as the
weakly-bound 9Be nucleus or 12C nucleus.

119
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The formation of Borromean nuclei is of relevance in nucleosynthesis,
with three-body capture reactions being, in some cases, key ingredients
for stellar models. The synthesis of nuclei in stellar environments can be
described as a decay from an unbound state of several particles that fuse
together producing a bound system. In order to understand the underlying
mechanisms that govern the structure and dynamics of these nuclei, experi-
mental constraints can be used to assess the validity of theoretical models de-
scribing their properties. For instance, exotic nuclei present typically a small
separation energy and consequently large breakup probabilities in scattering
processes. The breakup of the system can be understood as an excitation
of the nucleus to unbound states that form a continuum of energies. Thus,
a reliable theoretical description of these systems must include a proper
treatment of continuum states.

In the present work, the three-body problem is solved using the Pseudo-
State (PS) method in hyperspherical coordinates, which consists in diagonal-
izing the system Hamiltonian in a basis of square-integrable functions. While
the negative-energy solutions of that problem describe the bound states
of the system, positive-energy eigenstates provide a discrete representation
of the continuum. The analytical Transformed Harmonic Oscillator (THO)
basis, previously applied to describe two-body systems, is selected for the
PS method and generalized for the case of three-body systems. This basis is
obtained by performing a simple local scale transformation to the Harmonic
Oscillator (HO) functions. The transformation corrects the Gaussian asymp-
totic behavior of the HO functions in order to match the exponential decay
of the bound solutions for potentials with finite depth and range, providing a
suitable representation of the system states to calculate structure and scat-
tering observables. The parameters defining the analytical transformation
govern the radial extension of the basis, which determines the density of PSs
as a function of the excitation energy. This allows to select an optimal basis
depending on the observable of interest. The kinetic energy matrix elements
have an analytic form and are calculated by Gauss-Laguerre quadratures.
The computation of potential matrix elements is performed in two steps:
first, the angular integration is achieved by following the prescriptions in the
FaCE code. Then, the resulting hyperradial matrix is integrated numerically.
After diagonalization of the three-body Hamiltonian, the PSs enable the cal-
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culation of different observables, such as matter and charge radii or transition
probabilities, provided the appropriate quantum operators are known. Note
that, within few-body models, the Pauli principle cannot be treated exactly.
In general, some components of the system wave functions would disappear
under full antisymmetrization, which has to be taken into account by using
approximated theories.

The method has been first applied to 6He (α+n+n), a paradigmatic two-
neutron halo nucleus. The jπ = 0+ ground state is characterized by a two-
neutron separation energy of 0.975 MeV. As a halo system, it exhibits a large
dipole response at low energies. The system presents also a well-known 2+

resonance at 0.824 MeV over the breakup threshold. The model Hamiltonian
considers n-n and α-n binary interactions which are fitted to reproduce the
experimental data on two-body scattering. In addition, a phenomenological
three-body force is required to adjust the position of three-body states to
their experimentally known energies. A good agreement with the system
matter and charge radii is achieved when the ground state is fixed to the
experimental energy. Describing the system in the Jacobi-T set, the ground
state wave function shows a predominance of s-wave components in the
relative n-n motion. This prevails when rotating the wave function to the
Jacobi set where the x-coordinate relates the α core and one neutron, and it
is a signal of the dilute halo tail of the wave function. The two-dimensional
probability distribution for the ground state exhibits two peaks, which are
typically associated with the so-called dineutron and cigar configurations.

As for the excited states in 6He, it is shown that a proper choice of the
basis parameters enables the isolation of the 2+ resonance in a single PS. Its
wave function resembles the behavior of a bound state, with a slightly larger
hyperradial distribution. Since dipole excitations from the ground state to
continuum states are the most relevant dynamics in low-energy reaction
involving halo nuclei, the transition strengths to the 1− state are computed.
The B(E1) distribution is described using a basis of 1− states defined by a
large hyperradial extension, which concentrates a large level density near
the threshold. This enables to build up a detailed transition probability
distribution. The electric dipolar strength is highly concentrated at low
excitation energies, which is another signal of a typical halo nucleus. The
sum over discrete B(E1) values converges rapidly to the sum rule for dipolar
transitions, confirming that the basis and calculations are well converged.
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These results encourage the application of the analytical THO method to
more complex three-body Borromean systems.

Then, the method has been applied to 9Be, comprising two α particles
and one neutron. This nucleus is stable but has a small binding energy of
1.574 MeV below the three-body threshold. Therefore, the system shares
some properties with exotic nuclei. The ground state in this case has a
spin-parity assignment of 3/2−, and the system presents several low-energy
resonances characterized by 1/2±, 3/2± and 5/2±. The lowest is a genuine
three-body 1/2+ resonant state around 0.11 MeV with a relatively large
width. As in the case of 6He, a phenomenological three-body force is required,
in addition to the corresponding binary interactions, in order to fit the energy
of the three-body known states to their experimental values. The computed
matter and charge radii for the 3/2− ground state are in good agreement with
the experimental data on these observables. This reveals that the method is
rather accurate also for systems comprising more than one charged particle.
The 9Be system is a significantly deformed nucleus and exhibits a large
quadrupole moment. The calculated quadrupole moment agrees reasonably
with the experimental value and is consistent with the ground state prob-
ability showing a large deformation. As for the excited states, the three-
body model provides a reliable description of the lowest 1/2+ resonance.
The corresponding B(E1) distribution from the 3/2− ground state shows
a broad peak just above the breakup threshold, with a large tail exploring
higher energies. This is not the typical behavior of low-energy resonances,
which present usually narrow widths. The B(M1) distribution to 5/2− states
is also calculated and shows a peak which is consistent with the narrow 5/2−

resonance around 0.85 MeV. The results for 9Be validate the reliability of the
method in describing three-body systems comprising more than one charged
particle, for which the computation of actual continuum states is a very
involved problem.

A case comprising three charged particles is 17Ne, which can be consid-
ered as an 15O core plus two valence protons. It has been proposed to have a
two-proton halo, but evidences and theoretical studies are not yet conclusive.
The 17Ne ground state has the same spin-parity assignment than its 15O
core, 1/2−. It is a weakly-bound system close to the proton dripline, with an
experimental two-proton separation energy of 0.94 MeV. The contribution
of core excitations for structure calculations cannot be completely neglected,
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especially for excited states in 17Ne, but the parity and high energy of the first
15O excited states suggests that the assumption of a frozen core is a reliable
picture. The binary interaction 15O-p has been fitted to reproduce the exper-
imental spectrum of the unbound nucleus 16F. The computed ground state,
once adjusted to the experimental two-proton separation energy of 0.94 MeV,
gives matter and charge radii in reasonable agreement with experimental
data. The probability distribution of 17Ne shows two peaks that are related to
two protons either on the same side or at almost opposite sides of the oxygen
core. The ground state wave function in the Jacobi-Y set, where coordinate x
connects the 15O and one proton, presents contributions from s- and d-waves
of about 40 and 50%, respectively. These numbers can support the existence
of a proton halo in 17Ne, although the system radius and that of its core are
not noticeably different. As in the previous cases, electromagnetic transition
probabilities between the ground state and continuum states are calculated.
For 1/2+ states, the B(E1) distribution concentrates all the strength in a
narrow resonance around 0.97 MeV. Computation of jπ excited states agrees
with the experimentally known resonances of 17Ne, confirming the reliability
of the method for systems which comprise three charged particles.

Radiative capture reactions for the formation of three-body Borromean
nuclei have traditionally been studied as sequential processes. At low temper-
atures, however, the initial particles may have not enough energy to populate
intermediate configurations and therefore they can fuse directly. This requires
a full three-body model with no assumption about the reaction mechanism.
The reaction rate of such process is governed by electromagnetic transitions
and can be obtained from the time-reversed photodissociation process. This
relies on the knowledge of the electric and magnetic transition probability
distributions, either experimentally or from a reliable theoretical model. The
analytical THO method is applied to generate these distributions for systems
of astrophysical interest, such as the already presented 6He, 9Be and 17Ne
nuclei, to compute their reaction rates in the whole temperature range.

The 4He(2n, γ)6He reaction has been linked to the r-process in neutron
star mergers. The reaction rate is governed by electric dipolar transitions
between the 0+ ground state and the 1− continuum. The contribution from
quadrupolar transitions to 2+ states is negligible. Results are tested against
the computation of the reaction rate from actual continuum calculations of
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the B(E1) distribution, which can be generated easily in this simple case
comprising a single charged particle. The agreement supports the suitability
of the THO method to describe these reactions. The present results are
compared with those from a sequential model and another three-body cal-
culation. The differences give rise to an uncertainty for the reaction rate
depending on the model. Nevertheless, the analytical THO method provides
a detailed description of the transition probability distribution at low en-
ergies. This, together with the good agreement with the actual continuum
calculation, indicates the robustness of the present results.

The formation of 9Be through the α(αn, γ)9Be reaction can also be rel-
evant for the r-process, but especially in supernova nucleosynthesis. The
reaction rate is computed including E1 contributions to 1/2+, 3/2+, and
5/2+ states, and M1 contributions to 1/2− and 5/2− states. From the tran-
sition probabilities, the total photodissociation cross section is calculated and
compared with two sets of experimental data and with previous estimations.
The lowest peak corresponding to 1/2+ states governs the cross section and
shows the right behavior, but underestimates the experimental data. The
narrow peak corresponding to the 5/2− resonance is also well reproduced.
The present results provide the first full three-body calculation of the 9Be
photodissociation cross section in the whole energy range, and agrees rea-
sonably with features observed in the experiments. Although the behavior is
very similar in both sets of data, there are important discrepancies between
them. This makes difficult the comparison with calculations, so the origin
of the underestimation at low energies is unclear. Nevertheless, the overall
agreement between the present calculations and the available data supports
the reliability of the method in describing the 9Be wave functions within a
three-body approach. From the total photodissociation cross section, the re-
action rate is easily computed. As expected, the 1/2+ contribution dominates
almost in the whole temperature range, with others being relevant only at the
highest temperatures. The reaction rate converges to sequential estimations
from experimental data at high temperatures, but shows an enhancement of
several orders of magnitude in the low-temperature tail. This effect comes
from the direct capture and cannot be described within sequential models.

The case of the 15O(2p, γ)17Ne reaction is studied as a possible breakout
reaction of the hot CNO cycle, which has implications for the rp-process
towards the production of neutron-deficient nuclei. Previous calculations by
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Grigorenko et al. suggested that the three-body capture is significantly larger
than the sequential capture in the whole temperature range. The dominant
contributions to the photodissociation cross section and the corresponding
reaction rates come from 1/2+ states (E1), at high temperatures, and from
3/2− states (M1) at low temperatures. However, the present calculations are
noticeably larger than those by Grigorenko et al. at high temperatures. The
present results are supported by Garrido et al. using different model and
interactions to describe the structure of 17Ne. Experimental data on 17Ne
photodissociation could help in understanding these differences.

In general, the presented reaction rates treat the resonant and non-
resonant, sequential and direct contributions on an equal footing for different
systems. The method provides a powerful tool for the computation of stellar
evolution models. Full nucleosynthesis network calculations are asked for
to test the sensitivity of r-process and rp-process models to these updated
reaction rates.

Since reaction rates have an important uncertainty related to the dif-
ferences in the different theoretical approaches, an alternative procedure
has been proposed to estimate them from inclusive breakup measurements.
A relation between the three-body capture reaction rate and the inclusive
Coulomb breakup probability has been established, in the region in which
the first order dipole Coulomb interaction is dominant and can be described
using the semiclassical theory. The temperature of the stellar environment is
directly related to the collision time of the reaction, which is related to the
scattering angle through the kinematic parameters. This allows to explore
different temperature ranges by measuring Coulomb breakup at different
energies. The method is tested for 11Li, for which data on inclusive breakup
has been measured recently at TRIUMF. The computed 9Li(2n, γ)11Li reac-
tion rate is compared to that obtained within two- and three-body models
for 11Li, and with the reaction rate obtained by integrating directly the
experimental B(E1) from exclusive breakup at RIKEN. The reaction rate in
the present work is significantly larger than the reaction rate extracted from
the RIKEN data, although these have considerable uncertainties. However,
it should be remarked that both sets of experimental data allow to extract
information on the astrophysical reaction rate, giving results in the same
order of magnitude. The new method provides an additional motivation to
carry out Coulomb scattering experiments of exotic nuclei, and establishes a
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demanding reference to assess the validity of the different theoretical models
that have been used to calculate reaction rates.

Direct reactions involving three-body projectiles can also be studied using
the analytical THO method to describe projectile couplings. In the case of
weakly-bound projectiles, continuum couplings may play an important role,
which is reflected by large breakup probabilities. The Continuum-Discretized
Coupled-Channel (CDCC) method enables the inclusion of continuum states
in the formalism. It consists in expanding the total scattering wave function
in a basis of projectile or target internal states. Reactions induced by three-
body projectiles can be addressed in a four-body CDCC framework, including
bound and continuum states of the projectile and considering a structure-
less target. In the present work, the projectile states are described using
THO pseudo-states. This enables the computation of reactions involving
projectiles with several charged particles. The method is applied to 9Be-
induced reactions on different targets: 208Pb, 27Al and 120Sn, at energies
around the Coulomb barrier. The model space to describe 9Be includes
jπ = 3/2±, 1/2± and 5/2± states. The coupling potentials are generated ex-
ternally and then used by the FRESCO code to solve the coupled equations,
including projectile-target interaction multipole couplings to all orders.

Continuum effects indicate that the dominating process at low incident
energies is Coulomb breakup. The role of low-energy resonances on the reac-
tion mechanism is shown to be important. The agreement with the available
experimental data on elastic scattering and breakup is remarkable consid-
ering that CDCC calculations involve no parameter fitting, which confirms
the reliability of the method. However, some differences between the present
calculations and the experimental data are observed. For the scattering on
208Pb around the Coulomb barrier, the computed elastic cross section under-
estimates the experimental cross section in the nuclear-Coulomb interference
region. This behavior is also observed in recent four-body CDCC calculations
by Descouvemont et al. and is consistent with the observed enhancement of
the breakup cross section in the nuclear-Coulomb interference region for the
scattering of other weakly-bound nuclei, such as 11Li or 11Be, on heavy tar-
gets. As for the scattering on 27Al and 120Sn, small differences are associated
to the possible effect of target excitations which are not explicitly included
in the model.
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In conclusion, the analytical THO method has been used to describe
the structure and reactions of Borromean nuclei, providing reasonable re-
sults for 6He, 9Be and 17Ne. The method has been applied to three-body
radiative capture reactions and four-body direct reactions, and the present
results support its reliability for systems comprising several charged particles.
Other Borromean nuclei and reactions involving them can be addressed using
the same ingredients, which makes the analytical THO method a powerful
and versatile tool. A new method to estimate reaction rates from inclusive
Coulomb breakup measurements has also been proposed and tested for the
case of 11Li. Experimental data on 6He or 17Ne breakup could help in es-
timating the corresponding reaction rate and understanding the differences
between different theoretical approaches.

Further applications of the analytical THO method are subjects for fu-
ture research. Among them, the method can be used to describe quasifree
scattering reactions induced by three-body projectiles. These reactions have
been used as a tool to extract spectroscopic information of nuclei, such as
separation energies, spin-parity assignments, and occupation probabilities.
Three-body models of nuclei carry information about the underlying corre-
lations between core and valence particles. The derivation of full energy and
angular correlations between fragments for direct reactions with three-body
projectiles is a work to be done. Finally, it would be also interesting to study
the case of direct reactions involving three-body nuclei with core excitations.





Chapter 6

Work in progress:
The case of 12C

The 12C nucleus has been mentioned in several parts of this thesis, mainly
due to its relevance in stellar nucleosynthesis. The triple-α reaction (α +

α + α) can bridge the instability gaps at mass numbers A = 5 and A =

8 [30], and it serves as a key process towards the production of heavier
elements. Fred Hoyle postulated the existence of a 0+ resonance close to the
three-body threshold to justify the observed abundances of 12C in stars [31],
state that was experimentally confirmed shortly thereafter. Since then, the
accepted mechanism for the triple-α capture was a two-step process via 8Be
to populate the so-called Hoyle state. However, if the energy of the α particles
is not sufficient to populate 8Be resonances, the three-body direct capture
can play a significant role [34]. Recent estimations on the reaction rate for
such process present noticeable differences at low temperatures [32–36].

The structure of 12C can be addressed within a three-body model, as it
presents a Borromean structure. The spectrum of 12C is shown in Fig. 6.1.
The ground state is a 0+ state at 7.27 MeV below the three-body thresh-
old [169]. This is not strictly a weakly-bound system, as those presented in
chapter 2. The 0+ Hoyle state is a genuine three-body state at 0.38 MeV
above the breakup threshold [170]. It has been found that the triple-α radia-
tive capture reaction is governed by E2 transitions between 0+ states and the
first 2+ state at 2.83 MeV below the threshold [35, 104]. Therefore, a reliable
theoretical estimation of the reaction rate requires a proper description of
the 0+ and 2+ states in a three-body model. This involves the treatment of
three identical charged bosons.
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α+ α+ α

0+ [g.s.]-7.27

0+ [Hoyle]0.38

2+-2.83

(0+)∼4.5

0MeV

Figure 6.1: Spectrum of 12C with respect to the three-body threshold.

The presence of three identical particles in the formalism implies that
all Jacobi sets are equivalent. In a fixed Jacobi system, the interacting pair
of α particles are two identical bosons with spin 0+. As in the case of 9Be
(see section 2.4), the symmetry of the wave function is imposed by consider-
ing only even lx components. In this case, however, the condition holds for
the three Jacobi sets. This considerations have to be taken into account in
the FaCE subroutines used to generate the wave function components. The
model Hamiltonian includes the α-α interaction, which can be taken as the
same used for 9Be calculations. The three-body force is parametrized with
a simple Gaussian form (Eq. 2.50), whose parameters are fixed to reproduce
the positions of the 2+ bound state and the Hoyle resonance. Note that the
ground state of the system, which is also a 0+ state, is disregarded for this
study.

The three-body problem is solved using the pseudo-state method with
the analytical transformed harmonic oscillator (THO) basis, as introduced
in chapter 2. In order to describe properly the bound state, a THO basis
with parameters b = 0.7 fm and γ = 1.4 fm1/2 is selected. The computed
2+ state is characterized by well converged energy and radius. This is shown
in Figs. 6.2 and 6.3 (solid black lines), in which the convergence of these
observables with respect to the maximum hypermomentum Kmax is pre-
sented. Remember that Kmax defines the size of the model space. From
these pictures it is clear that Kmax = 20 provides a well converged bound
state. Assuming an α-particle radius of 1.47 fm, the calculated matter radius
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Figure 6.2: Energy of the 2+ bound state (black line) and the Hoyle state
(dashed blue line) in 12C with respect to the maximum hypermomentum
Kmax. Notice the different scales.

for the 2+ state is 2.46 fm. This number is similar to the result obtained in a
microscopic calculation in Ref. [170]. The agreement validates the three-body
approximation for the 2+ bound state.

In order to study the Hoyle resonance, 0+ states are first generated using
a THO basis with a small hyperradial extension, i.e. b = 0.7 fm and γ =

2.0 fm1/2. This, as discussed in chapter 2, provides a low density of states
just above the breakup threshold and enables the isolation of the resonant
behavior in a single pseudo-state. The convergence of the resonance energy
and matter distribution with respect to Kmax is also shown in Figs. 6.2
and 6.3 (dashed blue lines). In this case, a value ofKmax around 26 is required
to achieve convergence. The computed matter radius for the Hoyle resonance
is 3.71 fm, also in agreement with Ref. [170].

The spatial configuration of three α particles within the 2+ bound state
and the Hoyle resonance can be studied by constructing the two-dimensional
probability distributions. This is shown in Fig. 6.4, where rx is the distance
between two α particles, and ry is the distance from their center of mass to
the third α. The dominant configuration for the 2+ bound state (upper panel
in Fig. 6.4) is found at rx ' 3 fm and ry ' 2.5 fm, which is consistent with
an equilateral triangle in which each pair of α particles is around 3 fm apart.
This result is in agreement with the three-body calculation in Ref. [35], in
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Figure 6.3: Matter radius of the 2+ bound state (black line) and the Hoyle
state (dashed blue line) in 12C with respect to the maximum hypermomen-
tum Kmax. Notice the different scales.

which the hyperspherical harmonic expansion is applied to find solutions of
the coupled-channel problem for bound states. Therefore, the pseudo-state
method presented in this work provides, for bound states, the same result
than that obtained by solving numerically the differential equations. This
was already discussed in chapter 2 for the case of 6He.

The lower panel in Fig. 6.4 shows the probability distribution for the
Hoyle state. The dominant configuration is described by a probability max-
imum around rx ' 2.5 fm and ry ' 3.5 fm, which corresponds again to
an almost equilateral triangle. This maximum features a long tail exploring
distances up to rx ' 5 fm and ry ' 6 fm, which can be associated to a
triangle where two α particles are close to each other and further away from
the third. Another structure, shown as a dilute blur in Fig. 6.4, appears
around rx ' 6.5 fm and ry ' 2 fm. These three structures agree with those
obtained in Ref. [35], although their relative weights are different. In this
reference, the so-called "prolate triangle" dominates, while in the present
work it appears as a dilute tail in the probability distribution. Note that,
in Ref. [35], the actual continuum problem is solved at the Hoyle energy,
while in the present method this state is represented by a pseudo-state. By
definition, pseudo-states contain information about all continuum states in
the vicinity, and even with an optimal basis some non-resonant background
is unavoidable.
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Electric quadrupolar transitions (E2) between the 2+ bound state and
0+ continuum states can be computed making use of the general Eq. (2.23).
Equivalently, the electric quadrupolar operator can be expanded by using
the relationship between harmonic polynomials in different Jacobi sets (see
Eq. (2.26) and its application to different systems in chapter 2). This leads
to a separation of the operator into two terms,

Q̂2Mλ
(x,y) =

(
4π

5

)1/2

Zαe
m

mα

[
x2Y2Mλ

(x̂) + y2Y2Mλ
(ŷ)
]
, (6.1)

where Zα and mα are the charge and mass of an α particle. Therefore, the
reduced transition probability in Eq. (2.15) can be written as a sum of two
matrix elements,

B (E2)nj→n′j′ =

(
5

4π

)[
〈nj||Q̂2||n′j′〉x + 〈nj||Q̂2||n′j′〉y

]2
. (6.2)

After working out the algebra, these terms are

〈nj||Q̂2||n′j′〉x = Ze

(
m

mc

)
ĵ′
∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′
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′ĵabĵ

′
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′
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′
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(6.3)

〈nj||Q̂2||n′j′〉y = Ze
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)
ĵ′
∑
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′β′j′

n′

× δlxl′xδSxS′x l̂y l̂′y l̂l̂
′ĵabĵ

′
ab(−1)j+lx+ly+l

′
y+Sx−jab+j′ab−I

×
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(6.4)

As in the cases presented in chapter 2, the transition probabilities are
computed in a basis providing a large density of pseudo-states near the
breakup threshold. The discrete B(E2)(εn) ≡ B(E2)12→n0 values are shown
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Figure 6.5: Discrete B(E2) values corresponding to transitions from the 2+

bound state to 0+ continuum states in 12C. Each circle represent the E2
strength to a single pseudo-state.

in Fig. 6.5. For clarity, a lower limit at 0.001 e2fm4 is established, and
logarithmic scales are used. The total transition probability up to 10 MeV
is 1.58 e2fm4, while states between 0.38 and 0.39 MeV carry 1.11 e2fm4.
This indicates that the Hoyle resonance extinguishes around 70% of the
quadrupolar strength.

A second, broad peak is found in Fig. 6.5 at energies around 4.5 MeV,
which could indicate the presence of a second 0+ resonance above the Hoyle
resonance (see Fig. 6.1). The quadrupolar strength between 3 and 5 MeV
is 0.28 e2fm4, which corresponds to 18% of the total transition probability.
Note that calculations for 0+ states include a phenomenological three-body
force to fix the Hoyle resonance at 0.38 MeV, and therefore the position of
this structure is somewhat arbitrary. This 0+ state, which appears naturally
in the present three-body model, has been observed experimentally [171] and
is also predicted by algebraic cluster models [172].

The computation of the radiative capture reaction rate for the triple-α
requires the photodissociation cross section associated to the inverse process.
This is calculated from the B(E2) values using Poisson distributions with an
appropriate width parameter (see section 2.4 for a discussion regarding this
matter). Results are shown in Fig. 6.6 up to 1 MeV, since higher energies
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Figure 6.6: Photodissociation cross section of 12C up to 1 MeV, considering
only E2 transitions between the 2+ bound state and 0+ continuum states.
The inset shows the cross section in a logarithmic scale at energies below the
Hoyle resonance.

have little influence on the reaction rate at low temperatures. The photodis-
sociation cross section is concentrated at the Hoyle resonance. However there
is a non-negligible contribution at lower energies. This is shown in the inset
of Fig. 6.6 using a logarithmic scale.

The reaction rate for 12C formation is shown in Fig. 6.7. Previous estima-
tions available in the literature are shown for comparison: i) The reference
rate from the NACRE compilation [33] (black solid line), based on a sequen-
tial model. ii) The first three-body estimation of the triple-α reaction rate
by Ogata et al. [32] (black dashed line). iii) The three-body Breit-Wigner
estimation by Garrido et al. [34] (gray line) iv) The calculation by Nguyen
et al. [35], in which actual three-body continuum wave functions are used
(circled-solid line). These rates show considerable discrepancies at low tem-
peratures. A recent estimation using the imaginary-time theory [173] agrees
with the NACRE results, although it is not shown in the figure for clarity.

Three different calculations of the present work are presented together
with the previous estimations. The first one corresponds to the reaction
rate including only the Hoyle state (red dotted). This calculation matches
the sequential estimation at high temperatures, which indicates that the
dominating process in that region is a two-step capture reaction. The second
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calculation includes, besides the Hoyle state, all pseudo-states above the
resonance (orange dashed). This produces an enhancement of the reaction
rate in fair agreement with the extrapolation of the NACRE results at low
temperatures.

However, when the full calculation is performed (blue solid), the reaction
rate at temperatures below 0.2 GK is several orders of magnitude larger than
that of the NACRE compilation. A similar result was obtained by Ogata et
al. [32], using also a discretization procedure to describe 12C continuum
states. This enhancement affects astrophysical studies and produces results
which are incompatible with observations [174, 175]. The present model
seems to provide too large non-resonant B(E2) transition strengths at low
excitation energies, i.e., below the Hoyle resonance at 0.38 MeV. At this
point, the source of this effect is not well understood. Discretization methods
cannot reproduce the correct asymptotic behavior of three charged particles,
and pseudo-states are an approximation to actual continuum states. As the
energy decreases, this approximation can eventually fail. The triple-α prob-
lem has also the complexity regarding the symmetry of the wave function
for three identical bosons. In the present work, this problem is addressed
approximately by considering two identical α particles (related by x) in each
Jacobi set, being the third α an spectator. A further analysis concerning these
problems is in order.





Appendix A

Three-body formalism

This Appendix supplements the information provided in chapter 2, and
presents some useful tools to treat three-body systems. More details can
be found, for instance, in Refs. [11, 21, 84].

A.1 Jacobi and hyperspherical coordinates

A three-body system in three dimensions has nine degrees of freedom, three
of them related to the center of mass motion and the remaining six tied to
the relative motion. Thus, subtracting the center of mass energy, the system
Hamiltonian has six dimensions. If mi and ri are the masses and positions
of the particles, the three possible sets of Jacobi coordinates (xi,yi) are

xi = (rj − rk)

√
axi
m
, (A.1)

yi =

(
ri −

mjrj +mkrk
MT −mi

)√
ayi
m
, (A.2)

where xi is the relative coordinate between particles j and k, and yi is
the coordinate that connects the center of mass of the {j, k} subsystem with
particle i. Constants axi and ayi are the relevant reduced masses, also referred
to as the x- and y-coordinate scales, and take the values

axi =
mjmk

MT −mi
, (A.3)

ayi =
mi (MT −mi)

MT
. (A.4)
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Figure A.1: The three sets of scaled Jacobi coordinates.

In the previous expressions, MT = (mi +mj +mk) is the total mass of the
three-body system and m is an arbitrary normalization mass, taken as the
atomic mass unit.

The three Jacobi sets are determined by even permutations of {i, j, k}.
For convenience, they are defined so that the particle out the x coordinate
labels the Jacobi set, i.e. 1 ≡ {1, 2, 3}, 2 ≡ {2, 3, 1} and 3 ≡ {3, 1, 2}. This
is shown for clarity in Fig. A.1. The three Jacobi sets, combined with the
center of mass coordinate R, describe the system. The positions of the three
particles in the Jacobi–i system are given by

ri = R +
mj +mk

MT

√
m

ayi
yi, (A.5)

rj = R− mi

MT

√
m

ayi
yi +

mk

mj +mk

√
m

axi
xi, (A.6)

rk = R− mi

MT

√
m

ayi
yi −

mj

mj +mk

√
m

axi
xi, (A.7)

where the center of mass position is

R =
miri +mjrj +mkrk

MT
. (A.8)

The connection between different Jacobi sets is given by

xk = − cosϕki xi + sinϕki yi, (A.9)

yk = − sinϕki xi − cosϕki yi, (A.10)

where

tanϕki = (−1)P

√
mjMT

MT −mj
, (A.11)

and (−1)P is the sign of the permutation {i, j, k}.
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From Jacobi coordinates (xi,yi) one can define a set of hyperspherical
coordinates (ρ, αi, x̂i, ŷi) that satisfy

ρ2 = x2i + y2i , tanαi =
xi
yi
, (A.12)

or equivalently,
xi = ρ sinαi, yi = ρ cosαi, (A.13)

where ρ is the hyperradius and αi is the hyperangle in the Jacobi-i set,
confined by 0 < αi < π/2. Notice that the hyperradius does not depend
on the Jacobi system. The quantity Ωi ≡ (αi, x̂i, ŷi) is usually introduced
for the angular dependence, so that (ρ,Ωi) represents the full set of hyper-
spherical coordinates. With the above given definitions, the volume element
corresponding to the relative motion is

d3xid
3yi ≡ ρ5(sinαi)2(cosαi)

2 dρdαidx̂idŷi ≡ ρ5dρdΩi. (A.14)

A.2 Hyperspherical Harmonics

The spherical harmonics Ylm are the eigenfunctions of the square of the
angular momentum operator l̂2,

l̂2Ylml(r̂) = l(l + 1)Ylml(r̂), (A.15)

and they can be defined so that,

l̂zYlml(r̂) = mlYlml(r̂). (A.16)

Operators {l̂2, l̂z} are a complete set of commuting observables in the three-
dimensional angular subspace, and functions Ylml define a complete and
orthonormal basis.

The hyperspherical harmonics (HH) Υ
lxlymxmy
K are the natural extension

of the spherical harmonics for six-dimensional problems, being eigenfunctions
of the square of the hypermomentum operator K̂2,

K̂2Υ
lxlymxmy
K (Ωi) = K(K + 4)Υ

lxlymxmy
K (Ωi). (A.17)

They are chosen to be also eigenfunctions of the square of the angular
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momenta associated to coordinates xi and yi, l̂2x and l̂2y, and that of its
corresponding z components, l̂xz and l̂yz . Thus,

l̂2xΥ
lxlymxmy
K (Ωi) = lx(lx + 1)Υ

lxlymxmy
K (Ωi), (A.18)

l̂2yΥ
lxlymxmy
K (Ωi) = ly(ly + 1)Υ

lxlymxmy
K (Ωi), (A.19)

l̂xzΥ
lxlymxmy
K (Ωi) = mxΥ

lxlymxmy
K (Ωi), (A.20)

l̂yzΥ
lxlymxmy
K (Ωi) = myΥ

lxlymxmy
K (Ωi). (A.21)

This implies that {K̂2, l̂2x, l̂
2
y, l̂xz , l̂yz} is a complete set of observables in the

three-body angular subspace, and the HH define a complete and orthonormal
basis. They can be written by means of the spherical harmonics associated
to xi and yi,

Υ
lxlymxmy
K (Ωi) = ϕ

lxly
K (αi)Ylxmx(x̂i)Ylymy(ŷi), (A.22)

where

ϕ
lxly
K (αi) = N

lxly
K (sinαi)

lx(cosαi)
lyP

lx+
1
2
,ly+

1
2

n (cos 2αi). (A.23)

Here, P a,bn represents a Jacobi polynomial of order

n =
K − lx − ly

2
, (A.24)

and the normalization constant takes the value

N
lxly
K =

[
2n!(K + 2)(n+ lx + ly + 1)!

Γ(n+ lx + 3/2)Γ(n+ ly + 3/2)

]1/2
. (A.25)

Since n has to be integer or zero, Eq. (A.24) implies that K possible values
go from (lx + ly) to infinity in steps of two units.

The observable set choice is not unique, and one can define HH being
eigenfunctions of {K̂2, l̂2x, l̂

2
y, l̂

2, l̂z}, where l = lx + ly and lz is its third
component. These functions are

Υ
lxly
Klml

(Ωi) =
∑
mxmy

〈lxmxlymy|lml〉Υ
lxlymxmy
K (Ωi), (A.26)

and define also a complete set of the angular subspace. The HH given by
Eq. (A.26) have a good total orbital angular momentum l, and their orthog-
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onality relationship reads∫
dΩiΥ

lxly
Klml

(Ωi)Υ
lxly
Klml

(Ωi) = δKK′δlxl′xδlyl′yδll′δmlm′l . (A.27)

The square of the hypermomentum operator1 as a function of the angles
in hyperspherical coordinates is given by the expression

K̂2(Ωi) = − ∂2

∂α2
i

− 4 cot(2αi)
∂

∂αi
+

1

cos2 αi
l̂2yi +

1

sin2 αi
l̂2xi , (A.28)

operator that is invariant under transformations between different Jacobi
sets, i.e.

K̂2(Ωi) = K̂2(Ωj) = K̂2(Ωk). (A.29)

This relation implies that the corresponding eigenfunctions in a given Jacobi
system can be expanded in terms of another set,

Υ
lxi lyi
Klml

(Ωi) =
∑
lxk lyk

〈lxi lyi |lxk lyk〉lKΥ
lxk lyk
Klml

(Ωk), (A.30)

where 〈lxi lyi |lxk lyk〉lK are the Raynal-Revai coefficients [84]. Notice that the
transformation preserves the hypermomentum K, as well as the total orbital
angular momentum l and its projection ml.

A.3 HO basis

The harmonic oscillator (HO) functions in 6 dimensions have the form2

φHO
iKlxlylml

(s,Ω) = RHO
iK (s)Υ

lxly
Klml

(Ω), (A.31)

where i is the main quantum number and denotes the hyperradial excitation.
Functions Υ

lxly
Klml

(Ω) are the HH described in A.2, while the hyperradial
functions are given by

RHO
iK (s) =

√
2Γ(i+ 1)

Γ(i+K + 3)
sKLK+2

i (s2) exp(−s2/2), (A.32)

1The operator K̂ is also called in the literature grand momentum operator.
2For clarity, the label that specifies the Jacobi set has been omitted.
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being LK+2
i a generalized Laguerre polynomial. These hyperradial functions

fulfill the orthonormality relation∫ ∞
0

ds s5RHO
iK (s)RHO

i′K(s) = δii′ . (A.33)

It is convenient to introduce hyperradial functions UHO
iK (s) as

UHO
iK (s) = s5/2RHO

iK (s), (A.34)

so that the orthonormality relationship is∫ ∞
0

ds UHO
iK (s)UHO

i′K (s) = δii′ . (A.35)

With this definition, the Jacobian term ρ5 involved in all hyperradial inte-
grals can be omitted. This is the prescription already presented in chapters 1
and 2.

Note that the angular part of the HO basis functions are simply hyper-
spherical harmonics, which do not account for the spin of the system. When
the spins of the particles are considered, the HH have to be coupled to the
corresponding spin functions to provide a total angular momentum j (see
Eq. (1.4) in chapter 2).



Appendix B

Operator matrix elements and
other relevant expressions

B.1 Kinetic energy matrix elements

The kinetic energy operator for a three-body system can be written, using
Jacobi coordinates, as

T̂ (x,y) = − ~2

2m

[(
1

x

∂2

∂x2
x− l̂2x

x2

)
+

(
1

y

∂2

∂y2
y −

l̂2y
y2

)]
, (B.1)

which excludes the center of mass kinetic energy. Here, l̂x and l̂y are the an-
gular momentum operators associated to coordinates x and y, respectively,
andm is a normalization mass. It is convenient to express this operator using
hyperspherical coordinates, which are related with the Jacobi coordinates by
Eq. (A.12). Accordingly to these relationships, the Jacobian matrix is given
by

∂ρ

∂x
= sinα, (B.2)

∂α

∂x
=

(
1

y

)
1

1 +
(
x
y

)2 =
cosα

ρ
, (B.3)

∂ρ

∂y
= cosα, (B.4)

∂α

∂y
= −

(
x

y2

)
1

1 +
(
x
y

)2 = − sinα

ρ
. (B.5)

145
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Considering that the operator T̂ acts on wave functions of the form g(ρ, α)1,
the following useful expressions can be introduced

fx(ρ, α) = x g(ρ, α), (B.6)

hx(ρ, α) =
∂fx
∂x

, (B.7)

fy(ρ, α) = y g(ρ, α), (B.8)

hy(ρ, α) =
∂fy
∂y

, (B.9)

so that
1

x

∂2

∂x2
[x g(ρ, α)] =

1

x

∂2fx
∂x2

=
1

x

∂hx
∂x

, (B.10)

1

y

∂2

∂y2
[y g(ρ, α)] =

1

y

∂2fy
∂y2

=
1

y

∂hy
∂y

. (B.11)

Accordingly to the chain rule for multiple derivatives, previous functions
satisfy

∂fx
∂x

=
∂fx
∂ρ

∂ρ

∂x
+
∂fx
∂α

∂α

∂x
, (B.12)

∂fy
∂y

=
∂fy
∂ρ

∂ρ

∂y
+
∂fy
∂α

∂α

∂y
. (B.13)

The two terms (B.10) and (B.11) are needed to compute the kinetic energy.
Starting with the x coordinate, the derivatives of fx with respect to ρ and
α can be obtained from Eq. (B.6) as

∂fx
∂ρ

= sinα

(
g(ρ, α) + ρ

∂g

∂ρ

)
, (B.14)

∂fx
∂α

= ρ

(
cosα g(ρ, α) + sinα

∂g

∂α

)
. (B.15)

Inserting these expressions in Eq. (B.12), and using relations (B.2) and (B.3),

hx =
∂fx
∂x

= sin2 α

(
g(ρ, α) + ρ

∂g

∂ρ

)
+ cos2 α g(ρ, α) +

sin(2α)

2

∂g

∂α
. (B.16)

Eq. (B.10) requires the hx derivative with respect to x. Using again the chain

1The angular dependence on x̂, ŷ can be omitted.
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rule,
∂hx
∂x

=
∂hx
∂ρ

∂ρ

∂x
+
∂hx
∂α

∂α

∂x
. (B.17)

Performing the derivatives with respect to ρ and α, and collecting terms,

∂hx
∂x

=
∂g

∂ρ

[
2 sin3 α+ cos2 α sinα+ 2 sinα cos2 α

]
+
∂2g

∂ρ2
[
ρ sin3 α

]
+
∂g

∂α

[
sin2 α cosα

ρ
+

cos3 α

ρ
+

cos(2α) cosα

ρ

]
+
∂2g

∂α2

[
sinα cos2 α

ρ

]
+

∂2g

∂ρ∂α
[sin(2α) sinα] . (B.18)

Following the same derivation for hy, a similar result is obtained,

∂hy
∂y

=
∂g

∂ρ

[
2 cos3 α+ sin2 α cosα+ 2 cosα sin2 α

]
+
∂2g

∂ρ2
[
ρ cos3 α

]
+
∂g

∂α

[
−cos2 α sinα

ρ
− sin3 α

ρ
+

cos(2α) sinα

ρ

]
+
∂2g

∂α2

[
cosα sin2 α

ρ

]
+

∂2g

∂ρ∂α
[− sin(2α) cosα] . (B.19)

Evaluating now the sum of terms (B.10) and (B.11),(
1

x

∂hx
∂x

+
1

y

∂hy
∂y

)
=

∂2g

∂ρ2
+

5

ρ

∂g

∂ρ
+

1

ρ2
∂2g

∂α2

+
1

ρ2
∂g

∂α

(cos3 α

sinα
− sin3 α

cosα

)
︸ ︷︷ ︸

A

+

(
cos(2α) cosα

sinα
+

cos(2α) sinα

cosα

)
︸ ︷︷ ︸

B

 .
(B.20)

Terms A and B can be simply reduced as

A =
cos3 α

sinα
− sin3 α

cosα
=

cos4 α− sin4 α

sinα cosα
=

cos(2α)

sinα cosα

=
cos(2α)

sinα cosα
= 2

cos(2α)

sin(2α)
= 2 cot(2α), (B.21)
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B =
cos(2α) cosα

sinα
+

cos(2α) sinα

cosα
=

cos(2α) cos2 α+ cos(2α) sin2 α

sinα cosα

=
cos(2α)

sinα cosα
= 2

cos(2α)

sin(2α)
= 2 cot(2α) = A, (B.22)

so finally(
1

x

∂hx
∂x

+
1

y

∂hy
∂y

)
=
∂2g

∂ρ2
+

5

ρ

∂g

∂ρ
+

1

ρ2
∂2g

∂α2
+

1

ρ2
4 cot(2α)

∂g

∂α
. (B.23)

Adding terms in l̂x and l̂y included in Eq. (B.1), the kinetic energy operator
in hyperspherical coordinates can be written as

T̂ (ρ, α) =− ~2

2m

[
∂2

∂ρ2
+

5

ρ

∂

∂ρ
+

1

ρ2
∂2

∂α2
+

1

ρ2
4 cot(2α)

∂

∂α

− l̂2x
ρ2 sin2 α

−
l̂2y

ρ2 cos2 α

]
, (B.24)

and considering the expression for the hypermomentum operator introduced
in Appendix A, Eq. (A.28),

K̂2(Ω) = − ∂2

∂α2
− 4 cot(2α)

∂

∂α
+

l̂2x
sin2 α

+
l̂2y

cos2 α
,

the final expression for the kinetic energy operator reads

T̂ (ρ, α) = − ~2

2m

[
∂2

∂ρ2
+

5

ρ

∂

∂ρ
− 1

ρ2
K̂2(Ω)

]
. (B.25)

The expression (B.25) is totally general. This operator can act over three-
body wave functions which factorize in hyperradial and angular parts,

ψiβjµ(ρ,Ω) = ρ−5/2Uiβ(ρ)Yβjµ(Ω), (B.26)

where β denotes all quantum numbers coupled to a total angular momentum
j, as introduced in chapter 1. Since the kinetic energy operator ignores the
spin functions, for the computation of its matrix elements the effect of T̂
over angular functions Yβjµ(Ω) is equivalent than that over hyperspherical
harmonics. The effect of the operator on the basis functions is
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T̂ (ρ,Ω)
[
ρ−5/2U(ρ)Υ(Ω)

]
= (B.27)

= − ~2

2m

 d2

dρ2

(
ρ−5/2U

)
︸ ︷︷ ︸

D

+
5

ρ

d

dρ

(
ρ−5/2U

)
︸ ︷︷ ︸

C

−K(K + 4)

ρ2
ρ−5/2U

Υ,

where the relation K̂2 Υ = K(K + 4)Υ, presented in Appendix A, has been
used. Evaluating C and D,

C =
5

ρ

d

dρ

(
ρ−

5
2U
)

=
5

ρ

(
−5

2
ρ−

7
2U + ρ−

5
2
dU

dρ

)
=
−25

2
ρ−

9
2U + 5ρ−

7
2
dU

dρ
,

(B.28)

D =
d

dρ

[
d

dρ

(
ρ−

5
2U
)]

=
5

2

7

2
ρ−

9
2U − 5

2
ρ−

7
2
dU

dρ
− 5

2
ρ−

7
2
dU

dρ
+ ρ−

5
2
d2U

dρ2
.

(B.29)

These results lead to,

T̂ (ρ,Ω)
[
ρ−5/2U(ρ)Υ(Ω)

]
= ρ−5/2T̂U (ρ) [U(ρ)Υ(Ω)] , (B.30)

where the new operator has the form

T̂U (ρ) =
−~2

2m

[
d2

dρ2
+

15/4 +K(K + 4)

ρ2

]
. (B.31)

Then, if |iβjµ〉 represents the basis function in Eq. (B.26), the kinetic energy
matrix elements can be computed as

〈iβjµ|T̂ (ρ,Ω)|i′β′jµ〉 = δββ′〈iβj|T̂U (ρ)|i′β′j〉

= δββ′

∫ ∞
0

dρ Uiβ(ρ) T̂U (ρ) Ui′β′(ρ), (B.32)

where the ρ factors cancel, and the angular integral imposes diagonality in
the channels β.
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B.2 Potential matrix elements

As shown in chapter 2, potential matrix elements are computed in two steps.
First, the angular integration is performed using the prescriptions by the
FaCE code [51]. This program solves the Faddeev [68] equations for a three-
body system with possible excitations of one of the particles. The three-
body wave function with total angular momentum j is given in the Faddeev
formalism as

ψ(jµ) = ψ
(jµ)
1 (x1,y1) + ψ

(jµ)
2 (x2,y2) + ψ

(jµ)
3 (x3,y3), (B.33)

where {xk,yk} are the Jacobi coordinates in the k set, and functions ψ(jµ)
k

satisfy the Faddeev coupled equations,(
T̂1 + ĥ+ V̂1 − ε

)
ψ
(jµ)
1 = −V̂1

(
ψ
(jµ)
2 + ψ

(jµ)
3

)
,(

T̂2 + ĥ+ V̂2 − ε
)
ψ
(jµ)
2 = −V̂2

(
ψ
(jµ)
3 + ψ

(jµ)
1

)
, (B.34)(

T̂3 + ĥ+ V̂3 − ε
)
ψ
(jµ)
3 = −V̂3

(
ψ
(jµ)
1 + ψ

(jµ)
2

)
.

These equations contain ĥ =
∑

k ĥk the sum of the internal Hamiltonian of
each particle ĥk, the relative kinetic energy in each coordinate set T̂k =

T̂xk + T̂yk and the two-body interaction between the corresponding pair
V̂k = V̂pq(rpq). The indexes (k, p, q) run through (1, 2, 3) in circular order.
Typically, the label X refers to the pair {x1,y1}, Y refers to {x2,y2} and
T refers to {x3,y3}. For a given Jacobi set, the corresponding Faddeev
component is expanded following the angular momentum coupling presented
in chapter 2. Using ket notation, the total three-body wave function in
Eq. (B.33) can be written as

|jµ〉 =
3∑

k=1

|k; jµ〉 =
3∑

k=1

∑
βk

|k;βkj, βkjµ〉, (B.35)

where |k;βkj, βkjµ〉 represents the factorization of hyperradial and angular
parts

|k;βkj, βkjµ〉 = |k;βkj〉 ⊗ |k;βkjµ〉. (B.36)

Potential matrix elements involve overlaps between pairs of the over-
complete basis set {|k;βkjµ〉}. The calculation of these overlaps requires
transformation matrices between angular components in different Jacobi sets,
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Figure B.1: Transformations between Jacobi sets.

which are rotations |q;βqjµ〉 → |k;βkjµ〉 clockwise and |k;βkjµ〉 ← |p;βpjµ〉
anticlockwise. This is shown schematically in Fig. B.1. Considering {k, p, q}
in circular order, the transformations in both directions are

|k;βkjµ〉 =
∑
Kq

∑
lxq lyq

∑
lqSxq

∑
jabq

∑
St

(−1)2(j−Sxq−sq)+St+Sxk−sk Ŝ2
t Ŝxq Ŝxk ĵabq ĵabk

×W (lkSxkjsk; jabkSt)W (sqspStsk;SxkSxq)W (sqSxqjlq;Stjabq)

× 〈lxk lyk |lxq lyq〉lqKqδKkKqδlklq |q;βqjµ〉, (B.37)

|k;βkjµ〉 =
∑
Kp

∑
lxp lyp

∑
lpSxp

∑
jabp

∑
St

(−1)2(j−Sxp−sp)+St+Sxp−spŜ2
t ŜxpŜxk ĵabp ĵabk

×W (lkSxkjsk; jabkSt)W (spsqStsk;SxkSxp)W (spSxqpjlp;Stjabp)

× 〈lxk lyk |lxp lyp〉lpKpδKkKpδlklp |p;βpjµ〉, (B.38)

where 〈lxk lyk |lxp lyp〉lpKp are the Raynal-Revai coefficients in Eq. (A.30), and
St is the total spin, St = Sxp + Ip. Equations (B.37) and (B.38) define two
kinds of norm matrices, Ñβkβq and Nβkβp , such that

|k;βkjµ〉 =
∑
βq

Ñβkβq |q;βqjµ〉 =
∑
βp

Nβkβp |p;βpjµ〉, (B.39)

which means that the matrix elements Nβkβp are just the state overlaps

Nβkβp = 〈p;βpjµ|k;βkjµ〉, (B.40)

so that ∑
βp

NβkβpNβpβq = Ñβkβq . (B.41)

Note that these transformations conserve the total orbital angular momen-
tum l and the hypermomentum K.
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Eq. (1.11) in chapter 1 describes the general binary potential between an
interacting pair. In this work, neither deformed potentials nor excited states
of the particles are considered, so

V̂pq = V̂k(xk) = Vc(xk) + Vso(xk)ŜO + Vt(xk)T̂ + Vss(xk)ŜS, (B.42)

where Vc(xk) is the central term, ŜO and Vso(xk) are the spin-orbit operator
and its radial form factor, T̂ and Vt(xk) are the standard tensor operator
and the radial form factor for the NN interaction, and finally ŜS and Vss(xk)
are the spin-spin operator and its corresponding radial dependence.

The matrix elements of V̂k(xk) are calculated between basis states of the
same Faddeev component k. The norm matrices introduced by Eq. (B.40)
can be used to express general potential matrix elements in mixed represen-
tations, in terms of the preferred Jacobi set k. For example,

〈p;β′pj||V̂k||k;βkj〉 =
∑
β′k

Nβ′kβ
′
p
〈k;β′kj||V̂k||k;βkj〉, (B.43)

or, for cases in which the potential is easily represented in one particular
Jacobi set,

〈p;β′pj||V̂k||p;βpj〉 =
∑
β′kβk

Nβ′kβ
′
p
〈k;β′kj||V̂k||k;βkj〉Nβkβp . (B.44)

First, the angular and spin parts are considered, leading to a set of matrix
elements to be later multiplied by numerical integrals over the hyperangle
αk. For that, it is convenient to separate further the angular wave functions,

|k;βkjµ〉 = |k;Kklxk lyk〉 ⊗ |k; γkjµ〉, (B.45)

where |k;Kklxk lyk〉 represents the hyperangular degree of freedom, given
by function ϕ

lxk lyk
Kk

in Eq. (A.23), and βk ≡ {Kk, γk}. Factors Wkk′ are
then introduced to denote the potential matrix elements over the angular
momentum basis states |k; γkjµ〉, leading to

〈k; γ′kj||V̂k||k; γkj〉 = W c
kk′V

c
k (xk) +WSO

kk′ V
SO
k (xk)

+W Tkk′V
T
k (xk) +WSS

kk′V
SS
k (xk). (B.46)
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The potential matrix element for the central part is diagonal in all angular
and spin variables. Considering the spin-orbit part, since all three particles
may have non-vanishing spin, a general spin operator Σ̂k ≡ Γkpŝp + Γkq ŝq

is introduced. Here Γkp and Γpq select which of the spins are to be dynami-
cally coupled, and with which relative strength. The matrix elements for the
resulting spin-orbit operator are

〈k; γ′kj||l̂xk · Σ̂k||k; γkj〉 = δs′kskδs
′
pspδs′qsqδj′abk jabk

δl′yk lyk
δl′xk lxk

× (−1)
2j+3j′abk

+lyk+l
′
xk

+2sk+sp+sq Ŝ′xk Ŝxk l̂
′
k l̂k l̂xk

√
lxk(lxk + 1)

×

{
l′k lk 1

Sxk S′xk jabk

}{
l′k lk 1

lxk l′xk l′yk

}

×

[
Γkp(−1)Sxk ŝp

√
sp(sp + 1)

{
S′xk Sxk 1

sp s′p s′q

}

+ Γkq(−1)Sxk ŝq

√
sq(sq + 1)

{
S′xk Sxk 1

sq s′q s′p

}]
.

(B.47)

When considering spin-spin interactions there are three possibilities depend-
ing on the Faddeev components, 〈s′k||ŝk · ŝp||sk〉, 〈s′k||ŝk · ŝq||sk〉 and 〈s′k||ŝp ·
ŝq||sk〉. The expression for these matrix elements are

〈k; γ′kj||ŝk · ŝp||k; γkj〉 = (−1)
3j+j′abk

−jabk+l
′
k+2Sxk−sk+sp+sq

× δs′kskδs′pspδs′qsqδl′klk ĵ
′
abk
ĵabk Ŝ

′
xk
Ŝxk ŝkŝp

√
sk(sk + 1)

√
sp(sp + 1)

×

{
j′abk jabk 1

Sxk S′xk l′k

}{
S′xk Sxk 1

sp s′p s′q

}{
s′k sk 1

jabk j′abk j

}
,

(B.48)

〈k; γ′kj||ŝk · ŝq||k; γkj〉 = (−1)
3j+j′abk

−jabk+l
′
k+Sxk+S

′
xk
−s′k+s

′
p+sq

× δs′kskδs′pspδs′qsqδl′klk ĵ
′
abk
ĵabk Ŝ

′
xk
Ŝxk ŝkŝq

√
sk(sk + 1)

√
sq(sq + 1)

×

{
j′abk jabk 1

Sxk S′xk l′k

}{
S′xk Sxk 1

sq s′q s′p

}{
s′k sk 1

jabk j′abk j

}
,

(B.49)
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〈k; γ′kj||ŝp · ŝq||k; γkj〉 = (−1)Sxk+sp+sqδs′kskδs
′
pspδs′qsqδj′abk jabk

δS′xkSxk
δl′klk

× ŝpŝq
√
sp(sp + 1)

√
sq(sq + 1)

{
s′p sp 1

sq s′q S′xk

}
. (B.50)

A realistic NN force contains a tensor interaction of the type T2(ŝpŝq) ·
C2(l̂xk) which also needs to be considered. Here, C2(l̂xk) is a spherical har-
monic in the notation of Brink and Satchler [82]. The expression for these
matrix elements after working out the algebra is

〈k; γ′kj||T2(ŝpŝq) · C2(l̂xk)||k; γkj〉 = δs′kskδs
′
pspδs′qsqδj′abk jabk

δl′klk

× (−1)3jabk+lyk−S
′
xk 2̂Ŝ′xk Ŝxk l̂

′
k l̂k l̂

′
xk
l̂xk ŝ

′
pŝ
′
q

√
sp(sp + 1)

√
sq(sq + 1)

×

{
S′xk Sxk 2

lk l′k j′abk

}{
l′k lk 2

lxk l′xk l′yk

}

×

(
l′xk 2 lxk
0 0 0

)
S′xk Sxk 2

s′p sp 1

s′q sq 1

 .

(B.51)

As already discussed in the main body of this thesis, few-body models
often include three-body effective potentials to describe the influence of dy-
namics not explicitly considered by two-body interactions. This is typically
parametrized with a simple diagonal form,

〈k′; γ′kj||V̂3b||k; γkj〉 = δk′kδγ′kγkV3b(ρ). (B.52)

After computing these Wkk′ factors and performing the hyperangular in-
tegration in Eq. (B.46), the hyperradial Vββ′(ρ) coupling matrix is obtained.
In this work, instead of solving the Faddeev equations, the Schrödinger equa-
tion in the preferred Jacobi set k is solved by computing the potential matrix
elements over the hyperradial functions and diagonalizing the full three-body
Hamiltonian. This leads to the pseudo-state method in chapters 1 and 2.

B.3 Expressions for the matter and charge radii
The matter radius for an A-nucleon system is given by

r2 =
1

A

A∑
i=1

r2i , (B.53)
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where ri is the position of each nucleon with respect to the center of mass of
the system. Considering a three-cluster system, this vector can be separated
into two parts,

ri = Rq + ri(q). (B.54)

Here,Rq are the position of the clusters, given by Eqs. (A.5), (A.6), and (A.7)
in the preferred Jacobi set as

R1 = −m3

MT

√
m

ay
y − m2

m1 +m2

√
m

ax
x, (B.55)

R2 = −m3

MT

√
m

ay
y +

m1

m1 +m2

√
m

ax
x, (B.56)

R3 =
m1 +m2

MT

√
m

ay
y, (B.57)

and ri(q) are the positions of each nucleon with respect to the center of mass
of its cluster. Inserting Eq. (B.54) in (B.53) and separating the three clusters
with mass numbers Aq provides

r2 =
1

A

 3∑
q=1

Aq∑
i=1

(
R2
q + r2i(q) + 2Rq · ri(q)

) . (B.58)

Considering that the clusters are symmetric and spherical, the sum over Aq
cancels all the terms 2Rq · ri(q),

r2 =
1

A

 3∑
q=1

Aq∑
i=1

r2i(q)

+

3∑
q=1

AqR
2
q

 , (B.59)

which seems a reasonable approximation in many cases. Taking into account
that Eq. (B.53) can be applied to each individual cluster,

r2 =
1

A

 3∑
q=1

Aqr
2
Aq

+
3∑
q=1

AqR
2
q

 , (B.60)

where rAq is the known radius of each cluster. Since these numbers need
to be known previously, the preceding expression could be applied even if
the clusters are known to be deformed, by just changing its effective radius.
The second term in Eq. (B.60) can be expanded using Eqs. (B.55), (B.56),
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and (B.57), leading to

3∑
q=1

AqR
2
q =

[
A1

(
m2

m1 +m2

√
m

ax

)2

+A2

(
m1

m1 +m2

√
m

ax

)2
]
x2 (B.61)

+

[
A1

(
m3

MT

√
m

ay

)2

+A2

(
m3

MT

√
m

ay

)2

+A3

(
m1 +m2

MT

√
m

ay

)2
]
y2

+

[
2A1

m2

m1 +m2

√
m

ax

m3

MT

√
m

ay
− 2A2

m1

m1 +m2

√
m

ax

m3

MT

√
m

ay

]
x · y.

In the previous expression, terms in x · y cancel regardless of the masses.
The remaining terms reduce to x2 + y2 ≡ ρ2, thus providing

rmat =
√
〈r2〉 =

√√√√√ 1

A

 3∑
q=1

Aq〈r2Aq〉

+ 〈ρ2〉

. (B.62)

For the charge radius, a similar definition is introduced,

r2ch =
1

Z

Z∑
i=1

r2i , (B.63)

where ri is now the position of each proton with respect to the center of mass
of the system. In this sense, this is a point-nucleon charge radius. Following
the same decomposition leads in this case to

r2 =
1

Z

 3∑
q=1

Zqr
2
Zq

+
3∑
q=1

ZqR
2
q

 , (B.64)

where Zq and 〈r2Zq〉 are the charge and squared charge radius of each
cluster, respectively. Expanding again the second term by using expres-
sions (B.55), (B.56), and (B.57),

3∑
q=1

ZqR
2
q =

[
Z1

(
m2

m1 +m2

√
m

ax

)2

+ Z2

(
m1

m1 +m2

√
m

ax

)2
]
x2 (B.65)

+

[
Z1

(
m3

MT

√
m

ay

)2

+ Z2

(
m3

MT

√
m

ay

)2

+ Z3

(
m1 +m2

MT

√
m

ay

)2
]
y2

+

[
2Z1

m2

m1 +m2

√
m

ax

m3

MT

√
m

ay
− 2Z2

m1

m1 +m2

√
m

ax

m3

MT

√
m

ay

]
x · y.
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For the charge radius, the terms in x · y cancel only if particles 1 and 2 are
identical. Then, the charge radius can be written in general as

rch =
√
〈r2ch〉 =

√√√√√ 1

Z

 3∑
q=1

Zq〈r2Zq〉

+ 〈f(x, y)〉

, (B.66)

where f(x, y) will be different depending on the number of charged and/or
identical particles in the system. If particles 1 and 2 are identical, i.e., Z2 =

Z1 and A2 = A1, this function can be reduced to

f(x, y) ≡ f(x2, y2) =
Z1

A1
x2 +

1

A

(
A3

A1
Z1 +

2A1

A3
Z3

)
y2. (B.67)

The computation of matter and charge radii requires some expectation
values in the state considered, typically the ground state of the system. The
state labeled |njµ〉 is given by

φnjµ(ρ,Ω) =
∑
βi

Ciβjn ψiβjµ(ρ,Ω), (B.68)

where ψiβjµ(ρ,Ω) are the basis functions and Ciβjn the diagonalization
coefficients. Following the angular momentum coupling given by Eq. (1.4),
the basis functions can be expanded explicitly as

ψiβjµ(ρ,Ω) = ρ−5/2Uiβ(ρ)
∑
νι

〈jabνIι|jµ〉ξιI
∑
mlσ

〈lmlSxσ|jabν〉Υ
lxly
Klml

(Ω)κσSx ,

(B.69)
being ml, σ, ν and ι the projections of l,Sx, jab and I, respectively. Consid-
ering that the operator x2 is independent on the spin variables,

〈njµ|x2|njµ〉 =
∑
ββ′ii′

Ciβjn Ci
′β′j

n

∑
νν′ιι′

〈jabνIι|jµ〉〈j′abν ′Iι′|jµ〉διι′

×
∑

mlm
′
lσσ
′

〈lmlSxσ|jabν〉〈l′m′lS′xσ′|j′abν ′〉δSxS′xδσσ′

×
∫ ∫

dΩ dρΥ
lxly
Klml

(Ω)∗Uiβ(ρ)x2Ui′β′(ρ)Υ
l′xl
′
y

K′l′m′l
(Ω).

(B.70)

Using Eqs. (A.22) and (A.26), which contain the explicit dependence of the
hyperspherical harmonics, and separating the hyperradial and angular parts,
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〈njµ|x2|njµ〉 =
∑
ββ′ii′

Ciβjn Ci
′β′j

n

∑
νν′ιι′

〈jabνIι|jµ〉〈j′abν ′Iι′|jµ〉διι′

×
∑

mlm
′
lσσ
′

〈lmlSxσ|jabν〉〈l′m′lS′xσ′|j′abν ′〉δSxS′xδσσ′

×
∑
mxm′x

∑
mym′y

〈lxmxlymy|lml〉〈l′xm′xl′ym′y|l′m′l〉

×
∫ ∫

(sinα)2 (cosα)2 dα dρ ϕ
lxly
K (α)Uiβ(ρ)x2Ui′β′(ρ)ϕ

l′xl
′
y

K′ (α)

×
∫
dx̂Y ∗lxmx(x̂)Yl′xm′x(x̂)

∫
dŷY ∗lymy(ŷ)Yl′ym′y(ŷ).

(B.71)

Considering that ∫
dx̂Ylxmx(x̂)∗Yl′xm′x(x̂) = δlxl′xδmxm′x , (B.72)∫
dŷYlymy(ŷ)∗Yl′ym′y(ŷ) = δlyl′yδmym′y , (B.73)

it is possible to write

〈njµ|x2|njµ〉 =
∑
ββ′ii′

Ciβjn Ci
′β′j

n

∑
νν′ι

〈jabνIι|jµ〉〈j′abν ′Iι|jµ〉

×
∑
mlm

′
lσ

〈lmlSxσ|jabν〉〈l′m′lS′xσ|j′abν ′〉δSxS′x

×
∑
mxmy

〈lxmxlymy|lml〉〈l′xmxl
′
ymy|l′m′l〉δlxl′xδlyl′y

×
∫ ∫

(sinα)2 (cosα)2 dα dρ ϕ
lxly
K (α)Uiβ(ρ)x2Ui′β′(ρ)ϕ

l′xl
′
y

K′ (α),

(B.74)

which, taking into account the selection rules for Clebsh-Gordan coefficients,
leads to

〈njµ|x2|njµ〉 =
∑
ββ′ii′

Ciβjn Ci
′β′j

n δlxl′xδlyl′yδll′δSxS′xδjabj′ab (B.75)

×
∫ ∫

(sinα)2 (cosα)2 dα dρ ϕ
lxly
K (α)Uiβ(ρ)x2Ui′β′(ρ)ϕ

l′xl
′
y

K′ (α).
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For the expectation value of y2, it is obtained analogously that

〈njµ|y2|njµ〉 =
∑
ββ′ii′

Ciβjn Ci
′β′j

n δlxl′xδlyl′yδll′δSxS′xδjabj′ab (B.76)

×
∫ ∫

(sinα)2 (cosα)2 dα dρ ϕ
lxly
K (α)Uiβ(ρ)y2Ui′β′(ρ)ϕ

l′xl
′
y

K′ (α).

These expressions can be easily computed considering that, using hyper-
spherical coordinates, x = ρ sinα and y = ρ cosα. In the case of ρ2 = x2+y2,
the expectation value is simply

〈njµ|ρ2|njµ〉 =
∑
βii′

Ciβjn Ci
′βj

n

∫
dρ Uiβ(ρ)ρ2Ui′β(ρ). (B.77)

B.4 Electric transitions

Following the notation of Brink and Satchler [82], the reduced electromag-
netic transition probability between states of a system is defined as

B(Oλ)nj,n′j′ ≡ B(Oλ;nj → n′j′)

= |〈nj‖Ôλ‖n′j′〉|2
(

2λ+ 1

4π

)
,

(B.78)

The electric multipole operator takes the form in the Jacobi-k set

Q̂λMλ
(xk,yk) =

(
4π

2λ+ 1

)1/2 3∑
q=1

Zq e r
λ
q YλMλ

(r̂q), (B.79)

where Zq is the atomic number of the particle q, e is the electron charge,
and rq is the position of particle q with respect to the center of mass of the
system, which in the Jacobi-q system is given by (see Appendix A)

rq =

√
m

mq

(MT −mq)

MT
yq =

√
may

mq
yq. (B.80)

The reduced matrix element, 〈nj||Q̂λ||n′j′〉, is related to the projection-
dependent matrix element by the Wigner-Eckart theorem,

〈njµ|Q̂λMλ
|n′j′µ′〉 = (−1)2λ〈jµ|j′µ′λMλ〉〈nj||Q̂λ||n′j′〉, (B.81)
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where the ket |njµ〉 denotes the state wave function in the Jacobi-k set given
by Eq. (B.68). The operator matrix elements are then given by

〈njµ|Q̂λMλ
|n′j′µ′〉 =

√
4π

λ̂

3∑
q=1

Zqe

(√
mayq
mq

)λ
× 〈njµ|yλq YλMλ

(ŷq)|n′j′µ′〉.

(B.82)

In order to compute these matrix elements, the system states |njµ〉 can be
rotated to the Jacobi-q set using the transformations given by Eqs. (B.37)
and (B.38). This can be done for each summand in Eq. (B.82) In ket notation,
system states are written as

|njµ〉 =
∑
βi

Ciβjn |iβjµ〉 =
∑
βi

Ciβjn |iβj〉 ⊗ |βjµ〉, (B.83)

where |iβj〉 describes the hyperradial part and |βjµ〉 the angular and spin
degrees of freedom. The transformation from the preferred Jacobi set k to
the Jacobi-q system is defined by

|βjµ〉 =
∑
βq

Nββq |q : βqjµ〉. (B.84)

Notice that, for simplicity, the index k is omitted. Then, the term labeled
by q in Eq. (B.82) is given by

〈njµ|yλq YλMλ
(ŷq)|n′j′µ′〉 =

∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′ 〈iβjµ|yλq YλMλ
(ŷq)|i′β′j′µ′〉

=
∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

∑
βqβ′q

NββqNβ′β′q (B.85)

× 〈iβ; q : βqjµ|yλq YλMλ
(ŷq)|i′β′; q : β′qj

′µ′〉.

Writing down explicitly the basis functions (see Eq. (B.69), expanding all
momentum couplings and considering that the operator does not depend on
the spins,
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〈njµ|yλq YλMλ
(ŷq)|n′j′µ′〉 =

∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

∑
βqβ′q

NββqNβ′β′q

×
∑

νqν′qιqι
′
q

〈jabqνqIqιq|jµ〉〈j′abqν ′qIqι′q|j′µ′〉διqι′q (B.86)

×
∑

mlqm
′
lqσqσ

′
q

〈lqmlqSxqσq|jabqνq〉〈l′qm′lqS′xqσ′q|j′abqν ′q〉δSxqS′xqδσqσ′q

×
∫ ∫

dΩq dρ Υ
lxqlyq ∗
Kqlqmlq

(Ωq)Uiβ(ρ)yλq YλMλ
(ŷq)Ui′β′(ρ)Υ

l′xql
′
yq

K′ql
′
qm
′
lq

(Ωq),

where ν, ι,ml, σ are the projections of jab, I, l, Sx. Note that the hyperradial
functions are expressed in the original Jacobi-k set as the transformation
conserves the hyperradius.

The hyperangular part in the previous expression can be separated mak-
ing use of Eqs. (A.22) and (A.26), which contain the explicit dependence of
the hyperspherical harmonics. This leads to

〈njµ|yλq YλMλ
(ŷq)|n′j′µ′〉 =

∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

∑
βqβ′q

NββqNβ′β′q

×
∑

νqν′qιqι
′
q

〈jabqνqIqιq|jµ〉〈j′abqν ′qIqι′q|j′µ′〉διqι′q

×
∑

mlqm
′
lqσqσ

′
q

〈lqmlqSxqσq|jabqνq〉〈l′qm′lqS′xqσ′q|j′abqν ′q〉δSxqS′xqδσqσ′q

×
∑

mxqm′xq

∑
myqm′yq

〈lxqmxqlyqmyq|lkmlq〉〈l′xqm′xql′yqm′yq|l′qm′lq〉 (B.87)

×
∫

(sinαq)
2 (cosαq)

2 dαq dρ ϕ
lxqlyq
Kq

(αq)Uiβ(ρ)yλqUi′β′(ρ)ϕ
l′xql
′
yq

K′q
(αq)

×
∫
dx̂qY

∗
lxqmxq(x̂q)Yl′xqm′xq(x̂q)

∫
dŷqY

∗
lykmyq

(ŷq)YλMλ
(ŷq)Yl′yqm′yq(ŷq).

Using Eq. (B.72) and considering that∫
dŷqY

∗
lyqmyq(ŷq)YλMλ

(ŷq)Yl′yqm′yq(ŷq)

= (−1)myq
ˆlyqλ̂ ˆl′yq√

4π

(
lyq λ l′yq

0 0 0

)(
lyq λ l′yq

−myq Mλ m′yq

)
,

(B.88)
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the matrix element is

〈njµ|yλq YλMλ
(ŷq)|n′j′µ′〉 =

∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

∑
βqβ′q

NββqNβ′β′q

×
∫

(sinαq)
2 (cosαq)

2 dαq dρ ϕ
lxqlyq
Kq

(αq)Uiβ(ρ)yλqUi′β′(ρ)ϕ
l′xql
′
yq

K′q
(αq)

× δlxql′xqδSxqS′xq ˆlyq ˆl′yq

(
lyq λ l′yq

0 0 0

)
∆, (B.89)

where

∆ =
∑
νqν′qιq

〈jabqνqIqιq|jµ〉〈j′abqν ′qIqιq|j′µ′〉

×
∑

mlqm
′
lqσq

〈lkmlqSxqσq|jabqνq〉〈l′qm′lqSxqσq|j′abqν ′q〉

×
∑

myqm′yqmxq

〈lxqmxqlyqmyq|lkmlq〉〈lxqmxql
′
yqm

′
yq|l′qm′lq〉

× (−1)myq

(
lyq λ l′yq

−myq Mλ m′yq

)
.

(B.90)

These Clebsch-Gordan coefficients can be expressed by means of 3-j symbols,
according to

〈abαβ|c− γ〉 = (−1)a−b−γ ĉ

(
a b c

α β γ

)
. (B.91)

Using this relation, (for simplicity q will be omitted)

∆ =
∑
νν′ι

∑
mlm

′
lσ

∑
mym′ymx

ĵĵ′ĵabĵ
′
ab l̂l̂
′

× (−1)jab+j
′
ab−2I+l+l

′−2Sx+ly+l′y+µ+µ′+ν+ν′+ml+m′l+my (B.92)

×

(
jab I j

ν ι −µ

)(
j′ab I j′

ν ′ ι −µ′

)(
l Sx jab

ml σ −ν

)(
l′ Sx j′ab
m′l σ −ν ′

)

×

(
lx ly l

mx my −ml

)(
lx l′y l′

mx m′y −m′l

)(
ly λ l′y

−my Mλ m′y

)
.
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Considering that the Racah symbols W are defined by

W (abcd; ef)

(
c a f

γ α φ

)
=
∑
βδε

(−1)f−e−α−δ

(
a b e

α β −ε

)

×

(
d c e

δ γ ε

)(
b d f

β δ −φ

)
,

(B.93)

it is straightforward to get

∑
mxmym′y

(−1)my

(
lx ly l

mx my −ml

)(
ly λ l′y

−my Mλ m′y

)(
lx l′y l′

mx m′y −m′l

)

= (−1)l+l
′
y+m

′
l

∑
mxmym′y

(−1)l−l
′
y+m

′
l−my

(
lx ly l

mx my −ml

)

×

(
ly λ l′y

my −Mλ −m′y

)(
l′ lx l′y

−m′l mx m′y

)

= (−1)l+l
′
y+m

′
lW (l′lxλly; l

′
yl)

(
λ l′ l

−Mλ −m′l ml

)

= (−1)λ+lx+m
′
lW (ll′lyl

′
y;λlx)

(
λ l′ l

−Mλ −m′l ml

)
.

The phase (−1)m
′
l cancels the same term in expression (B.92). Using the 3-j

symbol and applying again Eq. (B.93),

∑
mlm

′
lσ

(−1)ml

(
l Sx jab

ml σ −ν

)(
λ l′ l

−Mλ −m′l ml

)(
l′ Sx j′ab
m′l σ −ν ′

)

= (−1)l+j
′
ab+2Sx−ν′

∑
mlm

′
lσ

(−1)jab−l
′+ν′−ml

(
Sx l jab

σ ml −ν

)

×

(
l λ l′

ml −Mλ −m′l

)(
j′ab Sx l′

−ν ′ σ m′l

)

= (−1)l+j
′
ab+2Sx−ν′W (j′abSxλl; l

′jab)

(
λ j′ab jab

−Mλ −ν ′ ν

)

= (−1)λ+3Sx+l+l′−jab+j′ab−ν
′
W (jabj

′
abll
′;λSx)

(
λ j′ab jab

−Mλ −ν ′ ν

)
,
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where the factor (−1)−ν
′ cancels with (−1)ν

′ in expression (B.92). Following
the same procedure with the remaining 3-j symbols,

∑
νν′ι

(−1)ν

(
jab I j

ν ι −µ

)(
λ j′ab jab

−Mλ −ν ′ ν

)(
j′ab I j′

ν ′ ι −µ′

)

= (−1)λ+j+2j′+3jab+µ
′∑
νν′ι

(−1)j−j
′
ab−µ

′+ν

(
I jab j

−ι −ν µ

)

×

(
jab λ j′ab
−ν Mλ ν ′

)(
j′ I j′ab
µ′ −ι −ν ′

)

= (−1)λ+j+2j′+3jab+µ
′
W (j′Iλjab; j

′
abj)

(
λ j′ j

Mλ µ′ −µ

)

= (−1)I+2j′+3jab−j′ab+µ
′
W (jj′jabj

′
ab;λI)

(
λ j′ j

Mλ µ′ −µ

)
.

In this case, (−1)2j
′+µ′ cancels the phase (−1)µ

′ in expression (B.92). This
leads to

∆ = (−1)µĵĵ′

(
λ j′ j

Mλ µ′ −µ

)
l̂l̂′ĵabĵ

′
ab(−1)lx+ly+l

′
y+Sx−jab+j′ab−I

×W (ll′lyl
′
y;λlx)W (jabj

′
abll
′;λSx)W (jj′jabj

′
ab;λI).

(B.94)

Inserting this in Eq. (B.89) (and specifying again the label q)

〈njµ|yλq YλMλ
(ŷq)|n′j′µ′〉 = (−1)µĵĵ′

(
λ j′ j

Mλ µ′ −µ

)
×
∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

∑
βqβ′q

NββqNβ′β′q (B.95)

× δlxql′xqδSxqS′xq ˆlyq ˆl′yq l̂q l̂
′
q ĵabq ĵ

′
abq(−1)lxq+lyq+l

′
yq+Sxq−jabq+j′abq−Iq

×

(
lyq λ l′yq

0 0 0

)
W (lql

′
qlyql

′
yq;λlxq)W (jabqj

′
abqlql

′
q;λSxq)W (jj′jabqj

′
abq;λIq)

×
∫

(sinαq)
2 (cosαq)

2 dαq dρ ϕ
lxqlyq
Kq

(αq)Uiβ(ρ)yλqUi′β′(ρ)ϕ
l′xql
′
yq

K′q
(αq).

Equations (B.89) and (B.95) determine the electric operator matrix elements.
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Taking into account that(
λ j′ j

Mλ µ′ −µ

)
= (−1)λ+j+j

′

(
j′ λ j

µ′ Mλ −µ

)
=

(−1)j−µ

ĵ
〈j′µ′λMλ|jµ〉,

(B.96)

and using Eq. (B.81), the reduced matrix element is given by

〈nj||Q̂λ||n′j′〉 = (−1)−2λ
〈njµ|Q̂λMλ

|n′j′µ′〉
〈j′µ′λMλ|jµ〉

=
∑
q

Zqe

(√
mayq
mq

)λ∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

∑
βqβ′q

NββqNβ′β′q (B.97)

× δlxq l′xq δSxqS′xq
ˆlyq

ˆl′yq l̂q l̂
′
q ĵabq ĵ

′
abq ĵ

′(−1)
j+lxq+lyq+l

′
yq

+Sxq−jabq+j′abq−Iq

×

(
lyq λ l′yq
0 0 0

)
W (lql

′
qlyq l

′
yq ;λlxq)W (jabqj

′
abq lql

′
q;λSxq)W (jj′jabqj

′
abq ;λIq)

×
∫

(sinα)2 (cosα)2 dα dρ ϕ
lxq lyq
Kq

(α)Uiβ(ρ)yλqUi′β′(ρ)ϕ
l′xq l
′
yq

K′q
(α),

which is the final expression presented in chapter 2, Eq. (2.23).

B.4.1 Electric dipole sum rules

Electromagnetic transitions of a given multipolarity λ from an initial state
labeled |n0j0µ0〉 to final states |njµ〉 define a total probability strength

ST (Eλ) =
∑
nj

B (Eλ)n0j0,nj
=

(
2λ+ 1

4π

)∑
nj

|〈n0j0||Ôλ||nj〉|2. (B.98)

Taking into account that λ is an integer, Eq. (B.81) gives

〈n0j0µ0|Q̂λMλ
|njµ〉 = 〈n0j0||Q̂λ||nj〉〈j0µ0|jµλMλ〉. (B.99)

The square of the previous equation, summing over all projections, leads to

|〈n0j0||Q̂λ||nj〉|2 =
∑
µMλ

|〈n0j0µ0|Q̂λMλ
|njµ〉|2, (B.100)

where the normalization of the Clebsch-Gordan coefficients has been taken
into account.
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Inserting Eq. (B.100) in Eq. (B.98) leads to

ST (Eλ) =

(
2λ+ 1

4π

)∑
nj

∑
µMλ

|〈n0j0µ0|ÔλMλ
|njµ〉|2

=

(
2λ+ 1

4π

)∑
nj

∑
µMλ

〈n0j0µ0|Ô†λMλ
|njµ〉〈njµ|ÔλMλ

|n0j0µ0〉

=

(
2λ+ 1

4π

)∑
Mλ

〈n0j0µ0|Ô†λMλ
ÔλMλ

|n0j0µ0〉. (B.101)

In the particular case of electric dipolar transitions for a system comprising
a single charged particle, the electric operator can be written as

Q̂1Mλ
(y) =

(
4π

3

)1/2

Zce

√
may

mc
yY1Mλ

(ŷ). (B.102)

Here, the label c refers to the charged particle. Inserting Eq. (B.102) in
Eq. (B.101) involves the sum∑

Mλ

〈n0j0µ0|y2Y ∗1Mλ
(ŷ)Y1Mλ

(ŷ)|n0j0µ0〉

= 〈n0j0µ0|y2
∑
Mλ

Y ∗1Mλ
(ŷ)Y1Mλ

(ŷ)

 |n0j0µ0〉. (B.103)

Using the relationship

YλMλ
Yλ−Mλ

=
2λ+ 1√

4π

∑
c

Yc0
√

2c+ 1

(
λ λ c

Mλ Mλ 0

)(
λ λ c

0 0 0

)
,

(B.104)
one can write

Y1Mλ
Y1−Mλ

=
3√
4π

[
− 1√

3
Y00

(
1 1 0

Mλ −Mλ 0

)
(B.105)

+

√
2

15
Y20
√

5

(
1 1 2

Mλ −Mλ 0

)]
.

Considering also that

Y ∗λMλ
(r̂) = (−1)MλYλ−Mλ

, (B.106)
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the summation of spherical harmonics in Eq. (B.103) is

∑
Mλ

Y ∗1Mλ
(ŷi)Y1Mλ

(ŷi) =
3√
4π

∑
Mλ

(−1)Mλ

[
− 1√

3
Y00

(
1 1 0

Mλ −Mλ 0

)

+

√
2

15
Y20
√

5

(
1 1 2

Mλ −Mλ 0

)]
. (B.107)

These two terms can be evaluated, leading to

∑
Mλ

(−1)Mλ

(
1 1 0

Mλ −Mλ 0

)
= −
√

3, (B.108)

∑
Mλ

(−1)Mλ

(
1 1 2

Mλ −Mλ 0

)
= 0, (B.109)

so that the second term cancels. Therefore, the expression (B.107) gives

∑
Mλ

Y ∗1Mλ
(ŷi)Y1Mλ

(ŷi) =
3√
4π
Y00 =

3

4π
(B.110)

Using this result, together with (B.101), (B.102) and (B.103), the electric
dipole sum rule for a system comprising a single charged particle is

ST1(E1) =
3

4π

Z2
c e

2may
m2
c

〈n0j0µ0|y2|n0j0µ0〉. (B.111)

In the case of a system comprising two identical charged particles related
by coordinate x in the preferred Jacobi set, the electric dipolar operator can
be written using the relationship between harmonic polynomials in different
Jacobi systems (see Eqs. (2.26) and (2.27) in chapter 2). This leads to

Q1M1(y) = −
(

4π

3

)1/2

2(cosϕ23)Z2e

√
may2

m2
yY1M1(ŷ), (B.112)

for 1 and 2 being the identical charged particles, and 3 referring to the re-
maining particle. Here, ϕ23 is the mass-dependent phase given by Eq. (2.27).
This expression is analogous in form to Eq. (B.102), but including a factor
2(cosϕ23). Therefore, the sum rule in this case can be easily obtained as

ST (E1) =
3

4π

Z2
2e

2may2
m2

2

(2 cosϕ23)
2〈n0j0µ0|y2|n0j0µ0〉. (B.113)
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Finally, consider now the case of a system comprising three charged par-
ticles, being the two particles related by x identical. In that case, the electric
dipolar operator is given by the sum of Eqs. (B.102) y (B.112). Notice that
the charge and mass factors are different for each term, provided the third
particle is different from the previous two. This leads to

Q̂1Mλ
=

(
4π

3

)1/2 [
Z3e

√
may3
m3

− 2 Z2e (cosϕ23)

√
may2
m2

]
yY1Mλ

(ŷ),

(B.114)
Then, the sum rule for dipolar transition in this case is

ST (E1) =
3

4π

[
Z3e

√
may3
m3

− 2 Z2e (cosϕ23)

√
may2
m2

]2
〈n0j0µ0|y2|n0j0µ0〉.

(B.115)

B.4.2 Quadrupole moment

The quadrupole moment of a nucleus is defined as

Q =

√
16π

5
〈n0j0j0|Q̂′20|n0j0j0〉, (B.116)

where |n0j0j0〉 represents the ground-state with angular momentum j0 and
maximum projection. This is the usual definition ofQ, where the quadrupolar
operator Q̂′20 does not include the factor

√
4π/(2λ+ 1) used in the notation

from Brink and Satchler [82]. In the case of a system comprising two identical
charged particles2 related by coordinate x, this operator can be written using
the relationship between harmonic polynomials in different Jacobi sets (see
Eqs. (2.26) and (2.27)),

Q̂′2Mλ
= 2Z2e

may2
m2

2

[
(sinϕ23)

2 x2Y2Mλ
(x̂) + (cosϕ23)

2 y2Y2Mλ
(ŷ)
]
.

(B.117)
Thus, the evaluation of Eq. (B.116) can be separated into two parts,

Q =

√
16π

5
2Z2e

may2
m2

2

[
(sinϕ23)

2Qx + (cosϕ23)
2Qy

]
, (B.118)

2The only case considered in chapter 2 for the quadrupole moment is 9Be, comprising
two identical α particles.
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where

Qx = 〈n0j0j0|x2Y2Mλ
(x̂)|n0j0j0〉, (B.119)

Qy = 〈n0j0j0|y2Y2Mλ
(ŷ)|n0j0j0〉. (B.120)

Expanding explicitly the wave functions, the first term gives

Qx =
∑
ββ′ii′

Ciβj0n0
Ci
′β′j0
n0

∑
νν′ιι′

〈jabνIkι|jµ〉〈j′abν ′Ikι′|j′µ′〉διι′

×
∑

mlm
′
lσσ
′

〈lmlSxσ|jabν〉〈l′m′lS′xσ′|j′abν ′〉δSxS′xδσσ′

×
∑
mxm′x

∑
mym′y

〈lxmxlymy|lml〉〈l′xm′xl′ym′y|l′m′l〉

×
∫

(sinα)2 (cosα)2 dα dρ ϕ
lxly
K (α)Uiβ(ρ)x2Ui′β′(ρ)ϕ

l′xl
′
y

K′ (α)

×
∫
dx̂Y ∗lxmx(x̂)Y2Mλ

(x̂)Yl′xm′x(x̂)

∫
dŷY ∗lymy(ŷ)Yl′ym′y(ŷ). (B.121)

Using Eq. (B.72) and considering that∫
dx̂Ylxmx(x̂)∗YλMλ

(x̂)Yl′xm′x(x̂)

= (−1)mx
l̂xλ̂l̂′x√

4π

(
lx λ l′x

0 0 0

)(
lx λ l′x

−mx Mλ m′x

)
,

(B.122)

the term in x can be written as

Qx =

√
5

4π

∑
ββ′

∑
ii′

Ciβj0n0
Ci
′β′j0
n0

δlyl′yδSxS′x l̂x l̂
′
x

(
lx 2 l′x

0 0 0

)
Cx (B.123)

×
∫ ∫

(sinα)2 (cosα)2 dα dρ ϕ
lxly
K (α)Uiβ(ρ)x2Ui′β′(ρ)ϕ

l′xl
′
y

K′ (α),

where Cx contains the summation over all projections,

Cx =
∑
νν′ι

〈jabνIkι|jµ〉〈j′abν ′Iι|j′µ′〉
∑
mlm

′
lσ

〈lmlSxσ|jabν〉〈l′m′lSxσ|j′abν ′〉

×
∑

mxm′xmy

〈lxmxlymy|lml〉〈l′xm′xlymy|l′m′l〉(−1)mx

(
lx 2 l′x

−mx Mλ m′x

)
.

(B.124)
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Equation (B.124) can be reduced to Racah coefficients (see Eq. (B.94) and
the preceding derivation), leading to

Cx = (−1)j0 ĵ20

(
2 j0 j0

0 j0 −j0

)
l̂l̂′ĵabĵ

′
ab(−1)ly+lx+l

′
x+Sx−jab+j′ab−I+l+l

′

×W (ll′lxl
′
x; 2ly)W (jabj

′
abll
′; 2Sx)W (j0j0jabj

′
ab; 2I). (B.125)

Inserting Eq. (B.125) into Eq. (B.123) gives

Qx =

√
5

4π
ĵ20

(
2 j0 j0

0 j0 −j0

)∑
ββ′

∑
ii′

Ciβj0n0
Ci
′β′j0
n0

× δlyl′yδSxS′x l̂x l̂′x l̂l̂
′ĵabĵ

′
ab(−1)ly+lx+l

′
x+Sx−jab+j′ab−I+l+l

′+j0 (B.126)

×

(
lx 2 l′x

0 0 0

)
W (ll′lxl

′
x; 2ly)W (jabj

′
abll
′; 2Sx)W (j0j0jabj

′
ab; 2I)

×
∫ ∫

(sinα)2 (cosα)2 dα dρ ϕ
lxly
K (α)Uiβ(ρ)x2Ui′β′(ρ)ϕ

l′xl
′
y

K′ (α).

Following a similar derivation forQy, the second term in Eq. (B.118) provides

Qy =

√
5

4π
ĵ20

(
2 j0 j0

0 j0 −j0

)∑
ββ′

∑
ii′

Ciβj0n0
Ci
′β′j0
n0

× δlxl′xδSxS′x l̂y l̂′y l̂l̂
′ĵabĵ

′
ab(−1)lx+ly+l

′
y+Sx−jab+j′ab−I+j0 (B.127)

×

(
ly 2 l′y

0 0 0

)
W (ll′lyl

′
y; 2lx)W (jabj

′
abll
′; 2Sx)W (j0j0jabj

′
ab; 2I)

×
∫ ∫

(sinα)2 (cosα)2 dα dρ ϕ
lxly
K (α)Uiβ(ρ)y2Ui′β′(ρ)ϕ

l′xl
′
y

K′ (α).

These expressions enable the computation of the quadrupole moment for a
system comprising two identical charged particles.

B.5 Magnetic transitions

The magnetic multipole operarator can be expressed as a sum of two terms:
the orbital and spin parts. Following the notation of Brink and Satchler [82],
this operator in the preferred Jacobi set k for a system comprising three
particles is
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M̂λMλ
(xk,yk) =

e~
2mc

√
4πλ

×
3∑
q=1

rλ−1q

[
gs (Yλ−1s) +

2gl
λ+ 1

(Yλ−1l)

](q)
(λ−1,1)λ,Mλ

(B.128)

where l and s are the orbital angular momentum and spin of each particle.
The two separated terms are

M̂orb
λMλ

(xk,yk) =
e~

2mc

√
4πλ

3∑
q=1

rλ−1q

2g
(q)
l

λ+ 1
[Yλ−1l]

(q)
(λ−1,1)λ,Mλ

, (B.129)

M̂ spin
λMλ

(xk,yk) =
e~

2mc

√
4πλ

3∑
q=1

rλ−1q g(q)s [Yλ−1s]
(q)
(λ−1,1)λ,Mλ

. (B.130)

Here gl and gs are the orbital and spin g factors, and [Yλ−1j](λ−1,1)λ,Mλ
is a

tensorial product of order 1,

[Yλ−1j](λ−1,1)λ,Mλ
≡
∑
ηξ

Y(λ−1)η ĵξ〈(λ− 1)η1ξ|λMλ〉. (B.131)

Using 3-j symbols, this product can be written as

[Yλ−1j](λ−1,1)λ,Mλ
=
∑
ηξ

Y(λ−1)η ĵξ(−1)λ+Mλ

× λ̂

(
λ− 1 1 λ

η ξ −Mλ

)
,

(B.132)

which is equivalent to the tensorial product definiton in Ref. [82], considering
that λ is an integer. Then, the computation of magnetic transitions requires
the definition of the spherical components ξ (ξ = −1, 0, 1) of the angular
momentum ĵξ acting on its eigenstates,

ĵξ|jm〉 =
∑
j′m′

|j′m′〉〈j′m′ |̂jξ|jm〉. (B.133)
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Using the Wigner-Eckart theorem (B.81),

ĵξ|jm〉 =
∑
j′m′

|j′m′〉(−1)2〈j′m′|jm1ξ〉〈j′||̂j||j〉. (B.134)

The reduced matrix element of the total angular momentum, according to
Brink and Satchler, is

〈j′||̂j||j〉 = δjj′
√
j(j + 1). (B.135)

Then, transforming the Clebsh-Gordan coefficients into 3-j symbols,

ĵξ|jm〉 =
∑
m′

|jm′〉(−1)j−1+m
′√

(2j + 1)j(j + 1)

(
j 1 j

m ξ −m′

)
.

(B.136)
Note that Eq. (B.129) involves the angular momentum of the particle q. This
can be expressed, in a three-body system, as a function of lyq by

l̂q =
MT −mq

MT
l̂yq . (B.137)

Finally, rq is the position of particle q, which in the Jacobi-q set is given
by Eq. (B.80). As a consequence, the computation of magnetic operator
matrix elements in the preferred Jacobi system k requires the transformations
between Jacobi sets described in section B.2 and already employed for electric
transitions.

The orbital part of the magnetic operator can be expressed as a function
of yq and lyq as

M̂orb
λMλ

=
e~

2mc

√
4πλ

3∑
q=1

(
MT −mq

MT

)λ( m

ayq

)λ−1
2

× yλ−1q

2g
(q)
l

λ+ 1
[Yλ−1ly]

(q)
(λ−1,1)λ,Mλ

,

(B.138)

so its matrix element between states of good total angular momentum j and
projection µ is
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〈njµ|M̂orb
λMλ
|n′j′µ′〉 =

e~
2mc

√
4πλ

λ+ 1

3∑
q=1

(
MT −mq

MT

)λ( m

ayq

)λ−1
2

2g
(q)
l

× 〈njµ|yλ−1q [Yλ−1ly]
(q)
(λ−1,1)λ,Mλ

|n′j′µ′〉. (B.139)

In order to compute these matrix elements, the system states |njµ〉 can
be rotated to the Jacobi-q set following the same derivation presented for
electric transitions. For simplicity, indexes and coefficients regarding these
transformation will be omitted, i.e., the case of a particle k in the preferred
Jacobi-k set will be shown. Using Eq. (B.132), the previous matrix element
is

〈njµ|yλ−1 [Yλ−1ly](λ−1,1)λ,Mλ
|n′j′µ′〉 =

∑
ηξ

(−1)λ+Mλ λ̂

(
λ− 1 1 λ

η ξ −Mλ

)
× 〈njµ|yλ−1Y(λ−1)η l̂yξ |n

′j′µ′〉.
(B.140)

Expanding the states explicitly,

〈njµ|yλ−1 [Yλ−1ly](λ−1,1)λ,Mλ
|n′j′µ′〉

=
∑
ηξ

(−1)λ+Mλ λ̂

(
λ− 1 1 λ

η ξ −Mλ

)
×
∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

∑
νν′

∑
ι

〈jabνIι|njµ〉〈j′abν ′Iι|j′µ′〉

×
∑
mlm

′
l

∑
σ

δSxS′x〈lmlSxσ|jabν〉〈l′m′lSxσ|j′abν ′〉

×
∑
mym′y

∑
mx

δlxl′x〈lxmxlymy|lml〉〈lxmxl
′
ym
′
y|l′m′l〉

× 〈lymy|Y(λ−1)η l̂yξ |l
′
ym
′
y〉

×
∫ ∫

(sinα)2(cosα)2dαdρUiβ(ρ)ϕ
lxly
K (α)yλ−1Ui′β′(ρ)ϕ

lxl′y
K′ (α),
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and using Eq. (B.136),

〈njµ|yλ−1 [Yλ−1ly](λ−1,1)λ,Mλ
|n′j′µ′〉

=
∑
ηξ

(−1)λ+Mλ λ̂

(
λ− 1 1 λ

η ξ −Mλ

)
×
∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

∑
νν′

∑
ι

〈jabνIι|njµ〉〈j′abν ′Iι|j′µ′〉

×
∑
mlm

′
l

∑
σ

δSxS′x〈lmlSxσ|jabν〉〈l′m′lSxσ|j′abν ′〉

×
∑
mym′y

∑
mx

δlxl′x〈lxmxlymy|lml〉〈lxmxl
′
ym
′
y|l′m′l〉

×
∑
m′

(−1)l
′
y−1+m′

√
(2l′y + 1)l′y(l

′
y + 1)

(
l′y 1 l′y

m′y ξ −m′

)
〈lymy|Y(λ−1)η|l′ym′〉

×
∫ ∫

(sinα)2(cosα)2dαdρUiβ(ρ)ϕ
lxly
K (α)yλ−1Ui′β′(ρ)ϕ

lxl′y
K′ (α).

Using now relation (B.88), 〈lymy|Y(λ−1)η|l′ym′〉 can be expanded leading to

〈njµ|yλ−1 [Yλ−1ly](λ−1,1)λ,Mλ
|n′j′µ′〉

=
∑
ηξ

(−1)λ+Mλ λ̂

(
λ− 1 1 λ

η ξ −Mλ

)
×
∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

∑
νν′

∑
ι

〈jabνIι|njµ〉〈j′abν ′Iι|j′µ′〉

×
∑
mlm

′
l

∑
σ

δSxS′x〈lmlSxσ|jabν〉〈l′m′lSxσ|j′abν ′〉

×
∑
mym′y

∑
mx

δlxl′x〈lxmxlymy|lml〉〈lxmxl
′
ym
′
y|l′m′l〉

×
∑
m′

(−1)l
′
y−1+m′+my

√
(2l′y + 1)l′y(l

′
y + 1)

l̂y l̂
′
y

ˆ(λ− 1)
√

4π

×

(
l′y 1 l′y

m′y ξ −m′

)(
ly λ− 1 l′y

−my η m′

)(
ly λ− 1 l′y

0 0 0

)

×
∫ ∫

(sinα)2(cosα)2dαdρUiβ(ρ)ϕ
lxly
K (α)yλ−1Ui′β′(ρ)ϕ

lxl′y
K′ (α).
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Reorganizing,

〈njµ|yλ−1 [Yλ−1ly](λ−1,1)λ,Mλ
|n′j′µ′〉 (B.141)

=
∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

√
(2l′y + 1)l′y(l

′
y + 1)

l̂y l̂
′
y

ˆ(λ− 1)
√

4π

(
ly λ− 1 l′y

0 0 0

)

× δSxS′xδlxl′x

∫ ∫
(sinα)2(cosα)2dαdρUiβ(ρ)ϕ

lxly
K (α)yλ−1Ui′β′(ρ)ϕ

lxl′y
K′ (α) ∆,

where

∆ =
∑
ηξ

(−1)λ+Mλ λ̂

(
λ− 1 1 λ

η ξ −Mλ

)∑
νν′

∑
ι

〈jabνIι|jµ〉〈j′abν ′Iι|j′µ′〉

×
∑
mlm

′
l

∑
σ

〈lmlSxσ|jabν〉〈l′m′lSxσ|j′abν ′〉

×
∑
mym′y

∑
mx

〈lxmxlymy|lml〉〈lxmxl
′
ym
′
y|l′m′l〉 (B.142)

×
∑
m′

(−1)l
′
y−1+m′+my

(
l′y 1 l′y

m′y ξ −m′

)(
ly λ− 1 l′y

−my η m′

)
.

Using expression (B.91) to relate the Clebsh-Gordan coefficients with 3-j
symbols, the factor ∆ can be reduced following a derivation similar to that
presented for electric transitions. This leads to

∆ = (−1)−j
′+ly+l−2Sx+l′+2j′ab+2jab−2I−µ

× λ̂ĵĵ′ĵabĵ′ab l̂l̂′
(

j λ j′

−µ Mλ µ′

)
(B.143)

×W (l′y1ly(λ− 1); l′yλ)W (llxλl
′
y; lyl

′)W (λl′jabSx; lj′ab)W (λj′abjI; jabj
′).

Inserting this in Eq. (B.141) and computing the reduced matrix element,

〈j||yλ−1 [Yλ−1ly](λ−1,1)λ ||j
′〉 (B.144)

= (−1)−j+λ−µĵ−1

(
j′ λ j

µ′ Mλ −µ

)−1
〈jµ|yλ−1 [Yλ−1ly](λ−1,1)λ,Mλ

|j′µ′〉

= (−1)λ−µ+j
′+λĵ−1

(
j λ j′

−µ Mλ µ′

)−1
〈jµ|yλ−1 [Yλ−1ly](λ−1,1)λ,Mλ

|j′µ′〉.



176 Appendix B. Operator matrix elements and other relevant expressions

Then, the orbital part of the magnetic operator matrix element, with all its
constants, is given by

〈nj||M̂orb
λ ||n′j′〉 =

e~
2mc

(
MT −mq

MT

)λ √λ
λ+ 1

ˆ(λ− 1)λ̂ĵ′
(
m

ay

)λ−1
2

2gl

×
∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

√
l′y(l
′
y + 1)l̂y l̂

′2
y ĵabĵ

′
ab l̂l̂
′δSxS′xδlxl′x

(
ly λ− 1 l′y

0 0 0

)
× (−1)2j+ly+l−2Sx+l

′+2j′ab+2jab−2I (B.145)

×W (l′y1ly(λ− 1); l′yλ)W (llxλl
′
y; lyl

′)W (λl′jabSx; lj′ab)W (λj′abjI; jabj
′)

×
∫ ∫

(sinα)2(cosα)2dαdρUiβ(ρ)ϕ
lxly
K (α)yλ−1Ui′β(ρ)ϕ

lxl′y
K′ (α).

Reorganizing the Racah coefficients and phase factors, the previous expres-
sion leads to

〈nj||M̂orb
λ ||n′j′〉 =

e~
2mc

(
MT −mk

MT

)λ √λ
λ+ 1

ˆ(λ− 1)λ̂ĵ′
(
m

ay

)λ−1
2

2gl

×
∑
ββ′

∑
ii′

Ciβjn Ci
′β′j′

n′

√
l′y(l
′
y + 1)l̂y l̂

′2
y ĵabĵ

′
ab l̂l̂
′δSxS′xδlxl′x

(
ly λ− 1 l′y

0 0 0

)
× (−1)2j−j

′+ly−ly−Sx+j′ab+jab−I+lx+λ (B.146)

×W (lyl
′
y(λ− 1)1;λl′y)W (ll′lyl

′
y;λlx)W (ll′jabj

′
ab;λSx)W (jabj

′
abjj

′;λI)

×
∫ ∫

(sinα)2(cosα)2dαdρUiβ(ρ)ϕ
lxly
K (α)yλ−1Ui′β(ρ)ϕ

lxl′y
K′ (α).

This corresponds to the contribution to the orbital part of a single particle
k in the Jacobi-k set. Introducing all three particles, the final expression can
be written as

〈nj||M̂orb
λ ||n′j′〉 =

e~
2mc

√
λ

λ+ 1
ˆ(λ− 1)λ̂ĵ′(−1)λ

3∑
q=1

(
MT −mq

MT

)λ(
m

ayq

)λ−1
2

2g
(q)
l

×
∑
ββ′

∑
βqβ′q

NββqNββ′qδSxqS′xq δlxq l′xq × (−1)
2j−j′+l′yq−lyq+lxq−Sxq+jabq+j

′
abq
−Iq

×
√
l′yq

(
l′yq + 1

)
l̂yq l̂
′2
yq ĵabq ĵ

′
abq l̂q l̂

′
q

(
lyq λ− 1 l′yq
0 0 0

)
W (lyq l

′
yq (λ− 1)1;λl′yq )

×W (lql
′
qlyq l

′
yq ;λlxq )W (lql

′
qjabqj

′
abq ;λSxq )W (jabqj

′
abqjj

′;λIq)
∑
ii′

Ciβjn C ′i
′β′j′

n

×
∫ ∫

dαdρ(sinα)2(cosα)2Uiβ(ρ)ϕ
lxq lyq
Kq

(α)yλ−1Ui′β′(ρ)ϕ
l′xq l
′
yq

K′q
(α). (B.147)
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The spin part of the magnetic operator can be expressed as a function of
yq and lyq as

M̂ spin
λMλ

=
e~

2mc

√
4πλ

3∑
q=1

(
MT −mq

MT

)λ−1( m

ayq

)λ−1
2

× yλ−1q 2g(q)s [Yλ−1s]
(q)
(λ−1,1)λ,Mλ

,

(B.148)

so its matrix element between states of good total angular momentum j and
projection µ is

〈njµ|M̂ spin
λMλ
|n′j′µ′〉 =

e~
2mc

√
4πλ

3∑
q=1

(
MT −mq

MT

)λ−1( m

ayq

)λ−1
2

2g(q)s

× 〈njµ|yλ−1q [Yλ−1s]
(q)
(λ−1,1)λ,Mλ

|n′j′µ′〉. (B.149)

The reduced matrix element for the spin part can be easily obtained following
the same derivation presented for the orbital part. After working out the
algebra, the final expression for the contribution of all three particles can be
written as

〈nj||M̂ spin
λ ||n′j′〉 =

e~
2mc

√
λ ˆ(λ− 1)λ̂ĵ′

3∑
q=1

(
MT −mq

MT

)λ−1(
m

ayq

)λ−1
2

g(q)s

×
∑
ββ′

∑
βqβ′q

NββqNββ′qδSxqS′xq δlxq l′xq (−1)j+j
′+lxq−Sxq−jabq+2Iq

×
√
Iq (Iq + 1)Îq l̂yq l̂

′
yq ĵabq ĵ

′
abq l̂q l̂

′
q

(
lyq λ− 1 l′yq
0 0 0

)
W (lql

′
qlyq l

′
yq ; (λ− 1)lxq )

×W (lql
′
qjabqj

′
abq ; (λ− 1)Sxq )


j j′ λ

jabq j′abq λ− 1

Iq Iq 1


∑
ii′

Ciβjn C ′i
′β′j′

n

×
∫ ∫

dαdρ(sinα)2(cosα)2Uiβ(ρ)ϕ
lxq lyq
Kq

(α)yλ−1Ui′β′(ρ)ϕ
l′xq l
′
yq

K′q
(α). (B.150)





Appendix C

Reaction rates

Considering a reaction going from N to M particles,

A1 +A2 + · · ·+AN −→ B1 +B2 + · · ·+BM ,

the reaction rate per unit volume can be written accordingly to Refs. [104,
176] as

R(E) =
2π

~
1

g1g2 . . . gN

∫
δ(E − Ef )|〈Ψ|W |Ψf 〉|2

d3p1

(2π)3
. . .

d3pM−1
(2π)3

, (C.1)

where E and Ef are the initial and final energies in the center of mass frame,
Ψ and Ψf are the initial and final wave functions, and W is the interaction
responsible for the reaction. Here, gi are the spin degeneracies of the N initial
particles, and pj are the M − 1 relative moments between the M particles
in the final state.

C.1 Three-body radiative capture

The radiative capture reaction of three particles (abc), into a bound nucleus
A of binding energy εB,

a+ b+ c −→ A+ γ,

is a pure electromagnetic process. If the center of mass energy of the ini-
tial particles is denoted by ε, the reaction rate of such process is given by
Eq. (C.1) as

179
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Rabc(ε) =
2π

~
1

gagbgc

∫
δ(ε− εf )|〈Ψ|W |Ψf 〉|2

d3pγ
(2π)3

, (C.2)

where pγ is the momentum of the emitted photon, and

εf = εB + εγ . (C.3)

Note that εB is negative (see for instance Fig. 3.1). Considering that pγ =

εγ/~c and d3pγ = p2γdpγdΩγ , the previous integral can be computed making
use of Eq. (C.3), which leads to

Rabc(ε) =
1

π~
1

gagbgc

ε− εB
(~c)3

|〈Ψ|W |Ψf 〉|2. (C.4)

Analogously, for the inverse photodissociation process,

A+ γ −→ a+ b+ c,

the reaction rate given by Eq. (C.1) is

Rγ(εf ) =
2π

~
1

2gA

∫
δ(εf − ε)|〈Ψf |W |Ψ〉2

d3px
(2π)3

d3py
(2π)3

, (C.5)

where px is the relative momentum between particles a and b, and py is that
between the center of mass of the (a, b) subsystem and the particle c. Here,
the energy in the final state satisfies

ε = Tx + Ty =
~2p2x
2ax

+
~2p2y
2ay

, (C.6)

where Tx and Ty are the kinectic energy associated to x and y, respectively.
From Eq. (C.4) it is possible to express |〈Ψ|W |Ψf 〉|2 as a function of Rabc(ε).
Inserting this into Eq. (C.5) leads to

Rγ(εf ) = 2π2
(~c)3

ε2γ

gagbgc
2gA

∫
δ(εf − ε)Rabc(ε)

d3px
(2π)3

d3py
(2π)3

. (C.7)

Taking into account that

d3px = p2xdpxdΩx =

(
2axTx
~2

)1/2 ax
~2
dTxdΩx, (C.8)
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d3py = p2ydpydΩy =

(
2ayTy
~2

)1/2 ay
~2
dTydΩy, (C.9)

and δ(εf − ε) = δ(ε− Tx− Ty), the integration of Eq. (C.7) over Ωx,Ωy and
py (or Ty) provides

Rγ(εf ) =
1

2π2
(~c)3

ε2γ

ax
~2
ay
~2

(
2ax
~2

)1/2(2ay
~2

)1/2

× gagbgc
2gA

Rabc(ε)

∫ ε

0
dTx

√
Tx (ε− Tx).

(C.10)

The preceding integral can be computed analytically, leading to

Rγ(εγ) =
c3

~3
(axay)

3/2

8π

(
ε

εγ

)2 gagbgc
2gA

Rabc(ε). (C.11)

This reaction rate corresponds to a two-body capture process, which can be
expressed as the relevant cross section times the relative velocity between
the constituents, i.e. Rγ(εγ) ≡ cσγ(εγ), where σγ is the photodissociation
cross section of the nucleus A. Thus, the final expression for the three-body
reaction rate is

Rabc(ε) =
~3

c2
8π

(axay)
3/2

(εγ
ε

)2 2gA
gagbgc

σγ(εγ). (C.12)

The previous expression does not take into account the possibility of (abc)
comprising identical particles. In that case, the reaction rate has to be mul-
tiplied by ν!, where ν is the number of identical particles in the three-body
system. The reaction rate at a given temperature T can be obtained from
Eq. (C.12) averaging Rabc(ε) with a Maxwell-Boltzmann distribution,

FB(ε, T ) =
1

2

(
1

kBT

)3

ε2e
−ε
kBT . (C.13)

This leads to

〈Rabc(ε)〉(T ) = ν!
~3

c2
8π

(axay)3/2
gA

gagbgc

1

(kBT )3
e
|εB |
kBT

×
∫ ∞
|εB |

ε2γ σγ(εγ)e
−εγ
kBT dεγ . (C.14)
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