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AND HAUSDORFF MEASURES OF NONCOMPACTNESS
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Communicated by Gilles Pisier

Abstract. The paper is concerned with the notion of the Lifschitz modu-

lus and its relationship with both relative Chebyshev radii and Hausdorff

measures of noncompactness.

1. Introduction

Throughout the paper we shall use the following notation: X will denote a real
normed space, A a nonempty, bounded subset of X and G a nonempty subset of
X. As usual, B (x, r) will stand for the closed ball centered at x ∈ X with radius
r > 0, diam A for the diameter of A, and dist(x, A) for the distance from x to A.
We shall also write

B (A, r) = {x ∈ X : dist (x, A) ≤ r} ,

dist (A, G) = inf {dist (x, G) : x ∈ A} ,

d (A, G) = inf {r > 0 : A ⊂ B (G, r)}
and

d (H, G) = inf {d (F, G) : F ∈ H}
if H is a nonempty family of nonempty bounded subsets of X.

Let us recall that the relative Chebyshev radius rG(A) is given by

rG(A) = inf {r > 0 : A ⊂ B (y, r) for some y ∈ G}
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and the relative Hausdorff measure of noncompactness χG(A) by

χG(A) = inf {r > 0 : A ⊂ B (F, r) for some finite set F ⊂ G} .

If G = X we shall abbreviate r(A) and χ(A) respectively. Finally, for ε ≥ 0,

Eε (A) = {y ∈ X : A ⊂ B (y, r (A) + ε)} ,

Hε (A) = {F ⊂ X : A ⊂ B (F, χ (A) + ε) and F is finite} .

Note that Hε (A) 6= ∅ and Eε (A) 6= ∅ for every bounded A ⊂ X and ε > 0.
The central theme of this paper is the concept of the Lifschitz modulus, defined

in [16] as follows:

Definition 1.1. The Lifschitz modulus of a normed space X is the function κ̃X (·)
defined on [0, +∞) by

κ̃X(d) = sup{k > 0 : ∃α ∈ (0, 1) ∀x, y ∈ X ∀r > 0∃z ∈ X (‖z − y‖ ≤ αdr

∧B(x, r) ∩B(y, kr) ⊂ B(z, r))}.

The origins of this notion come from [13], where slightly similar ideas were
used to prove a certain fixed point theorem for uniformly Lipschitzian mappings.
Although the definition of the Lifschitz modulus seems to be a little artificial, it is
based on very natural geometric intuition (see Section 2 for more details). With
the help of this notion we managed [16] to extend the formula

rG(A) = r(A) + dist
(

E0(A), G
)

(proved in the case X = C(K) by Smith and Ward in [15], see also [7]), for a
wider class of spaces including c0 as well as some subspaces of C(K). Moreover,
the concept of the Lifschitz modulus let us treat the notions of relative Chebyshev
radii and relative Hausdorff measures of noncompactness in a unified way, since
Theorem 1.2, stated below, implies that if κ̃X(d) = 1 + d for all d ≥ 0, then

rG(A) = r(A) + lim
ε→0+

dist (Eε (A) , G)

and
χG (A) = χ (A) + lim

ε→0+
d (Hε (A) , G) .

The following theorem is a minor modification of the result given in [16]:

Theorem 1.2. Let A and G be nonempty subsets of a normed space X with A

nonsingleton and bounded. Then

rG (A) ≥ r (A) κ̃X

(

dr(A,G)
r(A)

)

,
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where

dr (A, G) =

{

dist
(

E0(A), G
)

if E0(A) 6= ∅,
lim

ε→0+
dist (Eε (A) , G) if E0(A) = ∅.

If χ(A) 6= 0, then
χG (A) ≥ χ (A) κ̃X

(

dχ(A,G)
χ(A)

)

,

where

dχ (A, G) =

{

d
(

H0 (A) , G
)

if H0 (A) 6= ∅,
lim

ε→0+
d (Hε (A) , G) if H0 (A) = ∅.

In [6] we put these results in a more general framework and gave the following
characterization of C(K) and C0(Ω) spaces:

Theorem 1.3. Let A and G be nonempty subsets of a Banach space X with A

bounded. The following assertions are equivalent:
(1) rG(A) = r(A) + dist

(

E0(A), G
)

for every A and G, as above.
(2) rG(A) = r(A) + lim

ε→0+
dist (Eε (A) , G) for every A and G, as above.

(3) X is isometric to C(K) for some compact Hausdorff topological space K

or to C0(Ω) for some locally compact Hausdorff space Ω.
(4) κ̃X(d) = 1 + d for all d ≥ 0.

The present paper deals with the following two questions:
1) How “good” are the estimations obtained in Theorem 1.2?
2) Does the characterization of C(K) and C0(Ω) spaces given in Theorem 1.3

still hold if we replace the notion of relative Chebyshev radii by relative Hausdorff
measures of noncompactness?

In Section 2 we discuss some properties of the Lifschitz modulus. With the use
of these properties we show in Section 3 that the estimation of rG(A) given in
Theorem 1.2 is, in a sense, optimal. We recall Theorem 1.3 in Section 4 in order
to study its counterpart for the relative Hausdorff measure of noncompactness.
It clearly follows that if X is isometric to C(K) or C0(Ω), then

(?) χG (A) = χ (A) + lim
ε→0+

d (Hε (A) , G) .

However, far from stating an equivalent characterizing result we prove that for-
mula (?) does hold in the space `1 which is well-known to be nonisometric to the
spaces C(K) and C0(Ω). Thus, we discover the rather surprising fact that the
notions of relative Chebyshev radii and Hausdorff measures of noncompactness
behave in a different way in this problem.

Section 5 contains some remarks concerning another problem on relative Cheby-
shev radii and relative Hausdorff measures of noncompactness.
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2. Properties of the Lifschitz Modulus

It is easily seen that in any normed space X

max {1, d− 1} ≤ κ̃X(d) ≤ d + 1

for all d ≥ 0. The next two propositions show that we may treat the parameter d

in the definition of the modulus of Lifschitz as the distance between x and y.

Proposition 2.1. For all d ≥ 0

κ̃X(d) = sup{k > 0 : ∃α ∈ (0, 1) ∀x, y ∈ X (‖x− y‖ ≤ d ⇒

∃z ∈ X (‖z − y‖ ≤ αd ∧ B(x, 1) ∩B(y, k) ⊂ B(z, 1)))}.

Proof. Let us first notice that we can fix r = 1 in the definition of κ̃X . Put
d > 0 and take k ≥ 1 and α ∈ (0, 1) such that for every x, y ∈ X, we obtain

(2.1) ‖x− y‖ ≤ d ⇒ ∃z ∈ X (‖z − y‖ ≤ αd ∧ B(x, 1) ∩B(y, k) ⊂ B(z, 1)) .

It is sufficient to prove that k ≤ κ̃X(d). Let x, y ∈ X with ‖x − y‖ > d. We
need to construct z ∈ X such that ‖z − y‖ ≤ αd ∧ B(x, 1) ∩ B(y, k) ⊂ B(z, 1).
Let y1 be the element of the segment [x, y] satisfying the equality ‖x − y1‖ =
d. Therefore there exists z1 ∈ X with the property that ‖z1 − y1‖ ≤ αd and
B(x, 1) ∩B(y1, k) ⊂ B(z1, 1). We now consider two cases.

Assume first that ‖y1−y‖ ≤ (1−α)d. Therefore ‖z1−y‖ ≤ ‖z1−y1‖+‖y1−y‖ ≤
αd + (1 − α)d = d and hence using (2.1), we obtain B(z1, 1) ∩ B(y, k) ⊂ B(z, 1)
for some z with ‖z − y‖ ≤ αd. Thus, since k ≥ 1,

B(x, 1) ∩B(y, k) = B(x, 1) ∩B(y1, k) ∩B(y, k) ⊂ B(z1, 1) ∩B(y, k) ⊂ B(z, 1)

and we have the desired result.
Assume now that ‖y1 − y‖ > (1 − α)d. Therefore ‖y1 − y‖ ≤ n(1 − α)d for

some n ∈ N and we can find the elements y2, y3, ..., yn of the segment [y1, y] such
that ‖y1 − y2‖ = (1− α)d, ‖y1 − y3‖ = 2(1− α)d, ..., ‖y1 − yn‖ = (n− 1)(1− α)d
and ‖yn − y‖ ≤ (1− α)d. Using similar arguments as before we find the elements
z2, z3, ..., zn such that

B(x, 1) ∩B(y2, k) ⊂ B(z2, 1), ‖z2 − y2‖ ≤ αd,

B(x, 1) ∩B(y3, k) ⊂ B(z3, 1), ‖z3 − y3‖ ≤ αd,

......

B(x, 1) ∩B(yn, k) ⊂ B(zn, 1), ‖zn − yn‖ ≤ αd.

Finally, B(x, 1) ∩ B(y, k) ⊂ B(z, 1) for some z satisfying ‖z − y‖ ≤ αd and the
proof is complete. £
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Proposition 2.1 leads to the aforementioned desired result.

Proposition 2.2. For all d ≥ 0

κ̃X(d) = sup{k > 0 : ∃α ∈ (0, 1) ∀x, y ∈ X (‖x− y‖ = d ⇒

∃z ∈ X (‖z − y‖ ≤ αd ∧ B(x, 1) ∩B(y, k) ⊂ B(z, 1)))}.

Proof. Fixing d > 0 and taking k > 0 and α0 ∈ (0, 1) such that for every
x, y ∈ X, we obtain

‖x− y‖ = d ⇒ ∃z ∈ X (‖z − y‖ ≤ α0d ∧ B(x, 1) ∩B(y, k) ⊂ B(z, 1)) .

It is sufficient to prove that k ≤ κ̃X(d). Choose an arbitrary α ∈ (α0, 1) and
x, y ∈ X with ‖x − y‖ < d. Let y1 be the element of the half-line xy such that
‖x − y1‖ = d. Therefore there exists z ∈ X with the property that ‖z − y1‖ ≤
α0d and B(x, 1) ∩B(y1, k) ⊂ B(z, 1).

If ‖x−y‖ ≤ αd we have B(x, 1)∩B(y, k) ⊂ B(x, 1) and x itself is the required
center.

If αd < ‖x− y‖ < d, then ‖y − y1‖ < (1− α)d and

B(x, 1) ∩B(y, k − (1− α)d) ⊂ B(x, 1) ∩B(y1, k) ⊂ B(z, 1).

Moreover ‖z − y‖ ≤ (1 + α0 − α)d.
Combining these two cases and bearing Proposition 2.1 in mind we conclude

that k − (1− α)d ≤ κ̃X(d). Taking α close to 1 we complete the proof. £

From Proposition 2.1 we also obtain the following proposition.

Proposition 2.3. The function κ̃X is nondecreasing on [0,∞).

Nonexpansivity follows in a less trivial way.

Proposition 2.4. The function κ̃X is nonexpansive, i.e.

κ̃X(d2)− κ̃X(d1) ≤ d2 − d1

for every 0 ≤ d1 ≤ d2.

Proof. Fix 0 < d1 < d2 and choose k < κ̃X(d2). Therefore there exists α ∈ (0, 1)
such that

∀x, y ∈ X ∃z ∈ X (‖z − y‖ ≤ αd2 ∧ B(x, 1) ∩B(y, k) ⊂ B(z, 1)) .

We will now prove that κ̃X(d1) ≥ k− (d2 − d1) . By Proposition 2.2 it is sufficient
to consider x, y1 ∈ X with ‖x− y1‖ = d1. Let y2 be the element on the half-line
xy1 such that ‖x− y2‖ = d2. Hence

B(x, 1) ∩B(y1, k − (d2 − d1)) ⊂ B(x, 1) ∩B(y2, k) ⊂ B(z, 1)
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for some z ∈ X with ‖z − y2‖ ≤ αd2. We notice that y1 = d2−d1
d2

x + d1
d2

y2 and set
p = d2−d1

d2
x + d1

d2
z. Therefore ‖p − y1‖ = d1

d2
‖z − y2‖ ≤ αd1. Moreover it is not

difficult to see that

B(x, 1) ∩B(y1, k − (d2 − d1)) ⊂ B(p, 1).

Thus κ̃X(d1) ≥ k − (d2 − d1) and, taking supremum over k, we can deduce
κ̃X(d1) ≥ κ̃X(d2)− (d2 − d1). £

We shall use Propositions 2.2, 2.3 and 2.4 in the next section.

3. The Optimality Theorem

In this section we show that the evaluation of rG(A) given in Theorem 1.2 is
in a sense optimal.

Theorem 3.1. Let X be a normed space. Then for every d ≥ 0 and ε > 0 there
exist sets A, G ⊂ X such that

(3.1) | dr(A,G)
r(A) − d |< ε and

rG (A)
r(A)

< κ̃X

(

dr(A,G)
r(A)

)

+ ε.

Proof. Fix d ≥ 0, ε > 0, and take k satisfying the inequality κ̃X (d) < k <

κ̃X (d) + ε
2 and choose α ∈ (0, 1) (notice that k > 1). Then there exist x, y ∈ X

with ‖x− y‖ = d such that

(3.2) ∀z ∈ X (B(x, 1) ∩B(y, k) ⊂ B(z, 1) ⇒ ‖z − y‖ > αd) .

We set A = B(x, 1) ∩B(y, k), G = {y}. It is clear that rG(A) = k, r(A) ≤ 1 and
dr (A, G) ≤ d. We claim that

(3.3) dr (A, G) ≥ αd.

Indeed, if r(A) = 1, then x ∈ E0(A) and E0(A) is nonempty. Using this fact and
(3.2), we can deduce dr (A, G) = dist

(

E0(A), y
)

≥ αd. If r(A) < 1, then we set
0 < δ < 1− r(A) and, again, dr (A, G) ≥ dist

(

Eδ(A), y
)

≥ αd which proves (3.3).
Moreover

(3.4) r(A) ≥ 1− (1− α)d.

Assume conversely, that there exist z ∈ X and r0 < 1 − (1 − α)d such that
A ⊂ B(z, r0). In the case 0 ≤ d ≤ 1 we may use the fact that ‖z − y‖ ≥ αd and
that B(y, 1−d) ⊆ A. If we take the point u ∈ A in the line zy which is the farthest
from z in B(y, 1 − d), it can be seen that ‖u − z‖ ≥ 1 − d + αd = 1 − (1 − α)d,
which is a contradiction with u ∈ A. In the case d > 1, let p ∈ A be the element
of the half-line xy such that ‖x − p‖ = 1. Then ‖y − p‖ = d − 1 and it follows
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from (3.2) that ‖z − p‖ ≥ ‖z − y‖ − ‖y − p‖ > 1 − (1 − α)d which contradicts
p ∈ A. Thus (3.4) is proved.

Summarizing we have

(3.5) 1− (1− α)d ≤ r(A) ≤ 1 and αd ≤ dr (A, G) ≤ d.

From this fact and Propositions 2.3 and 2.4

rG(A) = k ≤ κ̃X (d) +
ε

2
≤ κ̃X

(

dr(A,G)
αr(A)

)

+
ε

2
≤

κ̃X

(

dr(A,G)
r(A)

)

+ dr(A,G)
r(A)

(

1
α
− 1

)

+
ε

2
.

Finally

rG(A)
r(A)

≤
κ̃X (d) + ε

2

1− (1− α)d
≤

κ̃X

(

dr(A,G)
r(A)

)

+ dr(A,G)
r(A)

(

1
α − 1

)

+ ε
2

1− (1− α)d

and from (3.5)

(3.6) αd ≤ dr (A, G)
r(A)

≤ d

1− (1− α)d
.

Taking α sufficiently close to 1 the formula (3.1) holds. £

Theorem 1.2 also states

κ̃X (d) ≤ inf {rG (A) : A, G ⊂ X, r(A) = 1 and d = dr (A, G)} .

Using slightly more subtle arguments than in the proof of Theorem 3.1 we may
improve the previous formulae. We shall need the following observation, which is
easy to check.

Lemma 3.2. Let E be a convex subset of a normed space X, y ∈ X and
dist(y, E) = d > 0. Then for every ε > 0 there exist y1, y2 ∈ B(y, ε) such
that dist(y1, E) ≤ max{d− ε

2 , 0}, dist(y2, E) ≥ d + ε
2 .

Theorem 3.3. In any normed space X

κ̃X (d) = inf {rG (A) : A, G ⊂ X, r(A) = 1 and d = dr (A, G)} .

Proof. Fix d, ε > 0. As in the proof of Theorem 3.1, for sufficiently large
α < 1, there exist A ⊂ X and y ∈ X such that κ̃X (d) ≥ r{y}(A)

r(A) − ε and αd ≤
dr(A,{y})

r(A) ≤ d
1−(1−α)d (see (3.6)). Moreover, it follows from Lemma 3.3 that we

can fix α close to 1 for which there exist y1, y2 ∈ B(y, ε) with dr (A, {y1}) < dr(A)
and dr (A, {y2}) > dr(A). Since the function x → dr (A, {x}) is continuous, there
exists z ∈ B(y, ε) with dr (A, {z}) = dr(A). Put Ā = A

r(A) and z̄ = z
r(A) . Then
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dr

(

Ā, {z̄}
)

= d, r
(

Ā
)

= 1 and κ̃X (d) ≥ r{z̄}
(

Ā
)

− 2ε. This completes the
proof. £

Notice that Theorem 3.3 gives a geometric description of the Lifschitz modulus.

4. The Case of Relative Hausdorff Measures of Noncompactness

It is not difficult to see that in any normed space X,

χG (A) ≤ χ (A) + lim
ε→0+

d (Hε (A) , G) .

If X is isometric to C(K) or C0(Ω), then by Theorem 1.3 κ̃X(d) = 1 + d and by
Theorem 1.2

χG (A) = χ (A) + lim
ε→0+

d (Hε (A) , G) .

In this section we extend this result to the space `1. Let us first recall the
notion of minimal sets introduced by Domı́nguez Benavides in [5].

Definition 4.1. Let M be a metric space and ϕ a measure of noncompactness.
A bounded, infinite set A ⊂ M is said to be minimal for the measure ϕ (or, in
short, ϕ-minimal) if ϕ(A) = ϕ(B) for every infinite subset B of A.

Definition 4.2. A measure of noncompactness ϕ is said to be strictly minimaliz-
ing for a metric space M if for every bounded A ⊂ M there exists a ϕ - minimal
set B ⊂ A such that ϕ(B) = ϕ(A).

It is known [3] that the Hausdorff measure of noncompactness χ is strictly
minimalizing for a wide class of spaces including separable as well as reflexive
Banach spaces. In particular, χ is strictly minimalizing in `1 space. Thus, for any
bounded set A ⊂ `1, there exists a χ-minimal sequence for A, that is, a sequence
{xn} in A such that χ (A) = χ ({x1, x2, ...}).

We shall also need the following result concerning `1 space. We say that a
bounded sequence {xn} of points of `1 is coordinate-wise convergent to x ∈ `1 if
for any i = 1, 2, ..., limn→∞ xi

n = xi. For a fixed sequence {xn} in `1 and arbitrary
y ∈ `1, we set

ra(y, {xn}) = lim supn→∞ ‖xn − y‖.

Proposition 4.3. ([9]). If {xn} is a bounded sequence in `1 converging coordinate-
wise to x ∈ `1, then for any y ∈ `1

ra(y, {xn}) = ra(x, {xn}) + ‖x− y‖.

To establish the main result of this section we shall use the following lemmas.
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Lemma 4.4. Fix x ∈ `1, r > 0 , ε ≥ 0 and let {xn} be a sequence of points of
the ball B(x, r), which is coordinate-wise convergent to x0. If χ ({x1, x2, x3, ...}) ≥
r − ε, then ‖x− x0‖ ≤ ε.

Proof. Notice that ra(x0, {xn}) ≥ r−ε and it follows from Proposition 4.3 that

‖x− x0‖ = ra(x, {xn})− ra(x0, {xn}) ≤ r − (r − ε) = ε.

£

Lemma 4.5. Let A be a bounded subset of a Banach space X and ε > 0.
Then there exist x1, ..., xn ∈ X, r1, ...., rn > 0 such that A ⊂

⋃n
i=1 B(xi, ri)

and χ (A ∩B(xi, ri)) ≥ ri − ε, i = 1, ..., n.

Proof. Let A ⊂
⋃m

i=1 B(yi, ai), where y1, ..., ym ∈ X and a1, ..., am > 0. If
χ (A ∩B(yj , aj)) < aj − ε for some j ∈ {1, ..., m}, there exist z1, ..., zl ∈ X,
b1, ...., bl < aj − ε such that A ∩B(yj , aj) ⊂

⋃l
i=1 B(zi, bi). If, again,

χ (A ∩B(yj , aj) ∩B(zk, bk)) < bk − ε

for some k ∈ {1, ..., l} we have A ∩ B(yj , aj) ∩ B(zk, bk) ⊂
⋃p

i=1 B(ui, ci), where
u1, ..., up ∈ X and c1, ..., cp < bk − ε < aj − 2ε. After a finite number of steps we
obtain the desired cover. £

Lemma 4.6. Let x, y ∈ `1, 0 < r ≤ k and ε > 0. Therefore there exists a finite
set F ⊂ `1 with the properties B(x, r)∩B(y, k) ⊂ B(F, r) and F ⊂ B(y, k−r+ε).

Proof. It follows from Lemma 4.5 that there exist f1, ..., fm ∈ `1 and r1, ...., rm ≤
r such that B(x, r) ∩B(y, k) ⊂

⋃m
i=1 B(fi, ri) and

χ (B(x, r) ∩B(y, k) ∩B(fi, ri)) ≥ ri −
ε

2
, i = 1, ..., m.

For each set Ui = B(x, r) ∩ B(y, k) ∩ B(fi, ri) we select a χ - minimal sequence
{xi

1, x
i
2, ...} ⊂ Ui. We can assume, by taking subsequences if necessary, that the

sequences are coordinate wise convergent to some w1, ..., wm ∈ `1, respectively.
Since χ

(

{xi
1, x

i
2, ...}

)

≥ ri − ε
2 , it follows from Lemma 4.4 that ‖fi − wi‖ ≤ ε

2 .
Moreover

‖wi − y‖ = ra(y,
{

xi
n

}

)− ra(wi,
{

xi
n

}

) ≤ k − ri +
ε

2
and hence

‖fi − y‖ ≤ ‖fi − wi‖+ ‖wi − y‖ ≤ k − ri + ε, i = 1, ..., m.

Let us construct the set F = {f̄1, ..., f̄m} in the following way: For i = 1, ..., m,
if ‖fi− y‖ ≥ r− ri, f̄i is denoted as the point of the segment [fi, y] satisfying the
equality ‖fi− f̄i‖ = r− ri, r− ri ≥ 0. If ‖fi− y‖ < r− ri we set f̄i = y. It is not
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difficult to see that F ⊂ B(y, k−r+ε). Moreover, since every z ∈ B(x, r)∩B(y, k)
is in some B(fi, ri), we have ‖z − f̄i‖ ≤ ‖z − fi‖ + ‖fi − f̄i‖ ≤ r and therefore
B(x, r) ∩B(y, k) ⊂ B(F, r). £

We can now prove

Theorem 4.7. In `1 space

χG (A) = χ (A) + lim
ε→0+

d (Hε (A) , G)

for every A, G ⊂ `1 with A bounded.

Proof. Write χG (A) = k, χ (A) = r, lim
ε→0+

d (Hε (A) , G) = d and assume that

k < r + d. Choose ε > 0 which satisfies k − r < d− 2ε and δ > 0 which satisfies

(4.1) d
(

Hδ (A) , G
)

> d− ε.

Now we can select F0 = {f1, ..., fn} and G0 = {g1, ..., gm} ⊂ G such that A ⊂
⋃n

i=1

⋃m
j=1 B(fi, r + δ) ∩B(gj , k + δ). It follows from Lemma 4.6 that there exist

finite sets Fij with Fij ⊂ B(gj , k − r + ε), 1 ≤ i ≤ n, 1 ≤ j ≤ m, and A ⊂
⋃n

i=1

⋃m
j=1 B(Fij , r + δ). Assuming F =

⋃n
i=1

⋃m
j=1 Fij we obtain F ∈ Hδ (A) .

Therefore
d

(

Hδ (A) , G
)

≤ sup
f∈F

inf
g∈G

d(f, g) ≤ k − r + ε < d− ε,

which contradicts (4.1). £

It is well known that `1 is not isometric to C(K) or C0(Ω). Therefore, the class
of spaces satisfying the equality χG (A) = χ (A) + lim

ε→0+
d (Hε (A) , G) is strictly

larger than the other class with rG(A) = r(A) + lim
ε→0+

dist (Eε (A) , G). Even

more can be concluded. In [6] we show that, for d ≥ 3, κ̃l1(d) = d − 1, which is
the smallest possible value for the modulus!

5. Variations on a Certain Characterization of Hilbert Spaces

In this section we study another problem in which the notions of relative Cheby-
shev radii and Hausdorff measures of noncompactness behave in a different way.

Let G be a linear subspace of a Banach space X and put

CG (X) = sup
{

rG (A)
rX (A)

: A ⊂ G is bounded and rX (A) 6= 0
}

,

C (X) = sup {CG (X) : G is a linear subspace of X} .

It is easy to see that 1 ≤ C (X) ≤ 2 in any Banach space X. The following
theorem follows from the well known results of Klee and Garkavi (see [11], [12]).
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Theorem 5.1. Let X be a Banach space. Then

C (X) = 1 ⇔ X is a Hilbert space or dimX ≤ 2.

The natural question arises of whether a similar statement is true if we use
relative Hausdorff measures of noncompactness instead of Chebyshev radii. As
before, we set

HG (X) = sup
{

χG (A)
χX (A)

: A ⊂ G is bounded and χX (A) 6= 0
}

and
H (X) = sup {HG (X) : G is a linear subspace of X} .

Obviously 1 ≤ H (X) ≤ 2 in any Banach space X and H (Y ) = 1 in a Hilbert
space Y . However, it turns out that the equality H (X) = 1 is characteristic for
a larger class of spaces. This follows from the work of Ayerbe and Domı́nguez
Benavides [2]. They proved, using the notion of χ - minimal sets, that H (X) = 1
in every reflexive Banach space X satisfying the (nonstrict) Opial condition, that
is,

lim infn→∞ ‖ xn − x0 ‖≤ lim infn→∞ ‖ xn − x ‖
for every sequence {xn} converging weakly to zero and every x ∈ X. In particular,
H (`p) = 1 for p ∈ (1,∞).

We point out the difference between C(X) and H(X) in the following example.

Example 5.2. Let X be a Banach space `2 × R with the norm

‖ (x, t) ‖X= max {‖ x ‖, | t |} .

It is clear that X is not a Hilbert space. We show that H (X) = 1.
Let G be a linear subspace of `2×R and put G1 =

{

x ∈ `2 : ∃t ∈ R (x, t) ∈ G
}

.
Then G = G1 ×R or G is a subspace of G1 ×R of codimension one. Therefore it
is sufficient to consider subspaces of the form

G = {(x, t) ∈ X : 〈x, x0〉 = at} ,

where x0 ∈ `2, ‖ x0 ‖= 1 and a 6= 0. Assuming that A ⊂ G, we show that
χG(A) ≤ χX (A).

Let

A ⊂
n
⋃

i=1

B ((xi, ti) , r)

for some (xi, ti) ∈ X, i = 1, ..., n and r > 0. We set (x, t) ∈ A and choose (xi, ti)
such that

‖ (x, t)− (xi, ti) ‖X≤ r.
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Notice that (xi, si) ∈ G for si = 〈xi,x0〉
a . Moreover

‖ (x, t)− (xi, si)− s

(

x0,
1
a

)

‖X=‖ x− xi − sx0 ‖,

if we assume that s satisfies the condition t− si − s
a = 0. This means that

s = ta− sia = 〈x, x0〉 − 〈xi, x0〉.

Hence

‖ (x, t)− (xi, si)− s

(

x0,
1
a

)

‖2X=‖ x− xi − sx0 ‖2

=‖ x−xi ‖2 +s2 ‖ x0 ‖2 −2s〈x−xi, x0〉 =‖ x−xi ‖2 +s2− 2s (〈x, x0〉 − 〈xi, x0〉)
=‖ x− xi ‖2 +s2 − 2s2 ≤‖ x− xi ‖2≤‖ (x, t)− (xi, ti) ‖2X≤ r2.

Since A is bounded, there exists a constant c > 0 such that A ⊂ B (F, r), where

F =
{

(xi, si) + s

(

x0,
1
a

)

:| s |≤ c

}

.

From the compactness of F , we conclude that χG (A) ≤ χX (A), and the proof is
complete.
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