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Abstract

It is proved that, in most cases, a scalar multiple of a linear-fractional gen-
erated composition operator λCϕ acting on a weighted Dirichlet space Sν of
holomorphic functions in the open unit disk is frequently hypercyclic if and
only if it is hypercyclic. In fact, this holds for all triples (ν, λ, ϕ) with the pos-
sible exception of those satisfying ν ∈ [1/4, 1/2), |λ| = 1, ϕ = a parabolic
automorphism.

1 Introduction and terminology

The general context containing this paper is the dynamics of operators, while
our specifical setting will be the composition operators acting on weighted Dirich-
let spaces.

As usual, N denotes the set of positive integers, while Tn (n ∈ N) stand for
the successive iterates of an operator T. We recall that a (continuous and linear)
operator T on a topological vector space X is said to be hypercyclic if there exists
a vector x ∈ X, also called hypercyclic, whose orbit {Tnx : n ∈ N} is dense in X.
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Thus, x is a hypercyclic vector if its orbit meets every non-empty open subset U
of X. Recently, F. Bayart and S. Grivaux ([2], [4]) have introduced the following
new, stronger, quantified notion in the theory of hypercyclic operators.

Definition 1.1. Let X be a topological vector space and T : X → X an operator.
Then a vector x ∈ X is called frequently hypercyclic for T if, for every non-empty
open subset U of X, the set

{n ∈ N : Tnx ∈ U}

has positive lower density. The operator T is called frequently hypercyclic if it pos-
sesses a frequently hypercyclic vector.

We recall that the lower density of a subset A of N is defined as

dens (A) = lim inf
N→∞

cardinality {n ∈ A : n ≤ N}

N
.

The following statement, that is due to Bayart and Grivaux [4], furnishes a suf-
ficient condition for frequent hypercyclity. Recall that an F-space is a metrizable
complete topological vector space.

Theorem 1.2 (Frequent Hypercyclicity Criterion). Let X be a separable F-space and
‖ · ‖ a complete F-norm on X defining its topology. Assume that T is an operator on
X satisfying the following property: There exists a dense subset X0 of X and a mapping
S : X0 → X0 such that

(i) ∑
∞
n=1 ‖Tnx‖ converges for all x ∈ X0,

(ii) ∑
∞
n=1 ‖Snx‖ converges for all x ∈ X0,

(iii) TSx = x for all x ∈ X0.

Then T is frequently hypercyclic.

An operator T on an F-space X is said to satisfy the Frequent Hypercyclicity
Criterion (in short, FHCC) provided that it possesses the property assumed in
the last theorem. We point out that a weaker sufficient condition for frequent
hypercyclicity has been recently obtained by Grosse-Erdmann and the second
author in [7]. Such a weaker condition will not be used in this paper.

We have that an operator T on an F-space X is hypercyclic if and only if it is
topologically transitive, that is, if for any pair of non-empty open subsets U, V
of X there exists some n ∈ N such that Tn(U) ∩ V 6= ∅, see [16]. Moreover, T is
said to be topologically mixing if for any pair of non-empty open subsets U, V of
X there exists some N ∈ N such that Tn(U) ∩ V 6= ∅ for all n ≥ N. Thus, every
topologically mixing operator is hypercyclic, but the converse is not true, see [9].
On the other hand, T is called chaotic if it is hypercyclic and it has a dense set of
periodic points, that is, vectors x ∈ X such that Tnx = x for some n ∈ N, see
[13]. Inspired by an approach due to Taniguchi (see the next paragraph), Grosse-
Erdmann and the second author have shown [7, Remark 2.2(b)] that if T satisfies
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the FHCC then it is topologically mixing and chaotic. Nevertheless, Bayart and
Grivaux [5, Corollary 5.2] have constructed a frequently hypercyclic operator that
is not chaotic, while Badea and Grivaux [1, Corollary 4.4] have proved the exis-
tence of a frequently hypercyclic, chaotic but not mixing operator.

Denote by D the open unit disk {z : |z| < 1} of the complex plane C, and by
H(D) the class of holomorphic functions on D. If ϕ : D → D is a holomorphic
self-map of D, the composition operator Cϕ generated by ϕ is defined by Cϕ f =
f ◦ ϕ ( f ∈ H(D)). It is well known (see [22]) that Cϕ is a well-defined operator
on each Hardy space Hp(D). Taniguchi [21, Proposition 1] has shown there that
under conditions that are stronger than those in Theorem 1.2 an operator on a
separable Banach space is chaotic. He applies his criterion to deduce that for any
hyperbolic (for the notions of hyperbolic and parabolic see below) automorphism
ϕ of D the composition operator Cϕ is chaotic on the Hardy space Hp(D) for
1 ≤ p < ∞, while for any parabolic automorphism ϕ the operator Cϕ is chaotic
on the Hardy space Hp(D) for 1 ≤ p < 2 (see also [17]). It follows from Theorem
1.2 that these operators are also frequently hypercyclic.

We add that Taniguchi [21, Theorem 3] has shown that if ϕ is a hyperbolic or
parabolic automorphism of D then Cϕ is chaotic on Hp(D) for any p ∈ (0,+∞).
Moreover, based on a clever eigenvalue criterion (see Lemma 2.4 below), Bayart
and Grivaux [4, Corollary 3.7] have shown that every composition operator gen-
erated by any hyperbolic or parabolic automorphism of D is frequently hyper-
cyclic on the Hilbert space H2(D).

Weaker cyclicity properties of composition operators on weighted or non-
weighted Hardy spaces had been intensively investigated by Bourdon and Shapiro
[8], Zorboska [23] and Gallardo and Montes [12].

For each sequence of positive numbers β = {βn}∞
0 with lim supn→∞ β−1/n

n ≤
1, the weighted Hardy space H2(β) is defined as the Hilbert space of functions
f (z) = ∑

∞
n=0 anzn analytic on D for which the norm ∑

∞
n=0 |an|

2β2
n is finite (see [10,

p. 16] or [12, p. 1]). This norm is induced by the inner product

〈
∞

∑
n=0

anzn,
∞

∑
n=0

bnzn〉 =
∞

∑
n=0

anbnβ2
n.

Notice that the set of monomials {zn/βn}∞
0 forms a complete orthonormal sys-

tem. In particular, the polynomials are dense in H2(β). The weighted Hardy
spaces are natural spaces in the sense that the norm convergence in H2(β) im-
plies uniform convergence on compact subsets of D.

In the case in which the weights βn = (n + 1)ν, ν ∈ R, we obtain the so-called
weighted Dirichlet spaces or Sν spaces. That is,

Sν = { f (z) =
∞

∑
n=0

anzn ∈ H(D) :
∞

∑
n=0

|an|
2(n + 1)2ν

< +∞}.

For instance, if ν = 0,−1/2, 1/2, then Sν is, respectively, the classical Hardy space
H2(D), the Bergman space A2(D), and the Dirichlet space D.

Let LFT denote the family of linear fractional transformations ϕ(z) = az+b
cz+d on

the extended complex plane C∞. A member of LFT different from the identity
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can have either one or two fixed points in C∞. A map ϕ ∈ LFT is said to be
parabolic if it has a unique fixed point in C∞ or, equivalently, if it is conjugate to
a translation z 7→ z + a. If ϕ is neither the identity nor parabolic, then it is called
hyperbolic (elliptic, resp.) whenever it is conjugate to a positive dilation z 7→ αz,
α > 0 (to a rotation z 7→ eiθz, resp.). The remainder of maps in LFT are called
loxodromic. By LFT(D) we denote the subfamily {ϕ ∈ LFT : ϕ(D) ⊂ D}.
In particular, the derivative ϕ′(z) exists and is finite for every ϕ ∈ LFT(D) and
every z in the unit circle T. Let ϕ ∈ LFT(D). If ϕ is parabolic then its fixed
point η is in T, and it satisfies ϕ′(η) = 1. If ϕ is a hyperbolic automorphism
then its two fixed points are in T, and one of them, say η, is attractive. If ϕ is a
hyperbolic non-automorphism then it has a fixed attractive point η in T, the other
fixed point lying in {|z| > 1}∪ {∞}. In the last two cases, we have 0 < ϕ′(η) < 1.
By using the Cayley transform z 7→ i 1+z

1−z from D onto the right half plane Π, one
can easily visualize to which translation (dilation, resp.) a parabolic (hyperbolic,
resp.) transformation ϕ is conjugate, assuming that 1 is a fixed point for ϕ. Finally,
if ϕ is elliptic (in this case ϕ is always an automorphism of D) or loxodromic, then
one fixed point is in D and the other one lies on {|z| > 1} (see [20]).

According to a result by P.R. Hurst [18], the composition operator Cϕ : Sν →
Sν is bounded for any ν ∈ R and any ϕ ∈ LFT(D). E. Gallardo and A. Montes
[12] have furnished a complete characterization of the hypercyclicity of λCϕ on
Sν in terms of λ, ν, ϕ. This characterization can be summarized as follows.

Theorem 1.3. Let λ ∈ C, ν ∈ R and ϕ ∈ LFT(D). Let Cϕ : Sν → Sν be the
composition operator generated by Cϕ. We have:

(a) If ϕ is a hyperbolic automorphism and η is its attractive fixed point, then λCϕ is

hypercyclic if and only if ν <
1
2 and ϕ′(η)

1−2ν
2 < |λ| < ϕ′(η)

2ν−1
2 .

(b) If ϕ is a parabolic automorphism, then λCϕ is hypercyclic if and only if ν <
1
2 and

|λ| = 1.

(c) If ϕ is a hyperbolic non-automorphism and η is its boundary fixed point, then λCϕ is

hypercyclic if and only if ν ≤ 1
2 and ϕ′(η)

1−2ν
2 < |λ|.

(d) If ϕ is either an elliptic automorphism, or a loxodromic map, or a parabolic non-
automorphism, or the identity, then λCϕ is never hypercyclic.

In view of Theorem 1.3, and encouraged by Corollary 3.7 in [4], it is natural
to pose the following question: For which triples (ν, λ, ϕ) ∈ R × C × LFT(D) is it
true that λCϕ is frequent hypercyclicity on Sν?

In this paper, we provide an a partial answer to the last question, namely,
for all triples except perhaps for triples satisfying ν ∈ [1/4, 1/2), |λ| = 1, ϕ =
a parabolic automorphism. As a byproduct, Taniguchi’s chaoticity results are
extended to the weighted Dirichlet spaces.
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2 Frequently hypercyclic composition operators

Here the result announced at the end of the previous section will be formally
stated.

We need the following five auxiliary results. The first two of them are density
results and can be found respectively in [12, Lemma 2.13 and Lemma 4.7]. The
third one asserts that the all the dynamical properties considered in Section 1 are
invariant under conjugation. Its proof is elementary, so it will be omitted. The
fourth lemma contains an eigenvalue criterion for frequent hypercyclicity, that
was developed by Bayart and Grivaux (see [2], [3], [4] and [5]) and inspired by
Flytzanis [11]. This lemma adopts an heuristic idea due to Godefroy and Shapiro
[13] (see also [6]), namely, rich supplies of eigenvectors associated to eigenvalues
λ with |λ| < 1 and to eigenvalues λ with |λ| > 1 imply hypercyclicity. The fifth
lemma can be found in [12, Lemma 1.2] and furnishes a useful renorming of the
weighted Dirichlet spaces.

Lemma 2.1. Assume that ν ≤ 1/2, that m1 and m2 are any positive integers and that
α1, α2 are complex numbers with |αi| ≥ 1 for i = 1, 2. Then the set of all polynomials
that vanish at least m1 times at α1 and at least m2 times at α2 is dense in the space S�.

For t ≥ 0, let et be the function

et(z) = exp

(

t
z + 1

z − 1

)

.

It is shown in [12, Proposition 3.10] (see also [19]) that et ∈ Sν if and only ν < 1/4.

Lemma 2.2. Suppose that ν < 1/4. Then

span {et : t ≥ 0} = Sν.

Lemma 2.3. Let X be a separable F-space. Assume that T is a hypercyclic (mixing,
chaotic, frequently hypercyclic) operator on X satisfying the FHCC, and that R is an
invertible operator on X. Then the operator RTR−1 is also hypercyclic (mixing, chaotic,
frequently hypercyclic, respectively).

Recall that a measure σ defined on the Borel σ-algebra generated by a topo-
logical space is said to be continuous if σ({a}) = 0 for each singleton {a}.

Lemma 2.4. Let T be an operator on a separable complex Banach space X. Assume that
T has perfectly spanning set of eigenvectors associated to unimodular eigenvalues, that
is, there is a continuous probability measure σ on T = {z : |z| = 1} such that

span

(

⋃

α∈A

Ker(T − αI)

)

= X

for every Borel set A ⊂ T with σ(A) = 1. Then T is hypercyclic. Moreover, we have:

(a) If X is a Hilbert space then T is even frequently hypercyclic.

(b) If σ can be chosen to be absolutely continuous with respect to the Lebesgue measure
on T, then T is even mixing.
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By dA(z) we denote the normalized Lebesgue measure
dxdy

π (z = x + iy) on D.

Lemma 2.5. If ν ∈ (−∞, 1) then the expression

‖ f‖2 = | f (0)|2 +
∫

D
| f ′(z)|2(1 − |z|2)1−2ν dA(z) ( f ∈ Sν)

defines an equivalent norm on Sν.

We are now ready to establish and prove our theorem.

Theorem 2.6. Let ν ∈ R, λ ∈ C and ϕ ∈ LFT(D), with

(ν, λ, ϕ) /∈ [1/4, 1/2)× T × {parabolic automorphisms of D}.

Let Cϕ : Sν → Sν be the composition operator generated by ϕ. Then the following
statements are equivalent:

(a) λCϕ is frequently hypercyclic.

(b) λCϕ is topologically mixing.

(c) λCϕ is chaotic.

(d) λCϕ is hypercyclic.

Proof. The implications (a) =⇒ (d), (b) =⇒ (d) and (c) =⇒ (d) are trivial. Now, let
λCϕ : Sν → Sν be hypercyclic. By Theorem 1.3, ϕ is either a hyperbolic map or a
parabolic automorphism. At this point we distinguish three cases. In the first two
cases we will prove that λCϕ satisfies the FHCC. Then it is frequently hypercyclic
and, according to [7, Remark 2.2(b)], it is also topologically mixing and chaotic,
so (b) are (c) are fulfilled. In the third case we will use the eigenvalue criterion
to prove the frequent hypercyclicity as well as the mixing property, while the
chaoticity will be demonstrated directly. We denote T = λCϕ.

Case 1: ϕ is a hyperbolic automorphism. In this case, ϕ has its two fixed points
η, η′ on T. Let η be the attractive one. Take any automorphism σ of D satisfying
σ(η) = 1, σ(η′) = −1. Then ϕ0 := σ ◦ ϕ ◦ σ−1 is a hyperbolic automorphism
of D with fixed points at 1,−1, such the point 1 is the attractive one. Moreover,
T = Cσ ◦ λCϕ0 ◦ Cσ−1 . An application of Lemma 2.3 yields that it is enough to
prove that λCϕ0 satisfies the FHCC. Consequently, we can assume without loss of
generality that 1,−1 are the fixed points of ϕ, the point 1 being attractive.

According to Theorem 1.3, we have that ν < 1/2 and ϕ′(1)
1−2ν

2 < |λ| <

ϕ′(1)
2ν−1

2 . We follow the proof of Theorem 3.5 in [12]. The explicit expression
of ϕ is

ϕ(z) =
(1 + µ)z + 1 − µ

(1 − µ)z + 1 + µ
,

where µ ∈ (0, 1) and, in fact, ϕ′(1) = µ. Therefore

µ
1−2ν

2 < |λ| < µ
2ν−1

2 . (1)

Choose m ∈ N with m > 2 − 2ν and

m > − log |λ|/ log µ. (2)
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Let X be the set of all holomorphic functions on a neighborhood of the closed
disk D that vanish at least m times at 1. Fix f ∈ X. It is proved in [12] that

‖Tn f‖ ≤ C(|λ|2nµ2nm + |λ|2nµn(1−2ν)) (n ∈ N),

where C is a constant independent of n. From (1) and (2), we obtain that |λ|µm

and |λ|2µ1−2ν are less that 1, so

∞

∑
n=1

‖Tn f‖ < +∞ for all f ∈ X. (3)

Now, take S := T−1 = λ−1C−1
ϕ = λ−1Cϕ−1 and consider the set Y of all holomor-

phic functions on a neighborhood of D that vanish at least m times at −1. Observe
that −1 is the attractive fixed point of ϕ−1 with (ϕ−1)′(−1) = 1/ϕ′(−1) = µ and

that µ
1−2ν

2 < |λ| < µ
2ν−1

2 . Therefore, a similar argument leads to

∞

∑
n=1

‖Sn f‖ < +∞ for all f ∈ Y. (4)

If we set X0 := X ∩ Y, then we have X0 ⊃ {polynomials vanishing at least m
times at 1 and −1}, so X0 is dense in Sν by Lemma 2.1. Clearly, (3) and (4) hold
for all f ∈ X0. In addition, TS is the identity and X0 is S-invariant, because ϕ−1

is conformal and fixes the points 1,−1. Consequently, T satisfies the FHCC.

Case 2: ϕ is a hyperbolic non-automorphism. This time ϕ has two fixed points,
one on T and the other one outside D. Choose an automorphism σ of D sending
those points, respectively, to 1 and to certain α ∈ (−∞,−1) (see [20, p. 114 and
Exercise 10 on p. 125]). By using Lemma 2.3 as in the first part of Case 1, one can
suppose without loss of generality that the fixed points of ϕ are 1, α. We follow
the proof of Theorem 2.11 in [12]. The explicit expression of ϕ is

ϕ(z) =
(µα − 1)z + α(1 − µ)

(µ − 1)z + α − µ
,

where α ∈ (−∞,−1), µ ∈ (0, 1) and, in fact, ϕ′(1) = µ. By Theorem 1.3, we must
have ν ≤ 1/2 and

µ
1−2ν

2 < |λ|. (5)

Choose m ∈ N satisfying m > (1 − 2ν)/2 and (2). Denote by X (Y, resp.) the
set of all polynomials that vanish at least m times at 1 (at α, resp.). This time,
the inverse map S = λ−1Cϕ−1 is not bounded on Sν but it is well defined on the

polynomials. It is proved in [12] that

‖Tn f‖ ≤ M|λµm|n for all f ∈ X

and

‖Sn f‖ ≤ C|λ|−nµ
n(1−2ν)

2 for all f ∈ Y,

where the constants M, C are independent of n. By (2) and (5), both numbers

|λµm|, |λ|−1µ
1−2ν

2 are less than 1. Therefore, we obtain

∞

∑
n=1

‖Tn f‖ < +∞ and
∞

∑
n=1

‖Sn f‖ < +∞ for all f ∈ X ∩ Y. (6)
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Now we define X0 :=
⋃∞

n=0 Sn(X ∩ Y). Then S is well defined on X0, the set X0

is dense in Sν (by Lemma 2.1, because X0 ⊃ X ∩ Y) and S-invariant, TS is the
identity on X0 and (6) is satisfied for all f ∈ X0 (this only carries a translation of
the indexes n in both series). Again, conditions (i), (ii) and (iii) of Theorem 1.2 are
fulfilled. Thus, T satisfies the FHCC.

Case 3: ϕ is a parabolic automorphism. According to Theorem 1.3 and the hy-
pothesis, we must have ν < 1/4 and |λ| = 1. Since ϕ is conjugate to a translation,
we may suppose, after applying a similarity if necessary, that ϕ is conjugate to a
translation z 7→ z + ia (a ∈ R \ {0}), which is a self-map of the right half-plane
C+. Then an appropriate linear fractional transformation mapping D onto C+

shows that we can assume (with a further application of Lemma 2.3) that ϕ has
the form

ϕ(z) =
(2 − ai)z + ai

−aiz + 2 + ai
,

with a ∈ R \ {0}. Note that et (t ≥ 0) is an eigenfunction for T associated to the
eigenvalue λe−iat. As in [4, Proof of Example 3.6], take σ to be the normalized
length measure on T, and let A be a measurable set of T with σ(A) = 1. Then
σ(λ−1 A) = 1. If m is the Lebesgue measure on [0,+∞), we have

m({t ≥ 0 : λe−iat /∈ A} ≤
1

|a|
m({t ∈ R : eit /∈ λ−1A}) = 0.

Hence the set B := {t ≥ 0 : λe−iat ∈ A} is dense in [0,+∞). Observe that

⋃

α∈A

Ker(T − αI) ⊃ {et : t ∈ B}. (7)

Let f ∈ Sν with 〈 f , et〉 = 0 for all t ∈ B. Since et depends continuously on t (this
will be detailed at the end of the proof) and B is dense, we get 〈 f , et〉 = 0 for all
t ≥ 0, so 〈 f , g〉 = 0 for all g ∈ span {et : t ≥ 0}. By Lemma 2.2, the last span is
dense in Sν, whence f = 0. Consequently, {et : t ∈ B} is total in Sν. It follows
from (7) that span (

⋃

α∈A Ker(T − αI)) is dense in Sν. Then Lemma 2.4 applies
yielding that T is frequently hypercyclic and mixing.

Now, we prove that T is chaotic. Since T is already hypercyclic, our task is to
demonstrate that the set P of T-periodic functions in Sν is dense. For this, observe
that

P ⊃
⋃

q∈Q

Ker (T − ei2πq I) ⊃ {et : t ∈ C}, (8)

where Q is the set of rational numbers, C := [0,+∞) ∩ (a−1(β + πQ)), with λ =
eiβ. Note that C is dense in [0,+∞). An argument as in the above paragraph
shows that {et : t ∈ C} spans a dense set in Sν. Since P is a linear manifold, it
follows from (8) that P is dense in Sν, as required.

Finally, we demonstrate that the map E : t ∈ [0,+∞) 7→ et ∈ Sν is continuous.
To this end, we fix u ≥ 0. Let t ∈ [u/2, u + 1]. By using the equivalent norm
furnished by Lemma 2.5, one obtains

‖E(t) − E(u)‖2 = |e−t − e−u|2 +
∫

D
|tet(z)− ueu(z)|

2|σ′(z)|2(1 − |z|2)1−2ν dA(z),
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where σ(z) := i 1+z
1−z is the Cayley transform from D onto the upper half plane Π.

Therefore
‖E(t)− E(u)‖2 = |e−t − e−u|2 + J(t),

where

J(t) :=
1

π

∫

Π
|teitw −ueiuw|2(1−|σ−1(w)|2)1−2ν dA(w) =

2

π

∫ ∞

0

∫ ∞

0
ψ(x, y, t) dxdy

and ψ(x, y, t) := |teit(x+iy) − ueiu(x+iy)|2[
4y

x2+(y+1)2 ]
1−2ν. As t → u, we have

|e−t − e−u|2 → 0 and ψ(x, y, t) → 0 for all x, y > 0. But

|ψ(x, y, t)| ≤ [(1 + u)e−uy/2 + ue−uy]2
[

4y

x2 + (y + 1)2

]1−2ν

(x, y > 0; t ∈ [u/2, u + 1]),

and the last function does not depend on t, and it is integrable on (0,+∞)2 be-
cause 2(1 − 2ν) > 1. From the Lebesgue Dominated Convergence Theorem, it
follows that J(t) → 0 (t → u), hence ‖E(t) − E(u)‖ → 0 (t → u), so yielding the
continuity of E.

Let us make some comments about the refractory case

(ν, λ, ϕ) ∈ [1/4, 1/2)× T × {parabolic automorphisms of D}.

Denote T = λCϕ. The approach of the proof of Theorem 3.3 in [12] only leads to
estimates of the form

‖Tn f‖ ≤
C

n1−2ν
(9)

for ν < 1/2, that is not sufficient to apply Theorem 1.2. Nevertheless, since the so-
called Hypercyclicity Criterion is satisfied for the entire sequence (n) of positive
integers (see [14]), the operator T is in fact mixing for ν < 1/2. Moreover, for
ν ≥ 1/4 and t > 0, the functions et (the “most natural” eigenfunctions of Cϕ) do
not belong to Sν. These functions seem to be the best candidate to be periodic
functions (with appropriate values of t) for the operator Cϕ. This leads us to
conjecture that T is not chaotic for ν ∈ [1/4, 1/2). If this is the case, T would not
satisfy the FHCC either.

Remark 2.7. The referee has kindly provided a new way to derive the frequent
hypercyclicity of T = Cϕ in the parabolic case, with |λ| = 1, ν < 1/4. This way
does not use the eigenvalue criterion. Namely, following the proof of Theorem
3.3 in [12] we get estimates like (9) for f ∈ X0 := {holomorphic functions in
some neighborhood of D that vanish at least twice at 1}, where we are assuming
without loss of generality that 1 is the fixed point of ϕ. Similar estimates hold
for S := Cϕ−1. Then TS = I and both series ∑

∞
n=1 ‖Tn f‖2, ∑

∞
n=1 ‖Sn f‖2 converge

for f in the dense set X0. Since Sν is a Hilbert space (so a Banach space with
cotype 2), the conditions of the “random” Frequent Hypercyclicity Criterion, see
[15, Theorem 2.1 and the subsequent comments] are satisfied, which implies that
Cϕ is frequently hypercyclic.
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To conclude the paper, we want to pose the problem arising from the com-
ments following the proof of Theorem 2.6.

Question. Assume that ϕ is a parabolic automorphism of D, |λ| = 1 and
ν ∈ [1/4, 1/2). Is λCϕ chaotic? Is λCϕ frequently hypercyclic?

Acknowledgements. We thank the referee for helpful comments and sugges-
tions, which led to an improvement of this paper.
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