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It was noticed only recently that an additional assumption on the orthogonal-ity measure gives for Cm(n) a recurrence only in m;n being �xed. This Orthogo-nality class is called semi-classical and is very large [11], [7] . The classical (con-tinuous) family: Jacobi, Bessel, Laguerre, Hermite (see for instance [12]) and theclassical(discrete) family: Hahn , Kravchuk, Meixner, Charlier (see for instance [13])are of course included in the semi-classical class. When the orthogonality measureis de�ned by a weight �(x), the semi-classical class covers all weights solution of alinear �rst order di�erential (or di�erence) equation with polynomial coe�cients.The key property inside the semi-classical class, in order to obtain a one index(m) recurrence relation for Cm(n), comes from the existence of a so called StructureRelation, linking linearly the derivative (or di�erence) of Pn(x) times a polynomial,to a �xed combination of Pk(x).An algorithm has been given recently building for both discrete and continuousclassical families (see [3], [15] and [16] ) the explicit recurrences for Cm(n), solving inmany cases theses recurrences with the help of Mathematica [20].Looking for the situation for which a structure relation is known explicitly, we real-ize that, from the data of Orthogonal Polynomial on the exponential lattice x(s) = q2s(a small subset of the q-world). Here we need to point out that exits two di�erentpoint of view in the study of the q-polynomials. The �rst one, in the frameworkof the q-basic hypergeometric series [6], [8], [9] and the second, in the framework ofthe theory of di�erence equations developed by Nikiforov et al. [12], [13], [14]. Inthis work we will use the second one because it gives us the possibility to provide anuniform treatment of several classes of orthogonal polynomials and, probably, it isthe best way to �nd further applications.This paper shows how to apply the technique to a particular (simple) case: theexponential lattice, building �rst the corresponding Structure Relations.2 Structure relations for q-orthogonal polynomials onthe exponential lattice x(s) = q2s.Let us to start with the study of some general properties of orthogonal polynomialsof a discrete variable in non-uniform lattices. Let be~�(x(s)) 44x(s� 12)5Y (s)5x(s) + ~�(x(s))2 �4Y (s)4x(s) + 5Y (s)5x(s) �+ �Y (s) = 0;5f(s) = f(s)� f(s� 1);4f(s) = f(s+ 1)� f(s) ; (1)the second order di�erence equation of hypergeometric type for some lattice functionx(s), where 5f(s) = f(s) � f(s � 1) and 4f(s) = f(s + 1) � f(s) denote thebackward and forward �nite di�erence quotients, respectively. Here ~�(x) and ~�(x)are polynomials in x(s) of degree at most 2 and 1, respectively, and � is a constant.2



The previous equation (1) can be obtained from the classical hypergeometric equation~�(x)y00(x) + ~�(x)y0(x) + �y(s) = 0;via the discretization of the �rst and second derivatives y0 and y00 in an apropiatelattice [12], [13]. It is better to rewrite (1) in the equivalent form (see [13] and [14])�(s) 44x(s� 12)5Y (s)5x(s) + �(s)4Y (s)4x(s) + �Y (s) = 0;�(s) = ~�(x(s))� 12 ~�(x(s))4 x(s� 12 ); �(s) = ~�(x(s)): (2)The q-orthogonal polynomials Pn(x(s))q � Pn(s)q on the exponential lattice x(s) =q2s are, for given functions �(s) and �(s), the polynomial (in powers of x(s) = q2s)solution of the second order di�erence equation (2).The k-order di�erence derivative of the polynomials Pn(x(s))q, de�ned byvkn(s) = 44xk�1(s) 44xk�2(s) : : : 44x(s)[Pn(x(s))q] � 4(k)[Pn(x(s))q];and xm(s) = x(s+ m2 );also satisfy the di�erence equation of hypergeometric type of the form�(s) 44xk(s� 12) �5vkn(s)5xk(s) �+ �k(s)4vkn(s)4xk(s) + �kvkn(s) = 0; (3)where (see [13], page 62, Equation (3.1.29))�k(s) = �(s+ k)� �(s) + �(s+ k)4 x(s+ k � 12)4xk�1(s) ;and �k = �n + k�1Xm=0 4�m(s)4xm(s) :These polynomial solutions denoted by Pn(x(s))q � Pn(s)q satisfy the orthogonalityproperty b�1Xsi=aPn(x(si))qPm(x(si))q�(si)4 x(si � 12) = �nmd2n; (4)where �(x) is some non-negative function (weight-function), i.e.,�(si)4 x(si � 12) > 0 (a � si � b� 1);supported in a countable subset of the real line [a; b] (a; b can be �1). The func-tions �(s) and �k(s) are the solutions of the Pearson-type di�erence equations ([13],Eq.(3.2.9) and (3.2.10) page 64)44x(s� 12) [�(s)�(s)] = �(s)�(s); (5)3



and 44xk(s� 12) [�(s)�k(s)] = �k(s)�k(s) (6)and �(s) satisfy the condition [14]:�(s)�(s)xk(s� 12 )js=a;b = 0; 8k; l 2 IN (IN = f0; 1; 2; :::g):In (4) d2n denotes the square of the norm of the corresponding orthogonal polynomials.The q-orthogonal polynomials satisfy a three term recurrence relations (TTRR) ofthe form x(s)Pn(s)q = �nPn+1(s)q + �nPn(s)q + 
nPn�1(s)q; (7)with the initial conditions P�1(s)q = 0; P0(s)q = 1:It is well known [13]-[14], that the polynomial solutions of equation (2), denoted byPn(x(s))q, are uniquely determined, up to a normalizing factor Bn, by the di�erenceanalog of the Rodrigues formula (see [13] page 66 Eq. (3.2.19) ):Pn(s)q = Bn�(s) 5(n)n [�n(s)] 5(n)n = 55x1(s) 55x2(s) : : : 55xn(s) [�n(s)]; (8)where �n(s) = �(n+ s)Qnk=1 �(s+ k): These solutions correspond to some values of�n - the eigenvalues of equation (2), which is computed from ( see [13], page 104 and[14] ) �n = �12[n]qf(qn�1 + q�n+1)~� 0 + [n� 1]q~�00g; (9)where ~�(s) = �(s) + 12 ~�(s)4 x(s� 12) and ~�(s) = �(s) (see Eq. (2)).Here [n]q denotes the so called q-numbers[n]q = qn � q�nq � q�1 = sinh(hn)sinh(h) ; q = eh:2.1 The �rst structure relation for the q-polynomials in the latticex(s) = q2s.Let us now try to obtain a structure relation for the q-polynomials in the expo-nential lattice x(s) = q2s. (For the linear lattice see [13] Eq.(2.2.10) page 24.)First of all, we rewrite the Rodrigues equation (8) in another form. We will usethe linearity of the operator 5(n)n , as well as the identity5xk(s) = qk 5 x(s):Then, a straightforward calculation gives us4



Pn(s)q = q�n(n+1)2 Bn�(s) � 55x(s)�n [�n(s)]; � 55x(s)�n = n-timesz }| {55x(s) : : : 55x(s) : (10)Now, from formulas (5) and (10) we �nd5�n+1(s)5xn+1(s) = 5[�n(s+ 1)�(s+ 1)]5xn(s + 12) = 4[�(s)�n(s)]4xn(s� 12) = �n(s)�n(s):Then by using the Rodrigues formula (8) we obtainPn+1(s)q = Bn+1�(s) 5(n+1)n+1 [�n(s)] = Bn+1�(s) 5(n)n 5�n+1(s)5xn+1(s) == Bn+1�(s) 5(n)n [�n(s)�n(s)] = q�n(n+1)2 Bn+1�(s) � 55x(s)�n [�n(s)�n(s)]: (11)In order to obtain an expression for h 55x(s)in [�n(s)�n(s)] we successively apply theformula 5f(s)g(s) = f(s)5 g(s) + g(s� 1)5 f(s), as well as formulas4�n(s)4x(s) = qn� 0n; � 55x(s� 1)�n = q2n � 55x(s)�n :Then, Eq. (11) gives us the followingPn+1(s)q = q�n(n+1)2 Bn+1�(s) �� �n(s) � 55x(s)�n [�n(s)] + q2n�1[n]q� 0n � 55x(s)�n�1 [�n(s � 1)]! : (12)Using the Rodrigues formula for the di�erence derivative of the polynomial ([13],Eq. (3.2.18) page 66) we �nd (notice that 4x(s� 1) = q�24 x(s)):5Pn(s)q5x(s) = 4Pn(s� 1)q4x(s� 1) = �q� (n�1)(n+2)2 �nBn�(s)�(s) � 55x(s� 1)�n�1 [�n(s� 1)] == �q� (n�1)(n�2)2 �nBn�(s)�(s) � 55x(s)�n�1 [�n(s� 1)]:Therefore, equation (12) can be rewritten in the formPn+1(s)q = Bn+1�n(s)Bn Pn(s)q � [n]qBn+1� 0n�(s)�nBn 5Pn(s)q5x(s)and then, the following di�erentiation formula holds�(s)5Pn(s)q5x(s) = �n[n]q� 0n ��n(s)Pn(s)q � BnBn+1Pn+1(s)q� : (13)5



If we now use the power expansion of �n(s), i.e., �n(s) = � 0nxn(s)+�n(0) = � 0nqnx(s)+�n(0) and the TTRR (7) we obtain the �rst structure relation�(s)5Pn(s)q5x(s) = ~SnPn+1(s)q + ~TnPn(s)q + ~RnPn�1(s)q; (14)where ~Sn = �n[n]q �qn�n � Bn� 0nBn+1 � ;~Tn = �n[n]q �qn�n � �n(0)� 0n � ;~Rn = �nqn
n[n]q : (15)2.2 The second structure relation for the q-polynomials in the lat-tice x(s) = q2s.Let us try to obtain now the second structure relation. Firstly, we notice that45Pn(s)q5x(s) = 4Pn(s)q4x(s) � 5Pn(s)q5x(s) :Then, by using the di�erence equation (2)�(s)5Pn(s)q5x(s) = �(s)4Pn(s)q4x(s) � �(s)4 5Pn(s)q5x(s) == [�(s) + �(s)4 x(s� 12 )]4Pn(s)q4x(s) + �n4 x(s� 12)Pn(s)q:and (14) we �nd [�(s) + �(s)4 x(s� 12)]4Pn(s)q4x(s) = ~SnPn+1(s)q++( ~Tn � �n4 x(s� 12 ))Pn(s)q + ~RnPn�1(s)q; (16)Now, taking into account that 4x(s� 12) = (q � q�1)x(s), and using the TTRR (7)we �nally obtain the second structure relation[�(s) + �(s)4 x(s� 12)]4Pn(s)q4x(s) = SnPn+1(s)q + TnPn(s)q + RnPn�1(s)q; (17)where Sn = ~Sn � (q � q�1)�n�n;Tn = ~Tn � (q � q�1)�n�n;Rn = ~Rn � (q � q�1)�n
n: (18)6



3 Recurrence relations for connection coe�cients.Let us consider two families of q-polynomials Pn(x) and Qn(x) belonging to theclass of discrete orthogonal polynomials in the exponential lattice x(s) = q2s. Eachpolynomial Pn(x) can be represented as a linear combination of the polynomialsQn(x). In particular Pn(x) = nXm=0Cm(n)Qm(x): (19)For the family Pn(x) we will use the notation1. �(s), �(s) and �n for the di�erence equation (2)2. �n, �n and 
n for the TTRR (7) coe�cients3. Sn, Rn and Tn for the second structure relation (17)and for the Qn(x)1. ��(s), ��(s) and ��n for the di�erence equation (2)2. ��n, ��n and �
n for the TTRR (7) coe�cients3. �Sn, �Rn and �Tn for the second structure relation (17)Since the polynomials of the family Pn(x) are solutions of the second order di�erenceequation (2) the action of the di�erence operator of second order L̂, de�ned byL̂ = �(s) 44x(s� 12) � 55x(s)�+ �(s) 44x(s) + �n;on Eq. (19) gives usnXm=0Cm(n) "�(s) 44x(s� 12) �5Qm(x)5x(s) � + �(s)4Qm(x)4x(s) + �nQm(x)# = 0: (20)Multiplying by ��(s) and using��(s) 44x(s� 12) �5Qm(x)5x(s) � = ��� (s)4Qm(x)4x(s) � ��nQm(x);we obtain the relationnXm=0Cm(n) �(�(s)��(s)� ��(s)�(s))4Qm(x)4x(s) + (�n��(s)� �(s)��m)Qm(x)� = 0: (21)In order to eliminate 4Qm(x)4x(s) , we multiply (21) by ��(s)+ �� (s)4x(s� 12) and use thesecond structure relation (17) for the Qm(x) family, obtainingnXm=0Cm(n) �(� (s)��(s) � ��(s)�(s))( �SmQm+1(x) + �RmQm�1(x) + �TmQm(x))++ (��(s) + �� (s)4 x(s � 12 ))(�n��(s) � �(s)��m)Qm(x)� = 0: (22)7



The last step consists to expand the remaining terms of type ��2(s)Qm(x), ��(s)�(s)Qm(x),�(s)��(s)Qm(x) and ��(s)�(s)Qm(x) in linear combination of Qm(x) by using theTTRR (7) repeatedly for the Qm(x) family.After this process, (22) reduces toNXm=0Mm [C0(n); C1(n); :::; Cn(n)]Qm(x) (23)where N = maxfn + deg� + deg(��); n + 2deg(��); n + 1 + deg(��) + deg(�); n+ 1 +deg(��) + deg(�); 1+ deg(��) + deg(��)g:Taking into account the linear independence of the family Qm(x) we obtain thelinear system Mm [C0(n); C1(n); :::; Cn(n)] = 0: (24)These relations contain (linearly) several connection coe�cients Ci(n) depending es-sentially on the degrees of �(s) and ��(s). In the most general situation they arepolynomials of second degree in x(s) = q2s. In this case we obtain a relation of thefollowing type the linear system we are looking forMm [Cm+4(n); :::; Cm�4(n)] = 0; (25)which is valid for n greater or equal than the number of initial conditions neededto start the recursion (n � 8). Notice that for (n < 8) the system also gives thesolution, but not in a recurrent way.Notice that for the q-Hahn, q-Meixner, q-Charlier and q-Kravchuk polynomials,as it is show in [13], table 3.3, page 95, the �(s) is a polynomial of second degree inx(s) = q2s. This implies that for such polynomials the recurrence relations for theconnection coe�cient all are of the form (25). Again we want to remark that we arefollow the notation introduced by Nikiforov et al. [13].4 Recurrence relations for connection coe�cients: Asimple example.As we have noticed in the previous section the recurrence relation for connectioncoe�cients for di�erent classes of q-polynomials are too large (8-terms). Here we willanalyze a more simple case. Firstly, notice that in the previous algorithm we havenot used the orthogonality property of the polynomials Pn, and only that they satisfya di�erence equation. On the other hand, for the polynomials Qm we need to havestructure relations as well as three term recurrence relations. Let us to show andexample in which we will decompose a set of polynomials Pn(s), satisfying a certaindi�erence equation of �rst order in the lattice x(s) = q2s, as a linear combination ofthe orthogonal q-polynomials de�ned in the same lattice, i.e., the q-Hahn, q-Meixner,q-Kravchuk and q-Charlier orthogonal polynomials (see [13], [4] and [17])8



Let us de�ne the quantities (s)q and (sn)q, de�ned by(s)q = q2s � 1q2 � 1 = qs�1[s]q (26)and (sn)q = (s)q(s � 1)q � � � (s� n + 1)q = n�1Yk=0 q2s+2k � 1q2 � 1 (27)The quantities (sn)q are closely related to the q-Stirling numbers ~Sq2(n; k); s�q2(n; k)[21] by formulas(s)nq = nXk=0 ~Sq2(n; k)(sk)q; (sn)q = nXk=0 s�q2(n; k)(s)kq (28)and satisfy the following two di�erence equations (here, as before, x(s) = q2s)(q2s � 1)5(sn)q5x(s) � q�n+1[n]q(sn)q = 0 (29)and (q2s�2n+2 � 1)4(sn)q4x(s) � q�n+1[n]q(sn)q = 0: (30)Since (sn)q is a polynomial in x(s) = q2s, it can be represented as a linear combinationof the polynomials Qm(x), the q-polynomials in the exponential lattice. In particular(sn)q = nXm=0Cm(n)Qm(x): (31)Let us to obtain the recurrence relation for the connection coe�cients Cm(n) betweenthe (sn)q and the q-Charlier, q-Meixner or q-Kravchuk. (For q-Hahn polynomials wewill consider it separately). In order to do that we apply the operator~L = (q2s � 1) 55x(s) � q�n+1[n]q (32)to both sides of (31). Using formula (29) ( ~L(sn)q = 0) and multiplying by q2s weobtain the following expression0 = nXm=0Cm(n)�q2s(q2s � 1)5Qm(x)5x(s) � q�m+1[m]qq2sQm(x)� : (33)Taking into account that for q-Charlier, q-Meixner and q-Kravchuk the �(s) functionin (2) coincide with q2s(q2s � 1) and applying the structure relation (14) and theTTRR (7) to the previous expression we �nd0 = nXm=0Cm(n) fAmQm+1(x) +BmQm(x) + �mQm�1(x)g ;from where we obtain the following TTRR for the connection coe�cients Cm(n)Am�1Cm�1(n) + BmCm(n) + �m+1Cm+1(n) = 0; (34)9



whereAm�1 = ~Sm�1 � q�m+2[m� 1]q�m�1 == �m�1[m� 1]q "qm�1�m�1 � Bm�1� 0m�1Bm# � q�m+2[m� 1]q�m�1 ;Bm = ~Tm � q�m+1[m]q�m == �m�1[m� 1]q �qm�m � �m(0)� 0m �� q�m+1[m]q�m ;�m+1 = ~Rm+1 � q�m
m+1 = �m+1qm+1
m+1[m+ 1]q � q�m[m+ 1]q
m+1: (35)In order to obtain the recurrence relation for connection coe�cients in the q-Hahncase we apply the operator ~L (32) to both sides of (31). Taking into account that~L(sn)q = 0 and multiplying by q2�+2N � q2s we obtain the following expression0 = nXm=0Cm(n)�(q2�+2N � q2s)(q2s � 1)5Qm(x)5x(s) � q�m+1[m]qq2sQm(x)� : (36)Taking into account that for q-Hahn the �(s) function in (2) coincide with (q2�+2N�q2s)(q2s � 1) (see [17]) and using the structure relation (14) and the TTRR (7) weobtain the same expression (34) as before for the TTRR for the connection coe�cientsCm(n), where nowAm�1 = ~Sm�1 + q�m+2[m� 1]q�m�1 == �m�1[m� 1]q �qm�1�m�1 � Bm�1� 0m�1Bm �+ q�m+2[m� 1]q�m�1 ;Bm = ~Tm + q�m+1[m]q�m � [m]qq2N+2��m+1 == �m�1[m� 1]q �qm�m � �m(0)� 0m � + q�m+1[m]q�m � [m]qq2N+2��m+1 ;�m+1 = ~Rm+1 + q�m
m+1 = �m+1qm+1
m+1[m+ 1]q + q�m[m+ 1]q
m+1: (37)4.1 The three term recurrence relation for connection coe�cientsof the q-powers (sn)q and the q-Meixner polynomials m
;�n (s; q).Here we will calculate the coe�cients Am�1; Bm and �m+1 of the three term recur-rence relation for connection coe�cients Cm(n) (34) of the q-powers (sn)q and theq-Meixner polynomials m
;�n (s; q), i.e.,(sn)q = nXk=0Cm(n)m
;�k (s; q):10



The main data for the q-Meixner polynomials are provided in [4]. In our work wewill use monic polynomials, i.e., the leading coe�cient an = 1. In the Table I, atthe end of this section, we provide the quantities needed for our calculations. (Formore details see [4] and [13]). We want to point out that these monic q-Meixnerpolynomials m
;�n (s; q) [4] are connected with the monic little q-Jacobi polynomialspn(x; a; bjq) [6], [8] by the relationm
;�n (s; q) = pn(q2s;�; q2
�2jq2):If we now apply formulas (15) and (14) we obtain for q-Meixner polynomials thestructure relation�(s)5m
;�n (s; q)5x(s) = ~Snm
;�n+1(s; q) + ~Tnm
;�n (s; q) + ~Rnm
;�n�1(s; q); (38)where ~Sn = �q
+�+1 (qn[n+ 
 + �]q + [2n+ 
 + �]q) ;~Tn = �q2n+�+2[n+ 
 + �]q � [n+ 1]q[n+ � + 1]q[2n+ 
 + � + 1]q � [n]q[n+ �]q[2n+ 
 + � � 1]q���q�+1[n+ � + 1]q[n+ 
 + �]q[2n+ 
 + � + 1]q ;~Rn = �q�2
+��1[n]q[
 + n� 1]q[n+ 
 + �]q [n+ 
 + � � 1]q[n+ �]q[2n+ 
 + � � 2]q[2n+ 
 + � � 1]2q[2n+ 
 + �]q : (39)Then, by using (35) we �nally �nd the coe�cients Am�1; Bm and �m+1Am�1 = �q
+�+1 �qm�1[m+ 
 + � � 1]q + [2m+ 
 + � � 2]q�� q�m+2[m� 1]q; (40)Bm = �� [m+ 1]q[m + � + 1]q[2m+ 
 + � + 1]q � [m]q[m+ �]q[2m+ 
 + � � 1]q� q�+1[2m+ 
 + �]q��q�+1[m + 
 + �]q[m+ � + 1]q[2m+ 
 + � + 1]q ; (41)�m+1 = �q�m�2
+�+2[m+ 1]q[
 +m]q[m+ 
 + �]q [m+ � + 1]q[2m+ 
 + �]q [2m+ 
 + � + 1]q[2m+ 
 + � + 2]q : (42)
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Table I: The main data for q-Meixner Polynomials [4].m
;�n (s; q), � = q2��(s) q2s(q2s � 1)�(s) qs+2�+
+2 [s+ 
]q � qs[s]q�n �[n]qq
+�+1[n+ 
 + �]q� 0n q
+�+1[2n+ 
 + � + 1]q�n(0) �q�+1[n+ � + 1]qBnBn+1 �q
+�+1 [2n+ 
 + � + 1]q[2n+ 
 + �]q[n+ 
 + �]q�n 1�n q�
 [n+ 1]q[n+ � + 1]q[2n+ 
 + � + 1]q � q�
 [n]q[n+ �]q[2n+ 
 + � � 1]q
n q�n�3
+2[n]q[
 + n� 1]q[n+ 
 + � � 1]q[n+ �]q[2n+ 
 + � � 2]q[2n+ 
 + � � 1]2q[2n+ 
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