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Abstract

We obtain the structure relations for q-orthogonal polynomials in the expo-
nential lattice ¢?* and from that we construct the recurrence relation for the
connection coefficients between two families of polynomials belonging to the
classical class of discrete g-orthogonal polynomials. An explicit example is also
given.

1 Introduction.

Given two families of Polynomials, denoted by P,(z)and @,,(z), of degree exactly
equal to respectively n and m, the Connection Problem asks to compute the so-called
Connection Coefficients C,,(n) defined by the relation:

Bae) = 3 Cum)@n()

When both families are orthogonal with respect to two different measures the
Connections Coeflicients satisfy a relative simple recurrence relation, but mixing in
the (m,n) table three adjacent m and three adjacent n crossing at (m,n).

The first survey on this topic was given by Askey 20 years ago [1]-[2], giving in
some cases explicit expression for the Coeflicients and discussing also the positivity
properties of these Coeflicients.
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It was noticed only recently that an additional assumption on the orthogonal-
ity measure gives for C,,(n) a recurrence only in m,n being fixed. This Orthogo-
nality class is called semi-classical and is very large [11], [7] . The classical (con-
tinuous) family: Jacobi, Bessel, Laguerre, Hermite (see for instance [12]) and the
classical(discrete) family: Hahn , Kravchuk, Meizner, Charlier (see for instance [13])
are of course included in the semi-classical class. When the orthogonality measure
is defined by a weight p(x), the semi-classical class covers all weights solution of a
linear first order differential (or difference) equation with polynomial coefficients.

The key property inside the semi-classical class, in order to obtain a one index
(m) recurrence relation for C,(n), comes from the existence of a so called Structure
Relation, linking linearly the derivative (or difference) of P,(z) times a polynomial,
to a fixed combination of Py(z).

An algorithm has been given recently building for both discrete and continuous
classical families (see [3], [15] and [16] ) the explicit recurrences for Cy,(n), solving in
many cases theses recurrences with the help of Mathematica [20].

Looking for the situation for which a structure relation is known explicitly, we real-
ize that, from the data of Orthogonal Polynomial on the exponential lattice #(s) = ¢?*
(a small subset of the q-world). Here we need to point out that exits two different
point of view in the study of the g-polynomials. The first one, in the framework
of the g-basic hypergeometric series [6], [8], [9] and the second, in the framework of
the theory of difference equations developed by Nikiforov et al. [12], [13], [14]. In
this work we will use the second one because it gives us the possibility to provide an
uniform treatment of several classes of orthogonal polynomials and, probably, it is
the best way to find further applications.

This paper shows how to apply the technique to a particular (simple) case: the
exponential lattice, building first the corresponding Structure Relations.

2  Structure relations for gq-orthogonal polynomials on
the exponential lattice x(s) = ¢**.

Let us to start with the study of some general properties of orthogonal polynomials
of a discrete variable in non-uniform lattices. Let be

A TY(s) | Ta(s) [AY(S)

VY (s) _
s— 1) ya(s) + 2 Az (s) +AY(s) =0,

* va(s) (1)

5D g

VI(s) = f(s) = fls = 1), Af(s) = f(s +1) = f(s),

the second order difference equation of hypergeometric type for some lattice function
z(s), where \7f(s) = f(s) — f(s — 1) and Af(s) = f(s + 1) — f(s) denote the
backward and forward finite difference quotients, respectively. Here d(z) and 7(2)
are polynomials in z(s) of degree at most 2 and 1, respectively, and A is a constant.



The previous equation (1) can be obtained from the classical hypergeometric equation

a(x)y"(x) + 7(2)y'(x) + Ay(s) = 0,

via the discretization of the first and second derivatives ¥’ and 3" in an apropiate
lattice [12], [13]. It is better to rewrite (1) in the equivalent form (see [13] and [14])

A YYG) AV
"R Dvats) T A T =0

(2)
a(s) = a(a(s)) = 37(x(s)) Dals = 3),  7(s) = T(a(s)).
The g-orthogonal polynomials P,(z(s)), = P,(s), on the exponential lattice z(s

)
q** are, for given functions ¢(s) and 7(s), the polynomial (in powers of z(s) = ¢**
solution of the second order difference equation (2)

*)
The k-order difference derivative of the polynomials P,(z(s)),, defined by
A A A
= = AWK
vkn(s) A$k_1(8) A$k_2(8) e A$(8) [Pn($(8))q] - A [Pn($(8))q],

and

em(s) = 2(s+ %),
also satisfy the difference equation of hypergeometric type of the form
A [V@kn( )] Avga(s)
+ (s + gV =0, 3
) Rens = 1) L veals) k( )Axk( R (s) = (3)
where (see [13], page 62, Equation (3.1.29))

Co(s+k)—o(s)+T(s+ k) Aa(s+k—3)
Tr(s) =

Azg_1(s) ’
and
kzzl AT(s)
Awm (s)
These polynomial solutions denoted by n(w(s))q = P,(s), satisfy the orthogonality
property

3 Palisi)aPaesid)apsi) 25 (si = 3) = b2,

(4)

where p(z) is some non-negative function (weight-function), i.e.,
plsi)Aa(s;—3)>0 (a<s; <b-1),

supported in a countable subset of the real line [a,b] (a,b can be £o00). The func-

tions p(s) and pg(s) are the solutions of the Pearson-type difference equations ([13]
Eq.(3.2.9) and (3.2.10) page 64)

m[U(S)p(SH = 7(s)p(s), (5)



and

m[o(s)pm} = 7i(s)pn(s) (6)

and p(s) satisfy the condition [14]:
a(s)p(8)2"(s = Dlsmap =0, Vk,I€IN (IN={0,1,2,..}).
In (4) d? denotes the square of the norm of the corresponding orthogonal polynomials.

The q-orthogonal polynomials satisfy a three term recurrence relations (TTRR) of
the form

() Pu(s)g = anLri(s)g + Bulbru(s)g + ¥nLr-1(5)g, (7)

with the initial conditions
P_l(S)q = 0, Po(S)q = 1

It is well known [13]-[14], that the polynomial solutions of equation (2), denoted by
P,(x(s)),, are uniquely determined, up to a normalizing factor B,,, by the difference
analog of the Rodrigues formula (see [13] page 66 Eq. (3.2.19) ):

B, i 4 Vv
P.(s), = 7(1”) Pnls V%”): ()], 8
where p,,(s) = p(n + s)[1f=, (s + k). These solutions correspond to some values of
An, - the eigenvalues of equation (2), which is computed from ( see [13], page 104 and

[14]) )
An = _§[n]q{(qn_1 +q7 Y 4 [0 - 1],6"}, (9)

where 6(s) = o(s) + 17(s) A z(s — %) and 7(s) = 7(s) (see Eq. (2)).
Here [n], denotes the so called g-numbers

_q¢"—q7" _ sinh(hn) o
[n)o = q—q ' sinh(h)’ =<

2.1 The first structure relation for the g-polynomials in the lattice
z(s) = ¢*.

Let us now try to obtain a structure relation for the g-polynomials in the expo-
nential lattice z(s) = ¢**. (For the linear lattice see [13] Eq.(2.2.10) page 24.)

First of all, we rewrite the Rodrigues equation (8) in another form. We will use

the linearity of the operator V%n), as well as the identity

van(s) = ¢" 7 x(s).

Then, a straightforward calculation gives us
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Now, from formulas (5) and (10) we find

Vonils) _ loals £ Do(s+ D] _ Blopnl] _ o
s— 1y T ommrmer

VTni1(s) V(s + %) a Awn(s —

Then by using the Rodrigues formula (8) we obtain

_ But1 __(n) _ Bagi _(n) VPnt1(s) _
Pn_|_1(8)q - p(S) Vn-l—l [pn(s)] - p(S) n v$n+1(8) -

(11)

= L) [, (s S :_WBWH v nrs S
= DL G0 1 () (0)] = 0 F S | T (o)

In order to obtain an expression for [ v ]n [Tn(8)pn(s)] we successively apply the

z(s)
formula 7 f(s)g(s) = f(s) v g(s)+ g(sv— 1) <7 f(s), as well as formulas

zo - [l el

Then, Eq. (11) gives us the following

n(n41)

Pryi(s)y = %x
(12)
X | (s v ] n (s =1, 7 v " n(s — .
("“[ws)] 01+ 4t | TS 1>])

Using the Rodrigues formula for the difference derivative of the polynomial ([13],
Eq. (3.2.18) page 66) we find (notice that Az(s— 1) = ¢72 A z(s)):

_ (n=1)(n+2)

VPus)y  AP(s—-1); —q 2 By, [ \V4
va(s—1

vVx(s) Azx(s—1) o(s)p(s) )] [pn(s —1)] =

(n—1)(n—2) 1
_ 4 2 A By v o] B
e ] e

Therefore, equation (12) can be rewritten in the form

[n]an+lT7/zU(5) VPH(S)q
By, v(s)

and then, the following differentiation formula holds

Bt170(9)
B,

Pn+1(5)q = Pn(s)q -

(Y0 e () Pufs)y -

va(s)  [nlgTy By

Pasa(s),] - (13)



If we now use the power expansion of 7,(s), i.e., 7,(s) = 7.2, (s)+7,(0) = 7,¢"x(s)+
7,(0) and the TTRR (7) we obtain the first structure relation

VEa(s)y _ ¢ . i
—=5,P, T, P, n Pz ) 14
(5 = 5P () + TuPu(s)y + BP0 (1)
where \ B
o= g o= 7]
- A 7,(0)
Tn = — |{" n P
nj, [(] v T, ] (15)
5 g
R, = nqd Vn
[n]q

2.2 The second structure relation for the g-polynomials in the lat-
tice x(s) = ¢*.

Let us try to obtain now the second structure relation. Firstly, we notice that

AVPH(S)q _ APy(s)q _ VPa(s)q
v (s) Az (s) va(s)

Then, by using the difference equation (2)

sy L)y AP, TPl

va(s)

Aa(s) Va(s)

VS

= Joe) 4 (&) Aa(s - DS\ Aa(s - DB (9),

z(s)

and (14) we find

[o(s) + 7(s5) Aa(s = D= = = SuPaga(s)y+
(16)

(T = M Dals = §))Pa()g + RaPrca (5)g,

Now, taking into account that Az(s— %) = (¢ — ¢~ ")z(s), and using the TTRR (7)
we finally obtain the second structure relation

r(5) 4+ 7(5) B3 = UG = 8, Pra(s)y 4 TuPa o)y + RoPoa(s)ye (17

where

Sn = Sn - ((] - q_l)Ananv
T, = Tn - ((] - q_l)/\nﬁnv (18)

R,=R, — (¢ — ¢ ) Nuvn



3 Recurrence relations for connection coefficients.

Let us consider two families of q-polynomials P, (z) and Q,(«) belonging to the
class of discrete orthogonal polynomials in the exponential lattice z(s) = ¢**. Each
polynomial P,(z) can be represented as a linear combination of the polynomials
Qn(2). In particular

Po(e) = Z:OCm(n)Qm(w)- (19)

For the family P,(2) we will use the notation

1. o(s), 7(s) and A, for the difference equation (2)

2. ay, B, and 7, for the TTRR (7) coefficients

3. Su, R, and T, for the second structure relation (17)
and for the @, (z)

1. a(s), 7(s) and A, for the difference equation (2)

2. @y, B3, and 7, for the TTRR (7) coefficients

3. S,, R, and T, for the second structure relation (17)

Since the polynomials of the family P, («) are solutions of the second order difference
equation (2) the action of the difference operator of second order L, defined by

- VAN \V4 VAN
L= U(S)Aac(s — %) [Vx(s)] + T(S)Ax(s) t Ans
on Eq. (19) gives us
mZ::OCm(n) lU(S)Aw(s— y [ o (s) ] + T(s)m + A @Qm(x)| =0.  (20)

Multiplying by &(s) and using

A [v@m(x)] = () 2n()

Az(s—3) L wva(s) § Az (s) = Anlm(@),

a(s)
we obtain the relation

3 o) [i7(610t) = () S+ (0,0(6) = o)) = 0. (21)

m=0

In order to eliminate Aglf’(l(x), we multiply (21) by o(s)+7(s) Az(s— %) and use the

5)
second structure relation (17) for the ()., (z) family, obtaining

Y Cu(n) [(7(5)7(5) = 7(5)7(5))(Si Q1 (2) + Rin Q1 (@) + T Qua())+ o)

+ () + 7(5) A (s = 3))(An0(3) = 0(5)Am)Qum ()] = 0.
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The last step consists to expand the remaining terms of type 62(8)Q (), 7(s)o(3)Q (),
o(s)T($)Qm(x) and (s)7(s)Qm(z) in linear combination of @,,(z) by using the
TTRR (7) repeatedly for the @,,(2) family.

After this process, (22) reduces to

N
Z_: My, [Co(n), C1(n), ..., Cp(n)] @ (2) (23)

where N = maz{n + dego + deg(c),n + 2deg(c),n + 1 + deg(d) 4+ deg(T),n+ 1 +
deg(T) + deg(0), 14 deg(T) + deg(a)}.

Taking into account the linear independence of the family @,,(z) we obtain the
linear system

M, [Co(n), C1(n), ..., Cn(n)] = 0. (24)

These relations contain (linearly) several connection coefficients C;(n) depending es-
sentially on the degrees of o(s) and a(s). In the most general situation they are
polynomials of second degree in x(s) = ¢**. In this case we obtain a relation of the
following type the linear system we are looking for

My, [Cruga(1)s ooy Cra_a(n)] = 0, (25)

which is valid for n greater or equal than the number of initial conditions needed
to start the recursion (n > 8). Notice that for (n < 8) the system also gives the
solution, but not in a recurrent way.

Notice that for the q-Hahn, g-Meixner, q-Charlier and q-Kravchuk polynomials,
as it is show in [13], table 3.3, page 95, the o(s) is a polynomial of second degree in
z(s) = ¢?°. This implies that for such polynomials the recurrence relations for the
connection coefficient all are of the form (25). Again we want to remark that we are
follow the notation introduced by Nikiforov et al. [13].

4 Recurrence relations for connection coefficients: A
simple example.

As we have noticed in the previous section the recurrence relation for connection
coefficients for different classes of q-polynomials are too large (8-terms). Here we will
analyze a more simple case. Firstly, notice that in the previous algorithm we have
not used the orthogonality property of the polynomials P,, and only that they satisfy
a difference equation. On the other hand, for the polynomials @), we need to have
structure relations as well as three term recurrence relations. Let us to show and
example in which we will decompose a set of polynomials P,(s), satisfying a certain
difference equation of first order in the lattice z(s) = ¢?°, as a linear combination of
the orthogonal g-polynomials defined in the same lattice, i.e., the g-Hahn, q-Meixner,
q-Kravchuk and g-Charlier orthogonal polynomials (see [13], [4] and [17])



Let us define the quantities (s), and (s, ),, defined by

sl (26)

and

(Sn)q = (S)q(s - 1)q ce(s—mn+ 1)q = H (27)

k=0

The quantities (s, ), are closely related to the ¢-Stirling numbers ng(n, k), 5;2(71, k)
[21] by formulas

(s)g = Zn: Sp(n k)(sk)gy  (su)g = D spaln. k)(s), (28)

and satisfy the following two difference equations (here, as before, (s) = ¢**)

2s V(Sn)q _ —n+l n S =
(% = D) = a7 alyfsa)y = 0 (29)
and Alsy)
(g2 22 _ 1)T€S)q _ q—”+1[n]q(5n)q =0. (30)

Since (s,), is @ polynomial in z(s) = ¢*%, it can be represented as a linear combination
of the polynomials @,,(2), the q-polynomials in the exponential lattice. In particular

n

(s0)g = D Cn(n)Qu(). (31)

m=0

Let us to obtain the recurrence relation for the connection coefficients €', (n) between
the (s,,), and the g-Charlier, g-Meixner or q-Kravchuk. (For q-Hahn polynomials we
will consider it separately). In order to do that we apply the operator

L= - Vg s -l (32)

to both sides of (31). Using formula (29) (£(s,), = 0) and multiplying by ¢** we
obtain the following expression

0= Zi: Cin(m) {qzs(qzs - 1)% — q‘m+1[m]qq25Qm(x)} : (33)

Taking into account that for q-Charlier, q-Meixner and g-Kravchuk the o(s) function
in (2) coincide with ¢**(¢** — 1) and applying the structure relation (14) and the
TTRR (7) to the previous expression we find

n

0="> Cn(n){AnQm+1() + BrQu() + I'nQm1(2)},

m=0

from where we obtain the following TTRR for the connection coefficients C,(n)

Am_lCm_l(n) —|— BmCm(n) —|— Fm+1Cm+1(n) = 0, (34)



Apot =Sy — ¢ "2 [m — gam-1 =
Do e ]t
By =Ty —q ™ m] 8, = (35)
= gty [ 2]
Tttt = Rong1 — ¢ Y1 = /\mJF[;ZT:jﬁmH — ¢ " m A4 1 Ymt1-

In order to obtain the recurrence relation for connection coefficients in the q-Hahn
case we apply the operator £ (32) to both sides of (31). Taking into account that

L(5,) = 0 and multiplying by ¢?“t2N — ¢2° we obtain the following expression

0= 3 Cutm {2 = e - T i g, 0} 36)

Taking into account that for q-Hahn the ¢(s) function in (2) coincide with (g?*+2V —
q**)(q** — 1) (see [17]) and using the structure relation (14) and the TTRR (7) we
obtain the same expression (34) as before for the TTRR for the connection coefficients
Cn(n), where now

Ap_1 = Smo1+ g2 [m — gm-1 =
= Gty [ e = S -
Ba =T+ g7 [m]y B — [m],q?NH2e-m+t = (37)
Tig1 = Rt + 47" s = Amt1 0" Gt + ¢ " [m A+ UgVms1-

[m+ 1],

4.1 The three term recurrence relation for connection coefficients
of the gq-powers (s,), and the g-Meixner polynomials m)*(s,q).

Here we will calculate the coefficients A4,,_1, B, and I';;,41 of the three term recur-
rence relation for connection coefficients C,(n) (34) of the q-powers (s, ), and the
q-Meixner polynomials m*(s,q), i.e.,

n

(sn)g = Y Conlm)m (s, q).

k=0
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The main data for the g-Meixner polynomials are provided in [4]. In our work we
will use monic polynomials, i.e., the leading coeflicient a,, = 1. In the Table I, at
the end of this section, we provide the quantities needed for our calculations. (For
more details see [4] and [13]). We want to point out that these monic q-Meixner
polynomials m)*(s,q) [4] are connected with the monic little q-Jacobi polynomials
pn(2;a,blq) [6], [8] by the relation

my*(s,q) = pa(q®; 1, ¢ 2|q).

If we now apply formulas (15) and (14) we obtain for q-Meixner polynomials the
structure relation

mH(s, . ~ ~
o(s) LS _ g (o) 4 Tl (s, 0) + Rom? (5.0, (38)
va(s)
where
Sn= =TT (" In+y+0], 4+ 2n+v+6],)
- ,n+6+1] [n],[n + 6]
To=  _gin+o+2 9 [n+ 1], ' q q _
1 [+ h( Znt+y+0+1], [nt+ty+0-1],
_q9+1[n—|—9—|— yln+~ + 0], (39)
[2n+7y+ 0+ 1], ’
- T gy = gl 4y + 0y [n 4y + 60— [0+ 6],

[2n+’y—|—9—2]q[2n—|—’y—|—9—1]3[271—1—7—1—9]4

Then, by using (35) we finally find the coefficients A,,_1, By, and I';;, 44

Am_q = —g" T (qm_l[m—l— Y+0—1],+2m+y+0— 2]4) — q_m+2[m -1, (40)

B, = — ([m—i— Ug[m+6+1],  [m]y[m+ 6], )q9+1[2m+’y—|—9]q—
2m+v+60+1], 2m+~+60-1],
(41)
P m 4y + 0]+ 0+ 1],
[2m+y+0+ 1], ’
g~ P I 4 1]y [y + mlg[m 4y 4 0]y [m + 6 + 1,
Ppgr = (42)

[2m+y +0],2m+y+60+1],2m+v+0+2],

11



Table I: The main data for q-Meixner Polynomials [4].

(s, q), 1= ¢
o(s) q25(q25 ~1)
7(s) ¢ s 4], - ¢°ls]
An ~[n)yq" 0+ + 0]
T G20+ + 6+ 1],
7(0) —¢"n+ 60+ 1],
B, o1 20+ + 0+ 1] [2n 4+ + 6],
But1 o [+ + 6],
a, 1
5 1]+ 041 i [n]q[n + 6]
2n+v+6+1], 2n+v+6—-1],
. g " nyly +n = Ug[n + 4+ 6 — g[n + 6],
27+ 540 —2],2n+v+ 0 - 1]2[2n + v + 0],
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