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ON THE PROPERTIES OF SPECIAL FUNCTIONS ON THE

LINEAR-TYPE LATTICES

R. ÁLVAREZ-NODARSE AND J. L. CARDOSO

Abstract. We present a general theory for studying the difference analogues of special
functions of hypergeometric type on the linear-type lattices, i.e., the solutions of the
second order linear difference equation of hypergeometric type on a special kind of lattices:
the linear type lattices. In particular, using the integral representation of the solutions
we obtain several difference-recurrence relations for such functions. Finally, applications
to q-classical polynomials are given.
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1. Introduction

The study of the so-called q-special functions has known an increasing interest in the
last years due its connection with several problems in mathematics and mathematical-
physics (see e.g. [3, 6, 8, 13, 17]). A systematic study starting from the second order
linear difference equation that such functions satisfy was started by Nikiforov and Uvarov
in 1983 and further developed by Atakishiyev and Suslov (for a very nice reviews see e.g.
[7, 13, 16]). Of particular interest is the so-called q-classical polynomials (see e.g. [5])
introduced by Hahn in 1949 which are polynomials on the lattice qs.

Our main aim in this paper is to present a constructive approach for generating recur-
rence relations and ladder-type operators for the difference analogues of special functions
of hypergeometric type on the linear-type lattices. Here we will focus our attention on
functions defined on the q-linear lattice (for the linear lattice x(s) = s see [4] and refer-
ences therein, and for the continuous case see e.g. [18]). Therefore we will complete the
work started in [16] where few recurrence relations where obtained. In fact we will prove,
by using the q-analoge of the technique introduced in [4] for the discrete case (uniform
lattice), that the solutions (not only the polynomial ones) of the difference equation on
the q-linear lattice x(s) = c1q

s+ c2 satisfy a very general recurrent-difference relation from
where several well known relations (such as the three-term recurrence relation and the
ladder-type relations) follow.

The structure of the paper is as follows: In section 2 the needed results and notations
from the q-special function theory are introduced. In sections 3 and 4 the general theorems
for obtaining recurrences relations are presented. In section 5 the special case of classical
q-polynomials are considered in details and some examples are worked out in details.

2. Some preliminar results

Here we collect the basic background [1, 13, 16] on q-hypergeometric functions needed
in the rest of the work.

The hypergeometric functions on the non-uniform lattice x(s) are the solutions of the
second order linear difference equation of hypergeometric type on non-uniform lattices

σ(s)
∆

∆x(s− 1
2 )

[∇y(s)

∇x(s)

]
+ τ(s)

∆y(s)

∆x(s)
+ λy(s) = 0,

σ(s) = σ̃(x(s))− 1
2 τ̃(x(s))∆x

(
s− 1

2

)
, τ(s) = τ̃(x(s)),

(1)
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where ∆y(s) := y(s + 1) − y(s), ∇y(s) := y(s) − y(s − 1), are the forward and backward
difference operators, respectively; σ̃(x(s)) and τ̃(x(s)) are polynomials in x(s) of degree
at most 2 and 1, respectively, and λ is a constant. Here we will deal with the linear and
q-linear lattices, i.e., lattices of the form

x(s) = c1s+ c2 or x(s) = c1(q)q
s + c2(q), (2)

respectively, with c1 6= 0 and c1(q) 6= 0 .
We will define the k-order difference derivative of a solution y(s) of (1) by

y(k)(s) := ∆(k)[y(s)] =
∆

∆xk−1(s)

∆

∆xk−2(s)
. . .

∆

∆x(s)
[y(s)],

where xν(s) = x(s + ν
2
). It is known [13] that y(k)(s) also satisfy a difference equation

of the same type. Moreover, for the solutions of the difference equation (1) the following
theorem holds

Theorem 2.1. [12, 16] The difference equation (1) has a particular solution of the form

yν(z) =
Cν

ρ(z)

b−1∑

s=a

ρν(s)∇xν+1(s)

[xν(s)− xν(z)](ν+1)
, (3)

if the condition

σ(s)ρν(s)∇xν+1(s)

[xν−1(s)− xν−1(z + 1)](ν+1)

∣∣∣∣
b

a

= 0,

is satisfied, and of the form

yν(z) =
Cν

ρ(z)

∫

C

ρν(s)∇xν+1(s)

[xν(s)− xν(z)](ν+1)
ds, (4)

if the condition ∫

C
∆s

σ(s)ρν(s)∇xν+1(s)

[xν−1(s)− xν−1(z + 1)](ν+1)
= 0, (5)

is satisfied. Here C is a contour in the complex plane, Cν is a constant, ρ(s) and ρν(s) are
the solution of the Pearson-type equations

ρ(s+ 1)

ρ(s)
=
σ(s) + τ(s)∆x(s− 1

2)

σ(s+ 1)
=

φ(s)

σ(s+ 1)
,

ρν(s+ 1)

ρν(s)
=
σ(s) + τν(s)∆xν(s− 1

2)

σ(s+ 1)
=

φν(s)

σ(s+ 1)
,

(6)

where

τν(s) =
σ(s+ ν)− σ(s) + τ(s+ ν)∆x(s+ ν − 1

2)

∆xν−1(s)
, (7)

ν is the root of the equation

λν + [ν]q

{
αq(ν − 1)τ̃ ′ + [ν − 1]q

σ̃′′

2

}
= 0, (8)

and [ν]q and αq(ν) are the q-numbers

[ν]q =
qν/2 − q−ν/2

q1/2 − q−1/2
, αq(ν) =

qν/2 + q−ν/2

2
, ∀ ν ∈ C, (9)

respectively. The generalized powers [xk(s)− xk(z)]
(ν) are defined by

[xk(s)− xk(z)]
(ν) = (q − 1)νcν1q

ν(k−ν+1)/2qνz
Γq(s− z + ν)

Γq(s− z)
, ν ∈ R, (10)

for the q-linear (exponential) lattice x(s) = c1q
s + c2 and

[xk(s)− xk(z)]
(ν) = cν1

Γ(s− z + µ)

Γ(s− z)
, ν ∈ R,
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for the linear lattice x(s) = c1s + c2, respectively. For the definitions of the Gamma and
the q-Gamma functions see, for instance, [6].

Remark 2.2. For the special case when ν ∈ N, the generalized powers become

[xk(s)− xk(z)]
(n) =(−1)ncn1q

−n(n−1)/2qn(z+k/2)(qs−z; q)n,

[xk(s)− xk(z)]
(n) =cn1 (s− z)n,

for q-linear and linear lattices, respectively.

We will need the following straightforward proposition which proof we omit here (see
e.g. [1, 16])

Proposition 2.3. Let µ and ν be complex numbers and m and k be positive integers
with m ≥ k . For the q-linear lattice x(s) = c1q

s + c2 we have

(1)
[xµ(s)− xµ(z)]

(m)

[xν(s)− xν(z)]
(m)

= q
m(µ−ν)

2 ,

(2)
[xµ(s)−xµ(z)]

(m)

[xµ(s)− xµ(z)]
(k)

= [xµ(s)− xµ(z−k)](m−k) ,

(3)
[xµ(s)− xµ(z)]

(m)

[xν(s)− xν(z)]
(k)

= q
k(µ−ν)

2 [xµ(s)−xµ(z−k)](m−k) ,

(4)
[xµ(s)− xµ(z)]

(m+1)

[xµ−1(s+ 1)− xµ−1(z)]
(m)

= xµ−m(s)− xµ−m(z) ,

(5)
[xµ(s)− xµ(z)]

(m+1)

[xµ−1(s)− xµ−1(z)]
(m)

= xµ−m(s+m)− xµ−m(z) .

To obtain the result for the linear lattice one only has to put in the above formulas
q = 1.

3. The general recurrence relation in the linear-type lattices

In this section we will obtain several recurrence relations for the solutions (3) and (4) of
the difference equation (1) in the linear-type lattices (2). Since the equation (1) is linear
we can restrict ourselves to the canonical cases x(s) = qs and x(s) = s.

Let us define the functions1

Φν,µ(z) =

b−1∑

s=a

ρν(s)∇xν+1(s)

[xν(s)− xν(z)](µ+1)
(11)

and

Φν,µ(z) =

∫

C

ρν(s)∇xν+1(s)

[xν(s)− xν(z)](ν+1)
ds. (12)

Notice that the functions yν and the functions Φν,µ are related by the formula

yν(z) =
Cν

ρ(z)
Φν,ν(z). (13)

Lemma 3.1. For the functions Φν,µ(z) the following relation holds

∇z Φν,µ(z) = [µ+ 1]q∇xν−µ(z)Φν,µ+1(z), (14)

where [t]q denotes the symmetric q-numbers (9).

1Obviously the functions (3) correspond to the functions (11), whereas the functions yν given by (4)
correspond to those of (12).
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Proof. We will prove it for the functions (11). The other case is analogous. Using (10),
one gets

∇z Φν,µ(z) =

b−1∑

s=a

∇z

(
ρν(s)∇xν+1(s)

[xν(s)− xν(z)]
(µ+1)

)

=
b−1∑

s=a

(
ρν(s)∇xν+1(s)

[xν(s)− xν(z)]
(µ+1)

− ρν(s)∇xν+1(s)

[xν(s)− xν(z − 1)](µ+1)

)

=
b−1∑

s=a

ρν(s)∇xν+1(s)

[xν(s)− xν(z − 1)](µ)

(
1

xν(s)− xν(z)
− 1

xν(s)− xν(z − 1− µ)

)

=

b−1∑

s=a

ρν(s)∇xν+1(s)

[xν(s)− xν(z − 1)](µ)
xν(z)− xν(z − 1− µ)

(xν(s)− xν(z))(xν(s)− xν(z − 1− µ))

=

b−1∑

s=a

ρν(s)∇xν+1(s)

[xν(s)− xν(z)]
(µ+2)

(xν(z) − xν(z − 1− µ))

Since x(s)− x(s− t) = [t]q∇x
(
s− t−1

2

)
we then have

∇z Φν,µ(z) =

b−1∑

s=a

ρν(s)∇xν+1(s)

[xν(s)− xν(z)]
(µ+2)

[µ+ 1]q∇xν

(
z − µ

2

)

=[µ+ 1]q∇xν−µ(z)Φν,µ+1(z)

which is (14). �

From (14) follows that

∆z Φν,µ(z) = [µ+ 1]q∆xν−µ(z)Φν,µ+1(z + 1).

Next we prove the following lemma that is the discrete analog of the Lemma in [14, page
14].

Lemma 3.2. . Let x(z) be x(z) = qz or x(z) = z. Then, any three functions Φνi,µi
(z),

i = 1, 2, 3, are connected by a linear relation

3∑

i=1

Ai(z)Φνi,µi
(z) = 0, (15)

with non-zero at the same time polynomial coefficients on x(z), Ai(z), provided that the
differences νi − νj and µi − µj, i, j = 1, 2, 3, are integers and that the following condition
holds2

xk(s)σ(s)ρν0(s)

[xν0−1(s)− xν0−1(z)](µ0)

∣∣∣∣
s=b

s=a

= 0, k = 0, 1, 2, . . . , (16)

when the functions Φνi,µi
are given by (11) and

∫

C
∆s

xk(s)σ(s)ρν0(s) ds

[xν0−1(s)− xν0−1(z)](µ0)
= 0, k = 0, 1, 2, . . . , (17)

when Φνi,µi
are given by (12). Here ν0 is the νi, i = 1, 2, 3, with the smallest real part and

µ0 is the µi, i = 1, 2, 3, with the largest real part.

Proof. Since in [4] we have proved the case when x(s) = s (the uniform lattice) we will
restrict here to the case of the q-linear lattice x(s) = c1q

s+ c2). Moreover, we will give the
proof for the case of functions of the form (11), the other case is completely equivalent.
Using the identity

∇xνi+1(s) = q
νi−ν0

2 ∇xν0+1(s),

2In some cases this condition is equivalent to the condition x(s)kσ(s)ρν0(s)|
s=b
s=a = 0, k = 0, 1, 2, . . ..
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as well as (3) of Proposition 2.3, we have

3∑

i=1

Ai(z)Φνi,µi
(z) =

3∑

i=1

Ai(z)

b−1∑

s=a

ρνi(s)∇xνi+1(s)

[xνi(s)− xνi(z)]
(µi+1)

=

b−1∑

s=a

3∑

i=1

Ai(z)
ρνi(s)∇xνi+1(s)

[xνi(s)− xνi(z)]
(µi+1)

=

b−1∑

s=a

1

[xν0(s)− xν0(z)]
(µ0+1)

×
(

3∑

i=1

Ai(z)q
(µi+1)(ν0−νi)

2 [xν0(s)−xν0(z−µi− 1)](µ0−µi) ρνi(s)∇xνi+1(s)

)

=
b−1∑

s=a

ρν0(s)∇xν0+1(s)

[xν0(s)− xν0(z)]
(µ0+1)

×
(

3∑

i=1

Ai(z)q
µi(ν0−νi)

2 [xν0(s)− xν0(z − µi − 1)](µ0−µi) ρνi(s)

ρν0(s)

)
.

Using the Pearson-type equation (6) we obtain

ρνi(s) = φ(s+ ν0)φ(s + ν0 + 1) . . . φ(s + νi − 1)ρν0(s), (18)

so
3∑

i=1

Ai(z)Φνi,µi
(z) =

b−1∑

s=a

ρν0(s)∇xν0+1(s)

[xν0(s)− xν0(z)]
(µ0+1)

Π(s)

where

Π(s) =

3∑

i=1

Ai(z)q
µi(ν0−νi)

2 [xν0(s)− xν0(z − µi − 1)](µ0−µi)×

φ(s+ ν0)φ(s + ν0 + 1) · · · φ(s+ νi − 1) .

(19)

Let us show that there exists a polynomial Q(s) in x(s) (in general, Q ≡ Q(z, s) is a
function of z and s) such that

ρν0(s)∇xν0+1(s)

[xν0(s)− xν0(z)]
(µ0+1)

Π(s) =∆

[
ρν0(s− 1)

[xν0−1(s)− xν0−1(z)]
(µ0)

Q(s)

]

=∆

[
σ(s)ρν0(s)

[xν0−1(s)− xν0−1(z)]
(µ0)

Q(s)

]
.

(20)

If such polynomial exists, then, taking the sum in s from s = a to b − 1 and using the
boundary conditions (16) we obtain (15).

To prove the existence of the polynomial Q(s) in the variable x(s) in (20) we write

σ(s+ 1)ρν0(s + 1)

[xν0−1(s+ 1)− xν0−1(z)]
(µ0)

Q(s+ 1)− σ(s)ρν0(s)

[xν0−1(s)− xν0−1(z)]
(µ0)

Q(s) =

ρν0(s)

[xν0(s)− xν0(z)]
(µ0+1)

[
σ(s+ 1)

ρν0 (s+1)

ρν0 (s)

[xν0 (s)−xν0 (z)]
(µ0+1)

[xν0−1(s+1)−xν0−1(z)]
(µ0)

Q(s+ 1)−

σ(s)
[xν0 (s)−xν0 (z)]

(µ0+1)

[xν0−1(s)−xν0−1(z)]
(µ0)

Q(s)

]
.

From (4) and (5) of Proposition 2.3, and using (6), the above expression becomes

ρν0 (s)

[xν0(s)−xν0 (z)]
(µ0+1) {φν0(s) [xν0−µ0(s)− xν0−µ0(z)]Q(s+ 1)−

σ(s) [xν0−µ0(s+ µ0)− xν0−µ0(z)]Q(s)} .
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Thus
(σ(s) + τν0(s)∇xν0+1(s)) [xν0−µ0(s)− xν0−µ0(z)]Q(s + 1)−

σ(s) [xν0−µ0(s+ µ0)− xν0−µ0(z)]Q(s) = ∇xν0+1(s)Π(s).
(21)

Since ∇xν0+1(s) is a polynomial of degree one in x(s) , xk(s) and τν0(s) are polynomials
of degree at most one in x(s), and σ(s) is a polynomial of degree at most two in x(s),
we conclude that the degree of Q(s) is, at least, two less than the degree of Π(s), i.e.,
degQ ≥ degΠ− 2. Moreover, equating the coefficients of the powers of x(s) = qs on the
two sides of the above equation (21), we find a system of linear equations in the coefficients
of Q(s) and the coefficients Ai(z) which have at least one unknown more then the number
of equations. Notice that the coefficients of the unknowns are polynomials in qz , so that
after one coefficient is selected the remaining coefficients are rational functions of qz ,
therefore after multiplying by the common denominator of the Ai(z) we obtain the linear
relation with polynomial coefficients on x ≡ x(z) = qz . This completes the proof. �

The above Lemma when q → 1 and x(s) = s leads to the corresponding result on the
uniform lattice x(s) [4].

3.1. Some representative examples. In the following examples, and for the sake of
simplicity, we will use the notation

σ(s) = aq2s+ bqs+ c, τ(s) = dqs+e, φν(s) = σ(s)+ τν−1(s)∇xν(s) = fq2s+gqs+h. (22)

Example 3.3. The following relation holds

A1(z)Φν,ν−1(z) +A2(z)Φν,ν +A3(z)Φν+1,ν(z) = 0,

where the coefficients A1 , A2 and A3 , are polynomials in x ≡ x(z) = qz , given by

A1(z) =− eq
ν

2 +
b+ e

(
q

1
2 − q−

1
2

)

a+ d
(
q

1
2 − q−

1
2

) (dq ν

2 + a[ν]q
)
+
(
dqν + a[2ν]q

)
q

ν

2 +z,

A2(z) =
c (dqν+a[2ν]q)

a+d
(
q

1
2 −q−

1
2

) +
b+e

(
q

1
2 −q−

1
2

)

q
1
2 −q−

1
2


qν+

a

qν
(
a+d

(
q

1
2 −q−

1
2

))


qz +

(
dqν+a[2ν]q

)
q2z,

A3(z) =− dq
ν

2 + a[ν]q

a+ d
(
q

1
2 − q−

1
2

) ,

where a, b, c, d, and e, are the coefficients of σ and τ (22).

Proof. Using the notations of Lemma 3.2 we have ν1 = ν , ν2 = ν , ν3 = ν+1 , µ1 = ν−1 ,
µ2 = ν and µ3 = ν , thus ν0 = ν and µ0 = ν . By (19)

Π(s) = A1

(
qs+

ν

2 −qz−
ν

2

)
+A2 +A3q

−

ν

2

[(
a+d

(
q

1
2 −q−

1
2

))
q2ν+2s +

(
b+e

(
q

1
2 −q−

1
2

))
qν+s + c

]
.

(23)
On the other hand, from (21) and because Q(s) = k is a constant –notice that deg (Π) =
2– we have

∇xν0+1(s)Π(s) = k
{[(

a+ d
(
q

1
2 − q−

1
2

))
q2ν+2s +

(
b+ e

(
q

1
2 − q−

1
2

))
qν+s + c

]
(qs − qz)−

(
aq2s + bqs + c

)
(qν+s − qz)

}

(24)

where k is an arbitrary constant. Introducing (23) in (24), using the identity

∇xν0+1(s) = q
ν
2

(
q

1
2 − q−

1
2

)
qs

and comparing the coefficients of the powers of x(s) = qs we get a linear system of
three equations with four variables A1 , A2 , A3 and k . Choosing k = 1 and solving
the corresponding system we get, after some simplifications, the coefficients A1 , A2 and
A3. �
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In the next examples, since the technique is similar to the previous one we will omit the
details.

Example 3.4. The following relation holds

A1(z)Φν,ν(z) +A2(z)Φν,ν+1(z) +A3(z)Φν+1,ν+1(z) = 0 ,

where the coefficients A1 , A2 and A3 , are polynomials in x ≡ x(z) = qz , given by

A1(z) = f
(
a− f q2 ν

)
qz + a g q − f b qν+1 ,

A2(z) = q−
ν
2
−1
(
a− f q2 ν

) (
f q2 z + g qz+1 + h q2

)
,

A3(z) =
√
q (a q − f qν) ,

where a, b, c, f , g and h, are the coefficients of σ and φν (22).

Example 3.5. The following relation holds

A1(z)Φν−1,ν−1(z) +A2(z)Φν,ν−1(z) +A3(z)Φν,ν(z) = 0 ,

where the coefficients A1 , A2 and A3 , are polynomials in x ≡ x(z) = qz , given by

A1(z) =q−
1
2−ν

{
fq2z

[
− a2hq4 + agbqν+4 − q2ν+2

(
ag2q − 2fah+ fb2

)

− fgbq3ν+1
(
q2 − q − 1

)
+ fq4ν

(
g2 (q − 1) q − fh

) ]
+

gqz+1
[
− a2hq5 + aqν+2

(
gbq3+fhq2−fh

)
− q2ν+2

( (
fah+ fgb+ ag2

)
q2−

f
(
2ah−b2+gb

)
q−fah

)
+fq3ν

(
q2
(
g2q−fh+gb−g2

)
+fh

)
+f2hq4ν

(
q2−q−1

)]

− a2h2q6 + aghqν+5 (bq + gq − g) + fghq3ν+4 (gq + b − g)− f2 h2q4ν+2

− hq2ν+3
(
ag2q3 + fgbq2 + fg2q2 − 2fahq + fb2q − 2fg2q − fgb+ fg2

)}
,

A2(z) =
(
q−

ν

2 −q
ν

2

)(
fq2z+gqz+1+hq2

)(
fqz
(
fq2ν−aq2

)
+fqν+1(gq+b−g)−agq3

)
,

A3(z) =f (fqν−aq)
[(
fq2z+hq2

) (
fq2ν−aq2

)
+ gqz+1

(
fqν
(
qν+q−1

)
− aq3

)]
,

where a, b, c, f , g and h, are the coefficients of σ and φν (22).

Example 3.6. The following relation holds

A1(z)Φν−1,ν−1(z) +A2(z)Φν,ν(z) +A3(z)Φν,ν+1(z) = 0 ,

where the coefficients A1 , A2 and A3 , are polynomials in x ≡ x(z) = qz , given by

A1(z) = a2hq4−agbqν+3+ q2ν+2
(
fb2−2fah+ag2

)
−fgbq3ν+1+f2hq4ν ,

A2(z) = q−
1
2

(
fqν − aq2

) (
fqz+2ν − aqz+2 + gq2ν+1 − bqν+2

)
,

A3(z) = −q
v−3
2

(
f q2v − aq2

) (
qv+1 − 1

) (
gqz+1 + fq2z + hq2

)
,

where a, b, c, f , g and h, are the coefficients of σ and φν (22).

Example 3.7. The relation

A1(z)Φν,ν−1(z) +A2(z)Φν,ν(z) +A3(z)Φν+1,ν+1(z) = 0 ,

is verified when the polynomial coefficients A1 , A2 and A3 , in the variable x ≡ x(z) = qz ,
are given by

A1(z) = q
ν+1
2

(
fqz+ν

(
fq2ν−gqν+b−a

)
− f (h−b) q2ν+1 − aq (gqν−h)

)
,

A2(z) = q−z+ν+ 1
2

(
qz
(
fq2ν − a

)
+ qν (gqν − b)

) (
fq2z + gqz+1 + hq2

)
,

A3(z) = q2z (fqν − aq) + qz+ν
(
q (gqν − aq − b)− fqν

(
qν+1 − q − 1

))
+

qν+1
(
(h−b) qν+1 + gqν − h

)
,

where a, b, c, f , g and h, are the coefficients of σ and φν (22).
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4. Recurrences involving the solutions yν

In [16] the following relevant relation was established

∆(k)yν(s) =
C

(k)
ν

ρk(s)
Φν , ν−k(s), (25)

where

C(k)
ν = Cν

k−1∏

m=0

[
αq(ν +m− 1)τ̃ ′ + [ν +m− 1]q

σ̃′′

2

]
.

This relation is valid for solutions of the form (3) and (4) of the difference equation (1).

In the following, y
(k)
n (s) denotes the k-th differences ∆(k)yn(s).

Theorem 4.1. In the same conditions as in Lemma 3.2, any three functions y
(ki)
νi (s),

i = 1, 2, 3, are connected by a linear relation

3∑

i=1

Bi(s)y
(ki)
νi (s) = 0, (26)

where the Bi(s), i = 1, 2, 3, are polynomials.

Proof. From Lemma 3.2 we know that there exists three polynomials Ai(s), i = 1, 2, 3 such
that

3∑

i=1

Ai(s)Φνi,νi−ki(s) = 0,

then, using the relation (25), we find

3∑

i=1

Ai(s)(C
(k)
ν )−1ρki(s)y

(ki)
νi (s) = 0.

Now, dividing the last expression by ρk0(s), where k0 = min{k1, k2, k3}, and using (18) we
obtain

3∑

i=1

Bi(s)y
(ki)
νi (s) = 0, Bi(s) = Ai(s)(C

(k)
ν )−1φ(s + k0) · · · φ(s+ ki − 1),

which completes the proof. �

Corollary 4.2. In the same conditions as in Lemma 3.2, the following three-term recur-
rence relation holds

A1(s)yν(s) +A2(s)yν+1(s) +A3(s)yν−1(s) = 0,

with polynomial coefficients Ai(s), i = 1, 2, 3.

Proof. It is sufficient to put k1 = k2 = k3 = 0, ν1 = ν, ν2 = ν + 1 and ν3 = ν − 1 in
(26). �

Corollary 4.3. In the same conditions as in Lemma 3.2, the following ∆-ladder-type
relation holds

B1(s)yν(s) +B2(s)
∆yν(s)

∆x(s)
+B3(s)yν+m(s) = 0, m ∈ Z, (27)

with polynomial coefficients Bi(s), i = 1, 2, 3.

Proof. It is sufficient to put k1 = k3 = 0, k2 = 1, ν1 = ν2 = ν and ν3 = ν +m in (26). �
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Notice that for the case m = ±1 (27) becomes

B1(s)yν(s) +B2(s)
∆yν(s)

∆x(s)
+B3(s)yν+1(s) = 0, (28)

B̃1(s)yν(s) + B̃2(s)
∆yν(s)

∆x(s)
+ B̃3(s)yν−1(s) = 0, (29)

with polynomial coefficients Bi(s) and B̃i(s), i = 1, 2, 3. The above relations are usually
called raising and lowering operators, respectively, for the functions yν .

Let us now obtain a raising and lowering operators for the functions yν but associated
to the ∇/∇x(s) operators.

We start applying the operator ∇/∇x(s) to (13)

∇
∇x(s)

yν(s) =
∇

∇x(s)

[
Cν

ρ(s)
Φν,ν(s)

]

=
1

∇x(s)

[
CνΦνν(s)

(
1

ρ(s)
− 1

ρ(s− 1)

)
+

Cν

ρ(s− 1)
∇Φνν(s)

]
,

or, equivalently,

∇Φνν

∇x(s)
=

ρ(s− 1)

Cν

∇yν(s)

∇x(s)
− Φνν(s)

∇x(s)

[
ρ(s− 1)

ρ(s)
− 1

]
.

By Lemma (3.2) with ν1 = µ1 = ν2 = ν , µ2 = ν + 1 and ν3 = µ3 = ν +m, there exist
polynomial coefficients on x(s), Ai(s), i = 1, 2, 3, such that

A1(s)Φν,ν(s) +A2(s)Φν,ν+1(s) +A3(s)Φν+m,ν+m(s) = 0.

From (14)

Φν,ν+1(s) =
1

[ν + 1]q

∇Φν,ν

∇x(z)
=

1

[ν + 1]q

∇Φν,ν

∇x(z)
.

Therefore

A1(s)Φν,ν +
A2(s)

[ν + 1]q

[
ρ(s − 1)

Cν

∇yν
∇x(s)

− Φνν(s)

∇x(s)

(
ρ(s − 1)

ρ(s)
− 1

)]

+A3Φν+m,ν+m = 0.

Using now the Pearson equation (6) and dividing by ρ(s) we get

A1(s)yν(s) +
A2(q)

[ν + 1]q

[
σ(s)

φ(s− 1)

∇yν
∇x(s)

− yν(s)

∇x(s)

(
σ(s)

φ(s− 1)
− 1

)]

+A3
Cν

Cν+m
yν+m(s) = 0 .

Multiplying both sides by [ν + 1]qφ(s − 1) ,

A1(s)[ν + 1]qφ(s− 1)yν(s) +A2(s)σ(s)
∇yν
∇x(s)

−

A2(s)
σ(s)− φ(s− 1)

∇x(s)
yν(s) + [µ+ 1]qCνC

−1
ν+mA3φ(s− 1)yν+m(s) = 0.

Thus we have proven the following

Theorem 4.4. In the same conditions as in Lemma 3.2, the following ∇-ladder-type re-
lation holds

C1(s)yν(s) + C2(s)
∇yν(s)

∇x(s)
+ C3(s)yν+m(s) = 0, m ∈ Z, (30)

with polynomial coefficients Ci(s), i = 1, 2, 3.
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Notice that for the case m = ±1 (30) becomes

C1(s)yν(s) + C2(s)
∇yν(s)

∇x(s)
+ C3(s)yν+1(s) = 0, (31)

C̃1(s)yν(s) + C̃2(s)
∇yν(s)

∇x(s)
yν(s) + C̃3(s)yν−1(s) = 0, (32)

with polynomial coefficients Ci(s) and C̃i(s), i = 1, 2, 3. The above relation are usually
called raising and lowering operators, respectively, for the functions yn. Eq. (31) was firstly
obtained in [16, Eq. (3.4)].

To conclude this section let us point that from formula (25) and the examples 3.3, 3.5,
and 3.7 follow the relations

B1(s)y
(1)
ν (s) +B2(s)yν(s) +B3(s)y

(1)
ν+1(s) = 0,

B1(s)y
(1)
ν (s) +B2(s)yν−1(s) +B3(s)yν(s) = 0,

B1(s)y
(1)
ν (s) +B2(s)yν(s) +B3(s)yν+1(s) = 0,

(33)

respectively, being the last two expressions the lowering and raising operators for the
functions yν . Moreover, combining the explicit values of A1, A2 and A3 with formula (25),
one can obtain the explicit expressions for the coefficients B1, B2 and B3 in (33).

5. Applications to q-classical polynomials

In this section we will apply the previous results to the q-classical orthogonal polynomials
[2, 10, 11] in order to show how the method works. We first notice that these polynomials
are instances of the functions yν on the lattice x(s) = qs defined in (4). In fact we have
[13, 16]

Pn(x(s)) =
[n]q!Bn

ρ(s) 2πi

∫

C

ρn(z)∇xn+1(z)

[xn(z)− xn(s)]
(n+1)

dz, (34)

where Bn is a normalizing constant, C is a closed contour surrounding the points x =
s, s − 1, . . . , s − n and it is assumed that ρn(s) = ρ(s + n)

∏n
m=1 σ(s +m) and ρn(s + 1)

are analytic inside C (ρ is the solution of the Pearson equation (6)), i.e., the condition (5)
holds.

A detailed study of the q-classical polynomials, including several characterization theo-
rems, was done in [2, 9, 11]. In particular, a comparative analysis of the q-Hahn tableau
with the q-Askey tableau [9] and Nikiforov-Uvarov tableau [15] was done in [5]. In the
following we use the standard notation for the q-calculus [8]. In particular by (a; q)k =∏k−1

m=0(1− aqm), we denote the q-analogue of the Pochhammer symbol.
Since the q-classical polynomials are defined by (34) where the contour C is closed and

ν is a non-negative integer, then the condition (17) is automatically fulfilled, so Lemma 3.2
holds for all of them. Moreover, the Theorem 4.1 holds and there exist the non vanishing
polynomials B1, B2 and B3 of (26).

In the following we will assume that the three term recurrence relation is known, i.e.,

x(s)Pn(x(s)) = αnPn+1(x(s)) + βnPn(x(s)) + γnPn−1(x(s)) = 0, n ≥ 0

P−1(x(s)) = 0 , P0(x(s)) = 1, x(s) = qs.
(35)

where the coefficients αn , βn and γn can be computed using the coefficients σ , τ and
λ ≡ λn of (1), being λn given by (8) and (9) with ν = n . For more details see, e.g.,
[1, 11].

Since the TTRR and the differentiation formulas for the q-polynomials are very well
known (see e.g. [9, 11, 16]) we will obtain here two recurrent-difference relations involving
the q-differences of the polynomials and the polynomials themselves.
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5.1. The first difference-recurrece relation. If we choose ν1 = n − 1 , ν2 = n , ν3 =
n+ 1 , k1 = 1 , k2 = 1 and k3 = 0, in Theorem 4.1 one gets

A1(s)∆
(1)Pn−1(x(s)) +A2(s)∆

(1)Pn(x(s)) +A3(s)Pn+1(x(s)) = 0 .

Using [1, Eq. (6.14), page 193]

[σ(s) + τ(s)∆x(s− 1/2)]∆(1)Pn(x(s)) = α̂nPn+1(x(s)) + β̂nPn(x(s)) + γ̂nPn−1(x(s)),

where

α̂n =
λn

[n]q

[
q−

n
2 αn − Bn

τ ′nBn+1

]
, β̂n =

λn

[n]q

[
q−

n
2 βn +

τn(0)

τ ′n
− c3(q

−
n
2 − 1)

]
,

γ̂n =
λnq

−
n
2 γn

[n]q
,

to compute ∆(1)Pn(x(s)) =
∆Pn(x(s))

∆x(s) we get

[
A2(s)

λn

[n]q

(
q−

n
2 αn − Bn

τ ′nBn+1

)
+
(
σ(s) + τ(s)∆x

(
s− 1

2

))
A3(s)

]
Pn+1+

[
A1(s)

λn−1

[n−1]q

(
q−

n−1
2 αn−1 − Bn−1

τ ′n−1Bn

)
+A2(s)

λn

[n]q

(
q−

n
2 βn + τn(0)

τ ′n

)]
Pn+

[
A1(s)

λn−1

[n−1]q

(
q−

n−1
2 βn−1 +

τn−1(0)
τ ′n−1

)
+A2(s)

λnq
−

n
2 γn

[n]q

]
Pn−1+

A1(s)
λn−1q

−
n−1
2 γn−1

[n−1]q
Pn−2 = 0 ,

By (35) we may write

Pn−2(x(s)) =
x(s)− βn−1

γn−1
Pn−1(x(s))−

αn−1

γn−1
Pn(x(s))

so the above equality becomes
[

λn

[n]q

(
q−

n
2 αn − Bn

τ ′nBn+1

)
A2(s) +

(
σ(s) + τ(s)∆x

(
s− 1

2

))
A3(s)

]
Pn+1(x(s))+

[
− λn−1

[n−1]q

Bn−1

τ ′n−1Bn
A1(s) +

λn

[n]q

(
q−

n
2 βn + τn(0)

τ ′n

)
A2(s)

]
Pn(x(s))+

[
λn−1

[n−1]q

(
τn−1(0)
τ ′n−1

+ q−
n−1
2 x
)
A1(s) +

λn

[n]q
q−

n
2 γnA2(s)

]
Pn−1(x(s)) = 0 .

(36)

Comparing the above equation with the TTRR (35) one can obtain the explicit values of
A1, A2, and A3.

5.1.1. Some examples. Since we are working in the q-linear lattice x(s) = qs, for the sake
of simplicity, we will use the letter x to denote the variable of the polynomials [9, 11]. We
will consider monic polynomials, i.e., those with the leading coefficient equal to 1. In the
following we need the value of τn(x) for each family, which can be computed using (7).

Al-Salam-Carlitz I q-polynomials. For the Al-Salam-Carlitz I monic polynomials U
(a)
n (x; q)

we have (see [1, see table 6.5, p.208] or [11])

σ(x) = (1− x)(a− x) , τn(x) =
q
1−n
2

1−q

(
x− (1 + a)

)
,

τ(x) = τ0(x) , λn = − q
3
2−n(1−qn)
(1−q)2

,

and

αn = 1 , βn = (1 + a)qn , γn = −aqn−1 (1− qn) .
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The constant Bn is given by [1, Eq. (5.57), p. 147], Bn = q
1
4
n(3n−5)(1− q)n. Introducing

these values into the equation (36) it becomes
[
q
(
q−

n
2 − 1

)
A2(x) + a(1− q)qnA3(x)

]
U

(a)
n+1(x; q)+

[
q−

n
2
−

5
2A1(x) + q1+

n
2 (1 + a)

(
1− q

n
2

)
A2(x)

]
U (a)
n (x; q)+

[(
q

n+3
2 (1 + a)− q2−nx

)
A1(x) + aqn (1− qn)A2(x)

]
U

(a)
n−1(x; q) = 0.

Comparing with the TTRR (35) for the Al-Salam I polynomials we obtain a linear system
for getting the unknown coefficients A1 , A2 and A3

q
(
q−

n
2 − 1

)
A2(x) + a(1− q)qnA3(x) = 1 ,

q−
n
2
−

5
2A1(x) + q1+

n
2 (1 + a)

(
1− q

n
2

)
A2(x) = (1 + a)qn − x ,

(
q

n+3
2 (1 + a)− q2−nx

)
A1(x) + aqn (1− qn)A2(x) = aqn−1 (qn − 1) .

The solution of the above system is

A1(x) =
aqn

(

1+q
n
2

)(

(1+a)−q−
n
2 x

)

aq−
5
2

(

1+q
n
2

)

−q(1+a)

(

q
n+3
2 (1+a)−q2−nx

) ,

A2(x) =
−aq−

7
2 (1−qn)−

(
(1+a)qn−x

)(
q
3
2 (1+a)−q2−

3n
2 x

)

(

1−q
n
2

)

[

aq−
5
2

(

1+q
n
2

)

−q(1+a)

(

q
n+3
2 (1+a)−q2−nx

)] ,

A3(x) =
a+q

11
2 −2nx2+q−

n
2

(
a−(1+a)q5x

)

a(1−q)
[

aqn+q
3n
2

(
a−(1+a)2q5

)
+(1+a)q

11
2 x

] .

(37)

Then, the Al-Salam I q-polynomials satisfy the the following relation

A1(x)∆
(1)U

(a)
n−1(x; q) +A2(x)∆

(1)U (a)
n (x; q) +A3(x)U

(a)
n+1(x; q) = 0 , (38)

where the coefficients A1 , A2 and A3 are given by (37).
Notice that the coefficients A1 , A2 and A3 are rational functions on x. Therefore,

multiplying (38) by and appropriate factor it becomes a linear relation with polynomials
coefficients.

Alternative q-Charlier polynomials. In this case (see [1, table 6.6, p.209])

σ(x) = q−1x(1− x) , τn(x) = − q−
n+1
2

1−q

( (
1 + aq1+2n

)
x− 1

)
,

τ(x) = τ0(x) , λn = q
1
2−n(1−qn)(1+aqn)

(1−q)2
,

and, for the monic case, αn = 1

βn =
qn
(
1 + aqn−1 + aqn − aq2n

)

(1 + aq2n−1) (1 + aq2n+1)
, γn =

aq3n−2 (1− qn)
(
1 + aqn−1

)

(1 + aq2n−2) (1 + aq2n−1)2 (1 + aq2n)
.

The corresponding normalizing constant Bn is given by

Bn =
(−1)nq

1
4
n(3n−1)(1− q)n

(−aqn; q)n
.

Following the same procedure as before we obtain the following relation for the alternative
Charlier q-polynomials:

A1(x)∆
(1)Kn−1(x; a; q) +A2(x)∆

(1)Kn(x; a; q) +A3(x)Kn+1(x; a; q) = 0 ,
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with the coefficients

A1(x) =
a
(
1 + aq

n

2

) ((
1 + aq2n+1

)
x− q−

n

2

)
x

q2 (1 + aq2n−2) (1 + aq2n−1) (1 + aq2n) (1 + aq2n+1)
,

A2(x) =
−q

3n+1
2 (1+aqn)x+

(
1+aq2n

) (
q1+

n

2

(
1+aq2n+1

)
+ aq2n+

1
2 (1+q) + q

3n
2

(
1−aq2n

))
x2

q3n (1 + aqn) (1 + aq2n) (1 + aq2n+1)
−

q
3
2

(
1 + aq2n−1

) (
1 + aq2n+1

)
x3

q3n (1 + aqn) (1 + aq2n) (1 + aq2n+1)
,

A3(x) =
q

n+1
2 + aq2n

(
q

n

2 + 1 + q
1
2

)
− q

3
2

(
1− aq

3n
2

) (
1 + aq2n−1

)
x

q
9n
2 (1 + aqn)

.

Big q-Jacobi polynomials. In this case (see [1, see table 6.2, p.204] or [11])

σ(x) = q−1(x− aq)(x− cq) , λn = −q
1
2
−n

(
1− abq1+n

)
(1− qn)

(1− q)2
,

τn(x) =
q

1−n
2

1− q

(
1− abq2+2n

q
x+ a(b+ c)q1+n − (a+ c)

)
, τ(x) = τ0(x) ,

and, for the monic case αn = 1,

βn =
c+a2bqn

(
(1+b+c)q1+n

−q−1

)
+a

(
1+b+c−qn

(
b(1+q)+c

(
1+q+b+bq−bq1+n

)))

q−1−n(1−abq2n)(1−abq2n+2)
,

γn =− a (1− qn) (1− aqn) (1− bqn) (1− cqn) (c− abqn)

q−1−n (1− abq2n−1) (1− abq2n)2 (1− abq2n+1)
.

The corresponding normalizing constant is

Bn =
(1− q)nq

1
4
n(3n−1)

(abq1+n; q)n
.

The big q-Jacobi polynomials satisfy the following relation

A1(x)∆
(1)pn−1(x; a, b, c; q) +A2(x)∆

(1)pn(x; a, b, c; q)+

A3(x)pn+1(x; a, b, c; q) = 0 ,

with the coefficients A1 , A2 and A3 given by

A1(x) =
aq

−

1
2
+n(1−abqn+1)(1−x)(c−bx)

(

c−(b+c)x+bx2

)

1−abq2n−1 ×

{

(1− q)q
n

2
(

1− abq2n+2
)





c+a

(

1+b+c+b(c+a(1+b+c))q2n+1
−(c+b(1+a+c))qn(1+q)

)

q−(n+1)(1−abq2n)(1−abq2n+2)
− x



D(x)−

(1− q)qn
(

1− abq2n
)

[

(

1− abq2n
) (

−c+ a
(

− 1 + (b+ c)qn+1
))

+

q
n

2

(

c+ a
(

1 + b+ c+ b
(

c+ a(1 + b+ c)
)

q2n+1 −
(

c+ b(1 + a+ c)
)

qn(1 + q)
))

N(x)
]

}

,

A2(x) = a(1− q)qn
(

1− abq2n
)2 (

1− abq2n+2
)

(1− x)(c− bx)
(

c− (b+ c)x+ bx2
)

N(x),

A3(x) =
(

1− abqn+1
) (

1− abq2n+2
)

(1− x)(c− bx)D(x)+

q−1− n

2

(

1− q
n

2

)(

1 + abq1+
3n
2

)

(

1− abq2n
)2 (

1− abq2n+2
)

(

c− (b+ c)x+ bx2
)

N(x),

where the polynomials N(x) and D(x) are given by

N(x) = aq2(1−qn)(1−aqn)(1−bqn)(1−cqn)(c−abqn)

(1−abq2n)2(1−aq2n+1)
−
[
q

(
−c+a(−1+(b+c)qn)

)
1−abq2n

+ q
1−n

2 x
]
×




c+a2bqn
(
−1−q+(1+b+c)qn+1

)
+a

(
1−(b+c)

(
−1+qn+qn+1

)
−bcqn

(
1+q−qn+1

))

q−n−1(1−abq2n)(1−abq2n+2) − x



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and

D(x) = aq(1−qn)(1−aqn)(1−bqn)(1−cqn)(c−abqn)
1−abq2n+1 + 1−q

n

2

1−abq2n+2×
{
−c+ a2bq

3n
2

(
−1− q + (b+c)qn+1− q1+

n

2

)
+ a
[
− 1 + (b+c)

(
q

n

2 + qn + qn+1
)
−

bc
(
q

3n
2 + q1+

3n
2 + q2n+1

)][
(c+ a)q1+

n

2 − a(b+ c)q1+
3n
2 − q

1
2

(
1− abq2n

)
x
]}

,

respectively.

5.2. The second difference-recurrece relation. If we choose ν1 = n − 1 , ν2 = n ,
ν3 = n+1 , k1 = 0 , k2 = 0 and k3 = 1 in Theorem 4.1, and proceeding as in the previous
case one gets

A1(x)Pn−1(x; q) +A2(x)Pn(x; q) +A3(x)∆
(1)Pn+1(x; q) = 0 , (39)

where the coefficients A1, A2 and A3, satisfy the linear relation

A3(x)
[(

q−
n+1
2 − Bn+1

αn+1τ ′n+1Bn+2

)(
x−βn+1

)
+
(
q−

n+1
2 βn+1 +

τn+1(0)
τ ′n+1

)]
Pn+1+

[
A3(x)

Bn+1

αn+1τ ′n+1Bn+2
γn+1 +

(
σ(x) + τ(x)∆x

(
s− 1

2

)) [n+1]q
λn+1

A2(x)
]
Pn+

(
σ(x) + τ(x)∆x

(
s− 1

2

)) [n+1]q
λn+1

A1(x)Pn−1 = 0 .

Comparing the above relation with the three-term recurrence relation (35) one can obtain
the explicit expressions for the coefficients A1, A2 and A3 in (39).

5.2.1. Some examples.

Al-Salam and Carlitz I polynomials. Using the main data for the Al-Salam and Carlitz I
polynomials we obtain the relation

A1(x)U
(a)
n−1(x; q) +A2(x)U

(a)
n (x; q) +A3(x)∆

(1)U
(a)
n+1(x; q) = 0

where

A1(x) =aqn−1 (1− qn)x, A2(x) =
[
a
(
1 + q

n+1
2

)
qn −

(
(1 + a)qn − x

)
x
]
,

A3(x) =− a
1− q

1− q
n+1
2

q
3n+1

2 .

Alternative q-Charlier polynomials. In this case, one gets

A1(x)Kn−1(x; a; q) +A2(x)Kn(x; a; q) +A3(x)∆
(1)Kn+1(x; a; q) = 0 ,

A1(x) =
a

(
1−qn

)(
1+aqn−1

){
aqn
(
1−qn+1

)
+q

−

n+1
2

(
1+aq2n+1

)[(
1+aqn+1

)
−q

−

n+1
2

(
1+aq2n+2

)]
x

}

q2−3n
(
1+aq2n−2

)(
1+aq2n−1

)(
1+aq2n

) ,

A2(x) = −x
{
aqn
(
1− qn+1

)
+ q−

n+1
2

(
1 + aq2n+1

)[(
1 + aqn+1

)
− q−

n+1
2

(
1 + aq2n+2

)]
x
}
+

a2q3n−1
(
1−qn

)(
1−qn+1

)
+q

n−1
2

(
1+aqn−1+aqn−aq2n

)(
1+aq2n+1

)[(
1+aqn+1

)
−q

−

n+1
2

(
1+aq2n+2

)]
x

(
1+aq2n−1

)(
1+aq2n+1

) ,

A3(x) = a(1− q)q
n+1
2

(
1 + aq2n+1

)
x2

Concluding remarks. In this paper we present a constructive approach for finding re-
currence relations for the hypergeometric-type functions on the linear-type lattices, i.e.,
the solutions of the hypergeometric difference equation (1) on the linear-type lattices. Im-
portant instances of “discret” functions are the celebrated Askey-Wilson polynomials and
q-Racah polynomials. Such functions are defined on the non-uniform lattice of the form
x(s) = c1(q)q

s+ c2(q)q
−s + c2(q) with c1c2 6= 0, i.e., a non linear-type lattice and therefore

they require a more detailed study (some preliminar general results can be found in [16]).
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[4] R. Álvarez-Nodarse and J. L. Cardoso, Recurrence relations for discrete hypergeometric functions. J.
Difference Eq. Appl. 11 (2005), 829-850.
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Sevilla. Apdo. Postal 1160, Sevilla, E-41080, Sevilla, Spain

E-mail address: address ran@us.es
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