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In the present paper, starting from the second-order difference hypergeo-
metric equation on the non-uniform lattice z(s) satisfied by the set of discrete
hypergeometric orthogonal ¢g—polynomials {pn }, we find analytical expressions
of the expansion coefficients of any ¢—polynomial 7y, (z(s)) on z(s) and of the
product rm (2(s))g;(x(s)) in series of the set {p, }. These coefficients are given
in terms of the polynomial coefficients of the second-order difference equations
satisfied by the involved discrete hypergeometric ¢—polynomials.
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1. INTRODUCTION.

The expansion of any arbitrary discrete polynomial gy, (z) in series of a
general (albeit fixed) set of discrete hypergeometric polynomial {p,(z)} is a
matter of great interest, solved only for some particular classical cases (for
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areview see [8,9, 17] up to the middle of seventies and [5, 40], since then up
to now). This is particularly true for the deeper problem of linearization
of a product of any two polynomials. Usually, the determination of the
expansion coefficients in these particular cases required a deep knowledge
of special functions and, at times, ingenious induction arguments based in
the three-term recurrence relation of the involved orthogonal polynomials
[9, 14, 16, 17, 22, 25, 34, 42, 43, 44]. Only recently, general and widely
applicable strategies begin to appear [5, 6, 7, 13, 19, 24, 26, 27, 29, 30, 31,
39, 41].

One of the reasons for this increasing interest is the applications of such
kind of problems in several branches of Mathematics and Physics. For
example, Gasper in his paper [17], motivated the connection and lineariza-
tion problem in the framework of the positivity. Nine years after, one of the
most famous conjecture: The Bieberbach conjecture (|a,| < n) for analytic
and univalent functions of the form f(z) = z+ > >~ ,anz™ in |z| < 1, has
been solved by Louis de Branges using an inequality proved by Askey and
Gasper in 1976 [10] in the framework of the positivity. In fact they proved
that for 0 <t <1, a > -2,

n

«,0 _(Oé+2)n _n7n+a+27a_+2
> A = R (T

t> >0, (1)

where (a), is the Pochhammer symbol and P2*%(z) denotes the classical
Jacobi polynomials. Here in this work we will study the problem of finding
the the connection ¢y, and linearization cj,,, coefficients, i.e., the coeffi-
cients on the expansions [9]

G () =Y Conpn (), (2)
n=0

m+j

qm(m)r]’ (35) = Z ijnpn(m): (3)
n=0

respectively, where ¢, (z) and r;(x) are any mth-degree and jth-degree
polynomials, and {p,} denotes an arbitrary set of polynomials.

Notice that, since the involved hypergeometric series in (1) is terminat-
ing, i.e., has a finite number of terms, the above problem can be considered
as a connection problem between two families of polynomials where all the
connection coefficients are positive (and equal to 1 in this example). So the
Gasper’s words about the importance in applications of the connection and
linearization problems, and the positivity of the corresponding coefficients,
become very actual and of interest.
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The first who considered the linearization problem for discrete polyno-
mials (notice that in the de Branges’s proof the “continuous” Jacobi poly-
nomials have been used) was Eagleson in 1969 for Kravchuk polynomials
[14]. Later on, Gasper [17] studied the connection problem for the Hahn
h®P(x, N) polynomials

J
W@, M) =" e by (@, N),  j <min{N —1,M -1},
n=0

and completely solved it (the particular case N = M, of interest because
¢jn > 0, he solved one year earlier in [16]), from where, by limiting process
it is possible to obtain the connection coefficients for Jacobi polynomials
as well as for other continuous and discrete families (see [16, 17] for further
information on this). Some years later, Askey and Gasper [11] considered
the linearization problem when the involved polynomials were the discrete
polynomials of Hahn, Meixner Kravchuk and Charlier (for a review on
discrete polynomials see [32]) but only in the special case when all r,,,
g; and p, belong to the same family with the same parameters (in [17]
some preliminary results regarding to the positivity of such coefficients
were discussed).

In all these cases, continuous and discrete, the proofs were based on very
specific characteristic of the involved families, particularly their hyperge-
ometric representation and generating functions have been exploited for
finding the corresponding solution.

It is important to remark that, even in the case when it is possible
to compute explicitly the connection or the linearization coefficients, not
always is easy to show that they are nonnegative which were important
as we already pointed out. This led to a recurrent method, i.e., to find
a difference equation for the coefficients ¢, and cjmn, respectively, and
from it to deduce their non negativity. The first who did it was Hylleraas
[22] in 1962 for a product of two Jacobi polynomials. In fact Hylleraas was
able to solve the obtained recurrence relation for some special cases and
prove the non negativity of the coefficients in some of these cases. Later,
this method has been used by Askey and Gasper (see e.g. [11]) to prove
the non negativity of the linearization coefficients for certain families of
orthogonal polynomials.

More recently, Ronveaux, Zarzo, Area and Godoy [6, 19, 39], developed
a recurrent method, called NAVIMA algorithm, for solving the connection
problem (2) for all families of classical polynomials, as well as some spe-
cial kind of linearization problem and used it for solving different problems
related with the associated, Sobolev-type polynomials, etc [20, 21]. Al-
though, they use it only for solving a very special linearization problem,
it can be easily extended for solving the general problem (3) [13]. Let us
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point out that there is a very similar algorithm for finding the recurrence
relation for both, connection and linearization coefficients due to Lewanow-
icz [26, 27, 29]. The most important tool in the both aforesaid algorithms
was the structure relations (or Al-Salam & Chihara characterization) that
the polynomials p,, in (2) and (3) satisfy.

Both problems, connection and linearization, are of great interest also in
Physics. For example, for the 2! —pole transitions in hydrogen-like atoms
(and other related systems) the radial part of the probability is proportional
to integrals of the form

(o]
]’ll2 :/ [Lfilﬂ(alr)Lle;“(agr)]rme*"dr,
0

where L!, are the Laguerre polynomials. This kind of integrals also appears
in the theory of Morse oscillators as well as in transitions for spherical-
symmetric systems [34]. Furthermore, for spherical-symmetric the Wigner-
Ekkart theorem [15] allows to write the matrix elements of certain irre-
ducible operators in terms of products of two (or more) 3j symbols (Hahn
and dual Hahn polynomials [32]), 6 symbols (Racah polynomials [32]), etc
as well as their g—analogues.

To conclude this introduction we need to say that in the world of g—po-
lynomials (discrete case) there are not so many results concerning to these
problems. One of the first who was interested on this was Rogers [37, 38]
who used a g—analogue of the connection formula for Jacobi polynomials
Py (x) = ZE”Z/OQ] cijnB’gj(m), ¢cn,; > 0, for the g—ultraspherical polyno-
mials to prove some Rogers-Ramanujan identities (see also [36]). Also, very
recently, this problem has been considered in [3, 4, 28] for g—polynomials
in the exponential lattice z(s) = ¢° [2, 33, 32], where the authors obtained
recurrence relations for the coefficients in (2) and (3). Again, in these
works the use of the structure relations plays a fundamental role. But
not for any arbitrary family of g—polynomials there exist such relations.
In [2] it is proven that all families of g—polynomials on the exponential
lattice z(s) = ¢1¢® + c3 satisfy such a relation, but for the general lattice
z(s) = c1¢® + c2q~* + c3 [12, 32] the problem is still open. Then, the fol-
lowing question naturally arises: What to do in case when we do not have
structure relations? This question was solved for the continuous case in
[7, 41] and for the discrete case in [5].

The main goal of the present paper is give and alternative method for
finding the connection and linearization problem for g-hypergeometric poly-
nomials obtaining explicit expressions for the coefficients ¢, and cjpy, in
(2)-(3) in terms of the coefficients of the second order difference equa-
tion of hypergeometric-type on the general non-uniform lattice z(s) =
€1q® + c2q~® + c3 that such polynomials satisfy. The resulting expansion
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coefficients are given in a compact form in terms of the polynomial co-
efficients of the corresponding second-order difference equations. Notice
that the above lattice contains, as a particular case, the exponential lattice
z(s) = ¢° which has been firstly considered in [4, 28]. The advantage of the
present approach is that it only requires the knowledge of the second order
difference equation satisfied by the involved hypergeometric g-polynomials
as well as their hypergeometricity, i.e., the Rodrigues-type formula. Then,
contrary to the algorithm presented in [4, 3, 28], we do not require in-
formation about any kind of recurrence relation of the involved discrete
hypergeometric ¢g-polynomials nor we need to solve any “high” order recur-
rence relation for the connection coefficients themselves.

The structure of the paper is as follows. In Section 2, we collect the
basic background [32] used in the rest of the work; namely, the second-
order hypergeometric difference equation on the uniform lattice z(s) and its
polynomial solutions (called as hypergeometric ¢g-polynomials). In Section
3, we present the main results of the paper, namely, the expressions for
the connection and linearization coefficients cy,,, and cjmy, respectively.
In particular, we show how the main formulas and theorems given in [5]
for the linear lattice z(s) = s, as well as the ones given in [7, 41] hold as
particular cases. Finally, in Section 4, some examples are developed.

2. SOME BASIC PROPERTIES OF THE Q—POLYNOMIALS.

Here we will summarize some of the properties of the ¢g-polynomials [32]
useful for the rest of the work.

2.1. The hypergeometric-type difference equation.
Let us consider the second order difference equation of hypergeometric
type

A vyls) Ay(s)
7O Rals— P vats) T *)

o(s) = 5(2(s) — 37(@(s) Ax(s — 1), 7(s) = 7(a(s)), D
VIs) = F(8) — f(s — 1), Af(s) = f(s+1) — f(5),

where v/ f(s) and Af(s), denote the backward and forward finite difference
derivatives, respectively, 5(x) and 7(x) are polynomials in z(s) of degree at
most 2 and 1, respectively, and A is a constant. It is important to notice that
the above difference equation has polynomial solutions of hypergeometric
type iff z(s) is a function of the form

z(s) = c1(9)q’ + e2(Q)q * +e3(q) = (e’ +q " +es(e), (5)
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where ¢, ¢, ¢3 and ¢g" = 2—; are constants which, in general, depend on ¢
[12, 32, 33].

The polynomial solutions of (4) is determined by the g—analogue of the
Rodrigues Formula on the non-uniform lattices [32, page 66, Eq. (3.2.19)]

B,
p(s)

(n) s m = _V Y ’

Py(s)y =

where the function p,(s) is given by

n

pn(5) =p(s+n)HU(s+i), and  zp,(s) = z(s + 2), (7)

and p(s) is the solution of the Pearson-type difference equation

A

Aals = 1) [o(s)p(s)] = 7(s)p(s). (8)
Throughout the paper [n], denotes the so called g-numbers and [n],! are
the g-factorial [n], = =L+, [n],! = [1]4[2], - [n,-

q2—q 2

Also the difference derivatives yg, (s), of the polynomial solution P, (s),,
defined by

A A A
Yun(8)a = Az 1(8) Azg_2(s) " Az(s) [Pa(s)

A= LP[P(s)g] 5 (9)

satisfy a Rodrigues-type formula

An Bn n
yn(8)g = DO Po(5)g = =2 71" [oa(s)], (10)
pi(s)
(n) V V V L
where 7, ' f(s) = f(s)], is given by (see
k ( ) Vl'k+1(8) Vl'k+2(8) Vl'n(s)[ ( )] (
appendix A)
(n) [k Vn(s —1+3)
Vi f(s) = g(—n = fls=1), (11)
= H Vl”n(S _ %l—l)
m=0
_ [n]y!  a . .
and A,y = ————— —, where a, denotes the leading coefficient of the
[n — k]q' Bk

polynomial P,, i.e., P,(z) = a,x"™+ lower order terms. Here, and through-
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out the paper we will use the following notation for the symmetric g¢-
binomial coefficients

n (]!
= — (12)
{ m ] ¢ [mlglln —m],!

In this paper we will deal with discrete orthogonal g-polynomials, i.e.,
polynomials with a discrete orthogonality

b—1
Z Po(8)qPr(8)gp(8) Ax(s — 1) = Spmds, s=a,a+1,...,b—1, (13)

where p(z) is a solution of the Pearson-type equation (8), and it is a non-
negative (not identically zero) weight function, i.e., p(s) A z(s — 1) > 0,
a < s < b—1, supported on a countable subset of the real line [a,b]
(a,b can be +o00). This condition follows from the difference equation of
hypergeometric-type (4), providing that the following boundary condition

a(s)p(s)z" (s — 1) =0, k=0,1,2,.., (14)

holds [33]. Notice that the above boundary condition (14) is valid for
k = 0. Moreover, if we assume that a is finite, then (14) is fulfilled at
s = a providing that o(a) = 0 [32, §3.3, page 70]. In the following we will
assume that this condition holds. The squared norm in (13) is given by
[32, Chapter 3, Section 3.7.2, pag. 104]

b—n—1
&, = (-1)"4,,B;, Z pn(s) A xn(s —§). (15)

s=a

In the most general case, the solution of the g-hypergeometric equation
(4) corresponds to the case

o(s) = A[s — s1]4[s — s2]4[s — s3]4[5 — 54]q, A =const 0. (16)
and has the form [33]

—n 2uAn=1+Y"Y s g5 sitstn
— " q =470 :
Pn(s)qg = Dn 4 ( girtseth gsitsstu gsitsati va,q),(7)
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1

where, D,, is a normalizing constant, k, = q% — ¢~ 2, and the basic hyper-
geometric series 5, are defined by [18]

a,. .., — (a1; )k ar,q) 2 [ . 1)]”_’"“
r 1 2 ’
(’01’<b1,.--, ) ; (b1; 0k (bp; Ok (45D (=1
and
k—1
(a:q)x = [[ @ —ag™), (18)
m=0

is a g—analogue of the Pochhammer symbol.

3. MAIN RESULTS.

Here we find the explicit expression of the coefficients ¢,,, in the expan-
sion of an arbitrary g-polynomial @Q,,(s), on z(s) in series of the orthogonal
discrete hypergeometric set of g-polynomials { P, } in the same non-uniform
lattice z(s), i.e.

8)g = Zcmnpn(s)q . (19)
n=0

THEOREM 3.1. The explicit expression of the coefficients cpy, in the ex-
pansion (19) is

n b—n—1
o = TP S A Q9] pus) A (s~ 1)
e (20)
(1) 22 3 AQun(s = mlon(s =) A ale = 252,

Proof. Multiplying both sides of Eq. (19) by Py (s)gp(z) Az(s—3), and
summing between a and b — 1, the orthogonality relation (13) immediately
gives

nsa
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Next we use the Rodrigues formula (6) for P, (s),. This yields
Cmn = d2 ZQm V( )[pn( )]A:E(S—%)Z

- fj— Z Qn()y v [V ()]

Then, using the formula of summation by parts

N b—1
Zf ) oe) = fadg)| |~ 3 oo~ 1) v f)

we obtain for ¢,,, the expression

B 61y 9 ] = 25 900y 9 )], 22

‘a—l =s—1

n s=a

Notice that the first term is proportional to p1(s) = (s + 1)p(s + 1), so
since the condition (14), it vanishes. Now, making the change s — s — 1 in
the second term, we find

b—2
omn =~ )0 71 Ipn(9)].
But
(n) S = v (n) S T2 S) = s = s
Tl = ool O Ioula)], Vaa(a) = vala+ 1) = da(s),

then, the last equation transforms

b—2
mn == 3 gl @n@ v [ o]

Repeating this process k times, we obtain

b 1

k—
s=a—k
b k—1

= (02 S ABQ(s)) T [pu(s)] D (s — ).

nsak
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Putting k = n and using v%") [pn(5)] = pn(s) as well as that pp(a —k) =0
for k = 1,2,...,n (see Eq. (7)), we obtain the desired expression (20) for
Cmn.-

To obtain the second expression for ¢, we transform (20) using the
identity

(n) s _ \V4 (n) s — _ \Y% (n) s — )
T onts = 1) = s 8 [ouls = 1)) = 512 9" ou(s = 1)
Then Eq. (22) becomes

o = = dQZ w8 [V5" u(®)]]

Applying k—times the same technique as before we find
Bux~ V¥ v v
Cmn = (—1)* m(8)q] X
P DL S TR O Ll
Vi lou(s = B)] A a(s — 140,

The change k£ = n and the fact that

MO (s—m) = Y% .
A Qm(s —n) V(s — =1 vx()[Qm()]

lead us to the result. ||

COROLLARY 3.1. If Qm is an hypergeometric polynomial satisfying an
equation of the form (4) but with coefficients &, T, and A, then, the explicit
expression of the coefficients ¢y, in the expansion (19) is

(_l)anBmAmn ~— |l m—=—n
Cmn = d% ; (—1) I X

q

bf Pm( S_ZPn()Awm(S_l_l)Amn( _%)
n(S) H A:Em k+l+1)

Proof. The proof follows from the equations (20), (9) and (11). |

As a simple consequence of the theorem 3.1 we obtain the following
result for the linearization problem, which consists of finding the expansion
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coefficients cjp,, of the relation

m+j

R;(8)4Qm(8)s = D CimnPa(8)q , (24)
n=0

where {P,} is a discrete orthogonal set of hypergeometric g-polynomials
which satisfy the difference equation (4) and @, and R; are arbitrary
g-polynomials on the same lattice z(s).

THEOREM 3.2. The explicit expression of the coefficients cjmn in the
expansion (24) is

(-1)"Bn "~ (n)
Cimn = 2 Z A [Qm(8)gRj(8)g] pn(s) Azn(s — ) (25)
Bir__ v v
= (-1)"=2 8)qR; (8)qlpn(s — n)Ax(s — 2L,
= (VB T g @ e elon(s — ma(s = 24

THEOREM 3.3. Let R; be the j—degree g-hypergeometric polynomial so-
lution of the second order difference equation on the non-uniform lattice

>

y(s
Ax(s

5(s) A wvy(s)

Ax(s — 1) va(s) +X5y(s) =0, (26)

+ 7(s)

~—

Then, explicit expression of the coefficients Cjmn in the expansion (24) is
given by

k=0 q
b—n—1 (27)
—n— pn(S) A :En(s — l) . .
2 pr(s +n— k)2 (AR Qu())[vy p(s +n — k)],
or, equivalently,
(_1)ané' - n ~
Cimn = p J . Aj X
" k=0 q
(28)
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Proof. Using the g—analog of the Leibniz formula in the non-uniform
lattice (5) [1]

OS] = 30| A9 fs+n =8 A0 g9, 29)

k=0
for the expression A™ [Q,,(s),R;(s),] in Eq. (25), as well as the Rodrigues-
type formula (9) for A®R; (s +n — k),
A48,

ABRy(s 4~ k)y = =
](S n )q pk(5+n_ )

Vk [ (S+n_k)]a

the desired result holds. The second formula can be obtained analogously
but starting from the second equation of Theorem 3.2. |

COROLLARY 3.2. The explicit expression of the coefficients cjpmy in the
expansion (24) is given by

~ n j—k b—n—1
_ (=1)"B.B; n] o [ g pi(s+n—k—1)
e > L 3l Kl I ol Ut

k=0 q =0 q s=a

Azi(s+n—k—1—13)

i—k 2 [ATRQu(8)g] pn(s) A (s — ) -
H Azxj(s+n—Fk— _m+21+1)
m=0

Proof. To prove this it is sufficient to substitute the expression (11) in
27). 1

Notice that the corollary 3.1 also follows from the above formula if we put
m = 0 since Qo = 1.

3.1. Special case: The classical discrete polynomials.
In the special case when z(s) is the linear lattice, i.e, z(s) = s, from
Theorem 3.1 and 3.2 we recover the main results in [5] for the connection
and linearization problems, respectively

THEOREM 3.4. Let be x(s) the linear lattice x(s) = s. Then, the explicit
expression of the coefficients ¢y, in the expansion (19) is

(—1)”3 b—n—1 n
Cmn = > = Z A"Qm(s)p(s +n H s+ k)
n s=a k=1
(_1)an b—1 n—1
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If Q. is also an hypergeometric polynomial, then

_lanBmAmnbnlmn nS _ ~
Cmn - &Y Z L ( n) (=1)*pin(s — k)

2
dz (s)

s=a

n b—1m—n —n
:( )Bdf Amnzzpn ( L )(—l)kp}b(s—n—k).

s=a k=0

THEOREM 3.5. Let be x(s) the linear lattice x(s) = s. Then, the explicit
explicit expression of the coefficients cjmy in the expansion (24) is given by

(—1)"BaB; & |k ()
LY n\ i 3D J— pn(s
Cimn = TJ (k) Ajlc (_1)1 < l ) mx
k=k_ s=a [=0

n R . ky ~
pils +n—k = DIY" *Qu(s +n— k] = TP S (Z) Ajex

k=k_

b—1 j—k
=ZZ ( )%ﬁj(s—k—l)[vn_@m(s—kﬂ,

where k_ = max(0,n —m) and ky = min(n, j).

In all the above formulas (Z) denotes the binomial coefficients Wlm),

3.2. Special case: The classical continuous case.

Finally, we will show how from Theorem 3.1 we can recover (formally)
the general results for the continuous case [7, 41]. In order to do this we
notice that, formally, if we make the change z(s) = sh — =z, then [32],

Py(x(s +1)) — Py(x(s)) _ Pn(sh+h) — Py(sh) _ Pu(x+h)— Pn(:v)

(s + 1) — zx(s) h B h

Here we have used the notation P, (x(s)) = P, (s),. Thus, lim LP((5)) =
h—0 Amk(s)

P} (z) and hm AP P, (s5), = dki;k(m). Then, by similar limiting processes

Eq. (4) transforms into the classical hypergeometric differential equation
32]

o(z)P)(z) + 7(z) P} (z) + ApPn(z) = 0.

where o(x) = limp,_0d(z(s)), 7(z) = limp_o 7(z(s)) being z = sh. Fur-
thermore, the Pearson-type equation (8) becomes [o(x)p(z)]" = 7(z)p(x)
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and also [32] pn(s;h) = p(z)e™(z). Finally, the Rodrigues-type formula
(6) transforms into

k T n n n—k
BUP,(5)y = 2 g, (5)] - TR = ST T )" o)
Now we put z(s) = sh in (20)
i (b—1)h—nh
e = St ST A [Quu(ai)y] /i )1 =
n z;=ah
(—].)nB B—nh

B d%T)) Z A(n) [Qm(zi)g] pn(xi/h; W), Tip1 = i + h.

Let us prove that the above sum transforms in the limit in a integral from
which the main result in [41, Theorem 3.1, page 163] easily follows. More
concretely,

lim ¢ (h) = p(x)o™(x) dz,

h—0 d?

k
2 dz

(—nan/ﬁcﬁQmmg
A

where d? is the squared norm for the polynomials orthogonal with respect

to p(z) [32].
In order to do that, let us show that the quantity

B—nh

(@) = | 3 & @ ol 00 - [ e @@

can be small enough for h sufficiently small. So,

B—nh

|n(Qums )] < Z A [Qu(sh)] - Q) ()

pn(i/h; h)h+

B—nh

Z ‘Q (z:) {pn(zi/h; h) — pn(2 }‘}H_

B—nh

X O wonuleh /A Q) (@)pn () da

)

where Q,(ff) denotes the n-th derivative of @, and p,(z) = p(z)o™(z). Let
consider first the case when B is bounded. In this case the first integral
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can be small enough (less that €/3) for h sufficient small providing that
pn(z;/h;h) is bounded. In the following we will suppose that the limit
function p,(z), n > 1 is a continuous function in [A4, B]. For the second
sum we can do the same since @), is a polynomial and then it is bounded
in any closed interval. Finally we will consider the last sum which can be
rewritten in the form

B B B
> Q@ ~ [ Q@) dolt| > QR wipawh].
zi=A A zi=B—hn

Notice that the first sum can be less ¢/6 since it is a Riemann sum cor-

responding to the integral ff Qg,?) (z)pn(z) dz, and the last sum obviously
tends to zero so, for sufficiently small h, it is less than €/6. So, for any
given € > 0, one can chose a sufficiently small h so that |I,(Qnm, pn)| < €.

Finally, to prove the result for the unbounded B we use the fact that,
in this case, the functions p,(z;/h;h) as well as p,(x;) tend to zero faster
than any polynomial tends to infinity when z; — oo (see the boundary
conditions (14) for the polynomials on the lattice z(s) as well as for the
continuous case [32, Eq. (1.3.1) page 7]). Then,

(oo}

(@)l € 3 A [Qun(sh)i] - Q5 (@)
A

Ti=

pn(zi/h; h)h+

o0

S |@%) (o) Conai /s ) — ()} bt
r;=A
> Qi ot [ ol Criifo.
+| X @ [T awwmmar <5+ 55 =c

To conclude this Section let us point out that here we have taken the
limit formally and have proved that our main result, i.e., formula (20),
transforms into the corresponding one for the continuous case [41], but
solving concrete examples one must to be very careful since, for instance,
in the limit Hahn — Jacobi, the parameter h = 1/N where N is the total
number of points in the lattice and the Hahn polynomials explicitly depend
on it. More information on how to take limits for concrete families can be
found in [18, 23, 32, 33].
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4. EXAMPLES.

4.1. Connection between (¢°;q)m and c¥(x,q).
First of all we will apply theorem 3.1 for finding the connection coeffi-

cients ¢, in the expansion

(@5 D)m = chnncg(sa(Z)a (30)
n=0

where (a; q)i is defined in (18), and ¢ (s, ¢) denotes the g-Charlier polyno-

mials on the exponential lattice z(s) = q;:11 [2]

—n

q° q° )
g, ————— | =
- (¢ —1p
(31)

n —n. s. o\ [k]

_m(nt5) (™9 (¢%59)

=q* , 1<g<1l,0<p<l.

kZO( e HE (1= q)F a

C%“)(S,Q) = ¢ to) 2P0 (q

where (¢%; )™ = [T52 (1 — ¢=™).

m=0
Obviously, these ¢g-Charlier polynomials csz“ )(s, q) are polynomials of de-
gree n on any exponential lattice z(s) = ¢1¢® + ¢3. For these polynomials

we have [2]:

L (D" s 1)+ 1
N ) an = . Bp= —,
o) el —Qul,(s+1) ° 4
42 = eql(1 — a)q" "' p] [n],! pstngs (nt2s+l)

n n ) n\S) = )
2 T P e e P (T LRy
where e,4[z] denotes the ¢- exponential function [18] defined by

[ee] k 1

eqlz] = Z ( = T,(5)=(1—q)* (4 9)o

“(Gar (550 (@%50)s0’

where (2;¢)o0 = [T (1 — 2¢*). Notice that all the characteristics of these

q—Charlier polynomials, as well as the polynomials 07({‘) (s,q) themselves

transform into the classical Charlier polynomials in the limit ¢ — 1. No-
tice also that the results presented here remain valid for the ¢-Charlier
polynomials in the lattice z(s) = ¢° [1, 2] since their hypergeometric rep-
resentation is given by the same basic hypergeometric series (31).

Now, using

AU n—1 1 s
T(S) =-q? [”]qcll (q +1;(1)n—1, z(s) =c1¢® + 3. (32)
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we get

A™ [(¢%; q)m]

I
QI
ISE]
E)
-
N
| —
8
—~
w
~—
[ I
3
—
)
w0
=
~—~
3

Therefore (20) gives

4(5n 7) -1 o s+n mn 1— n+11s
a1 (¢—1)"u <n>q Z [(1 = g)ug"™]

T eg[(1 = @)pgnt] pord (@39)s

)

)G Dm—n

not confuse with the symmetric {7:] g-binomial coefficients defined in

(12)). '

In order to take the sum in the above expression we will use the identity
. k.
[18, Eq. (1.2.34) page 6] (aq®;q)r = w, as well as the expression

(a;a)s
(18, Eq. (1.5.2) page 11] « ’Q) =y (a0 " Thus,

(a759)s (@50 (@a)w "
denoting by z = (1 — q)ug™ ™, we have

where <1Z:> = ((L)m are the classical ¢-binomial coefficients (do
a9
q

i(qs+nan n 2° - q Qm n(@™50)s s
pur S CH )R pors 0)s(q30)s
_ (q”;q)mfni (g™ q)kq i (4% ara™
= (@™ 0k ( = % q)s
_ (. — (¢"™™; { Egon] o= 2°7F
X ’q)m_n; (@ @) v g(q;q)sfk

= (q";@)m—neq[(1 — q)uq”“hsol ( ¢ n ,q,uq’”m“(l - q)> :

q

For the third equality we have used the identity [18, Eq. (1.2.32) page 6]

k
(q_s;q)k B (_1)kq§(k71)7ks
(Go)s (4 Q)5 ' (33)

Then, for the coefficients cf,,, we finally obtain

n—m

n _ m q
e = (4" @) m-np" (g —1)"qT =T <n> 19, ( ., g, pg” (1 —q)>-
q



18 ALVAREZ-NODARSE, ARVESU AND YANEZ

Remark. Notice that, since (f ’g)m =3, a ’“q;m k(z,q), and taking

into account that llmq_n W = (8)m, limg1ch(z,q) = ck(s), we ob-
tain taking the limit ¢ — 1

$)m :Técmncﬁ(s), Cmn = <7::> %(—M)n 1F1(n;m ‘ —N),

where c¢#(s) denotes the classical (non monic) Charlier polynomials [32,
33]. Since for these polynomials the leading coefficients are given by a, =
(—p)~™, the above result coincides with the classical result (see e.g. [5] and
references therein).

4.2. Connection between (¢°;¢)[™ and ct(z,q).

Now will apply theorem 3.1 for finding the connection coefficients ¢, ,
in the expansion

(¢°; q[m]—zdmnn (34)

where (a;q)¥ = an;lo(l —q¢* ™) aind ck(s,q) is, as before, the g-Charlier
polynomials on the lattice z(s) = % (31). In this case, using

Algs; )" T )
T(S) = —q 2 [n]qcl 1 (q ’q)[ 1]’ CL'(S) =c1q +03, (35)

we find

. A0
() (5. \ml] — —2(n-1) 5. \[m]
A [(q ;q) ] q {Ax(s)} (@°5q)

(L= q)"[mlylg 2™V

o — ]! @™ @)m—n-
g
5. \[m—n]
Thus, using formula (20), the expression (g &Z?q)s = (q;q)imﬂ, as well as
[ee] [oe] [oe]
Z (¢°; q[m nlgs Z (2°;q) [m—nlys _Zm—nz z° = 2™ e, (2)
~ = (Ga)s = (G0)s

we obtain
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The above formula is the g-analogue of the so-called inversion formula for
hypergeometric polynomials (compare with the explicit expression of the
g-Charlier polynomials (31).

Remark. If we rewrite (34) in the form

[m]_ jg  — m+Z(n=7) (T _1\n,m

(glsiq;)[:] = (s)[™ we obtain in the limit

taking into account that lim,_,;
qg—1

)il = édmncms), o = (10) (=170

Using again the fact that for the polynomials ¢ (s), the leading coefficients
are given by a, = (—p)~ ™, the above result coincides with well know
classical result (see e.g. [5] and references therein.)

4.3. The g—Charlier polynomials in the exponential lattice.
Finally, we will solve now the connection problem

Zcmn el ( (38)

Then, by using Eq. (23) of the corollary (3.1) where Qn(s); = ¢,(s,q)
and P,(s), = ck(s, q), respectively, we get for ¢Z, ,, the expression

p n m q4(m n)(m—n+5) T Z q2(l 1) m—n Z[l_quqn+l]s l
v) \n), el —q)g"+'u] = ¢ ( 1—q

— <H>n< > 1 (m—n)(m—n+5) Z </” n— m+1>l (m—n> q@
v " q l q ,

where we also use the fact that

o0 k o0

z = 2z*
T,(s—k) Fq Z

7
s= s=k

s k

kol

s=0

Now, applying the identity (33) to (¢;¢)m—n—1 (k = I), and using the ¢-
binomial theorem [18, §1.3, Eq. (1.3.14) page 9],

k —k
Z =1¥, (q_ ;q,z> = (2¢7% q)s,

=0



20 ALVAREZ-NODARSE, ARVESU AND YANEZ

we obtain the following expression for the coefficient ¢, ,,

Chn = (%) <n> gD (T ) e (39)
q

Notice the positivity of the coefficients (39) in the case when pu/y < ¢™~ 1.
In the case of the Charlier polynomials in the exponential lattice a sim-
ilar results has been obtained in [28] by solving a recurrence relation for
the coefficients (there the author does not give a closed formula for the
connection coefficient).

Remark. A simple calculation shows that the equation (38) transforms in
the limit ¢ — 1 into

-2 ()6 (-3) e

for the (non monic) Charlier polynomials and this coincides with the classi-
cal results for monic polynomials (see e.g. [5]) since the leading coefficients
for the Charlier polynomials ck(s) is equal to (—p) .

4.4. Further examples.

To conclude the paper we will show two more examples for polynomials
on g—quadratic lattices, more exactly in the lattice z(s) = [s]4[s + 1], i.e.,
c1 = q%/@q_2 and p = 1. In this case there are not structure relations and
then most of the aforesaid (in the introduction) methods can not be used.

In fact we will solve the following two examples:
S )m (@ denu (,0,b),
and

acOd Zcmnu"“ (z,0,b),

where u25(z,0,b) denotes the g—Racah polynomials introduced by Niki-
forov and Uvarov in [33] (see also [1])
q—n qa+6+n+1 q—s,qs+1
Ug’ﬁ(%oab) =4P3 ( ght @B ghtat 14,9 (40)
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For these polynomials we have:

o (2=0) (=15 20) C,(s+B8+ ) (s+a+b+1)[,(b+a—-s)
p T,(s+b+ )T (s + —B+ )T,(b—s) ’

P2 = qfw7(a+1)b+§+a6+2n(57a7b) %

Dgla+n+DCy(B+n+1)Ty(b+a—8+n+1)Iy(b+a+n+1)
[+ B +2n4+1],Tg(n+ 1)Tg(a+ B +n+1)Te(b —n)Ty(b— 5 —n)’

In the first case, using the identity

S1—S.

Am(s)(q s Om (P O

— k41 _ -
= —¢" T Ko (@ )1 (T ),

for the lattice z(s) = ¢1(q)[¢® + ¢~ **] + c3(g), and (20) we obtain

n(n=1) ,
g = (m) &) (a ) (P Om (T O
meA\ny, (qotB+ntL; ) (qo+B+2Hn+1; )

n

Finally, using (23), after some straightforward but cumbersome calcula-
tions we find
n n(n2+1)

(@™ 0)n (@ PT" n(aT )n (@ )n (@ )

Cmn = X

(@ (g @)n (g% @) (@PF2F L @)n (@ o4+ ),

- +B+ntm+l n—d+l S+n+l dfy+n+l
q" g AL g AL ghn L gdtndl
5(104 7qaq .

+642n+1 n—b+1 n+p+1 _bt+at+n+l1
q L g P g

Notice that if we assume that g € (0,1) and take the limit v — oo we obtain
the connection between g—Racah and g—Dual Hahn ") (z(s),0,d), =

qfn qfs qs+1
30, < bl et ;q,q) introduced in [1]

q q

n(nt1) , _
oG @) @ ) (T ) (0 O
" (@) n (@25 @) (a5 @)n (g0 T L5 ),

qnfm, qoz+6+n+m+1, qn7d+1, q(5+n+1,
4P3 < gl B gbtactnt 1 q, q) .

From the above equation, by taking the limits a, v — oo, a formula for the

connection coefficients for the g—Dual Hahn — g—Dual Hahn polynomials

easily follows.



22 ALVAREZ-NODARSE, ARVESU AND YANEZ

APPENDIX A

In this appendix we will prove the expression (11). In fact we will prove
the following Lemma which is interesting in its own right:
Lemma.Let f(s) be an analytic function inside and on a curve C on the
complez plane containing the points z = s,s — 1,...,s — n, and v;cn) the
operator
v](gn) = \Y4 \Y4 VA
Veki1(s) Vorta(s)  Voals)

Then

n—k _ 1
Wi =S v [ ] S e @
"I vaa(s — 221

Proof. First of all, notice that the function z,,(z) = z(z + 2Z), where
z(s) is given by (5) satisfies

z(s) —z(s —t) = [t]; V(s — 5). (A.2)

Then, by induction, one has

(n) L _ [n — k]! _ [n — klg!
Vi [l‘n(z) - l‘n(s)] Tk o [£n(2) — zn(s)]*F D’

[2n(2) — zn(s — m)

m=0

where
re(2) = ()™ = [ free) = als =), m=0,1,2.., (43)

denotes the generalized powers. Since f is analytic, then by using the
Cauchy formula

£(s) = — /OM@, (A4)

we have

S A3
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If we now use the residue’s theorem, and taking into account that the only
singularities of the integrand are the simple poles located at z = s—1, [ =
0,1,---,n — k, then

F(2)a',(2) _ f(s=1)
Zn(2) = 2 ()] " FHY oy
[0 (2) — 7n(5)] I len(s— D) — 2a(s —m)]
m=20

m #1

Finally, using the property (A.2) the result follows. |
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