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epted O
tober, 2000In the present paper, starting from the se
ond-order di�eren
e hypergeo-metri
 equation on the non-uniform latti
e x(s) satis�ed by the set of dis
retehypergeometri
 orthogonal q�polynomials fpng, we �nd analyti
al expressionsof the expansion 
oeÆ
ients of any q�polynomial rm(x(s)) on x(s) and of theprodu
t rm(x(s))qj(x(s)) in series of the set fpng. These 
oeÆ
ients are givenin terms of the polynomial 
oeÆ
ients of the se
ond-order di�eren
e equationssatis�ed by the involved dis
rete hypergeometri
 q�polynomials.Key words and phrases: q-polynomials, 
onne
tion and linearization problems.AMS (MOS, 2000) subje
t 
lassi�
ation: 33D451. INTRODUCTION.The expansion of any arbitrary dis
rete polynomial qm(x) in series of ageneral (albeit �xed) set of dis
rete hypergeometri
 polynomial fpn(x)g is amatter of great interest, solved only for some parti
ular 
lassi
al 
ases (for1



2 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZa review see [8, 9, 17℄ up to the middle of seventies and [5, 40℄, sin
e then upto now). This is parti
ularly true for the deeper problem of linearizationof a produ
t of any two polynomials. Usually, the determination of theexpansion 
oeÆ
ients in these parti
ular 
ases required a deep knowledgeof spe
ial fun
tions and, at times, ingenious indu
tion arguments based inthe three-term re
urren
e relation of the involved orthogonal polynomials[9, 14, 16, 17, 22, 25, 34, 42, 43, 44℄. Only re
ently, general and widelyappli
able strategies begin to appear [5, 6, 7, 13, 19, 24, 26, 27, 29, 30, 31,39, 41℄.One of the reasons for this in
reasing interest is the appli
ations of su
hkind of problems in several bran
hes of Mathemati
s and Physi
s. Forexample, Gasper in his paper [17℄, motivated the 
onne
tion and lineariza-tion problem in the framework of the positivity. Nine years after, one of themost famous 
onje
ture: The Bieberba
h 
onje
ture (janj � n) for analyti
and univalent fun
tions of the form f(z) = z +P1n=2 anzn in jzj < 1, hasbeen solved by Louis de Branges using an inequality proved by Askey andGasper in 1976 [10℄ in the framework of the positivity. In fa
t they provedthat for 0 � t < 1, � > �2,nXk=0P�;0k (t) = (�+ 2)nn! 3F2� �n; n+ �+ 2; �+22�+32 ; �+ 1 ���t� � 0; (1)where (a)n is the Po
hhammer symbol and P�;�n (x) denotes the 
lassi
alJa
obi polynomials. Here in this work we will study the problem of �ndingthe the 
onne
tion 
mn and linearization 
jmn 
oeÆ
ients, i.e., the 
oeÆ-
ients on the expansions [9℄qm(x) = mXn=0 
mnpn(x); (2)qm(x)rj (x) = m+jXn=0 
jmnpn(x); (3)respe
tively, where qm(x) and rj(x) are any mth-degree and jth-degreepolynomials, and fpng denotes an arbitrary set of polynomials.Noti
e that, sin
e the involved hypergeometri
 series in (1) is terminat-ing, i.e., has a �nite number of terms, the above problem 
an be 
onsideredas a 
onne
tion problem between two families of polynomials where all the
onne
tion 
oeÆ
ients are positive (and equal to 1 in this example). So theGasper's words about the importan
e in appli
ations of the 
onne
tion andlinearization problems, and the positivity of the 
orresponding 
oeÆ
ients,be
ome very a
tual and of interest.



CONNECTION AND LINEARIZATION PROBLEMS 3The �rst who 
onsidered the linearization problem for dis
rete polyno-mials (noti
e that in the de Branges's proof the \
ontinuous" Ja
obi poly-nomials have been used) was Eagleson in 1969 for Krav
huk polynomials[14℄. Later on, Gasper [17℄ studied the 
onne
tion problem for the Hahnh�;�(x;N) polynomialsh
;�j (x;M) = jXn=0 
jn h�;�n (x;N); j � minfN � 1;M � 1g;and 
ompletely solved it (the parti
ular 
ase N = M , of interest be
ause
jn � 0, he solved one year earlier in [16℄), from where, by limiting pro
essit is possible to obtain the 
onne
tion 
oeÆ
ients for Ja
obi polynomialsas well as for other 
ontinuous and dis
rete families (see [16, 17℄ for furtherinformation on this). Some years later, Askey and Gasper [11℄ 
onsideredthe linearization problem when the involved polynomials were the dis
retepolynomials of Hahn, Meixner Krav
huk and Charlier (for a review ondis
rete polynomials see [32℄) but only in the spe
ial 
ase when all rm,qj and pn belong to the same family with the same parameters (in [17℄some preliminary results regarding to the positivity of su
h 
oeÆ
ientswere dis
ussed).In all these 
ases, 
ontinuous and dis
rete, the proofs were based on veryspe
i�
 
hara
teristi
 of the involved families, parti
ularly their hyperge-ometri
 representation and generating fun
tions have been exploited for�nding the 
orresponding solution.It is important to remark that, even in the 
ase when it is possibleto 
ompute expli
itly the 
onne
tion or the linearization 
oeÆ
ients, notalways is easy to show that they are nonnegative whi
h were importantas we already pointed out. This led to a re
urrent method, i.e., to �nda di�eren
e equation for the 
oeÆ
ients 
mn and 
jmn, respe
tively, andfrom it to dedu
e their non negativity. The �rst who did it was Hylleraas[22℄ in 1962 for a produ
t of two Ja
obi polynomials. In fa
t Hylleraas wasable to solve the obtained re
urren
e relation for some spe
ial 
ases andprove the non negativity of the 
oeÆ
ients in some of these 
ases. Later,this method has been used by Askey and Gasper (see e.g. [11℄) to provethe non negativity of the linearization 
oeÆ
ients for 
ertain families oforthogonal polynomials.More re
ently, Ronveaux, Zarzo, Area and Godoy [6, 19, 39℄, developeda re
urrent method, 
alled NaViMa algorithm, for solving the 
onne
tionproblem (2) for all families of 
lassi
al polynomials, as well as some spe-
ial kind of linearization problem and used it for solving di�erent problemsrelated with the asso
iated, Sobolev-type polynomials, et
 [20, 21℄. Al-though, they use it only for solving a very spe
ial linearization problem,it 
an be easily extended for solving the general problem (3) [13℄. Let us



4 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZpoint out that there is a very similar algorithm for �nding the re
urren
erelation for both, 
onne
tion and linearization 
oeÆ
ients due to Lewanow-i
z [26, 27, 29℄. The most important tool in the both aforesaid algorithmswas the stru
ture relations (or Al-Salam & Chihara 
hara
terization) thatthe polynomials pn in (2) and (3) satisfy.Both problems, 
onne
tion and linearization, are of great interest also inPhysi
s. For example, for the 2l�pole transitions in hydrogen-like atoms(and other related systems) the radial part of the probability is proportionalto integrals of the formT 1 2l = Z 10 [L2l1+1n1 (�1r)L2l2+1n2 (�2r)℄rme�rdr;where Lln are the Laguerre polynomials. This kind of integrals also appearsin the theory of Morse os
illators as well as in transitions for spheri
al-symmetri
 systems [34℄. Furthermore, for spheri
al-symmetri
 the Wigner-Ekkart theorem [15℄ allows to write the matrix elements of 
ertain irre-du
ible operators in terms of produ
ts of two (or more) 3j symbols (Hahnand dual Hahn polynomials [32℄), 6j symbols (Ra
ah polynomials [32℄), et
as well as their q�analogues.To 
on
lude this introdu
tion we need to say that in the world of q�po-lynomials (dis
rete 
ase) there are not so many results 
on
erning to theseproblems. One of the �rst who was interested on this was Rogers [37, 38℄who used a q�analogue of the 
onne
tion formula for Ja
obi polynomialsP 
;
n (x) = P[n=2℄j=0 
j;nP �;�n�2j(x), 
n;j � 0, for the q�ultraspheri
al polyno-mials to prove some Rogers-Ramanujan identities (see also [36℄). Also, veryre
ently, this problem has been 
onsidered in [3, 4, 28℄ for q�polynomialsin the exponential latti
e x(s) = qs [2, 33, 32℄, where the authors obtainedre
urren
e relations for the 
oeÆ
ients in (2) and (3). Again, in theseworks the use of the stru
ture relations plays a fundamental role. Butnot for any arbitrary family of q�polynomials there exist su
h relations.In [2℄ it is proven that all families of q�polynomials on the exponentiallatti
e x(s) = 
1qs + 
3 satisfy su
h a relation, but for the general latti
ex(s) = 
1qs + 
2q�s + 
3 [12, 32℄ the problem is still open. Then, the fol-lowing question naturally arises: What to do in 
ase when we do not havestru
ture relations? This question was solved for the 
ontinuous 
ase in[7, 41℄ and for the dis
rete 
ase in [5℄.The main goal of the present paper is give and alternative method for�nding the 
onne
tion and linearization problem for q-hypergeometri
 poly-nomials obtaining expli
it expressions for the 
oeÆ
ients 
mn and 
jmn in(2)-(3) in terms of the 
oeÆ
ients of the se
ond order di�eren
e equa-tion of hypergeometri
-type on the general non-uniform latti
e x(s) =
1qs + 
2q�s + 
3 that su
h polynomials satisfy. The resulting expansion



CONNECTION AND LINEARIZATION PROBLEMS 5
oeÆ
ients are given in a 
ompa
t form in terms of the polynomial 
o-eÆ
ients of the 
orresponding se
ond-order di�eren
e equations. Noti
ethat the above latti
e 
ontains, as a parti
ular 
ase, the exponential latti
ex(s) = qs whi
h has been �rstly 
onsidered in [4, 28℄. The advantage of thepresent approa
h is that it only requires the knowledge of the se
ond orderdi�eren
e equation satis�ed by the involved hypergeometri
 q-polynomialsas well as their hypergeometri
ity, i.e., the Rodrigues-type formula. Then,
ontrary to the algorithm presented in [4, 3, 28℄, we do not require in-formation about any kind of re
urren
e relation of the involved dis
retehypergeometri
 q-polynomials nor we need to solve any \high" order re
ur-ren
e relation for the 
onne
tion 
oeÆ
ients themselves.The stru
ture of the paper is as follows. In Se
tion 2, we 
olle
t thebasi
 ba
kground [32℄ used in the rest of the work; namely, the se
ond-order hypergeometri
 di�eren
e equation on the uniform latti
e x(s) and itspolynomial solutions (
alled as hypergeometri
 q-polynomials). In Se
tion3, we present the main results of the paper, namely, the expressions forthe 
onne
tion and linearization 
oeÆ
ients 
mn and 
jmn, respe
tively.In parti
ular, we show how the main formulas and theorems given in [5℄for the linear latti
e x(s) = s, as well as the ones given in [7, 41℄ hold asparti
ular 
ases. Finally, in Se
tion 4, some examples are developed.2. SOME BASIC PROPERTIES OF THE Q�POLYNOMIALS.Here we will summarize some of the properties of the q-polynomials [32℄useful for the rest of the work.2.1. The hypergeometri
-type di�eren
e equation.Let us 
onsider the se
ond order di�eren
e equation of hypergeometri
type �(s) 44x(s� 12 )5y(s)5x(s) + �(s)4y(s)4x(s) + �y(s) = 0;�(s) = ��(x(s)) � 12 �� (x(s))4 x(s� 12 ); �(s) = �� (x(s));5f(s) = f(s)� f(s� 1);4f(s) = f(s+ 1)� f(s) ; (4)where 5f(s) and 4f(s), denote the ba
kward and forward �nite di�eren
ederivatives, respe
tively, ��(x) and ��(x) are polynomials in x(s) of degree atmost 2 and 1, respe
tively, and � is a 
onstant. It is important to noti
e thatthe above di�eren
e equation has polynomial solutions of hypergeometri
type i� x(s) is a fun
tion of the formx(s) = 
1(q)qs + 
2(q)q�s + 
3(q) = 
1(q)[qs + q�s��℄ + 
3(q); (5)



6 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZwhere 
1, 
2, 
3 and q� = 
1
2 are 
onstants whi
h, in general, depend on q[12, 32, 33℄.The polynomial solutions of (4) is determined by the q�analogue of theRodrigues Formula on the non-uniform latti
es [32, page 66, Eq. (3.2.19)℄Pn(s)q = Bn�(s) 5(n) [�n(s)℄; 5(n) � 55x1(s) 55x2(s) : : : 55xn(s) ; (6)where the fun
tion �n(s) is given by�n(s) = �(s+ n) nYi=1�(s+ i); and xm(s) = x(s+ m2 ); (7)and �(s) is the solution of the Pearson-type di�eren
e equation44x(s� 12 ) [�(s)�(s)℄ = �(s)�(s): (8)Throughout the paper [n℄q denotes the so 
alled q-numbers and [n℄q! arethe q-fa
torial [n℄q = q n2 �q�n2q 12�q� 12 , [n℄q! = [1℄q [2℄q � � � [n℄q .Also the di�eren
e derivatives ykn(s)q of the polynomial solution Pn(s)q ,de�ned byykn(s)q = 44xk�1(s) 44xk�2(s) : : : 44x(s) [Pn(s)q ℄ � 4(k)[Pn(s)q ℄ ; (9)satisfy a Rodrigues-type formulaykn(s)q = 4(k)Pn(s)q = AnkBn�k(s) 5(n)k [�n(s)℄; (10)where 5(n)k f(s) = 55xk+1(s) 55xk+2(s) � � � 55xn(s) [f(s)℄, is given by (seeappendix A)5(n)k f(s) = n�kXl=0 (�1)l � n� kl �q 5xn(s� l + 12 )n�kYm=05xn(s� m+l�12 )f(s� l); (11)and Ank = [n℄q ![n� k℄q! akBk , where an denotes the leading 
oeÆ
ient of thepolynomial Pn, i.e., Pn(x) = anxn+ lower order terms. Here, and through-



CONNECTION AND LINEARIZATION PROBLEMS 7out the paper we will use the following notation for the symmetri
 q-binomial 
oeÆ
ients � nm �q = [n℄q![m℄q ![n�m℄q ! : (12)In this paper we will deal with dis
rete orthogonal q-polynomials, i.e.,polynomials with a dis
rete orthogonalityb�1Xs=aPn(s)qPm(s)q�(s)4 x(s� 12 ) = Ænmd2n; s = a; a+ 1; : : : ; b� 1; (13)where �(x) is a solution of the Pearson-type equation (8), and it is a non-negative (not identi
ally zero) weight fun
tion, i.e., �(s) 4 x(s � 12 ) � 0,a � s � b � 1, supported on a 
ountable subset of the real line [a; b℄(a; b 
an be �1). This 
ondition follows from the di�eren
e equation ofhypergeometri
-type (4), providing that the following boundary 
ondition�(s)�(s)xk(s� 12 )���s=a;b = 0; k = 0; 1; 2; ::: ; (14)holds [33℄. Noti
e that the above boundary 
ondition (14) is valid fork = 0. Moreover, if we assume that a is �nite, then (14) is ful�lled ats = a providing that �(a) = 0 [32, x3.3, page 70℄. In the following we willassume that this 
ondition holds. The squared norm in (13) is given by[32, Chapter 3, Se
tion 3.7.2, pag. 104℄d2n = (�1)nAnnB2n b�n�1Xs=a �n(s)4 xn(s� 12 ): (15)In the most general 
ase, the solution of the q-hypergeometri
 equation(4) 
orresponds to the 
ase�(s) = A[s� s1℄q [s� s2℄q[s� s3℄q [s� s4℄q ; A = 
onst 6= 0: (16)and has the form [33℄Pn(s)q = Dn 4'3 q�n; q2�+n�1+P4i=1si ; qs1�s; qs1+s+�qs1+s2+�; qs1+s3+�; qs1+s4+� ; q ; q! ; (17)



8 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZwhere, Dn is a normalizing 
onstant, �q = q 12 � q� 12 , and the basi
 hyper-geometri
 series p'q are de�ned by [18℄r'p�a1; : : : ; arb1; : : : ; bp ; q ; z� = 1Xk=0 (a1; q)k � � � (ar; q)k(b1; q)k � � � (bp; q)k zk(q; q)k h(�1)kq k2 (k�1)ip�r+1 ;and (a; q)k = k�1Ym=0(1� aqm); (18)is a q�analogue of the Po
hhammer symbol.3. MAIN RESULTS.Here we �nd the expli
it expression of the 
oeÆ
ients 
mn in the expan-sion of an arbitrary q-polynomial Qm(s)q on x(s) in series of the orthogonaldis
rete hypergeometri
 set of q-polynomials fPng in the same non-uniformlatti
e x(s), i.e. Qm(s)q = mXn=0 
mnPn(s)q : (19)Theorem 3.1. The expli
it expression of the 
oeÆ
ients 
mn in the ex-pansion (19) is
mn = (�1)nBnd2n b�n�1Xs=a 4(n) [Qm(s)q ℄ �n(s)4 xn(s� 12 )=(�1)nBnd2n b�1Xs=a4(n)[Qm(s� n)℄�n(s� n)4 x(s� n+12 ): (20)Proof. Multiplying both sides of Eq. (19) by Pk(s)q�(x)4x(s� 12 ), andsumming between a and b� 1, the orthogonality relation (13) immediatelygives 
mn = 1d2n b�1Xs=aQm(s)qPn(s)q�(s)4 x(s� 12 ) : (21)



CONNECTION AND LINEARIZATION PROBLEMS 9Next we use the Rodrigues formula (6) for Pn(s)q . This yields
mn = Bnd2n b�1Xs=aQm(s)q 5(n) [�n(s)℄4 x(s� 12 ) == Bnd2n b�1Xs=aQm(s)q 5 h5(n)1 [�n(s)℄i :Then, using the formula of summation by partsb�1Xxi=a f(xi)5 g(xi) = f(xi)g(xi)���b�1a�1 � b�1Xxi=a g(xi � 1)5 f(xi);we obtain for 
mn the expressionBnd2n Qm(s)q 5(n)1 [�n(s)℄���b�1a�1 � Bnd2n b�1Xs=a5Qm(s)q 5(n)1 [�n(t)℄���t=s�1: (22)Noti
e that the �rst term is proportional to �1(s) = �(s + 1)�(s + 1), so,sin
e the 
ondition (14), it vanishes. Now, making the 
hange s! s� 1 inthe se
ond term, we �nd
mn = �Bnd2n b�2Xs=a�14Qm(s)q 5(n)1 [�n(s)℄ :But5(n)1 [�n(s)℄ = 55x2(s) 5(n)2 [�n(s)℄; 5x2(s) =5x(s+ 1) = 4x(s);then, the last equation transforms
mn = �Bnd2n b�2Xs=a�1 44x(s) [Qm(s)q ℄5 h5(n)2 [�n(s)℄i :Repeating this pro
ess k times, we obtain
mn = (�1)kBnd2n b�k�1Xs=a�k 44xk�1(s) � � � 44x(s) [Qm(s)q ℄5 h5(n)k+1[�n(s)℄i == (�1)kBnd2n b�k�1Xs=a�k4(k)[Qm(s)q ℄5(n)k [�n(s)℄4 xk(s� 12 ):



10 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZPutting k = n and using 5(n)n [�n(s)℄ = �n(s) as well as that �n(a� k) = 0for k = 1; 2; :::; n (see Eq. (7)), we obtain the desired expression (20) for
mn.To obtain the se
ond expression for 
mn we transform (20) using theidentity5(n)1 [�n(s� 1)℄ = 55x2(s� 1) 5(n)2 [�n(s� 1)℄ = 55x(s) 5(n)2 [�n(s� 1)℄:Then Eq. (22) be
omes
mn = �Bnd2n b�1Xs=a 55x(s) [Qm(s)q ℄5 h5(n)2 [�n(s)℄i :Applying k�times the same te
hnique as before we �nd
mn = (�1)kBnd2n b�1Xs=a 55x(s� k�12 ) 55x(s� k2 + 1) � � � 55x(s) [Qm(s)q ℄�5(n)k [�n(s� k)℄4 x(s� k+12 ):The 
hange k = n and the fa
t that4(n)Qm(s� n) = 55x(s� n�12 ) � � � 55x(s) [Qm(s)q ℄;lead us to the result.Corollary 3.1. If Qm is an hypergeometri
 polynomial satisfying anequation of the form (4) but with 
oeÆ
ients ~�, ~� , and ~�m, then, the expli
itexpression of the 
oeÆ
ients 
mn in the expansion (19) is
mn = (�1)nBn ~Bm ~Amnd2n m�nXl=0 (�1)l � m� nl �q �b�n�1Xs=a ~�m(s� l)�n(s)~�n(s) 4xm(s� l� 12 )4 xn(s� 12 )m�nYk=0 4xm(s� k+l+12 ) : (23)
Proof. The proof follows from the equations (20), (9) and (11).As a simple 
onsequen
e of the theorem 3.1 we obtain the followingresult for the linearization problem, whi
h 
onsists of �nding the expansion



CONNECTION AND LINEARIZATION PROBLEMS 11
oeÆ
ients 
jmn of the relationRj(s)qQm(s)q = m+jXn=0 
jmnPn(s)q ; (24)where fPng is a dis
rete orthogonal set of hypergeometri
 q-polynomialswhi
h satisfy the di�eren
e equation (4) and Qm and Rj are arbitraryq-polynomials on the same latti
e x(s).Theorem 3.2. The expli
it expression of the 
oeÆ
ients 
jmn in theexpansion (24) is
jmn = (�1)nBnd2n b�n�1Xs=a 4(n) [Qm(s)qRj(s)q ℄ �n(s)4xn(s� 12 ) (25)= (�1)nBnd2n b�1Xs=a 55x(s� n�12 ) � � � 55x(s) [Qm(s)qRj(s)q℄�n(s� n)4x(s� n+12 ):Theorem 3.3. Let Rj be the j�degree q-hypergeometri
 polynomial so-lution of the se
ond order di�eren
e equation on the non-uniform latti
ex(s) e�(s) 44x(s� 12 )5y(s)5x(s) + e� (s)4y(s)4x(s) + e�jy(s) = 0; (26)Then, expli
it expression of the 
oeÆ
ients 
jmn in the expansion (24) isgiven by
jmn = (�1)nBn ~Bjd2n nXk=0 � nk �q ~Aj k�b�n�1Xs=a �n(s)4 xn(s� 12 )~�k(s+ n� k) [4(n�k)Qm(s)q ℄[5(j)k ~�j(s+ n� k)℄ ; (27)or, equivalently,
jmn = (�1)nBn ~Bjd2n nXk=0 � nk �q ~Aj n�k�b�n�1Xs=a �n(s)4 xn(s� 12 )~�n�k(s) [4(k)Qm(s+ n� k)q ℄[5(j)n�k~�j(s)℄ : (28)



12 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZProof. Using the q�analog of the Leibniz formula in the non-uniformlatti
e (5) [1℄4(n)[f(s)g(s)℄ = nXk=0 � nk �q 4(k) f(s+ n� k)4(n�k) g(s); (29)for the expression4(n) [Qm(s)qRj(s)q ℄ in Eq. (25), as well as the Rodrigues-type formula (9) for 4(k)Rj(s+ n� k)q4(k)Rj(s+ n� k)q = ~Aj k ~Bj~�k(s+ n� k) 5(j)k [~�j(s+ n� k)℄;the desired result holds. The se
ond formula 
an be obtained analogouslybut starting from the se
ond equation of Theorem 3.2.Corollary 3.2. The expli
it expression of the 
oeÆ
ients 
jmn in theexpansion (24) is given by
jmn = (�1)nBn ~Bjd2n nXk=0 � nk �q~Aj k j�kXl=0 (�1)l� j � kl �qb�n�1Xs=a ~�j(s+ n� k � l)~�k(s+ n� k) �4xj(s+ n� k � l � 12 )j�kYm=04xj(s+ n� k � m+l+12 ) [4(n�k)Qm(s)q ℄ �n(s)4 xn(s� 12 ) :Proof. To prove this it is suÆ
ient to substitute the expression (11) in(27).Noti
e that the 
orollary 3.1 also follows from the above formula if we putm = 0 sin
e Q0 � 1.3.1. Spe
ial 
ase: The 
lassi
al dis
rete polynomials.In the spe
ial 
ase when x(s) is the linear latti
e, i.e, x(s) = s, fromTheorem 3.1 and 3.2 we re
over the main results in [5℄ for the 
onne
tionand linearization problems, respe
tivelyTheorem 3.4. Let be x(s) the linear latti
e x(s) = s. Then, the expli
itexpression of the 
oeÆ
ients 
mn in the expansion (19) is
mn = (�1)nBnd2n b�n�1Xs=a 4nQm(s)�(s+ n) nYk=1 �(s+ k)= (�1)nBnd2n b�1Xs=a5nQm(s)�(s) n�1Yk=0 �(s� k):



CONNECTION AND LINEARIZATION PROBLEMS 13If Qm is also an hypergeometri
 polynomial, then
mn = (�1)nBn ~Bm ~Amnd2n b�n�1Xs=a m�nXk=0 �n(s)~�n(s) �m� nk � (�1)k ~�m(s� k)= (�1)nBn ~Bm ~Amnd2n b�1Xs=a m�nXk=0 �n(s� n)~�n(s� n) �m� nk � (�1)k ~�m(s� n� k) :Theorem 3.5. Let be x(s) the linear latti
e x(s) = s. Then, the expli
itexpli
it expression of the 
oeÆ
ients 
jmn in the expansion (24) is given by
jmn = (�1)nBn ~Bjd2n k+Xk=k��nk� ~Ajk b�n�1Xs=a j�kXl=0 (�1)l�j � kl � �n(s)~�k(s+ n � k)�~�j(s+ n� k � l)[5n�kQm(s+ n� k)℄ = (�1)nBn ~Bjd2n k+Xk=k��nk� ~Ajk�= b�1Xs=a j�kXl=0 (�1)l�j � kl � �n(s� n)~�k(s� k) ~�j(s� k � l)[5n�kQm(s� k)℄ ;where k� = max(0; n�m) and k+ = min(n; j).In all the above formulas �nm� denotes the binomial 
oeÆ
ients n!m!(n�m)! .3.2. Spe
ial 
ase: The 
lassi
al 
ontinuous 
ase.Finally, we will show how from Theorem 3.1 we 
an re
over (formally)the general results for the 
ontinuous 
ase [7, 41℄. In order to do this wenoti
e that, formally, if we make the 
hange x(s) = sh! x, then [32℄,Pn(x(s + 1))� Pn(x(s))xk(s+ 1)� xk(s) = Pn(sh+ h)� Pn(sh)h = Pn(x+ h)� Pn(x)h :Here we have used the notation Pn(x(s)) � Pn(s)q . Thus, limh!0 4Pn(x(s))4xk(s) =P 0n(x) and limh!04(k)Pn(s)q = dkPn(x)dxk . Then, by similar limiting pro
essesEq. (4) transforms into the 
lassi
al hypergeometri
 di�erential equation[32℄ �(x)P 00n (x) + �(x)P 0n(x) + �nPn(x) = 0:where �(x) = limh!0 ��(x(s)), �(x) = limh!0 ��(x(s)) being x = sh. Fur-thermore, the Pearson-type equation (8) be
omes [�(x)�(x)℄0 = �(x)�(x)



14 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZand also [32℄ �n(s;h) ! �(x)�n(x). Finally, the Rodrigues-type formula(6) transforms into4(k)Pn(s)q = AnkBn�k(s) 5(n)k [�n(s)℄! dkPn(x)dxk = AnkBn�k(x) dn�kdxn�k [�(x)�n(x)℄:Now we put x(s) = sh in (20)
mn(h) = (�1)nBn(h)d2n(h) (b�1)h�nhXxi=ah 4(n) [Qm(xi)q ℄ �n(xi=h;h)h == (�1)nBn(h)d2n(h) B�nhXx=A 4(n) [Qm(xi)q ℄ �n(xi=h;h)h; xi+1 = xi + h:Let us prove that the above sum transforms in the limit in a integral fromwhi
h the main result in [41, Theorem 3.1, page 163℄ easily follows. More
on
retely, limh!0 
mn(h) = (�1)nBnd2n Z BA dkQm(x)dxk �(x)�n(x) dx;where d2n is the squared norm for the polynomials orthogonal with respe
tto �(x) [32℄.In order to do that, let us show that the quantityIn(Qm; �n) � �����B�nhXx=A 4(n) [Qm(sh)q℄ �n(xi=h; h)h� Z BA Q(n)m (x)�(x)�n(x)dx�����
an be small enough for h suÆ
iently small. So,jIn(Qm; �n)j � B�nhXxi=A ���4(n) [Qm(sh)q ℄�Q(n)m (xi)��� �n(xi=h;h)h+B�nhXxi=A ���Q(n)m (xi) f�n(xi=h;h)� �n(xi)g���h+�����B�nhXxi=A Q(n)m (xi)�n(xi)h� Z BA Q(n)m (x)�n(x) dx����� ;where Q(n)m denotes the n-th derivative of Qm and �n(x) = �(x)�n(x). Let
onsider �rst the 
ase when B is bounded. In this 
ase the �rst integral
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an be small enough (less that �=3) for h suÆ
ient small providing that�n(xi=h;h) is bounded. In the following we will suppose that the limitfun
tion �n(x), n � 1 is a 
ontinuous fun
tion in [A;B℄. For the se
ondsum we 
an do the same sin
e Qm is a polynomial and then it is boundedin any 
losed interval. Finally we will 
onsider the last sum whi
h 
an berewritten in the form����� BXxi=AQ(n)m (xi)�n(xi)h� Z BA Q(n)m (x)�n(x) dx�����+����� BXxi=B�hnQ(n)m (xi)�n(xi)h����� :Noti
e that the �rst sum 
an be less �=6 sin
e it is a Riemann sum 
or-responding to the integral R BA Q(n)m (x)�n(x) dx, and the last sum obviouslytends to zero so, for suÆ
iently small h, it is less than �=6. So, for anygiven � > 0, one 
an 
hose a suÆ
iently small h so that jIn(Qm; �n)j � �.Finally, to prove the result for the unbounded B we use the fa
t that,in this 
ase, the fun
tions �n(xi=h;h) as well as �n(xi) tend to zero fasterthan any polynomial tends to in�nity when xi ! 1 (see the boundary
onditions (14) for the polynomials on the latti
e x(s) as well as for the
ontinuous 
ase [32, Eq. (1.3.1) page 7℄). Then,jIn(Qm; �n)j � 1Xxi=A ���4(n) [Qm(sh)q ℄�Q(n)m (xi)��� �n(xi=h;h)h+1Xxi=A ���Q(n)m (xi) f�n(xi=h;h)� �n(xi)g���h++ ����� 1Xxi=AQ(n)m (xi)�n(xi)h� Z 1A Q(n)m (x)�n(x) dx����� � �3 + �3 + �3 = �:To 
on
lude this Se
tion let us point out that here we have taken thelimit formally and have proved that our main result, i.e., formula (20),transforms into the 
orresponding one for the 
ontinuous 
ase [41℄, butsolving 
on
rete examples one must to be very 
areful sin
e, for instan
e,in the limit Hahn ! Ja
obi, the parameter h = 1=N where N is the totalnumber of points in the latti
e and the Hahn polynomials expli
itly dependon it. More information on how to take limits for 
on
rete families 
an befound in [18, 23, 32, 33℄.



16 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZ4. EXAMPLES.4.1. Conne
tion between (qs; q)m and 
�n(x; q).First of all we will apply theorem 3.1 for �nding the 
onne
tion 
oeÆ-
ients 
qmn in the expansion(qs; q)m = mXn=0 
qmn
�n(s; q); (30)where (a; q)k is de�ned in (18), and 
�n(s; q) denotes the q-Charlier polyno-mials on the exponential latti
e x(s) = qs�1q�1 [2℄
(�)n (s; q) = q n4 (n+5) 2'0� q�n; q�s� ; q ; � qs(q � 1)�� == q n4 (n+5) nXk=0 (q�n; q)k(q; q)k �k (qs; q)[k℄(1� q)k ; 1 < q < 1; 0 < � < 1: (31)where (qs; q)[k℄ =Qk�1m=0(1� qs�m).Obviously, these q-Charlier polynomials 
(�)n (s; q) are polynomials of de-gree n on any exponential latti
e x(s) = 
1qs + 
3. For these polynomialswe have [2℄:�(s) = �seq[(1� q)�℄�q(s+ 1) ; an = (�1)n�n q� 3n4 (n�1)+n2 ; Bn = 1�n ;d2n = eq[(1� q)qn+1�℄eq [(1� q)�℄ [n℄q!q n4 (n�9)+ 12 �n ; �n(s) = �s+nq n2 (n+2s+1)eq[(1� q)�℄�q(s+ 1) ;where eq[z℄ denotes the q- exponential fun
tion [18℄ de�ned byeq[z℄ = 1Xk=0 zk(q; q)k = 1(z; q)1 ; �q(s) = (1� q)1�s (q; q)1(qs; q)1 ;where (z; q)1 =Q1k=0(1� zqk). Noti
e that all the 
hara
teristi
s of theseq�Charlier polynomials, as well as the polynomials 
(�)n (s; q) themselvestransform into the 
lassi
al Charlier polynomials in the limit q ! 1. No-ti
e also that the results presented here remain valid for the q-Charlierpolynomials in the latti
e x(s) = qs [1, 2℄ sin
e their hypergeometri
 rep-resentation is given by the same basi
 hypergeometri
 series (31).Now, using4(qs; q)n4x(s) = �q n�12 [n℄q
�11 (qs+1; q)n�1; x(s) = 
1qs + 
3: (32)



CONNECTION AND LINEARIZATION PROBLEMS 17we get 4(n) [(qs; q)m℄ = q�n4 (n�1) � 44x(s)�n (qs; q)m= (1� q)n[m℄q !q n2 (m�1)[m� n℄q ! (qs+n; q)m�n:Therefore (20) gives
qmn = q n4 (5n�7)(q � 1)n�neq [(1� q)�qn+1℄ �mn�q 1Xs=0 (qs+n; q)m�n [(1� q)�qn+1℄s(q; q)s ;where �mn�q = (q; q)m(q; q)n(q; q)m�n are the 
lassi
al q-binomial 
oeÆ
ients (donot 
onfuse with the symmetri
 � mn �q q-binomial 
oeÆ
ients de�ned in(12)).In order to take the sum in the above expression we will use the identity[18, Eq. (1.2.34) page 6℄ (a qs; q)k = (a;q)k(a qk;q)s(a;q)s , as well as the expression[18, Eq. (1.5.2) page 11℄ (qm;q)s(qn;q)s = Psk=0 (q�s;q)k(qn�m;q)k(qn;q)k qm+s(q;q)k . Thus,denoting by z = (1� q)�qn+1, we have1Xs=0 (qs+n; q)m�n zs(q; q)s = 1Xs=0 (qn; q)m�n(qm; q)s(qn; q)s(q; q)s zs= (qn; q)m�n 1Xk=0 (qn�m; q)kqmk(qn; q)k(q; q)k 1Xs=0 (q�s; q)kqsk(q; q)s zs= (qn; q)m�n 1Xk=0 (qn�m; q)kqmkzk(qn; q)k(q; q)k �(�1)kq k2 (k�1)� 1Xs=k zs�k(q; q)s�k= (qn; q)m�neq[(1� q)�qn+1℄1'1� qn�mqn ; q; �qn+m+1(1� q)� :For the third equality we have used the identity [18, Eq. (1.2.32) page 6℄(q�s; q)k(q; q)s = (�1)kq k2 (k�1)�ks(q; q)s�k : (33)Then, for the 
oeÆ
ients 
qmn we �nally obtain
qmn = (qn; q)m�n�n(q � 1)nq n4 (5n�7)�mn�q 1'1� qn�mqn ; q; �qn+m+1(1� q)�:



18 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZRemark. Noti
e that, sin
e (qs;q)m(1�q)m = Pmn=0 
qmn(1�q)m 
�n(x; q), and takinginto a

ount that limq!1 (qs;q)m(1�q)m = (s)m; limq!1 
�n(x; q) = 
�n(s), we ob-tain taking the limit q ! 1(s)m = mXn=0 
mn
�n(s); 
mn = �mn� (m� 1)!(n� 1)! (��)n 1F1� n�mn ���� ��;where 
�n(s) denotes the 
lassi
al (non moni
) Charlier polynomials [32,33℄. Sin
e for these polynomials the leading 
oeÆ
ients are given by an =(��)�n, the above result 
oin
ides with the 
lassi
al result (see e.g. [5℄ andreferen
es therein).4.2. Conne
tion between (qs; q)[m℄ and 
�n(x; q).Now will apply theorem 3.1 for �nding the 
onne
tion 
oeÆ
ients 
qmnin the expansion (qs; q)[m℄ = mXn=0 dqmn
�n(s; q); (34)where (a; q)[k℄ =Qk�1m=0(1� qs�m) and 
�n(s; q) is, as before, the q-Charlierpolynomials on the latti
e x(s) = qs�1q�1 (31). In this 
ase, using4(qs; q)[n℄4x(s) = �q�n�12 [n℄q
�11 (qs; q)[n�1℄; x(s) = 
1qs + 
3; (35)we �nd 4(n) h(qs; q)[m℄i = q�n4 (n�1) � 44x(s)�n (qs; q)[m℄= (1� q)n[m℄q !q�n2 (m�1)[m� n℄q! (qs+n; q)m�n:Thus, using formula (20), the expression (qs;q)[m�n℄(q;q)s = 1(q;q)s�m+n , as well as1Xs=0 (qs; q)[m�n℄zs(q; q)s = 1Xs=m�n (qs; q)[m�n℄zs(q; q)s = zm�n 1Xs=0 zs(q; q)s = zm�neq(z);we obtain dqmn = qm+n4 (n�7)�mn�q (1� q)m(�1)n�m: (36)



CONNECTION AND LINEARIZATION PROBLEMS 19The above formula is the q-analogue of the so-
alled inversion formula forhypergeometri
 polynomials (
ompare with the expli
it expression of theq-Charlier polynomials (31).Remark. If we rewrite (34) in the form(s)[m℄q = mXn=0 ~dqmn
�n(s; q); ~dqmn = qm+n4 (n�7)�mn�q (�1)n�m; (37)taking into a

ount that limq!1 (qs;q)[m℄(1�q)m = (s)[m℄, we obtain in the limitq ! 1 (s)[m℄ = mXn=0 dmn
�n(s); dmn = �mn� (�1)n(�)m:Using again the fa
t that for the polynomials 
�n(s), the leading 
oeÆ
ientsare given by an = (��)�n, the above result 
oin
ides with well know
lassi
al result (see e.g. [5℄ and referen
es therein.)4.3. The q�Charlier polynomials in the exponential latti
e.Finally, we will solve now the 
onne
tion problem

m(s; q) = mXn=0 
qmn
�n(s; q): (38)Then, by using Eq. (23) of the 
orollary (3.1) where Qm(s)q = 

m(s; q)and Pn(s)q = 
�n(s; q), respe
tively, we get for 
qmn the expression��
�n�mn�q q 14 (m�n)(m�n+5)eq[(1� q)qn+1�℄ m�nXl=0 (�1)lq l2 (l�1)qlm(1� q)l 
l �m� nl �q 1Xs=l [(1� q)�qn+1℄s�l(q; q)s�l= ��
�n�mn�q q 14 (m�n)(m�n+5) m�nXl=0 (�1)l��
 qn�m+1�l�m� nl �q q l(l�1)2 ;where we also use the fa
t that1Xs=0 zk�q(s� k) = 1Xs=k zk�q(s� k) = 1Xs=k zk (1� q)s�k(q; q)s�k :Now, applying the identity (33) to (q; q)m�n�l (k = l), and using the q-binomial theorem [18, x1.3, Eq. (1.3.14) page 9℄,kXl=0 (q�k; q)l(q; q)l zl = 1'0 � q�k� ; q; z� = (zq�k; q)k ;



20 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZwe obtain the following expression for the 
oeÆ
ient 
qmn
qmn = ��
�n�mn�q q 14 (m�n)(m�n+5)(qn�m+1 �
�1; q)m�n: (39)Noti
e the positivity of the 
oeÆ
ients (39) in the 
ase when �=
 < qm�1.In the 
ase of the Charlier polynomials in the exponential latti
e a sim-ilar results has been obtained in [28℄ by solving a re
urren
e relation forthe 
oeÆ
ients (there the author does not give a 
losed formula for the
onne
tion 
oeÆ
ient).Remark. A simple 
al
ulation shows that the equation (38) transforms inthe limit q ! 1 into

m(s) = mXn=0�mn���
�n�1� �
�m�n 
�n(s);for the (non moni
) Charlier polynomials and this 
oin
ides with the 
lassi-
al results for moni
 polynomials (see e.g. [5℄) sin
e the leading 
oeÆ
ientsfor the Charlier polynomials 
�n(s) is equal to (��)�n.4.4. Further examples.To 
on
lude the paper we will show two more examples for polynomialson q�quadrati
 latti
es, more exa
tly in the latti
e x(s) = [s℄q [s+1℄q, i.e.,
1 = q 12 ��2q and � = 1. In this 
ase there are not stru
ture relations andthen most of the aforesaid (in the introdu
tion) methods 
an not be used.In fa
t we will solve the following two examples:(q�s; q)m(qs+1; q)m = mXn=0 dmnu�;�n (x; 0; b);and u
;Æn (x; 0; d) = mXn=0 
mnu�;�n (x; 0; b);where u�;�n (x; 0; b) denotes the q�Ra
ah polynomials introdu
ed by Niki-forov and Uvarov in [33℄ (see also [1℄)u�;�n (x; 0; b) = 4'3� q�n; q�+�+n+1; q�s; qs+1q�b+1; q�+1; qb+�+1 ; q ; q� : (40)



CONNECTION AND LINEARIZATION PROBLEMS 21For these polynomials we have:�(s) = q (b��)(�1+b+�+2s)4 �q(s+ � + 1)�q(s+ �+ b+ 1)�q(b+ �� s)�q(s+ b+ 1)�q(s+�� + 1)�q(b� s) ;d2n = q��(��1)2 �(�+1)b+ �2+��+2n(����b)��q(�+ n + 1)�q(� + n+ 1)�q(b+ �� � + n+ 1)�q(b+ �+ n + 1)[�+ � + 2n + 1℄q�q(n+ 1)�q(�+ � + n + 1)�q(b� n)�q(b� � � n) :In the �rst 
ase, using the identity��x(s) (qs1�s; q)m(qs1+s+�; q)m= �qs1+�+�k+12 [k℄q
�11 (qs1�s; q)m�1(qs1+s+�+1; q)m�1;for the latti
e x(s) = 
1(q)[qs + q�s��℄ + 
3(q); and (20) we obtaindmn = �mn�q (�1)nq n(n�1)2 (q�b+1; q)m(q�+1; q)m(qb+�+1; q)m(q�+�+n+1; q)n(q�+�+2+n+1; q)n :Finally, using (23), after some straightforward but 
umbersome 
al
ula-tions we �nd
mn = (�1)nq n(n+1)2 (q�m; q)n(q�+�+m+1; q)n(q�d+1; q)n(qÆ+1; q)n(qd+
+1; q)n(q; q)n(q�b+1; q)n(q�+1; q)n(qb+�+1; q)n(q
+Æ+n+1; q)n �5'4� qn�m; q�+�+n+m+1; qn�d+1; qÆ+n+1; qd+
+n+1q
+Æ+2n+1; qn�b+1; qn+�+1; qb+�+n+1 ; q ; q� :Noti
e that if we assume that q 2 (0; 1) and take the limit 
 !1 we obtainthe 
onne
tion between q�Ra
ah and q�Dual Hahn W (Æ)n (x(s); 0; d)q =3'2� q�n; q�s; qs+1q�b+1; qÆ+1 ; q; q� introdu
ed in [1℄
mn = (�1)nq n(n+1)2 (q�m; q)n(q�+�+m+1; q)n(q�d+1; q)n(qÆ+1; q)n(q; q)n(q�b+1; q)n(q�+1; q)n(qb+�+1; q)n �4'3� qn�m; q�+�+n+m+1; qn�d+1; qÆ+n+1;qn�b+1; qn+�+1; qb+�+n+1 ; q ; q� :From the above equation, by taking the limits �; 
 !1, a formula for the
onne
tion 
oeÆ
ients for the q�Dual Hahn | q�Dual Hahn polynomialseasily follows.



22 �ALVAREZ-NODARSE, ARVES�U AND Y�A~NEZAPPENDIX AIn this appendix we will prove the expression (11). In fa
t we will provethe following Lemma whi
h is interesting in its own right:Lemma.Let f(s) be an analyti
 fun
tion inside and on a 
urve C on the
omplex plane 
ontaining the points z = s; s � 1; :::; s � n, and 5(n)k theoperator 5(n)k � 55xk+1(s) 55xk+2(s) � � � 55xn(s) :Then5(n)k f(s) = n�kXl=0 (�1)l � n� kl �q 5xn(s� l + 12 )n�kYm=05xn(s� m+l�12 )f(s� l): (A.1)Proof. First of all, noti
e that the fun
tion xm(z) = x(z + m2 ), wherex(s) is given by (5) satis�esx(s) � x(s� t) = [t℄q 5 x(s� t�12 ): (A.2)Then, by indu
tion, one has5(n)k � 1xn(z)� xn(s)� = [n � k℄q !kYm=0 [xn(z)� xn(s�m)℄ = [n� k℄q ![xn(z)� xn(s)℄(n�k+1) ;where [xk(z)� xk(s)℄(m) = m�1Yj=0 [xk(z)� xk(s� j)℄ ; m = 0; 1; 2::: ; (A.3)denotes the generalized powers. Sin
e f is analyti
, then by using theCau
hy formula f(s) = 12�i ZC f(z)x0n(z)xn(z)� xn(s)dz; (A.4)we have f(s) = [n� k℄q!2�i ZC f(z)x0n(z)[xn(z)� xn(s)℄(n�k+1) dz: (A.5)



CONNECTION AND LINEARIZATION PROBLEMS 23If we now use the residue's theorem, and taking into a

ount that the onlysingularities of the integrand are the simple poles lo
ated at z = s� l; l =0; 1; � � � ; n� k, thenRes" f(z)x0n(z)[xn(z)� xn(s)℄(n�k+1) # = f(s� l)n�kYm = 0m 6= l [xn(s� l)� xn(s�m)℄ :Finally, using the property (A.2) the result follows.ACKNOWLEDGMENTSThis work has been partially supported by the European proje
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