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Abstract

In this paper we present a unified theory for studying the so called Krall-

type discrete orthogonal polynomials. In particular, the three-term recurrence

relation, lowering and raising operators as well as the second order linear

difference equation that the sequences of monic orthogonal polynomials satisfy

are established. Some relevant examples of q-Krall polynomials are considered

in detail.
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1 Introduction

Let � be a quasi-definite linear functional in the vector space P of polynomials with

complex coefficients. Then there exists a sequence of monic polynomials (Pn)n with

degPn = n, such that [14]

〈 � , Pn Pm〉 = knδn,m, kn 6= 0, n,m = 0, 1, 2, . . . .

Special cases of quasi-definite linear functionals are the classical ones (those of Ja-

cobi, Laguerre, Hermite, and Bessel). In the last years perturbations of the func-

tional � via the addition of Dirac delta functions —the so-called Krall-type orthog-

onal polynomials— have been extensively studied (see e.g. [6, 7, 16, 20, 21, 22, 26]

and references therein), i.e., the linear functional

˜� = � +

M∑

i=1

Aiδ(x− ai), (1.1)

where (Ai)
M
i=1 are non-zero real numbers and δ(x− y) means the Dirac linear func-

tional defined by 〈δ(x − y), p(x)〉 = p(y), ∀p ∈ P. In the very recent paper [2] we

have considered the case of the more general functional ˜� = � +
∑M

i=1Aiδ(x− ai)−∑N
j=1Bjδ

′(x−bj), which also involves the case of derivatives of delta Dirac function-

als defined by 〈δ′(x− a), p(x)〉 = −p′(a). Moreover, in [2] a necessary and sufficient

condition for the quasi-definiteness of the linear functional ˜� was established and a

detailed study when the original functional � is a semiclassical functional was worked

out in detail.

In the present paper we will suppose that the functional � in (1.1) is a semiclassi-

cal discrete [31] or q-discrete [28] functional making an special emphasis in the case

when � is a classical discrete [17] or q-classical functional [29]. The interest of such

modifications for the discrete case starts after the Third International Symposium

on Orthogonal Polynomials and their Applications held in Erice (Italy) when R.

Askey raised the question of identify and study the resulting polynomials of adding

a delta Dirac measure to the classical Meixner linear functional. This problem was

independently solved in [3] and [12] and it was extended to other families of classical

polynomials (see [4] for the Hahn and Kravchuk cases and [5, 13] for the Charlier

one, for a general framework see [19]). The case when � is a q-classical linear func-

tional is still open and only few results by Costas-Santos [15] are known. Another

connected problem is related with the so called coherent pairs for measures [27, 30]

that leads to similar linear discrete functionals [9, 10, 11].
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Let us also point out that there are also the so-called discrete (see e.g. [8]) and

q-discrete Sobolev type orthogonal polynomials associated with the classical discrete

and q-classical functionals [23, 24]. In both cases the corresponding polynomials can

be reduced to the Krall-type one (except for the q-case when the mass is added at

zero where a more careful study is needed [23, 24]) since the differences ∆f(x) =

f(x+ 1) − f(x) and Dqf(x) = (f(qx) − f(x))/(qx− x).

The aim of this contribution is to present a simple and unified approach to the

study of such perturbations of the semiclassical and q-semiclassical functionals.

The structure of the paper is as follows: In Section 2 some remarks on the general

theory [2] are included as well as a detailed discussion when � is a semiclassical

functional. In Section 3 the algebraic properties of the new family are obtained,

and, finally, in Section 4 some examples are developed in details.

2 General theory

2.1 Representation formula

We follow [2]. If ˜� in (1.1) is quasi-definite then there exists a sequence of monic

polynomials (P̃n)n orthogonal with respect to ˜� and therefore we can consider the

Fourier expansion

P̃n(x) = Pn(x) +
n−1∑

k=0

λn,kPk(x), n = 0, 1, 2, . . . . (2.1)

Then, for 0 ≤ k ≤ n− 1,

λn,k =
〈 � , P̃ n(x)Pk(x)〉

〈 � , P 2
k (x)〉

= −
M∑

i=1

AiP̃ n(ai)
Pk(ai)

〈 � , P 2
k (x)〉

.

Thus, (2.1) becomes

P̃n(x) = Pn(x) −
M∑

i=1

AiP̃n(ai)Kn−1(x, ai) (2.2)

where, as usual, Kn(x, y) =
n∑

l=0

Pl(x)Pl(y)

〈 � , P 2
l (x)〉

denotes the reproducing kernel associated

with the linear functional � . Therefore from (2.2) we get the following system of M

linear equations in the M unknowns (P̃n(ak))
M
k=1

P̃ n(ak) = Pn(ak) −

M∑

i=1

AiP̃ n(ai)Kn−1(ak, ai), k = 1, 2, . . . ,M, (2.3)
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To simplify the above expressions we use the notations of [2] (AT is the transpose

of A):

Pn(~z) = (Pn(z1), Pn(z2), . . . , Pn(zk))
T , ~z = (z1, z2, · · · , zk)

T .

Also we introduce the matrices Kn−1(~z, ~y) ∈ C
p×q whose (m,n) entry is Kn−1(zm, yn).

Here ~z = (z1, z2, . . . , zp) and ~y = (y1, y2, . . . , yq). Finally, we introduce the matrix

associated with the mass points D = diag (A1, A2, . . . , AM ). With this notation

(2.3) can be rewritten as

P̃n(~a) = Pn(~a) − Kn−1DP̃n(~a), Kn−1 = Kn−1(~a,~a), (2.4)

where ~a = (a1, a2, . . . , aM). If the matrix I + Kn−1D, where I is the identity matrix,

is nonsingular, then we get the existence and uniqueness for the solution of (2.4)

and therefore (2.2) becomes

P̃ n(x) = Pn(x) − K
T
n−1(x,~a)D(I + Kn−1D)−1

Pn(~a). (2.5)

The above formula constitutes the first representation formula for the polynomials

(P̃ n)n.

From the above expression and following [2] we obtain the following

Theorem 1 The linear functional ˜� defined in (1.1) is a quasi-definite linear func-

tional if and only if

(i) The matrix I + Kn−1D is nonsingular for every n ∈ N.

(ii) 〈 � , P 2
n(x)〉 + P

T
n (~a)D (I + Kn−1D)−1

Pn(~a) 6= 0, for every n ∈ N.

In such a case the norm d̃2
n := 〈˜� , P̃ 2

n(x)〉 is

〈˜� , P̃ 2

n(x)〉 = 〈 � , P 2
n(x)〉 + P

T
n(~a)D(I + Kn−1D)−1

Pn(~a), (2.6)

and the corresponding sequence (P̃n)n of monic orthogonal polynomials is given by

(2.5).

Furthermore, taking into account Ai 6= 0, i = 1, 2, . . . ,M , then D is a nonsingular

matrix. Thus D(I + Kn−1D)−1 = (D−1 + Kn−1)
−1 := Mn−1, so (ii) reads

1 + εnP̂
T
n (~a)Mn−1P̂n(~a) 6= 0, P̂n(ai) =

Pn(ai)√
|〈 � , P 2

n(x)〉|
,

and εn = e−iarg 〈
�
,P 2

n〉, where arg z means the principal argument of z ∈ C.
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Similarly to [2], if we multiply (2.5) by φ(x) =
∏M

i=1(x − ai), and use the

Christoffel-Darboux formula

Kn−1(x, y) =
1

kn

[
Pn(x)Pn−1(y) − Pn(y)Pn−1(x)

x− y

]
, kn = 〈 � , P 2

n(x)〉, (2.7)

then we obtain the representation

φ(x)P̃n(x) = A(x;n)Pn(x) + B(x;n)Pn−1(x), (2.8)

where A(x;n) and B(x;n) are polynomials of degree bounded by a number inde-

pendent of n and at most M and M − 1, respectively. On the other hand, from the

three-term recurrence relation that the sequence (Pn)n satisfies

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), γn 6= 0, ∀n ∈ N, (2.9)

and taking into account (2.8) we get, for n ≥ 1

φ(x)P̃n−1(x) = C(x;n)Pn(x) +D(x;n)Pn−1(x),

C(x;n) = −
B(x;n − 1)

γn−1
, D(x;n) = A(x;n − 1) +

x− βn−1

γn−1
B(x;n − 1).

(2.10)

Let us point out that the above representations are valid for any family of poly-

nomials orthogonal with respect to the linear functional (1.1).

Notice also that, as in the continuous case [2], an inverse process can be done

in order to recover the linear functional � in terms of ˜� (it is sufficient to add to ˜�

the same masses but with opposite sign). Therefore, there exist two polynomials

A(x;n) and B(x;n) with degrees bounded by a number independent of n such that

φ(x)Pn(x) = A(x;n)P̃ n(x) + B(x;n)P̃ n−1(x). (2.11)

2.2 Representation formula in the semiclassical case

If � is a semiclassical discrete linear functional, then there exist a polynomial ψ(x)

and two polynomials M1(x;n) and N1(x;n), with degree bounded by a number

independent of n, such that [31]

ψ(x)∆Pn(x) = M1(x;n)Pn(x) +N1(x;n)Pn−1(x), (2.12)

where ∆ is the forward difference operator ∆f(x) = f(x+ 1) − f(x). Notice that

using the TTRR (2.9) we get a similar expression but in terms of Pn and Pn−1

ψ(x)∆Pn(x) = M2(x;n)Pn(x) +N2(x;n)Pn+1(x). (2.13)
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where again the degree of M2(x;n) and N2(x;n) are bounded by a number indepen-

dent of n. Usually the formulas (2.12) and (2.13) are called the lowering and raising

operators for the family (Pn)n.

Similarly, for the q-semiclassical case a similar result is known [28], i.e., there

exist a polynomial ψ(x) as well as the polynomials M1(x;n), N1(x;n), M2(x;n), and

N2(x;n), with degree bounded by a number independent of n, such that

ψ(x)DqPn(x) = M1(x;n)Pn(x) + N1(x;n)Pn−1(x), (2.14)

ψ(x)DqPn(x) = M2(x;n)Pn(x) + N2(x;n)Pn+1(x). (2.15)

where Dq is the q-Jackson derivative1

DqP (x) =
P (qx) − P (x)

x(q − 1)
, q 6= 0,±1.

Using either (2.8) and (2.12) or (2.10) and (2.13) we obtain the following repre-

sentation formula

π(x;n)P̃n(x) = a(x;n)Pn(x) + b(x;n)Pn(x+ 1), (2.16)

where a, b and π are polynomials of degree bounded by a number independent of n.

In the q-case the situation is the same. In fact using (2.8) and (2.14) or (2.10)

and (2.15) we obtain the following representation formula

π(x;n)P̃n(x) = a(x;n)Pn(x) + b(x;n)Pn(qx), (2.17)

where a, b and π are polynomials of degree bounded by a number independent of n.

3 Algebraic properties of the polynomials P̃n(x)

3.1 The three-term recurrence relation for (P̃ n)n

In the sequel we assume that ˜� is quasi-definite. Then, the sequence (P̃n)n of monic

polynomials orthogonal with respect to ˜� satisfies a three-term recurrence relation

(TTRR)

xP̃n(x) = P̃n+1(x) + β̃nP̃ n(x) + γ̃nP̃ n−1(x), n ∈ N, (3.1)

with the initial conditions P̃−1(x) = 0, P̃ 0(x) = 1. To obtain the coefficients β̃n and

γ̃n of the TTRR (3.1) for the polynomials P̃ n orthogonal with respect to ˜� we use

1Usually q ∈ (0, 1).
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the standard formulas for orthogonal polynomials (see e.g. [14]). Thus, using (2.6)

we find

γ̃n =
〈˜� , P̃ 2

n(x)〉

〈˜� , P̃ 2

n−1(x)〉
= γn

1 + εnP̂
T
n (~a)Mn−1P̂n(~a)

1 + εn−1P̂
T
n−1(~a)Mn−2P̂n−1(~a)

, n > 1,

as well as, for n = 1

γ̃1 = γ1
1 + ε1P̂

T
n (~a)M0P̂n(~a)

1 +
∑M

i=1Ai/u0

,

where u0 = 〈 � , 1〉 is the first moment of the functional � .

On the other hand, β̃n = b̃n − b̃n+1, where b̃n denotes the coefficient of xn−1 for

P̃ n and bn is the corresponding coefficient of xn−1 for Pn. To compute b̃n we use

(2.5), so that

b̃n = bn − εnεn−1|γn|
1/2

P̂
T
n−1(~a)Mn−1P̂

T
n (~a)

and therefore

β̃n = βn+ εnεn+1|γn+1|
1/2

P̂
T
n(~a)MnP̂

T
n+1(~a) − εnεn−1|γn|

1/2
P̂

T
n−1(~a)Mn−1P̂

T
n (~a).

Finally, for n = 0 we have

β̃0 =
〈˜� , x〉
〈˜� , 1〉 =

u1 +
∑M

i=1 aiAi

u0 +
∑M

i=1 Ai

, u1 = 〈 � , x〉.

3.2 Second order difference equation for (P̃ n)n

In the following we assume that � is a semiclassical discrete or q-discrete functional.

From the representation formulas (2.8) and (2.16) and (2.17) follows that the

polynomials P̃ n satisfy a second order difference equation. For the discrete case it

is an immediate consequence of the Theorem 2.1 or Theorem 3.1 in [1]. In fact, we

have

Theorem 2 Suppose the polynomials (P̃n)n are defined by (2.16) where the poly-

nomial Pn is a solution of a second order difference equation (SODE)

σ(x;n)Pn(x− 1) − ϕ(x;n)Pn(x) + ς(x;n)Pn(x+ 1) = 0. (3.2)

Then {P̃n} satisfy the SODE

σ̃(x;n)∆∇P̃n(x) + τ̃(x;n)∆P̃n(x) + λ̃(x;n)P̃n(x) = 0, (3.3)

where τ̃(x;n) = ς̃(x;n) − σ̃(x;n), λ̃(x;n) = ς̃(x;n) + σ̃(x;n) + ϕ̃(x;n), and σ̃, ϕ̃,

and ς̃ are given explicitly in (3.8).
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For the sake of completeness we present an sketch of the proof. We start with the

representation formula (2.16)

π(x;n)P̃n(x) = a(x;n)Pn(x) + b(x;n)Pn(x+ 1), (3.4)

and evaluate it in x± 1 and then we use (3.2) to substitute the values Pn(x− 1) and

Pn(x+ 2). So, we obtain

r(x;n)P̃n(x+ 1) = c(x;n)Pn(x) + d(x;n)Pn(x+ 1),

r(x;n) = ς(x+ 1;n)π(x + 1;n), c(x;n) = −σ(x+ 1;n) b(x+ 1;n),

d(x;n) = a(x+ 1;n)ς(x+ 1;n) + b(x+ 1;n)ϕ(x+ 1;n),

(3.5)

and

s(x;n)P̃n(x− 1) = e(x;n)Pn(x) + f(x;n)Pn(x+ 1),

s(x;n) = σ(x;n)π(x− 1;n), e(x;n) = σ(x;n)b(x− 1;n) + a(x− 1;n)ϕ(x;n),

f(x;n) = −a(x− 1;n)ς(x;n).

(3.6)

Then, Eqs. (3.4–3.6) yield
∣∣∣∣∣∣∣

π(x;n)P̃n(x) a(x;n) b(x;n)

r(x;n)P̃n(x+ 1) c(x;n) d(x;n)

s(x;n)P̃n(x− 1) e(x;n) f(x;n)

∣∣∣∣∣∣∣
= 0 , (3.7)

where the functions π, a, and b are given by (2.16) as well as c, d, e, f , r, and s in

(3.5) and (3.6). Expanding the determinant in (3.7) by the first column we get

σ̃(x;n)P̃n(x− 1) − ϕ̃(x;n)P̃n(x) + ς̃(x;n)P̃n(x+ 1) = 0,

where
σ̃(x;n) = s(x;n)[a(x;n)d(x;n) − c(x;n)b(x;n)],

ϕ̃(x;n) = −π(x;n)[c(x;n)f(x;n) − e(x;n)d(x;n)],

ς̃(x;n) = r(x;n)[e(x;n)b(x;n) − a(x;n)f(x;n)],

(3.8)

or, equivalently, (3.3).

To conclude this section let notice that for the q-case a similar equation can be

obtained using the same technique developed here. Nevertheless we can immediately

obtain the result as follows.
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Let us write x = qs. Then f(qx) = f(qs+1) and therefore (2.17) can be rewritten

as follows

π(qs;n)P̃n(qs) = a(qs;n)Pn(qs) + b(qs;n)Pn(qs+1),

or, in terms of the s variable,

π(s;n)P̃n(s) = a(s;n)Pn(s) + b(s;n)Pn(s+ 1),

i.e., they admit the same representation (2.16) changing x by qs. But for the q-

semiclassical polynomials the following second order q-difference equation is known

(see e.g. [28])

σ(x;n)Pn(q
−1x) − ϕ(x;n)Pn(x) + ς(x;n)Pn(qx) = 0, (3.9)

which becomes into the equation (3.2) with the change x→ qs. Thus the following

result holds

Theorem 3 Assume the polynomials (P̃ n)n satisfy (2.17) where the polynomial Pn

is a solution of a q-SODE (3.9). Then (P̃n)n satisfy the q-SODE

σ̃(x;n)P̃n(q
−1x) + ϕ̃(x;n)P̃n(x) + ς̃(x;n)P̃n(qx) = 0, (3.10)

where σ̃, ϕ̃, and ς̃ are given explicitly by (3.8) but now

r(x;n) = ς(qx;n)π(qx;n), c(x;n) = −σ(qx;n) b(qx;n),

d(x;n) = a(qx;n)ς(qx;n) + b(qx;n)ϕ(qx;n),

s(x;n) = σ(x;n)π(q−1x;n), e(x;n) = σ(x;n)b(q−1x;n) + a(q−1x;n)ϕ(x;n),

f(x;n) = −a(q−1x;n)ς(x;n).

3.3 The lowering and raising operators

In this section we will prove that the polynomials P̃n orthogonal with respect to the

linear discrete functional ˜� , where � is a semiclassical functional, have lowering and

rising-type operators.

Proposition 4 The lowering-type operator associated with the discrete linear func-

tional ˜� is given by the expression

αl(x;n)P̃ n(x) + βl(x;n)P̃n(x+ 1) = γl(x;n)P̃n−1(x), (3.11)
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where

αl(x;n) = φ(x)d(x;n)π(x;n) − [a(x;n)d(x;n) − c(x;n)b(x;n)]A(x;n),

βl(x;n) = −φ(x)b(x;n)r(x;n), γl(x;n) = [a(x;n)d(x;n) − c(x;n)b(x;n)]B(x;n).

Proof: Using formulas (3.4) and (3.5) we find

d(x;n)π(x;n)P̃ n(x)−b(x;n)r(x;n)P̃n(x+1) = [a(x;n)d(x;n)−c(x;n)b(x;n)]Pn(x).

Multiplying the last formula by φ(x) and using (2.11) we obtain the result.

Notice that from (3.11) and using the TTRR (3.1) we obtain the raising-type

operator

αr(x;n)P̃ n(x) + βr(x;n)P̃n(x+ 1) = γr(x;n)P̃n+1(x), (3.12)

where

αr(x;n)=αl(x;n) + γl(x;n)(β̃n − x)γ̃−1
n , βr(x;n)=βl(x;n), γr(x;n)=−γl(x;n)γ̃−1

n .

Notice that if instead of formula (3.5) we use (3.6) then we will find expressions

similar to (3.11) and (3.12) but with the term P̃ n(x− 1) instead of P̃n(x+ 1).

In a complete analogous way but using (2.17) we have

Proposition 5 The lowering operator associated with the q-linear functional ˜� is

αl(x;n)qP̃n(x) + βl(x;n)qP̃n(qx) = γl(x;n)qP̃ n−1(x), (3.13)

where

αl(x;n)q = φ(x)d(x;n)π(x;n) − [a(x;n)d(x;n) − c(x;n)b(x;n)]A(x;n),

βl(x;n)q = −φ(x)b(x;n)r(x;n), γl(x;n)q = [a(x;n)d(x;n)−c(x;n)b(x;n)]B(x;n).

The raising operator in this case is

αr(x;n)qP̃n(x) + βr(x;n)qP̃n(qx) = γr(x;n)qP̃ n+1(x), (3.14)

where

αr(x;n)q = αl(x;n)q + γl(x;n)q(β̃n − x)γ̃−1
n , βr(x;n)q = βl(x;n)q,

γr(x;n)q = −γl(x;n)qγ̃
−1
n .

As before, from the above equations similar expression involving the terms P̃ n(q
−1x)

can be easily obtained.
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4 Examples

Here we will consider some examples. Since the classical case with one or two extra

delta Dirac measures (functionals) has been studied intensively (see e.g. [4, 5]) we

will focus here our attention in the q-case. For the sake of simplicity we will choose

the Al-Salam & Carlitz I polynomial as the starting family. The main data of such

family can be found in [25, page 113].

The Al-Salam & Carlitz I polynomials are defined by

U (a)
n (x) := U (a)

n (x; q) = (−a)nq
1
2
n(n−1)

2ϕ1

(
q−n, x−1

0

∣∣∣∣∣q;
x q

a

)
,

where the basic hypergeometric series rϕp is defined by [18]

rϕp

(
a1, . . . , ar

b1, . . . , bp

; q , z

)
=

∞∑

k=0

(a1; q)k · · · (ar; q)k

(b1; q)k · · · (bp; q)k

zk

(q; q)k

[
(−1)kq

k(k−1)
2

]p−r+1
,

being (a; q)k =
∏k−1

m=0(1−aq
m) the q-shifted factorials. Also we will use the standard

notation (a1, . . . , ar; q)k = (a1; q)k · · · (ar; q)k and (a; q)∞ =
∏∞

k=0(1 − aqk).

The polynomials U
(a)
n (x) satisfy the following properties: a second order linear

difference equation

aU (a)
n (qx) − [a+ q(1 − x)(a− x)]U (a)

n (x) + q(1 − x)(a− x)U (a)
n (q−1x)

= q1−n(1 − qn)x2U (a)
n (x),

(4.1)

i.e., an equation of the form (3.9) with

σ(x;n) = q(1−x)(a−x), ϕ(x;n) = a+q(1−x)(a−x)+q1−n(1−qn)x2, ς(x;n) = a,

the three-term recurrence relation

xU (a)
n (x) = U

(a)
n+1(x)+(1+a)qnU (a)

n (x)−aqn−1(1−qn)U
(a)
n−1(x), n = 0, 1, 2, . . . , (4.2)

and the differentiation formula

U (a)
n (x) − U (a)

n (qx) = (1 − qn)xU
(a)
n−1(x). (4.3)

They satisfy the following orthogonality relation

∫ 1

a

(qx; q)∞(qx/a; q)∞U
(a)
n (x)U (a)

m (x)dqx = d2
nδn,m, a < 0, (4.4)

11



where

d2
n = (−a)n(1 − q)(q; q)n(q; q)∞(a; q)∞(a−1q; q)∞q

1
2
n(n−1).

Here
∫ b

a
f(x)dqx denotes the q-integral by Jackson (see e.g. [18, 25]).

From the above orthogonality relation we can define the positive definite linear

functional � as

�

a : P → C, �

a[P (x)] =

∫ 1

a

(qx; q)∞(qx/a; q)∞P (x)dqx, a < 0. (4.5)

A particular case of this functional is a = −1 that leads to the discrete q-Hermite I

polynomials, a q-analog of the Hermite polynomials.

4.1 Modification of the Al-Salam & Carlitz I polynomials

As an example we will consider the following perturbed functional ˜� a : P → C,

˜� a[P (x)] =

∫ 1

a

(qx; q)∞(qx/a; q)∞P (x)dqx+ AP (x0), a < 0 < A. (4.6)

The polynomials orthogonal with respect to the linear functional (4.6) will be de-

noted by U
(a),A
n (x).

Using (2.3) and (2.7) (or (2.8)) we find

(x− x0)U
(a),A
n (x) = [x− x0 − AU (a),A

n (x0)d
−2
n U

(a)
n−1(x0)]U

(a)
n (x)

+ AU (a),A
n (x0)d

−2
n U (a)

n (x0)U
(a)
n−1(x),

(4.7)

where

U (a),A
n (x0) =

U
(a)
n (x0)

1 + A
∑n−1

k=0 (U
(a)
k (x0))2d−2

k

=
U

(a)
n (x0)

1 + AKn−1(x0, x0)
.

Therefore, taking into account (4.3) and (4.7), we find that (2.17) holds with

π(x;n) = x(x− x0),

a(x;n) = x

(
x− x0 −

AU
(a),A
n (x0)U

(a)
n−1(x0)

d2
n

)
+
AU

(a),A
n (x0)U

(a)
n (x0)

(1 − qn)d2
n

b(x;n) = −
AU

(a),A
n (x0)U

(a)
n (x0)

(1 − qn)d2
n

.

For these polynomials, by (2.6), we have

d̃n

2
= 〈˜� ,

(
U (a),A

n

)2
〉 = d2

n + A[U (a)
n (x0)]

2(1 + AKn−1(x0, x0))
−1,

12



and therefore the coefficients of the TTRR are

β̃n = (1 + a)qn + A

[
U

(a)
n+1(x0)U

(a)
n (x0)

d2
n+1(1 + AKn(x0, x0))

−
U

(a)
n (x0)U

(a)
n−1(x0)

d2
n(1 + AKn−1(x0, x0))

]
,

γ̃n = −aqn−1(1 − qn)
1 + A[U

(a)
n (x0)d

−1
n ]2(1 + AKn−1(x0, x0))

−1

1 + A[U
(a)
n−1(x0)d

−1
n−1]

2(1 + AKn−2(x0, x0))−1
.

(4.8)

Now, from the above explicit expressions of π(x;n), a(x;n), b(x;n), σ(x;n),

ϕ(x;n), and ς(x;n), we immediately obtain the second order difference equation

(3.10). Finally, to deduce the lowering and raising operators we should obtain

formula (2.11) that, for this case is

U (a)
n (x) = U (a),A

n (x) + AU (a)
n (x0)K̃n−1(x, x0),

or, equivalently

(x− x0)U
(a)
n (x) = A(x;n)U (a),A

n (x) + B(x;n)U
(a),A
n−1 (x),

where

A(x;n) = x− x0 +
AU

(a)
n (x0)U

(a),A
n−1 (x0)

d̃2
n

, B(x;n) = −
AU

(a)
n (x0)U

(a),A
n (x0)

d̃2
n

.

Therefore, (3.14) and (3.13) give the raising and lowering operators. For the sake

of simplicity we will omit the explicit expressions of the q-SODE and the raising

and lowering operators and we only present them for the special case of discrete

q-Hermite I polynomials.

4.2 Modification of the discrete q-Hermite I polynomials

To conclude this work we will consider the discrete q-Hermite I polynomials, i.e. the

polynomials hn(x; q) := U
(−1)
n (x; q), and let us study in detail the modification of

these polynomials via the addition of a delta Dirac measure A at x0 = 0, which will

be denoted by hA
n (x; q). The main data for the q-Hermite I polynomials follow from

the data of the Al-Salam & Carlitz I putting a = −1.

According to (4.7), in this case the representation formula (2.8) reads as

xhA
n (x; q) = xhn(x; q) + Γnhn−1(x; q), n ≥ 1, (4.9)

where

Γn =





A[h2m(0)]2

d2
2m(1 + AK2m−1(0, 0))

, n = 2m

0, n = 2m− 1 ,
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d2
n = (1 − q)(q; q)n(q,−1,−q; q)∞q

(n

2),

hn(0; q) =





qm(m−1)(−1)m(q; q2)m, n = 2m

0, n = 2m− 1,
(m ∈ N),

and Kn−1(0, 0) =
∑n−1

k=0 [hk(0; q)]2d−2
k . For the special case n = 2m− 1 we have

K2m−1(0, 0) =
1

(1 − q)(q,−1,−q; q)∞

m−1∑

k=0

q−k(q; q2)k

(q2; q2)k

.

Notice that with the above notation

Γ2m =
1

(1 − q)(q,−1,−q; q)∞

A(q; q2)mq
−m

(q2; q2)m

1

1 + AK2m−1(0, 0)
, m ∈ N.

If now we use (4.9) and the differentiation formula (4.3) with a = −1 we find

xhA
n (x; q) = xhn(x; q) +

1 − q

1 − qn
ΓnDqhn(x; q), n ≥ 1,

or, equivalently,

x2hA
n (x; q) = (x2 + Λn)hn(x; q) − Λnhn(qx; q), n ≥ 1, (4.10)

where Λn = Γn/(1 − qn).

Remark: Notice that since Γ2m−1 = 0 for all m ∈ N then, by (4.9), hA
2m−1(x; q) =

h2m−1(x; q), i.e., the odd degree polynomials are not affected with the addition of

the Dirac measure.

Notice also that

xhA
2m(x; q) = xh2m(x; q) + Γ2mh2m−1(x; q) = xh2m(x; q) + Γ2mh

A
2m−1(x; q),

i.e., formula (2.11) takes the form

xhn(x; q) = xhA
n (x; q) − Γnh

A
n−1(x; q).

For this family the square of the norm is

d̃n

2
= (1 − q)(q; q)n(q,−1,−q; q)∞q

(n

2) (1 + Γn) .
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Using the formulas in Section 3 (or (4.8) with a = −1 and x0 = 0) we find

xhA
n (x; q) = hA

n+1(x; q) + β̃nh
A
n (x; q) + γ̃nh

A
n−1(x; q), n ∈ N, (4.11)

where the coefficients of the TTRR are given by

β̃n = 0, γ̃n = qn−1(1 − qn)
1 + Γn

1 + Γn−1
, n ∈ N.

To compute the q-SODE we use Theorem 3 with the functions (see [25])

σ(x;n) = q(1 − x2), ϕ(x;n) = 1 + q − q1−nx2, ς(x;n) = 1

and (cf. (4.10))

π(x;n) = x2, a(x;n) = x2 + Λn, b(x;n) = −Λn.

Then we have

σ̃(x;n)hA
n (q−1x; q) + ϕ̃(x;n)hA

n (x; q) + ς̃(x;n)hA
n (qx; q) = 0,

where

σ̃(x;n) =q−nx2
(
−1 + x2

) (
−q2Λn

(
x2 + Λn

)
+ qn

(
Λn + q2Λ2

n − q
(
x2 + Λn

)))
,

ϕ̃(x;n) =q−1
(
−1 + q2x2

)
Λn

(
x2 + q2Λn

)

− q
(
q
(
−1 + x2

)
Λn +

(
1 + q − q1−nx2

) (
q−2x2 + Λn

))
×

(
−Λn + qx2

(
1 + q1−nΛn

))
,

ς̃(x;n) =q−nx2
(
qΛn

(
x2 + q2Λn

)
+ qn

(
x2 + qΛn

(
−1 + q − q2Λn

)))
.

We notice that these are the expressions in Theorem 3 up to the factor x2.

For the lowering-type operator we have, from (3.13)

αl(x;n)qh
A
n (x; q) + βl(x;n)qh

A
n (qx; q) = γl(x;n)qh

A
n−1(x; q),

where (up to the factor qx2Λn)

αl(x;n)q = q1−nx (−qΛn + qn (−1 + qΛn)) , βl(x;n)q = qx,

γl(x;n)q = (−1 + qn)
(
−Λn + q

(
x2 + Λn − qΛn

2 + q1−nΛn (x2 + Λn)
))
.

Combining the last expression with the TTRR (4.11) we obtain the raising-type

operator.
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To conclude this section let us show that the polynomials hA
n (x; q) can be ex-

pressed in terms of a basic series 3ϕ2. For doing that we substitute the representation

hn(x; q) = q
1
2
n(n−1)

2ϕ1

(
q−n, x−1

0

∣∣∣∣∣q;−xq
)

in (4.10). After some straightforward calculations, this leads to the expression

x2hA
n (x; q) = q

1
2
n(n−1)

n∑

k=0

(q−n; q)k(q
−1x−1; q)k(−qx)

k

(q; q)k

qx(x2 + Λn)

(qx− 1)
(1 − δ(x;n)qk),

where δ(x;n) = (x/q+Λn)/(x
2+Λn). Finally, using the well-known identity 1−aqk =

(1 − a)(aq; q)k/(a; q)k with a = δ(x;n), we obtain

hA
n (x; q) = q

1
2
n(n−1)

3ϕ2

(
q−n, q−1x−1, δ(x;n)q

0, δ(x;n)

∣∣∣∣∣ q; −qx
)
, δ(x;n) =

q−1x+ Λn

x2 + Λn
.
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[6] R. Álvarez-Nodarse and F. Marcellán: The limit relations between generalized or-

thogonal polynomials. Indag. Mathem.N.S. 8 (1997), 295-316.
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