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Abstract. We present a general procedure for finding linear recurrence
relations for the solutions of the second order difference equation of
hypergeometric type. Applications to wave functions of certain discrete
system are also given.

1. Introduction

In the last years there has been increasing interest in discrete models in
classical and quantum physics (for a recent review see [20]). Several of such
models are solved using the theory of the classical discrete polynomials [22].
Important instances of such systems are the discrete oscillators of Charlier
[5], Kravchuk oscillators [6, 8, 10, 12, 14] and Meixner oscillators [5] that are
related to the polynomials of Charlier, Kravchuk and Meixner, respectively,
and the finite radial oscillator [9, 11] related with the Hahn polynomials. For
applications it is important to have recurrence relations for the discrete wave
function of such systems. Methods for obtaining such recurrence relations
have attracted the interest of several authors (see e.g. [19, 20] and references
therein).

Our main aim in this paper is to present a constructive approach for
generating recurrence relations and ladder-type operators for some discrete
system such as the discrete oscillators [2, 5, 6, 8, 9, 10, 11, 12, 13, 14], discrete
Calogero-Sutherland model [20], etc. The main idea is to use the connection
of the wave functions with the classical discrete polynomials in a similar
way as it was done in our previous paper [16] for the N -th dimensional
oscillators and hydrogenlike atoms. This approach allows us to recover the
relations obtained in [5, 19, 20] and also to obtain several new relations for
the discrete polynomials and therefore for the associated (wave) functions in
a constructive way. This can be extended to other exactly solvable models
which involve discrete hypergeometric functions or polynomials.

The structure of the paper is as follows: In section 2 the required results
and notation from special function theory are introduced. The main results
of the paper are in Section 3, where some general existence theorems are
stated and proved. In Section 4 simple examples of recurrences and ladder-
type relations of some discrete systems are presented. Finally, at the end of
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section 4, we include some more complicate examples, in order to show the
interest as well as the power of the method for finding needed recurrence
relations. In this way we show how this method can be useful for finding
recurrences à la carte, that it seem to be, in general, a very important tool
for computations with discrete systems.

2. The discrete ingredients

2.1. “Discrete” preliminaries. Here we collect the basic background [1,
22] on hypergeometric discrete polynomials needed in the rest of the work.

Let us consider the second-order difference equation of hypergeometric-
type

σ(s)∇∆y(s) + τ(s)∆y(s) + λy(s) = 0 , (2.1)

where σ(s) and τ(s) are polynomials of degree not greater than 2 and 1,
respectively, λ is a constant, and ∆f(s) = f(s + 1) − f(s) and ∇f(s) =
∆f(s− 1) are the forward and backward difference operators, respectively.
This equation can be written in self-adjoint form

∆[σ(s)ρ(s)∇y(s)] + λρ(s)y(s) = 0, (2.2)

where the function ρ(s) satisfies the Pearson-type difference equation

∆
[
σ(s)ρ(s)

]
= τ(s)ρ(s).

For the solutions of the difference equation (2.1) the following theorem holds

Theorem 2.1. [23, page 136] The difference equation (2.1) has particular
solutions of the form

yν(s) =
Cν

ρ(s)

b−1∑

x=a

ρν(x)

(x− s)ν+1
(2.3)

if the condition

σ(x)ρν(x)

(x− s− 1)ν+2

∣∣∣∣
b

a

= 0, (2.4)

is satisfied, and has solutions of the form

yν(s) =
Cν

ρ(s)

∫

C

ρν(x) dx

(x− s)ν+1
(2.5)

if the condition
∫

C

σ(x+ 1)ρ(x+ 1) dx

(x− s)ν+2
=

∫

C

σ(x)ρ(x) dx

(x− s− 1)ν+2
(2.6)

is satisfied. Here C is a contour in the complex plane, Cν is a constant, ρ(s)
and ρν(s) are the solution of the Pearson type equations

∆
[
σ(s)ρ(s)

]
= τ(s)ρ(s), ∆

[
σ(s)ρν(s)

]
= τ(s)ρν(s), (2.7)
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where τν(s) = σ(s + ν) − σ(s) + τ(s + ν), ν is the root of the equation
λ+ ντ ′ + 1/2ν(ν − 1)σ′′ = 0, and (x)ν denotes the Pochhammer symbols or
shifted factorials

(x)ν :=
Γ(x+ ν)

Γ(x)
. (2.8)

Important instances of the functions yν are the classical discrete polyno-
mials which are given by [23, page 139]

Pn(s) =
n!Bn

ρ(s) 2πi

∫

C

ρn(x)

(x− s)n+1

dx, (2.9)

when C is a closed contour surrounding the points x = s, s − 1, . . . , s − n
and it is assumed that ρn(x) and ρn(x + 1) are analytic inside C, i.e., they
correspond to formula (2.5). In this case

λ := λn = −n∆τ(s) − 1

2
n(n− 1)σ′′, n = 0, 1, 2, . . . .

2.2. The classical discrete polynomials. The classical discrete orthog-
onal polynomials are orthogonal on the integers in [a, b− 1] with respect to
the weight function ρ(s), i.e.,

b−1∑

x=a

Pn(s)Pm(s)ρ(s) = δnmd
2
n,

provided that the boundary condition σ(s)ρ(s)xk
∣∣
x=a,b

= 0, for all k ≥ 0,

holds, where d2
n is the square of the norm of the polynomial Pn(s). They

can be obtained using the so-called Rodrigues-type formula

Pn(s) =
Bn

ρ(s)
∇n[ρn(s)], n = 0, 1, 2, ... , .

where Bn is the normalization constant and

ρn(s) = ρ(s+ n)

n∏

m=1

σ(s+m). (2.10)

Furthermore, for the k-th differences we have [23, Eq. 20, page 110]

∆kPn(s) =
AnkBn

ρk(s)
∇n−k[ρn(s)], (2.11)

where

Ank =
n!

(n− k)!

k−1∏

m=0

[
τ ′ + (n+m− 1)

σ′′

2

]
. (2.12)

A simple consequence of the orthogonality is the three-term recurrence
relation (TTRR) that the polynomials Pn satisfy

xPn(s) = αnPn+1(s) + βnPn(s) + γnPn−1(s). (2.13)

Also they satisfy several difference-recurrence relations [1]
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σ(s)∇Pn(s) =
λn

nτ ′n

[
τn(s)Pn(s) − Bn

Bn+1
Pn+1(s)

]
, (2.14)

[σ(s) + τ(s)]∆Pn(s) =
λn

nτ ′n

{
[τn(s) − nτ ′n]Pn(s) − Bn

Bn+1
Pn+1(s)

}
, (2.15)

σ(s)∇Pn(s) = α̃nPn+1(s) + β̃nPn(s) + γ̃nPn−1(s), (2.16)

[σ(s) + τ(s)]∆Pn(s) = α̂nPn+1(s) + β̂nPn(s) + γ̂nPn−1(s), (2.17)

Pn(s) = Qn(s) + δnQn−1(s) + εnQn−2(s), (2.18)

where Qn(s) = ∆Pn+1(s)/(n+ 1).

2.3. Classical families of Hahn, Meixner, Kravchuk and Charlier.

The four families of classical discrete orthogonal polynomials are the Hahn

hα,β
n (x,N), Meixner Mγ,µ

n (s), Kravchuk Kp
n(x,N) and Charlier Cµ

n(s), poly-
nomials [18, 22, 23], whose main data in its monic form are shown in Tables
1, 2 and 3.

Table 1. Classification of discrete classical polynomials

Hahn Meixner Kravchuk Charlier

Pn hα,β
n (s; N) Mγ,µ

n (s) Kp
n(s) Cµ

n (s)

[a, b] [0, N ] [0,∞) [0, N + 1] [0,∞)

σ s(N + α − s) s s s

τ (β + 1)(N − 1) − (α + β + 2)s (µ − 1)s + µγ
Np − s

1 − p
µ − s

τn
(β+1)(N−1)+n(N−β−n−2)

−(α + β + 2n + 2)s (µ−1)s+µ(γ+n)
(N − n)p − s

1 − p
µ − s

σ + τ (s + β + 1)(N − 1 − s) µs + γµ −
p

1 − p
(s − N) µ

λn n(n + α + β + 1) (1 − µ)n n
1−p

n

ρ
Γ(N + α − s)Γ(β + s + 1)

Γ(N − s)Γ(s + 1)

µsΓ(γ + s)

Γ(γ)Γ(s + 1)

N !ps(1 − p)N−s

Γ(N + 1 − s)Γ(s + 1)

e−µµs

Γ(s + 1)

α, β ≥ −1 , n ≤ N − 1 γ > 0, 0 < µ < 1 0 < p < 1, n ≤ N − 1 µ > 0

ρn
Γ(N + α − s)Γ(n + β + s + 1)

Γ(N − n − s)Γ(s + 1)

µs+nΓ(γ + n + s)

Γ(γ)Γ(s + 1)

N !ps+n(1 − p)N−n−s

Γ(N + 1 − n − s)Γ(s + 1)

e−µµs+n

Γ(s + 1)

They can be expressed in terms of hypergeometric functions by [22, Sec-
tion 2.7,p. 49]:

hα,β
n (x,N) =

(1 −N)n(β + 1)n

(α + β + n+ 1)n
3F2

(
−x, α + β + n+ 1,−n

1 −N,β + 1

∣∣∣∣1
)
,

Mγ,µ
n (s) = (γ)n

µn

(µ− 1)n 2F1

(
−n,−x

γ

∣∣∣∣1 − 1

µ

)
,
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Table 2. Main data for monic Hahn and Chebyshev polynomials

Hahn Chebyshev

hα,β
n (s; N) tn(s; N) = h0,0

n (s; N)

Bn
(−1)n

(α + β + n + 1)n

(−1)n

(n + 1)n

bn −
n

2

„
2(β + 1)(N − 1) + (n − 1)(α − β + 2N − 2)

α + β + 2n

«
−

n(N − 1)

2

d2
n

n!Γ(α + n + 1)Γ(β + n + 1)Γ(α + β + N + n + 1)

(α + β + 2n + 1)(N − n − 1)!Γ(α + β + n + 1)(α + β + n + 1)2n

n!2(N + n)!(n + 1)−2
n

(2n + 1)(N − n − 1)!

βn
(β + 1)(N − 1)(α + β) + n(2N + α − β − 2)(α + β + n + 1)

(α + β + 2n)(α + β + 2n + 2)

N − 1

2

γn
n(N − n)(α + β + n)(α + n)(β + n)(α + β + N + n)

(α + β + 2n − 1)(α + β + 2n)2(α + β + 2n + 1)

n2(N2 − n2)

4(2n − 1)(2n + 1)

bαn −n −n

bβn
n(−α − β − αβ − β2 − 2n − 2αn − 2βn − 2n2 + αN − βN)

(α + β + n + 1)−1(α + β + 2n)(α + β + 2n + 2)
−

n(n + 1)

2

bγn −
n(α + β + n)(α + β + n + 1)(α + n)(β + n)(α + β + N + n)

(n − N)−1(α + β + 2n − 1)(α + β + 2n)2(α + β + 2n + 1)
−

n2(n + 1)(N2 − n2)

4(2n − 1)(2n + 1)

eαn −n −n

eβn
n(α + α2 + β + αβ + 2n + 2αn + 2βn + 2n2 + αN − βN)

(α + β + n + 1)−1(α + β + 2n)(α + β + 2n + 2)

n(n + 1)

2

eγn −
n(α + β + n)(α + β + n + 1)(α + n)(β + n)(α + β + N + n)

(n − N)−1(α + β + 2n − 1)(α + β + 2n)2(α + β + 2n + 1)
−

n2(n + 1)(N2 − n2)

4(2n − 1)(2n + 1)

δn
n(α − β)(2N + α + β)

2(α + β + 2n)(α + β + 2n + 2)
−

n

2
−

n

2

εn
n(n − 1)(N − n)(α + n)(β + n)(α + β + N + n)

(α + β + 2n − 1)(α + β + 2n)2(α + β + 2n + 1)
−

n(n − 1)(N2 − n2)

4(2n − 1)(2n + 1)

Kp
n(x,N) =

(−p)nN !

(N − n)!
2F1

(
−n,−x
−N

∣∣∣∣
1

p

)
,

Cµ
n(s) = (−µ)n

2F0

(
−n,−x

−

∣∣∣∣−
1

µ

)
,

where the generalized hypergeometric function pFq is defined by

pFq

(
a1, a2, ..., ap

b1, b2, ..., bq

∣∣∣∣x
)

=

∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

xk

k!
. (2.19)

A very important special case of the Hahn polynomials (α = β = 0) are the

discrete Chebyshev polynomials tn(x,N) := h0,0
n (x,N).

3. General recurrence relations

In this section we will obtain several recurrence relations for the solutions
(2.3) and (2.5) of the difference equation (2.1). We start with the following
lemma that is the discrete analog of Lemma in [23, page 14].
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Table 3. Main data for monic Charlier, Meixner and
Kravchuk polynomials

Charlier Kravchuk Meixner
Cµ

n(s) Kp
n(s) Mγ,µ

n (s)

Bn (−1)n (−1)n(1 − p)n 1

(µ − 1)n

bn −
n

2
(2µ + n − 1) −n[Np + (n − 1)(1/2− p)]

„
nµ

µ − 1

« „
γ +

n − 1

2

µ + 1

µ

«

d2
n n!µn

n!N !pn(1 − p)n

(N − n)!

n!(γ)nµn

(1 − µ)γ+2n

βn n + µ Np + (1 − 2p)n
n(1 + µ) + µγ

1 − µ

γn nµ np(1 − p)(N − n + 1)
nµ(n − 1 + γ)

(µ − 1)2

bαn 0 0 0

bβn 0 −
np

1 − p
nµ

bγn nµ pn(N − n + 1)
nµ(n − 1 + γ)

1 − µ

eαn 0 0 0
eβn n n n

eγn nµ pn(N − n + 1)
nµ(n − 1 + γ)

1 − µ

δn 0 n(1 − p)
nµ

1 − µ
εn 0 0 0

Let us define the functions

Φνµ(z) =

b−1∑

s=a

ρν(s)

(s− z)µ+1
(3.1)

and

Φνµ(z) =

∫

C

ρν(s)ds

(s− z)µ+1
, (3.2)

corresponding to the functions1 (2.3) and (2.5), respectively. In fact, the
functions yν and the functions Φνµ are related by the formula

yν(z) =
Cν

ρ(z)
Φνν(z). (3.3)

Lemma 3.1. Any three functions Φνiµi
, i = 1, 2, 3 are connected by a linear

relation
3∑

i=1

Ai(z)Φνiµi
(z) = 0, (3.4)

1Obviously the functions (3.1) correspond to the boundary condition (2.4), whereas
the functions (3.2) correspond to the condition (2.6).
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with polynomial coefficients Ai(z) which are not all three vanishing provided
that the differences νi − νj and µi − µj , i, j = 1, 2, 3 are integers and that
the following condition holds2

skσ(s)ρν0
(s)

(s− z)µ0

∣∣∣∣
s=b

s=a

= 0, k = 0, 1, 2, . . . , (3.5)

for the case when Φνiµi
are given by (3.1) and

∫

C
∆s

skσ(s)ρν0
(s) ds

(s− z)µ0

= 0, k = 0, 1, 2, . . . , (3.6)

for the case when Φνiµi
are given by (3.2). Here ν0 is the νi, i = 1, 2, 3 with

the smallest real part and µ0 is the µi, i = 1, 2, 3 with the largest real part.

Proof. We will give the proof for the case of functions of the form (3.1), the
other case is completely similar. We have

3∑

i=1

Ai(z)Φνiµi
(z) =

3∑

i=1

Ai(z)

b−1∑

s=a

ρνi
(s)

(s−z)µi+1
=

b−1∑

s=a

3∑

i=1

Ai(z)
ρνi

(s)

(s−z)µi+1

=

b−1∑

s=a

1

(s− z)µ0+1

(
3∑

i=1

Aiρνi
(s)

(s− z)µ0+1

(s− z)µi+1

)

=
b−1∑

s=a

1

(s−z)µ0+1

(
3∑

i=1

Aiρνi
(s)(s− z + µi + 1)µ0−µi

)
,

where the identity

(s− z)α

(s− z)β
= (s− z + β)α−β, α ≥ β

is used. Next we use the identity ρν(s) = σ(s+ 1)ρν−1(s+ 1) as well as the
Pearson-type equation (2.7) rewritten in the equivalent form

ρν(s+ 1)

ρν(s)
=
σ(s) + τν(s)

σ(s+ 1)
=
σ(s+ ν) + τ(s+ ν)

σ(s+ 1)
,

which leads to

ρ(s+ νi)

ρ(s+ ν0)
=
σ(s+ νi − 1) + τ(s+ νi − 1)

σ(s+ νi)
· · · σ(s+ ν0) + τ(s+ ν0)

σ(s+ ν0 + 1)
.

Thus, for all νi ≥ ν0

ρνi
(s) = [σ(s+ ν0)+ τ(s+ ν0)] · · · [σ(s+ νi − 1)+ τ(s+ νi − 1)]ρν0

(s). (3.7)

Using the last formula we obtain

3∑

i=1

Ai(z)Φνiµi
(z) =

b−1∑

s=a

ρν0
(s)

(s−z)µ0+1
Π(s), (3.8)

2In some cases this condition is equivalent to the condition skσ(s)ρν0
(s)|s=b

s=a = 0,
k = 0, 1, 2, . . ..
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where

Π(s) =

3∑

i=1

Ai(z)(s− z + µi + 1)µ0−µi
π(s+ ν0) · · · π(s+ νi − 1), (3.9)

is a polynomial in s and π(s) = σ(s) + τ(s). To conclude the proof we will
show that the polynomials Ai, i = 1, 2, 3 can be chosen such that

ρν0
(s)

(s−z)µ0+1
Π(s) = ∆

[
ρν0+1(s− 1)

(s−z)µ0

Q(s)

]
= ∆

[
σ(s)ρν0

(s)

(s−z)µ0

Q(s)

]
, (3.10)

where Q(s) is a polynomial in s. Rewriting (3.8) with the help of the above
formula and using the boundary condition (3.5) we find the expression3

3∑

i=1

Ai(z)Φνiµi
(z) = 0.

Let us show that this polynomial Q and the polynomials Ai always exists.
In fact, a straightforward computations give

∆

[
σ(s)ρν0

(s)

(s−z)µ0

Q(s)

]
=

ρν0
(s)

(s−z)µ0+1
×

[
τν0

(s)(s− z)Q(s) + [τν0
(s) + σ(s)](s− z)∆Q(s) − µ0σ(s)Q(s)

]
,

from which the following expression connecting the polynomials Π and Q
follows

Π(s) =

[
τν0

(s)(s− z)− µ0σ(s)

]
Q(s) + (s− z)[τν0

(s) + σ(s)]∆Q(s). (3.11)

From the above relation follows that the degree of Q(s) is two less than
the degree of Π(s): it follows from the fact that the degree of τν0

is less
than or equal to 1. In fact, equating the coefficients of powers on the two
sides of the above equation, we find a system of linear equations in the
coefficients of Q(s) and the coefficients Ai which has at least one unknown
more than the number of equations. Notice that the coefficients of the
unknowns are polynomials in z, so that after one coefficient is selected the
remaining coefficients are rational functions of z, therefore after multiplying
by the common denominator of the Ai(z) we obtain the linear relation with
polynomial coefficients. This completes the proof. �

Remark 3.2. Notice that for the discrete polynomials (2.9) the condition
(3.6) is automatically fulfilled, since the contour C is closed and ν is a non-
negative integer, so Lemma 3.1 holds for any family of discrete polynomials
of hypergeometric type. Notice also that Lemma (3.1) assures the existence
of the non vanishing polynomials in (3.4) but does not give any method for

3In the case of functions Φνµ of the form (3.2) the proof is the same. In fact, changing
the sums over s by the integral over C and using the boundary condition (3.6) we obtain
the result.
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finding them. Nevertheless, using (3.9) and (3.11), a constructive approach
for finding the coefficients Ai, i = 1, 2, 3 can explicitly be written down. This
will be shown in a simple example connecting the Φν ν−1, Φν ν , and Φν ν+1,
functions. In fact, for the case of classical polynomials of Jacobi, Laguerre,
Hermite and Bessel, the corresponding Lemma [23, page 14] has been ex-
tensively used for deriving several recurrences relations and for getting the
corresponding coefficients in a closed form in terms of the polynomials σ and
τ (see e.g. [17, 24], and references therein). For the discrete case this study
is under way.

Example. Let us find the relation among Φν ν−1, Φν ν , and Φν ν+1. In this
case since deg(Π) = 2, Q(z) = q0 is constant, and therefore (3.11) becomes

A1(z)(s− z+ ν)2 +A2(z)(s− z + ν + 1) +A3 =

[
τν0

(s)(s− z)− µ0σ(s)

]
q0.

Expanding both sides in powers of s−z and comparing coefficients we obtain

A1(z)Φν ν−1(z) + A2(z)Φν ν(z) +A3(z)Φν ν+1(z) = 0,

where

A1(z) = τ ′ + (ν − 1)
σ′′

2
, A2(z) = τ(z) − σ′(z) + ν

(
τ ′ + ν

σ′′

2

)
,

A3(z) = −(ν + 1)

[
σ(z) + ν

(
τ ′ + (ν − 1)

σ′′

2

)]
.

(3.12)

To conclude this section we write down the following two straightforward
identities for the functions Φνµ

∆Φνµ(s) = (µ+ 1)Φνµ+1(s+ 1), (3.13)

and
∇Φνµ(s) = (µ+ 1)Φνµ+1(s). (3.14)

Recurrences involving the solutions yν . Let us now establish the fol-
lowing relevant relation

∆kyν(s) =
C

(k)
ν

ρk(s)
Φν ν−k(s), C(k)

ν = Cν

k−1∏

m=0

[
τ ′ + (ν +m− 1)

σ′′

2

]
. (3.15)

This relation is valid for solutions of the form (2.3) and (2.5) of the dif-
ference equation (2.1). For the sake of simplicity we present here only the
proof for the case of discrete polynomials. In this case (3.3) becomes

Pn(s) =
Cn

ρ(s)
Φn n(s).

Comparing the last formula with the integral representation (2.9) we deduce
that Cn = Bnn!/(2πi).

Next, using the Cauchy integral

f(s) =
1

2πi

∫

C

f(z)

z − s
dz,
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it follows that

∇n−kf(s) =
(n− k)!

2πi

∫

C

f(z)

(z − s)n−k+1
dz.

Then, using the Rodrigues formula (2.11) for the k-th differences ∆kPn(s)
we obtain the integral representation

∆kPn(s) =
AnkBn(n− k)!

ρk(s) 2πi

∫

C

ρn(z)

(z − s)n−k+1

dz =
Cn(n− k)!Ank

n! ρk(s)
Φn n−k(s),

from which, using (2.12), the relation (3.15) follows.

In the following y
(k)
n (s) denotes the k-th differences ∆kyn(s).

Theorem 3.3. Under the same conditions as in Lemma 3.1, any three

functions y
(ki)
ni (s), i = 1, 2, 3 are connected by a relation of the form

3∑

i=1

Bi(s)y
(ki)
ni

(s) = 0, (3.16)

with polynomials coefficients Bi(s), i = 1, 2, 3.

Proof. From Lemma 3.1 we know that there exists three polynomials Ai(s),
i = 1, 2, 3 such that

3∑

i=1

Ai(s)Φni,ni−ki
(s) = 0.

Then, using the relation (3.15) we find

3∑

i=1

Ai(s)(C
(k)
ν )−1ρki

(s)y(ki)
ni

(s) = 0.

Now, dividing the last expression by ρk0
(s), k0 = min{k1, k2, k3}, and using

(3.7) ρki
(s)/ρk0

(s) = π(s+ k0) · · · π(s+ ki − 1), we obtain

3∑

i=1

Bi(s)y
(ki)
ni

(s) = 0, Bi(s) = Ai(s)(C
(k)
ν )−1π(s+ k0) · · · π(s+ ki − 1),

which completes the proof. �

Corollary 3.4. Under the same conditions as in Lemma 3.1, the following
∆-ladder-type relations hold

B1(s)yn(s) +B2(s)∆yn(s) +B3(s)yn+m(s) = 0, m ∈ Z, (3.17)

with polynomials coefficients Bi(s), i = 1, 2, 3.

Proof. It is sufficient to put k1 = k3 = 0, k2 = 1, n1 = n2 = n and n3 = n+m
in (3.16). �
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Notice that for the case m = ±1 (3.17) becomes

B1(s)yn(s) +B2(s)∆yn(s) +B3(s)yn+1(s) = 0, (3.18)

B̃1(s)yn(s) + B̃2(s)∆yn(s) + B̃3(s)yn−1(s) = 0, (3.19)

with polynomials coefficients Bi(s) and B̃i(s), i = 1, 2, 3. The above re-
lations (3.18) and (3.19) are usually called raising and lowering operators,
respectively, for the functions yn.

Let us now obtain raising and lowering operators for the functions yν but
associated to the ∇ operators.

We start by applying the operator ∇ to the expression (3.3)

∇yν(s) = CνΦν ν(s)

(
1

ρ(s)
− 1

ρ(s− 1)

)
+

Cν

ρ(s− 1)
∇Φν ν(s),

or, equivalently,

∇Φν ν(s) =
ρ(s− 1)

Cν
∇yν(s) − Φν ν(s)

(
ρ(s− 1)

ρ(s)
− 1

)
.

Next we use (3.4) with ν1 = µ1 = ν2 = ν, µ2 = ν + 1, and ν3 = µ3 = ν +m
and substitute the above formula as well as (3.14) to obtain the relation

A1(s)Φν ν(s) +
A2(s)

ν+1

[
ρ(s−1)

Cν
∇yν(s) −

(
ρ(s−1)

ρ(s)
−1

)
Φν ν(s)

]

+A3(s)Φν+m,ν+m(s) = 0.

Finally, using the Pearson-type equation (2.7), ρ(s− 1)/ρ(s) = σ(s)/[σ(s−
1) + τ(s − 1)], and multiplying the last expression by Cν [τ(s − 1) + σ(s −
1)]/ρ(s) yields

C1(s)yν(s) + C2(s)∇yν(s) +C3(s)yν+m(s) = 0, (3.20)

where

C1(s) = (ν+1)[τ(s−1) + σ(s−1)]A1(s) + [σ(s)−τ(s−1)−σ(s−1)]A2(s),

C2(s) = σ(s)A2(s), C3(s) = (ν + 1)[σ(s− 1) + τ(s− 1)]CνC
−1
ν+mA3(s),

i.e., we have proven the following

Theorem 3.5. Under the same conditions as in Lemma 3.1, the functions
yν(s) satisfy the ∇-ladder-type relations (3.20).

If we now choose m = ±1 we find the raising and lowering operators,
respectively, for the functions yn associated with the ∇-operator

C1(s)yn(s) +C2(s)∇yn(s) + C3(s)yn+1(s) = 0, (3.21)

C̃1(s)yn(s) + C̃2(s)∇yn(s) + C̃3(s)yn−1(s) = 0, (3.22)

with polynomials coefficients Ci(s) and C̃i(s), i = 1, 2, 3.
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Remark 3.6. Obviously the formulas (2.14)–(2.18) from section 2.2 are
particular cases of the general expressions for the functions yν(s).

4. Applications to discrete systems

As we already mentioned in the introduction, several important discrete
systems (e.g. discrete oscillators) can be described using the solutions of the
difference equation of hypergeometric type (2.1). In fact, in several of these
models the corresponding wave functions have the form

ψ(z) :=

√
ρ(z)

dn
Pn(z),

where Pn is a classical discrete orthogonal polynomial of Hahn, Meixner,
Kravchuk and Charlier, dn is the norm of Pn and ρ the corresponding weight
function.

4.1. Three-term recurrence relations. Since Pn can be expressed by
(2.9), we can use theorem 3.3 that assures the existence of the three-term
recurrence relation

A1Pn+1(z) + A2Pn(z) +A3Pn−1(z) = 0. (4.1)

But comparing it with (2.13) yields A1(z) = 1, A2(z) = βn − z and A3(z) =
γn, therefore, we may write

dn+1

dn
ψn+1(z) + (βn − z)ψn(z) + γn

dn−1

dn
ψn−1(z). (4.2)

Charlier case. The Charlier functions are defined by

ψµ
n(z) =

√
e−µµz−n

Γ(z + 1)n!
Cµ

n(z), n ≥ 0. (4.3)

Using the main data for the Charlier polynomials (see Table 3) we obtain
√

(n+ 1)µ ψµ
n+1(z) + [(n+ µ) − z] ψµ

n(z) +
√
nµ ψµ

n−1(z). (4.4)

Meixner case. In the Meixner case we have

ψγ,µ
n (z) = µ(z−n)/2(1 − µ)γ/2+n

√
Γ(γ + z)

Γ(γ)Γ(z + 1)n!(γ)n
Mγ,µ

n (z), n ≥ 0,

(4.5)
thus

√
(n+ 1)µ(γ + n) ψγ,µ

n+1(z)+[n(1 + µ) + µγ − (1 − µ)z] ψγ,µ
n (z)

+
√
nµ(γ + n− 1) ψγ,µ

n−1(z).

(4.6)
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Kravchuk case. The Kravchuk functions defined by

ψp
n(z) = p(z−n)/2(1−p)(N−n−z)/2

√
(N − n)!

n!Γ(z + 1)Γ(N − z + 1)
Kp

n(z,N), (4.7)

are a finite set of orthogonal functions n = 0, 1, . . . N . For these functions
(4.2) becomes
√

(n+ 1)p(1 − p)(N − n) ψp
n+1(z) + [Np+ (1 − 2p)n− z] ψp

n(z)

+
√
np(1 − p)(N − n+ 1) ψp

n−1(z) = 0.

(4.8)

Hahn case. Finally, for the Hahn functions

ψα,β
n (z) =

√
Γ(N+α−z)Γ(β+z+1)(α+β+2n+1)Γ(N−n)Γ(α+β+n+1)(α+β+n+1)2

n

Γ(N−z)Γ(z+1)n!Γ(α+n+1)Γ(β+n+1)Γ(α+β+N+n+1)
hα,β

n (z)

(4.9)
we have

an ψ
α,β
n+1(z) + (bn − z)ψα,β

n (z) + an−1 ψ
α,β
n−1(z) = 0, (4.10)

where

an =

√
n(N − n)(α+ n)(β + n)(α+ β + n)(α+ β +N + n)

(α+ β + 2n− 1)(α+ β + 2n)2(α+ β + 2n+ 1)

and

bn =
(β + 1)(N − 1)(α+ β) + n(2N + α− β − 2)(α+ β + n+ 1)

(α+ β + 2n)(α+ β + 2n+ 2)
.

4.2. Ladder-type Relations. Let us look for relations involving the oper-
ators ∇ and ∆. Since Pn(z) = dnψn(z)/

√
ρ(z), we have

∇Pn(z) =
dn√

ρ(z − 1)
∇ψn(z) + dnψn(z)

(
1√
ρ(z)

− 1√
ρ(z − 1)

)
. (4.11)

On the other hand, Theorem 3.5 guarantees that for any integer m there
exist polynomials A1 , A2 and A3 which are not all three vanishing such
that

A1Pn(z) +A2∇Pn(z) + A3Pn+m(z) = 0 . (4.12)

Substituting (4.11) in (4.12) we get
[
A1+A2

(
1−
√

ρ(z)

ρ(z−1)

)]
ψn(z) +A2

√
ρ(z)

ρ(z−1)
∇ψn(z) + A3

dn+m

dn

ψn+m(z) = 0.

(4.13)

In a similar way, application of ∆ to Pn(z) = dnψn(z)/
√
ρ(z) gives

∆Pn(z) =
dn√

ρ(z + 1)
∆ψn(z) + dn

(
1√

ρ(z + 1)
− 1√

ρ(z)

)
ψn(z) (4.14)
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and consequently, substituting (4.14) into (3.17) gives
[
B1 +B2

(√
ρ(z)

ρ(z + 1)
− 1

)]
ψn(z)+B2

√
ρ(z)

ρ(z + 1)
∆ψn(z)

+B3
dn+m

dn
ψn+m(z) = 0

(4.15)

Let us point out that for getting the polynomial coefficients Bi, i = 1, 2, 3
in (3.17) (or Ai, i = 1, 2, 3 in (4.12)) we will follow the idea in [16]. Given m,
the idea is to identify the corresponding relation (3.17) (or (4.12)) with one of
the known expressions (2.13)–(2.18) for the classical polynomials. In doing
so, after m is choosen and fixed, (3.17) (or (4.12)) may or may not transform
into one of the known formulas (2.13)–(2.18). In the first situation, which
is the simplest one, we can identify directly the coefficients Bi , i = 1, 2, 3
(or Ai , i = 1, 2, 3 ) comparing the formula (3.17) (or (4.12)) with one of
the known expressions (2.13)–(2.18). In the second one, in general we need
to combine (3.17) (or (4.12)) with a certain combination of two or more
formulas (2.13)–(2.18) to obtain the unknown polynomials Bi , i = 1, 2, 3
(or Ai , i = 1, 2, 3 ). In the following examples we show how this works in
the first situation. The more “complex” cases will be considered in the next
subsection 4.3.2.

Charlier case. Substituting (4.3) into (4.13) and (4.15), gives, respectively
[√
zA1 +

(√
z −√

µ
)
A2

]
ψµ

n(z)+A2
√
µ∇ψµ

n(z)

+A3

√
zµm(n+ 1)m ψµ

n+m(z) = 0,
(4.16)

[√
µB1 +

(√
z + 1 −√

µ
)
B2

]
ψµ

n(z) +B2

√
z + 1∆ψµ

n(z)

+B3

√
µm+1(n+ 1)m ψµ

n+m(z) = 0.
(4.17)

Let us remind here that (a)k denotes the Pochhammer symbol (2.8).
Now we proceed by choosing particular values for the parameter m ∈ Z.

• We start with the case m = −1 . Then (4.12) becomes

A1C
µ
n(z) +A2∇Cµ

n(z) +A3C
µ
n−1(z) = 0 .

Comparing the above equation with (2.16) we find A1 = −n, A2 = z,
A3 = −nµ, and therefore (4.16) becomes

(z −√
µz − n)ψµ

n(z) +
√
µz∇ψµ

n(z)−√
nµψµ

n−1(z) = 0. (4.18)

On the other hand, (3.17) becomes

B1C
µ
n(z) +B2∆C

µ
n(z) +B3C

µ
n−1(z) = 0 ,

so, comparing with (2.17) gives B1 = 0, B2 = 1, B3 = −n. Therefore, (4.17)
gives

(√
z + 1 −√

µ
)
ψµ

n(z) +
√
z + 1∆ψµ

n(z) −
√
nψµ

n−1(z) = 0. (4.19)
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• Analogously, for the case m = 1 , (4.12) becomes

A1C
µ
n(z) +A2∇Cµ

n(z) +A3C
µ
n+1(z) = 0 .

Now, comparing with (2.14) gives A1 = µ− z, A2 = z, A3 = 1, thus, (4.16)
becomes

(√
µ−

√
z
)
ψµ

n(z) +
√
z∇ψµ

n(z) +
√
n+ 1ψµ

n+1(z) = 0, (4.20)

In this case (3.17) has the form

B1C
µ
n(z) +B2∆C

µ
n(z) +B3C

µ
n+1(z) = 0 .

If we compare the above expression with (2.15) we find B1 = µ + n − z,
B2 = µ, B3 = 1, so (4.17) transforms to
[
(µ− z)(µ+ n− z) − µ(

√
µ−

√
z + 1)

]
ψµ

n(z) + µ
√
z + 1∆ψµ

n(z)

+ µ
√
n+ 1ψµ

n+1(z) = 0.

(4.21)

Meixner case. Substituting (4.5) into (4.13) and (4.15), we get, respec-
tively
[√

zA1 +A2

(√
z−
√
µ(γ−1 + z)

) ]
ψγ,µ

n (z) +A2

√
µ(γ−1 + z)∇ψγ,µ

n (z)

+A3

√
zµm(n+ 1)m(γ + n)m

(1−µ)2m
ψγ,µ

n+m(z) = 0,

(4.22)

and[√
µ(γ + z)B1 +B2

(√
z + 1−

√
µ(γ + z)

)]
ψγ,µ

n (z) +B2

√
z + 1∆ψγ,µ

n (z)

+B3

√
(γ + z)µm+1(n+ 1)m(γ + n)m

(1−µ)2m
ψγ,µ

n+m(z) = 0.

(4.23)
Now we proceed by choosing particular values for the parameter m ∈ Z.

• For m = −1 (4.12) becomes

A1M
γ,µ
n (z) +A2∇Mγ,µ

n (z) +A3M
γ,µ
n−1(z) = 0 .

Comparing with (2.16) we get A1 = n, A2 = −z, A3 = nµ(n−1+γ)
1−γ , so (4.22)

becomes
[
n
√
z − z

(√
z −

√
µ(γ − 1 + z)

)]
ψγ,µ

n (z)

− z
√
µ(γ − 1 + z)∇ψγ,µ

n (z) +
√
znµ(n− 1 + γ)ψγ,µ

n−1(z) = 0.
(4.24)

In this case (3.17) has the form

B1M
γ,µ
n (z) +B2∆M

γ,µ
n (z) +B3M

γ,µ
n−1(z) = 0 .
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Comparing the last equation with (2.17) yields B1 = n, B2 = −z − γ, and

B3 =
n(n−1+γ)

1−µ , therefore (4.23) gives
[
n
√
µ−√

z + γ
(√

z + 1 −
√
µ(γ + z)

) ]
ψγ,µ

n (z)

−
√

(z + 1)(z + γ)∆ψγ,µ
n (z) +

√
n(n− 1 + γ)ψγ,µ

n−1(z) = 0.
(4.25)

• Choosing m = 1 , (4.12) becomes

A1M
γ,µ
n (z) +A2∇Mγ,µ

n (z) +A3M
γ,µ
n+1(z) = 0 .

A solution now is (compare with (2.14))

A1 = µ(γ + n) − (1 − µ)z, A2 = z, A3 = 1 − µ,

thus (4.22) becomes
[(
µ(γ + n+ z)−

√
µz(γ − 1 + z)

)]
ψγ,µ

n (z)

+
√
µz(γ − 1 + z)∇ψγ,µ

n (z) +
√
µ(n+ 1)(γ + n)ψγ,µ

n+1(z) = 0.
(4.26)

In this case (3.17) takes the form

B1M
γ,µ
n (z) +B2∆M

γ,µ
n (z) +B3M

γ,µ
n+1(z) = 0 ,

which comparing with (2.15) gives B1 = µ(z + γ) + n − z, B2 = µ(z + γ),
and B3 = 1 − µ. Thus (4.23) gives
[√

µ−1
(
µ(γ + z) + n− z

)
+
√
z + γ

(√
z + 1 −

√
µ(γ + z)

) ]
ψγ,µ

n (z)

+
√

(z + 1)(z + γ)∆ψγ,µ
n (z) +

√
(n+ 1)(γ + n)ψγ,µ

n+1(z) = 0.
(4.27)

Kravchuk case. In this case using (4.7), (4.13) and (4.15) we have
[√

(1 − p)zA1 + A2

(√
(1 − p)z −

√
p(N + 1 − z)

)]
ψp

n(z)

+A2

√
p(N + 1 − z)∇ψp

n(z)

+A3

√
z(n+ 1)m(N − n−m+ 1)mpm(1 − p)m+1 ψp

n+m(z) = 0,

(4.28)

[√
p(N−z)A1 +A2

(√
(1−p)(z + 1)−

√
p(N−z)

)]
ψp

n(z)

+A3

√
(1−p)(z + 1)∆ψp

n(z)

+A2

√
(N−z)(n+1)m(N−n−m+1)mpm+1(1−p)m ψp

n+m(z) = 0.

(4.29)

• For m = −1 , (4.12) becomes

A1K
p
n(z) + A2∇Kp

n(z) +A3K
p
n−1(z) = 0 ,

for which the solution is (see (2.16))

A1 = n, A2 = −z, A3 = pn(N − n+ 1),
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and therefore (4.28) becomes
[(√

(1 − p)z −
√
p(N + 1 − z)

)
z − n

√
(1 − p)z

]
ψp

n(z)

+
√
p(N + 1 − z)z∇ψp

n(z) −
√
zpn(N − n+ 1)ψp

n−1(z) = 0.
(4.30)

Now (3.17) gives

B1K
p
n(z)B2∆K

p
n(z) +B3K

p
n−1(z) = 0 ,

from which, comparing with (2.17), we find B1 = n, B2 = N − z, and
B3 = −n(N − n+ 1)(1 − p). Then (4.29) yields
[
n
√
p+

√
N − z

(√
(1 − p)(z + 1) −

√
p(N − z

)]
ψp

n(z)

+
√

(1 − p)(z + 1)(N − z)∆ψp
n(z) −

√
n(N − n+ 1)(1 − p)ψp

n−1(z) = 0.
(4.31)

• Now, for m = 1 , (4.12) has the form

A1K
p
n(z) +A2∇Kp

n(z) + A3K
p
n+1(z) = 0

for which A1 = (N − n)p− z, A2 = (1 − p)z, A3 = 1, (see (2.14)) so (4.28)
becomes

[
√
z
(N−n)p−z√

p(1−p)
+

(√
1−p
p

z−
√
N + 1−z

)
z

]
ψp

n(z)

+z
√
N + 1−z∇ψp

n(z) +
√

(n+ 1)(N−n)z ψp
n+1(z) = 0.

(4.32)

Since for this case (3.17) has the form

B1K
p
n(z) +B2∆K

p
n(z) +B3K

p
n+1(z) = 0

then, comparing with (2.15), B1 = (N − n)p + n− z, B2 = p(N − z), and
B3 = 1, so (4.29) transforms into
{√

p(N−z)
1−p [(N−n)p+ n−z]+

[√
(1−p)(z + 1)−

√
p(N−z)

]
z

}
ψp

n(z)

+z
√

(1−p)(z + 1)∆ψp
n(z)+p

√
(1 − p)(n+ 1)(N−n)(N−z)ψp

n+1(z) = 0.
(4.33)

Hahn case. As in the previous cases we substitute (4.9) in (4.13) and (4.15)
to obtain, respectively, the expressions

[
A1

√
σ(z) +A2g(z)

]
ψα,β

n (z) +A2

√
π(z − 1)∇ψα,β

n (z)

+A3

√
σ(z)

dn+m

dn
ψα,β

n+m(z) = 0,
(4.34)
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and
[
B1

√
π(z) +B2g(z + 1)

]
ψα,β

n (z) +B2

√
σ(z + 1)∆ψα,β

n (z)

+B3

√
π(z)

dn+m

dn
ψα,β

n+m(z) = 0,
(4.35)

where σ(z) = z(N + α − z), π(z) = (z + β + 1)(N − z − 1), and g(z) =√
σ(z)−

√
π(z − 1). In the following we will use also the following notation

f(z) =
√
σ(z)π(z − 1) =

√
z(N + α− z)(z + β)(N − z),

and

θn =

√
n(N − n)(α+ n)(β + n)(α+ β + n)(α+ β +N + n)

(α + β + 2n− 1)(α+ β + 2n)2(α+ β + 2n+ 1)
.

Using the same technique as in the previous cases we arrive at the following
expressions

• m = −1
[
n(εn−z)−

√
σ(z)g(z)

]
ψα,β

n (z)−f(z)∇ψα,β
n (z)+(α+β+2n+1)θnψ

α,β
n−1(z) = 0,

(4.36)

where εn =
(β+1)(N−1)(α+β)+(α+β+n+1)[(α+β)(α+1+2n)+(n+N)(α−β+2n)]

(α+β+2n)(α+β+2n+2) and

[
n(z + ςn) +

√
π(z)g(z + 1)

]
ψα,β

n (z) + f(z + 1)∆ψα,β
n (z)

−(α + β + 2n+ 1)θn ψ
α,β
n−1(z) = 0,

(4.37)

where ςn = α + β + n+ 1 − (α+β)(α+β+N+n)
α+β+2n .

• m = 1
[
(α+ β + n+ 1)(εn − z) −

√
σ(z)g(z)

]
ψα,β

n (z) − f(z)∇ψα,β
n (z)

+(α+ β + 1)θn+1ψ
α,β
n+1(z) = 0,

(4.38)

where

εn = (α+β)[n(α+1+2n)+(N−1)(β+1+2n)]+n(α−β)(α+β+n+N+1)+2n(n+1)(n+N−1)
(α+β+2n)(α+β+2n+2) ,

and
[
(α+ β + 1) (ξn − z) +

√
π(z)g(z + 1)

]
ψα,β

n (z) + f(z + 1)∆ψα,β
n (z)

+(α+ β + 2n+ 1)θn+1 ψ
α,β
n+1(z) = 0,

(4.39)

where ξn = n+
(β+1)(N−1)+n(N−β−n−2)

α+β+2n+2 .
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4.3. Further examples. To conclude this work let us show how we can
use the method presented here for finding some higher recurrence relations
for the Charlier polynomials. Notice that in the following four examples one
should use a combination of known relations of discrete orthogonal polyno-
mials. In a similar way, we can proceed with the other families to obtain
more recurrence relations.

4.3.1. Recurrences for Charlier polynomials. We start with some examples
of the recurrences (3.16) connecting Charlier polynomials.

Choosing, in (3.16),

n1 = n− 1 , n2 = n , n3 = n+ 1 ; k1 = 1 , k2 = 1 , k3 = 0

we find

B1(z) ∆Cµ
n−1(z) +B2(z) ∆Cµ

n(z) +B3(z)C
µ
n+1(z) = 0 .

Hence, by (2.17), ∆Cµ
n (z) = nCµ

n−1(z), it becomes into

(n− 1)B1(z)C
µ
n−2(z) + nB2(z)C

µ
n−1(z) +B3(z)C

µ
n+1(z) = 0 .

Using, now, the TTRR for the Charlier polynomials (cf. (2.13)), the last
relation transforms into

(n−1)B1(z)C
µ
n−2(z)+n [B2(z)−µB3(z)]C

µ
n−1(z)+(z−n−µ)B3(z)C

µ
n(z) = 0.

Therefore, comparing with (2.13), we obtain

B1(z) = nµ(z−n−µ) , B2(z) = nµ−(z−n−µ)(z−n+1−µ) , B3(z) = n,

which leads to

nCµ
n+1(z) = [(z−n−µ)(z−n+1−µ) − nµ]∆Cµ

n(z)−nµ(z−n−µ)∆Cµ
n−1(z).

Let us now choose,

n1 = n− 1 , n2 = n , n3 = n+ 3 ; k1 = 0 , k2 = 0 , k3 = 2.

Then (3.16) reads

B1(z)C
µ
n−1(z) +B2(z)C

µ
n(z) +B3(z) ∆2Cµ

n+3(z) = 0 .

Using now (2.17), it becomes into

B1(z)C
µ
n−1(z) +B2(z)C

µ
n(z) + (n+ 3)(n+ 2)B3(z)C

µ
n+1(z) = 0 .

If we compare the last expression with the TTRR for Charlier polynomials
(cf. (2.13)) one finds

B1(z) = n(n+ 2)(n+3)µ , B2(z) = (n+ 2)(n+3)(n+µ− z) , B3(z) = 1 .

Then,

∆2Cµ
n+3(z) = (n+ 2)(n+ 3)(z − n− µ)Cµ

n(z)− n(n+ 2)(n+ 3)µCµ
n−1(z) .



20 R. ÁLVAREZ-NODARSE AND J. L. CARDOSO

4.3.2. Higher order ladder-type relations for Charlier functions ψµ
n. Let us

now chose m = −2 in (4.16). Then (4.12) becomes

A1C
µ
n(z) +A2∇Cµ

n(z) +A3C
µ
n−2(z) = 0 , (4.40)

which does not correspond to any of the known relations for the Charlier
polynomials. To obtain the coefficients A1, A2 and A3, we can proceed as
follows: Using the TTRR (cf. (2.13)) for the Charlier polynomials

zCµ
n−1(z) = Cµ

n(z) + (n− 1 + µ)Cµ
n−1(z) + (n− 1)µCµ

n−2(z),

(4.40) transforms into
(
A1 −

A3

(n− 1)µ

)
Cµ

n(z) +A2∇Cµ
n(z) + A3

x− n+ 1 − µ

µ(n− 1)
Cµ

n−1(z) = 0 .

Now comparing with (2.16) we obtain

A1(z) = − n(z − n+ 1)

z − n+ 1 − µ
, A2(z) = z, A3 = − n(n− 1)µ2

z − n+ 1 − µ
.

Now, multiplying by z − n+ 1 − µ we finally obtain

−n(z − n+ 1)Cµ
n(z) + z(z − n+ 1 − µ)∇Cµ

n(z) − n(n− 1)µ2Cµ
n−2(z) = 0 .

Thus, we find for the functions ψµ
n(z) the relation

0 =
[
−n(z − n+ 1)

√
z +

(√
z −√

µ
)
z(z − µ− n+ 1)

]
ψµ

n(z)

+
√
µz(z − µ− n+ 1)∇ψµ

n(z) − µ
√
zn(n− 1)ψµ

n−2(z).
(4.41)

Similarly, substituting m = 2 in (3.17) we find

B1(z)C
µ
n(z) +B2(z) ∆Cµ

n(z) +B3(z)C
µ
n+2(z) = 0 .

Now, using twice the TTRR (cf. (2.13))

Cµ
n+1(z) = (z − n− µ)Cµ

n(z) − nCµ
n−1(z) ,

we obtain

B2(z)∆C
µ
n(z) = nµ(z − n− 1 − µ)B3(z)C

µ
n−1(z)

− {B1(z) + [(z − n− 1 − µ)(z − n− µ) − (n+ 1)µ]B3(z)}Cµ
n(z)

(4.42)

Comparing (4.42) with (2.17) one finds

B1(z) = (n+ 1)µ− (z − n− 1− µ)(z− n− µ) , B2(z) = µ(z− n− 1− µ)

and B3(z) = 1. This leads to the following relation for Charlier functions ψµ
n

{√
µ [(n+ 1)µ− (z − n− 1 − µ)(z − n− µ)] +

(√
z + 1 −√

µ
)
µ(z − n− 1 − µ)

}
ψµ

n(z)

+ µ(z−n−1−µ)
√
z+1 ∆ψµ

n(z)−
√
µ3(n+1)(n+2)ψµ

n+2(z) = 0 ,

(4.43)

that corresponds to the ladder-type relation (4.17) with m = 2.



RECURRENCE RELATIONS FOR DISCRETE HYPERGEOMETRIC FUNCTIONS 21

Concluding remarks. In this paper we present a simple, unified and con-
structive approach for finding linear recurrence relations for the difference
hypergeometric-type functions, i.e., solutions of the hypergeometric differ-
ence equation (2.1), and apply the general results to some discrete mod-
els (e.g. discrete oscillators). Furthermore, the method described here is
valuable for new situations, such as higher order recurrence relations and
ladder-type relations for the classical discrete orthogonal polynomials.

Other important instances of discrete systems are the so-called q-oscilla-
tors (see e.g. [3, 6, 7, 15, 21] and reference therein) that are related with
the q-polynomials. For these cases only a few recurrences are known [4]. A
more detailed study of these q-models is under way.
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