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Abstract

In this paper, we study the Krall-type polynomials on non-uniform lattices.
For these polynomials the second order linear difference equation, q-basic
series representation and three-term recurrence relations are obtained. In
particular, the q-Racah-Krall polynomials obtained via the addition of two
mass points to the weight function of the non-standard q-Racah polynomials
at the ends of the interval of orthogonality are considered in detail. Some
important limit cases are also discussed.
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1. Introduction

The Krall-type polynomials are polynomials which are orthogonal with
respect to a linear functional ũ obtained from a quasi-definite functional
u : P 7→ C (P, denotes the space of complex polynomials with complex
coefficients) via the addition of delta Dirac measures, i.e., ũ is the linear
functional

ũ = u+
N∑
k=1

Akδxk ,
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where Ak ∈ R, x1, . . . , xk ∈ R and δa is the delta Dirac functional at the
point a, i.e., 〈δa, p〉 = p(a), where p ∈ P.

These kind of polynomials appear as eigenfunctions of a fourth order
linear differential operator with polynomial coefficients that do not depend
on the degree of the polynomials. They were firstly considered by Krall in [27]
(for a more recent reviews see [8] and [26, chapter XV]). In fact, H. L. Krall
discovered that there are only three extra families of orthogonal polynomials
apart from the classical polynomials of Hermite, Laguerre and Jacobi that
satisfy such a fourth order differential equation which are orthogonal with
respect to measures that are not absolutely continuous with respect to the
Lebesgue measure. Namely, the Jacobi-type polynomials that are orthogonal
with respect to the weight function ρ(x) = (1−x)α+Mδ(x), M > 0, α > −1
supported on [0, 1], the Legendre-type polynomials orthogonal on [−1, 1] with
respect to ρ(x) = α/2+δ(x− 1)/2+δ(x+ 1)/2, α > 0, and the Laguerre-type
polynomials that are orthogonal with respect to ρ(x)e−x + Mδ(x), M > 0
on [0,∞). This result motivated the study of the polynomials orthogonal
with respect to the more general weight functions [23, 25] that could contain
more instances of orthogonal polynomials being eigenfunctions of higher-
order differential equations (see also [26, chapters XVI, XVII]).

In the last years the study of such polynomials have attracted an in-
creasing interest (see e.g. [4, 8, 19, 28] and the references therein) with a
special emphasis on the case when the starting functional u is a classical
continuous linear functional (this case leads to the Jacobi-Krall, Laguerre-
Krall, Hermite-Krall, and Bessel-Krall polynomials, see e.g. [7, 13, 14, 18,
23, 25]) or a classical discrete one (this leads to the Hahn-Krall, Meixner-
Krall, Kravchuk-Krall, and Charlier-Krall polynomials, see e.g. [6, 7, 15]).
Moreover, in [4] a general theory was developed for modifications of quasi-
definite linear functionals that covers all the continuous cases mentioned
above whereas in [9] the case when u is a discrete semiclassical or q-semiclassical
linear functional was considered in detail. But in [9] (see also [5]) only the
linear type lattices (for a discussion on the linear type lattices see [3]) were
considered. Here we go further and study the Krall-type polynomials ob-
tained by adding delta Dirac functionals to the discrete functionals u defined
on the q-quadratic lattice x(s) = c1q

s + c2q
−s + c3.

Notice that since this lattice is not linear, the general results of [9] may
not be applied in general, and therefore an appropriate method must be
developed. In fact, the main aim of the present paper is to show that the
method presented in [9] can be adapted for the more general lattice. For
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the sake of simplicity we focus on the case when the starting functional
u is a q-classical family on the q-quadratic lattice x(s) = c1q

s + c2q
−s +

c3. In particular, we study the modifications of the non-standard q-Racah
polynomials defined on the lattice x(s) = [s]q[s+ 1]q,

[s]q =
qs/2 − q−s/2

q1/2 − q−1/2
, s ∈ C,

which were introduced in [29] and studied in detail in [2, 10]. Also, in section
4.2 we discuss some important limit cases of q-Racah, namely, the dual q-
Hahn polynomials on the lattice x(s) = [s]q[s+ 1]q, the non-standard Racah
polynomials on the lattice x(s) = s(s + 1) [29, page 108], and the q-Hahn
polynomials on the lattice x(s) = q−s [24, page 445].

The structure of the paper is as follows. In Section 2, some preliminary
results are presented as well as the representations for the kernels on the
general lattice x(s) = c1q

s + c2q
−s + c3. In section 3, the general theory of

the q-Krall polynomials on the general lattice is developed, and finally, in
section 4, some concrete examples are considered.

2. Preliminary results

Here we include some results from the theory of classical polynomials on
the general (q-quadratic) lattice (for further details and notations see e.g.
[2, 29])

x(s) = c1q
s + c2q

−s + c3 = c1(qs + q−s−ζ) + c3. (1)

The orthogonal polynomials on non-uniform lattices Pn(s)q := Pn(x(s))
are the polynomial solutions of the second order linear difference equation
(SODE) of hypergeometric type

σ(s)
∆

∆x(s− 1
2
)

∇y(s)

∇x(s)
+ τ(s)

∆y(s)

∆x(s)
+ λny(s) = 0,

∆y(s) = y(s+ 1)− y(s), ∇y(s) = y(s)− y(s− 1),

or, equivalently

Asy(s+ 1) +Bsy(s) + Csy(s− 1) + λny(s) = 0,

As =
σ(s) + τ(s)∆x(s− 1

2
)

∆x(s)∆x(s− 1
2
)

, Cs =
σ(s)

∇x(s)∆x(s− 1
2
)
, Bs = −As −Bs,

(2)
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where σ(s) and τ(s) are polynomials of degree at most 2 and exactly 1,
respectively, and λn is a constant, that are orthogonal with respect to the
linear functional u : Pq 7→ C, where Pq denotes the space of polynomials on
the lattice (1) (compare with [29, Eq. (3.3.4) page 71])

〈u, PnPm〉 = δmnd
2
n, 〈u, P 〉 =

b−1∑
s=a

P (s)qρ(s)∆x(s− 1
2
). (3)

In the above formula ρ is the weight function and d2
n := 〈u, P 2

n〉.
Since the polynomials Pn(s)q are orthogonal with respect to a linear func-

tional, they satisfy a three-term recurrence relation (TTRR) [2, 16]

x(s)Pn(s)q = αnPn+1(s)q + βnPn(s)q + γnPn−1(s)q, n = 0, 1, 2, ..., (4)

with the initial conditions P0(s)q = 1, P−1(s)q = 0, and also the differentia-
tion formulas [2, Eqs. (5.65) and (5.67)] (or [11, Eqs. (24) and (25)]

σ(s)
∇Pn(s)q
∇x(s)

= αnPn+1(s)q + βn(s)Pn(s)q, (5)

Φ(s)
∆Pn(s)q
∆x(s)

= α̂nPn+1(s)q + β̂n(s)Pn(s)q, (6)

where Φ(s) = σ(s) + τ(s)∆x(s− 1
2
), and

αn = α̂n = −αnλ2n

[2n]q
, βn(s) =

λn
[n]q

τn(s)

τ ′n
, β̂n(s) = βn(s)− λn∆x(s− 1

2
).

Notice that from (6) and the TTRR (4) it follows that

Pn−1(s)q = Θ(s, n)Pn(s)q + Ξ(s, n)Pn(s+ 1)q, (7)

where

Θ(s, n) =
αn
α̂nγn

[
Φ(s)

∆x(s)
− λ2n

[2n]q
(x(s)−βn) + β̂n(s)

]
, Ξ(s, n) = − αn

α̂nγn

Φ(s)

∆x(s)
.

From the TTRR (4) the Christoffel-Darboux formula for the n-th repro-
ducing kernel follows (see [16, 29])

Kn(s1, s2) :=
n∑
k=0

Pk(s1)qPk(s2)q
d2
k

=
αn
d2
n

Pn+1(s1)qPn(s2)q − Pn+1(s2)qPn(s1)q
x(s1)− x(s2)

.

(8)
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Let us obtain an explicit representation of the kernels for the special val-
ues when σ(s0) = 0 and Φ(s0) = 0, respectively.

1. The case σ(s0) = 0. Using (5) to eliminate Pn+1 in (8) yields

Kn(s, s0) =
αnPn(s0)q
αnd2

n

{
βn(s0)− βn(s)

x(s)− x(s0)
Pn(s)q +

σ(s)

x(s)− x(s0)

∇Pn(s)q
∇x(s)

}
.

(9)

2. The case Φ(s0) = 0. In an analogous way, but now using (6) we obtain

Kn(s, s0) =
αnPn(s0)q
α̂nd2

n

{
β̂n(s0)− β̂n(s)

x(s)− x(s0)
Pn(s)q +

Φ(s)

x(s)− x(s0)

∆Pn(s)q
∆x(s)

}
.

(10)

3. Representation formula and some of their consequences

To obtain the general representation formula for the polynomials or-
thogonal with respect to the perturbed functional ũ : Pq 7→ C, ũ = u +∑M

k=1 Akδx(ak), i.e.,

〈ũ, P 〉 = 〈u, P 〉+
M∑
k=1

AkP (ak)q, (11)

we can use the ideas of [9, §2.1].

Let P̃n(s)q be the polynomials orthogonal with respect to ũ and Pn(s)q the
polynomials orthogonal with respect to u. We assume that ũ is quasi-definite
and therefore there exists a sequence of monic polynomials (P̃n)n orthogonal
with respect to ũ. Thus we can consider the Fourier expansion

P̃n(s)q = Pn(s)q +
n−1∑
k=0

λn,kPk(s)q, n ∈ {0} ∪ N. (12)

Then, for 0 ≤ k ≤ n− 1,

λn,k =
〈u, P̃n(s)qPk(s)q〉
〈u, P 2

k (s)q〉
= −

M∑
i=1

AiP̃n(ai)
Pk(ai)q
〈u, P 2

k (s)q〉
,
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and the following representation formulas hold [30] (see also [22, §2.9])

P̃n(s)q = Pn(s)q −
M∑
i=1

AiP̃n(ai)qKn−1(s, ai), (13)

where Kn(x, y) is given by (8). In the following we denote by d2
n the quantity

d2
n = 〈u, P 2

n(s)q〉, i.e., the squared norm of the polynomials Pn(s)q whereas

d̃2
n denotes the value d̃2

n = 〈ũ, P̃ 2
n(s)q〉. Furthermore,

d̃2
n := 〈ũ, P̃ 2

n(s)q〉 = d2
n +

M∑
i=1

AiP̃n(ai)qPn(ai)q. (14)

We assume that the leading coefficients of P̃n(s)q and Pn(s)q are the same,
and for the sake of simplicity we consider monic polynomials, i.e., Pn(s)q =

xn(s) + bnx
n−1(s) + · · · , and P̃n(s)q = xn(s) + b̃nx

n−1(s) + · · · . Then, from
(12) it follows that

b̃n = bn + λn,n−1 = bn −
1

d2
n−1

M∑
i=1

AiP̃n(ai)qPn−1(ai)q. (15)

Evaluating (13) at the points ak, k = 1, 2, . . . ,M , we obtain the following

system of M linear equations in the M unknowns (P̃n(ak))
M
k=1

P̃n(ak)q = Pn(ak)q −
M∑
i=1

AiP̃n(ai)qKn−1(ak, ai), k = 1, 2, . . . ,M. (16)

Therefore, in order to assure the existence and uniqueness of the solution of
the above linear system (16) (and then, the existence of the system of orthog-

onal polynomials (P̃n)n) the matrix of the system (16) should be nonsingular,
which is stated in the following proposition.

Proposition 1. The linear functional ũ defined in (11) is a quasi-definite
linear functional if and only if the matrix of the system (16) is not singular
for every n ∈ N, i.e., for n = 1, 2, 3, . . . detKn 6= 0, where

Kn =

∣∣∣∣∣∣∣∣∣
1 +A1Kn−1(a1, a1) A2Kn−1(a1, a2) · · · AMKn−1(a1, aM )
A1Kn−1(a2, a1) 1 +A2Kn−1(a2, a2) · · · AMKn−1(a2, aM )

...
...

. . .
...

A1Kn−1(aM , a1) A2Kn−1(aM , a2) · · · 1 +AMKn−1(aM , aM )

∣∣∣∣∣∣∣∣∣ .
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Remark 2. Let us point out here that for finite sequences of orthogonal poly-
nomials (pn)Nn=0, as the case of q-Racah polynomials, the conditions of the
above proposition should be changed by detKn 6= 0, n = 1, 2, . . . , N .

If we multiply (13) by φ(s) =
∏M

i=1(x(s)−x(ai)), and use the Christoffel-
Darboux formula (8), then we obtain the following general representation
formula

φ(s)P̃n(s)q = A(s;n)Pn(s)q +B(s;n)Pn−1(s)q, (17)

where A(s;n) and B(s;n) are polynomials in x(s) of degree bounded by a
number independent of n and at most M and M − 1, respectively, given by
formulas

A(s;n) = φ(s)− αn−1

d2
n−1

M∑
i=1

AiP̃n(ai)qPn−1(ai)qφi(s),

B(s;n) =
αn−1

d2
n−1

M∑
i=1

AiP̃n(ai)qPn(ai)qφi(s),

(18)

where φi(s) := φ(s)
x(s)−x(ai)

=
∏M

k=1,k 6=i(x(s)− x(ak)).

From the above formula (17) and the expression (7) the following useful
representation follows

φ(s)P̃n(s)q = a(s;n)Pn(s)q + b(s;n)Pn(s+ 1)q, (19)

where

a(s;n) = A(s;n) +B(s;n)Θ(s;n), b(s;n) = B(s;n)Ξ(s;n).

Since the family (P̃n)n is orthogonal with respect to a linear functional, they
satisfy a TTRR

x(s)P̃n(s)q = α̃nP̃n+1(s)q + β̃nP̃n(s)q + γ̃nP̃n−1(s)q, n ∈ N, (20)

with the initial conditions P̃−1(s)q = 0, P̃0(s)q = 1. The values of the
coefficients can be computed as usual (see e.g. [16, 29])

α̃n = αn = 1, γ̃n = αn−1
〈ũ, P̃ 2

n(x)〉
〈ũ, P̃ 2

n−1(x)〉
= γn

1 + ∆A1,A2,...,AM
n

1 + ∆A1,A2,...,AM
n−1

,

β̃n = b̃n−b̃n+1 = βn−
M∑
i=1

(
1

d2
n−1

AiP̃n(ai)qPn−1(ai)q−
1

d2
n

AiP̃n+1(ai)qPn(ai)q

)
,

(21)
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being b̃n the coefficient given in (15), and

∆A1,A2,...,AM
n =

M∑
i=1

Ai
P̃n(ai)qPn(ai)q

d2
n

.

To conclude this section let us prove the following proposition that is inter-
esting by its own right and constitutes an extension of Theorem 2.1 in [9] to
the polynomials on general non-uniform lattices.

Proposition 3. Suppose that the polynomials (P̃n)n satisfy the relation

π(s, n)P̃n(s)q = a(s, n)Pn(s)q + b(s, n)Pn(s+ 1)q, (22)

where the polynomial Pn is a solution of a second order linear difference
equation (SODE) of the form (2). Then, the family (P̃n)n satisfies a SODE
of the form

σ̃(s, n)
∆

∆x(s− 1
2
)

∇P̃n(s)q
∇x(s)

+ τ̃(s, n)
∆P̃n(s)q
∆x(s)

+ λ̃(s, n)P̃n(s)q = 0, (23)

where σ̃, τ̃ and λ̃(s, n) are defined in (28).

Proof: The proof is similar to the proof of Theorem 2.1 in [1]. First we
change s by s+ 1 in (22) and use (2) to eliminate Pn(s+ 2)q. This yields

u(s, n)P̃n(s+ 1)q = c(s, n)Pn(s)q + d(s, n)Pn(s+ 1)q, (24)

where u(s, n) = As+1π(s + 1, n), c(s, n) = −Cs+1b(s + 1, n), and d(s, n) =
As+1a(s+ 1, n)− b(s+ 1, n)(λn + Bs+1). Next we change s by s− 1 in (22)
and use (2) to eliminate Pn(s− 2)q, thus

v(s, n)P̃n(s− 1)q = e(s, n)Pn(s)q + f(s, n)Pn(s+ 1)q, (25)

where v(s, n) = Csπ(s− 1, n), e(s, n) = Csb(s− 1, n)− a(s− 1, n)(λn +Bs),
and f(s, n) = −Asa(s− 1, n). Then (22), (24) and (25) yield to∣∣∣∣∣∣∣

π(s, n)P̃n(s)q a(s, n) b(s, n)

u(s, n)P̃n(s+ 1)q c(s, n) d(s, n)

v(s, n)P̃n(s− 1)q e(s, n) f(s, n)

∣∣∣∣∣∣∣ = 0. (26)
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Expanding the determinant (26) by the first column, we get

φ̃(s, n)P̃n(s− 1)q + ϕ̃(s, n)P̃n(s)q + ξ̃(s, n)P̃n(s+ 1)q = 0,

φ̃(s, n) = v(s, n)
[
a(s, n)d(s, n)− b(s, n)c(s, n)

]
,

ϕ̃(s, n) = π(s, n)
[
c(s, n)f(s, n)− d(s, n)e(s, n)

]
,

ξ̃(s, n) = u(s, n)
[
b(s, n)e(s, n)− a(s, n)f(s, n)

]
.

(27)

Notice that formula (27) can be rewritten in the form (23) with coefficients

σ̃(s, n) = ∇x(s)∆x(s− 1
2
)φ̃(s, n),

τ̃(s, n) = ∆x(s)ξ̃(s, n)−∇x(s)φ̃(s, n),

λ̃(s, n) = ξ̃(s, n) + φ̃(s, n) + ϕ̃(s, n).

(28)

�
Notice that from (19) and the above proposition it follows that the mod-

ified polynomials P̃n(s)q satisfies a second order difference equation of type
(22) where π(s, n) = φ(s) is independent of n.

3.1. Two particular examples

Let consider now the cases when we add two mass points. Let ũ be given
by ũ = u+Aδ(x(s)−x(a))+Bδ(x(s)−x(b)), a 6= b. Then, the representation
formula (13) yields

P̃A,B
n (s)q = Pn(s)q − AP̃A,B

n (a)qKn−1(s, a)−BP̃A,B
n (b)qKn−1(s, b) (29)

and the system (16) becomes

P̃A,B
n (a)q = Pn(a)q − AP̃A,B

n (a)qKn−1(a, a)−BP̃A,B
n (b)qKn−1(a, b),

P̃A,B
n (b)q = Pn(b)q − AP̃A,B

n (a)qKn−1(b, a)−BP̃A,B
n (b)qKn−1(b, b),

whose solution is(
P̃A,B
n (a)q
P̃A,B
n (b)q

)
=

(
1 + AKn−1(a, a) BKn−1(a, b)
AKn−1(b, a) 1 +BKn−1(b, b)

)−1(
Pn(a)q
Pn(b)q

)
.
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Notice that ∀A,B > 0 and a 6= b,

κn−1(a, b) := det

∣∣∣∣1 + AKn−1(a, a) BKn−1(a, b)
AKn−1(b, a) 1 +BKn−1(b, b)

∣∣∣∣ > 0. (30)

Thus, from Proposition 1 the polynomials P̃A,B
n (s)q are well defined for all

values A,B > 0. Furthermore, for the values P̃A,B
n (a)q and P̃A,B

n (b)q we
obtain the expressions

P̃A,B
n (a)q =

(1 +BKn−1(b, b))Pn(a)q −BKn−1(a, b)Pn(b)q
κn−1(a, b)

,

P̃A,B
n (b)q =

(1 + AKn−1(a, a))Pn(b)q − AKn−1(b, a)Pn(a)q
κn−1(a, b)

,

(31)

where κn−1(a, b) is given in (30). For this case formula (14) becomes

d̃2
n = 〈ũ, P̃ 2

n(x)〉 = d2
n + AP̃A,B

n (a)qPn(a)q +BP̃A,B
n (b)qPn(b)q. (32)

Remark 4. If A,B are in general complex numbers then, according to Propo-
sition 1, in order that there exists a sequence of orthogonal polynomials
(P̃A,B

n (s)q)n the condition κn−1(a, b) 6= 0, where κn−1(a, b) is defined in (30),
should be hold for all n ∈ N, A,B ∈ C.

From formula (29) the representation formulas (17) and (19) follow. More-
over, using the expression (21) we obtain the following expressions for the
coefficients of the TTRR (20)

α̃n = 1,

β̃n = βn − A

(
P̃A,B
n (a)qPn−1(a)q

d2
n−1

−
P̃A,B
n+1 (a)qPn(a)q

d2
n

)

−B

(
P̃A,B
n (b)qPn−1(b)q

d2
n−1

−
P̃A,B
n+1 (b)qPn(b)q

d2
n

)
,

γ̃n = γn
1 + ∆A,B

n

1 + ∆A,B
n−1

, ∆A,B
n =

AP̃A,B
n (a)qPn(a)q

d2
n

+
BP̃A,B

n (b)qPn(b)q
d2
n

.

(33)

Putting B = 0 in all the above formulas we recover the case of one mass
point, namely

P̃A
n (s)q = Pn(s)q − AP̃A

n (a)qKn−1(s, a), P̃A
n (a)q =

Pn(a)q
1 + AKn−1(a, a)

,
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d̃2
n = 〈ũ, P̃ 2

n(x)〉 = d2
n + AP̃A

n (a)qPn(a)q,

α̃n = 1, β̃n = βn − A

(
P̃A
n (a)qPn−1(a)q

d2
n−1

−
P̃A
n+1(a)qPn(a)q

d2
n

)
,

γ̃n = γn
1 + ∆A

n

1 + ∆A
n−1

, ∆A
n =

AP̃A
n (a)qPn(a)q

d2
n

.

(34)

Notice that since in both cases we have the representation formula (19), it
follows from Proposition 3 that the Krall-type polynomials on the general
non-uniform lattices P̃A,B

n (s)q and P̃A
n (s)q considered here satisfy a SODE

(23) (or (27)) whose coefficients are given by (28).

4. Examples of Krall-type polynomials on the q-quadratic lattice

In this section we present some examples of families of the Krall-type
polynomials on the lattice x(s) = c1q

s+c2q
−s+c3. More exactly we start from

the family of non-standard q-Racah defined on the q-quadratic lattice x(s) =
[s]q[s + 1]q by the following basic series (for the definition and properties of
basic series see [17]) where b− a ∈ N

uα,βn (s)q := uα,βn (x(s), a, b)q =
q−

n
2

(2a+1)(qa−b+1; q)n(qβ+1; q)n(qa+b+α+1; q)n

(q
1
2 − q− 1

2 )2n(qα+β+n+1; q)n

× 4ϕ3

(
q−n, qα+β+n+1, qa−s, qa+s+1

qa−b+1, qβ+1, qa+b+α+1

∣∣∣∣ q , q)
(35)

and modified their corresponding linear functional by adding two delta Dirac
functionals.

We use the above non-standard family, introduced in [29] and stud-
ied in detail in [2, 11], instead of the standard q-Racah polynomials in-
troduced by Askey and Wilson [12], Rn(x(s);α, β, q−N−1, δ|q), since, con-
trary to the standard Racah polynomials, that are defined on the lattice
x(s) = q−s + δq−Nqs (see [12] or the more recent book [24, page 422]), they
are polynomials on a lattice that does not depend on the parameters of the
polynomials. Nevertheless, let also mention that from (35) it follows that
the polynomials uα,βn (s)q are multiples of the standard q-Racah polynomials
Rn(x(s− a); qβ, qα, qa−b, qa+b|q), b− a = N (see [11] for more details).
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Table 1: Main data of the monic non-standard q-Racah polynomials uα,βn (x(s), a, b)q [11]

Pn(s) uα,βn (x(s), a, b)q , x(s) = [s]q [s+ 1]q , ∆x(s) = [2s+ 2]q

(a, b) [a, b−1], b− a ∈ N

ρ(s)
Γ̃q(s+a+1)Γ̃q(s−a+β+1)Γ̃q(s+α+b+1)Γ̃q(b+α−s)Γ̃q(α+β+2)Γ̃q(b−a)Γ̃q(a+b−β)

Γ̃q(s−a+1)Γ̃q(s+b+1)Γ̃q(s+a−β+1)Γ̃q(b−s)Γ̃q(α+1)Γ̃q(β+1)Γ̃q(b−a+α+β+1)Γ̃q(a+b+α+1)

− 1
2
< a ≤ b− 1, α > −1,−1 < β < 2a+ 1

σ(s) [s− a]q [s+ b]q [s+ a− β]q [b+ α− s]q
Φ(s) [s+ a+ 1]q [b− s− 1]q [s− a+ β + 1]q [b+ α+ s+ 1]q

τ(s) [α+ 1]q [a]q [a− β]q + [β + 1]q [b]q [b+ α]q − [α+ 1]q [β + 1]q − [α+ β + 2]qx(s)

τn(s)
−[α+ β + 2n+ 2]qx(s+ n

2
) + [a+ n

2
+ 1]q [b− n

2
− 1]q [β + n

2
+ 1− a]q [b+ α+ n

2
+ 1]q

−[a+ n
2

]q [b− n
2

]q [β + n
2
− a]q [b+ α+ n

2
]q

λn [n]q [α+ β + n+ 1]q

Bn
(−1)nΓ̃q(α+ β + n+ 1)

Γ̃q(α+ β + 2n+ 1)

d2n
(q; q)n(qα+1; q)n(qβ+1; q)n(qb−a+α+β+1; q)n(qa+b+α+1; q)n(qa−b+1; q)n(qβ−a−b+1; q)n

(q
1
2 − q−

1
2 )4n(qα+β+2; q)2n(qα+β+n+1; q)n

βn

[a]q [a+ 1]q −
[α+ β + n+ 1]q [a− b+ n+ 1]q [β + n+ 1]q [a+ b+ α+ n+ 1]q

[α+ β + 2n+ 1]q [α+ β + 2n+ 2]q

+
[α+ n]q [b− a+ α+ β + n]q [a+ b− β − n]q [n]q

[α+ β + 2n]q [α+ β + 2n+ 1]q

γn
[n]q [α+ β + n]q [a+ b+ α+ n]q [a+ b− β − n]q [α+ n]q [β + n]q [b− a+ α+ β + n]q [b− a− n]q

[α+ β + 2n− 1]q([α+ β + 2n]q)2[α+ β + 2n+ 1]q

αn −[α+ β + 2n+ 1]q

βn(s)

[α+β+n+1]q
[α+β+2n+2]q

{
[α+β+2n+2]qx

(
s+ n

2

)
− [a+ n

2
+1]q [b− n

2
−1]q [β+ n

2
+1−a]q [b+α+ n

2
+1]q

+[a+ n
2

]q [b− n
2

]q [β + n
2
− a]q [b+ α+ n

2
]q
}

We also consider here the non-standard dual q-Hahn polynomials defined
by [10], b− a ∈ N

wcn(s)q := wcn(x(s), a, b)q =
(qa−b+1; q)n(qa+c+1; q)n

q
n
2

(2a+1)(q
1
2 − q− 1

2 )2n
3ϕ2

(
q−n, qa−s, qa+s+1

qa−b+1, qa+c+1

∣∣∣∣∣q, q
)
.

(36)

Let us point out also that the above polynomials are different from the stan-
dard dual q-Hahn introduced in [21] since they are also defined on the lattice
x(s) = [s]q[s+1]q that does not depend on the parameters of the polynomials
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(see also [24, page 450]). Notice also that if we put β = a + c, and take the
limit qα → 0 the non-standard q-Racah polynomials (35) becomes into (36).
Therefore, we concentrate on the modifications of the non-standard q-Racah
polynomials and we will obtain the properties of the Krall-type dual q-Hahn
polynomials by taking appropriate limits.

Table 2: Main data of the monic dual q-Hahn polynomials wcn(x(s), a, b)q [2]

Pn(s) wcn(x(s), a, b)q , x(s) = [s]q [s+ 1]q , ∆x(s) = [2s+ 2]q

(a, b) [a, b− 1], b− a ∈ N

ρ(s)
q(ab+bc−ac−a−c+b−1−s(s+1))/2Γ̃q(b− c)Γ̃q(b− a)Γ̃q(s+ a+ 1)Γ̃q(s+ c+ 1)

Γ̃q(a+ c+ 1)Γ̃q(s− a+ 1)Γ̃q(s− c+ 1)Γ̃q(s+ b+ 1)Γ̃q(b− s)
− 1

2
≤ a ≤ b− 1, |c| < a+ 1

σ(s) q(s+c+a−b+2)/2[s− a]q [s+ b]q [s− c]q

Φ(s) −q(c+a−b+1−s)/2[s+ a+ 1]q [s− b+ 1]q [s+ c+ 1]q

τ(s) q(a−b+c+1)/2[a+ 1]q [b− c− 1]q + q(c−b+1)/2[b]q [c]q − x(s)

τn(s)
−q−n−1/2x(s+ n

2
) + q(c+a−b+1−n

2
)/2[a+ n

2
+ 1]q [b− n

2
− 1]q [c+ n

2
+ 1]q

−q(c+a−b+2−n
2
)/2[a+ n

2
]q [b− n

2
]q [c+ n

2
]q

λn q−(n−1)/2[n]q

Bn (−1)nq
3
4
n(n−1)

d2n
qn(a+c−b+n+1)Γ̃q(n+ 1)Γ̃q(a+ c+ n+ 1)Γ̃q(b− c)Γ̃q(b− a)

Γ̃q(b− c− n)Γ̃q(b− a− n)Γ̃q(a+ c+ 1)

βn qn+(c−b+1)/2[b− a− n+ 1]q [a+ c+ n+ 1]q + qn+a+(c−b+1)/2[n]q [b− c− n]q + [a]q [a+ 1]q

γn q2n+c+a−b[n]q [n+ a+ c]q [b− a− n]q [b− c− n]q

αn −q−n+1/2

βn(s)
−qn/2+1

[
− q−n−1(2x(s+ n

2
) + q(c+a−b+1−n

2
)/2[a+ n

2
+ 1]q [b− n

2
− 1]q [c+ n

2
+ 1]q

−q(c+a−b+2−n
2
)/2[a+ n

2
]q [b− n

2
]q [c+ n

2
]q
]

In the following we use the q-analog of the Γ function, Γ̃q(x), introduced
in [29, Eq. (3.2.24)], and related to the classical q-Gamma function, Γq, (see
[24]) by formula

Γ̃q(s) = q−
(s−1)(s−2)

4 Γq(s) = q−
(s−1)(s−2)

4 (1− q)1−s (q; q)∞
(qs; q)∞

, 0 < q < 1,
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as well as the identities (k ∈ N)

Γ̃q(a+ k)

Γ̃q(a)
=

k−1∏
m=0

[a+m]q = (−1)k(qa; q)k(q
1
2 − q−

1
2 )−kq−

k
4

(k−1)− ka
2 ,

Γ̃q(a− k)

Γ̃q(a)
=

k−1∏
m=0

−1

[−a+ 1 +m]q
=

1

(q−a+1; q)k(q
1
2 − q− 1

2 )−kq−
k
4

(k−1)− k(−a+1)
2

.

Notice that from (35) it follows

uα,βn (a)q =
(qa−b+1; q)n(qβ+1; q)n(qa+b+α+1; q)n

q
n
2

(2a+1)(qα+β+n+1; q)n(q1/2 − q−1/2)2n
,

uα,βn (b− 1)q =
(qa−b+1; q)n(qα+1; q)n(qβ−a−b+1; q)n

q
n
2

(−2b+1)(qα+β+n+1; q)n(q1/2 − q−1/2)2n
.

We also need the following identity for the non-standard q-Racah polynomials
(see (7) from above)

uα,βn−1(s)q = Θ(s, n)uα,βn (s)q + Ξ(s, n)uα,βn (s+ 1)q, (37)

where

Θ(s, n) = − [α+ β + 2n− 1]q([α+ β + 2n]q)
2([α+ n]q[β + n]q[α+ β + n]q)

−1

[n]q[a+ b+ α+ n]q[a+ b− β − n]q[b− a+ α+ β + n]q[b− a− n]q
×{

[s+a+1]q[s−a+β+ 1]q[b+α+s+1]q[b−s−1]q
[2s+ 2]q

−[α+β+2n+1]q[s−a]q[s+a+1]q

− [α+ β + n+ 1]q[a− b+ n+ 1]q[β + n+ 1]q[a+ b+ α+ n+ 1]q
[α+ β + 2n+ 2]q

+
[n]q[α+ n]q[b− a+ α+ β + n]q[a+ b− β − n]q

[α+ β + 2n]q
− [α+ β + n+ 1]q

[α+ β + 2n+ 2]q

×
[
− [α+ β + 2n+ 2]q[s+ n

2 ]q[s+ n
2 + 1]q + [a+ n

2 + 1]q[b− n
2 − 1]q[β + n

2 + 1− a]q

× [b+α+ n
2 +1]q−[a+ n

2 ]q[b− n
2 ]q[β+ n

2−a]q[b+α+ n
2 ]q

]
−[n]q[α+β+n+1]q[2s+1]q

}
,

Ξ(s, n) =
[α+ β + 2n− 1]q([α+ β + 2n]q)

2

[n]q[α+ β + n]q[a+ b+ α+ n]q[a+ b− β − n]q[α+ n]q[β + n]q
×

[s+ a+ 1]q[s− a+ β + 1]q[b+ α+ s+ 1]q[b− s− 1]q
[b− a− n]q[2s+ 2]q[b− a+ α+ β + n]q

.

For the dual q-Hahn polynomials (36), we have

wcn(a)q =
(qa−b+1; q)n(qa+c+1; q)n

q
n
2

(2a+1)(q1/2 − q−1/2)2n
, wcn(b−1)q =

(qa−b+1; q)n(qc−b+1; q)n

q
n
2

(−2b+1)(q1/2 − q−1/2)2n
,
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as well as the relation (7)

wcn−1(s)q = Θ(s, n)wcn(s)q + Ξ(s, n)wcn(s+ 1)q,

where

Θ(s, n) = − qb−a−c−n−
1
2

[n]q[b− c− n]q[a+ c+ n]q[b− a− n]q
×{

− q(a+c−b+1−s)/2[s+ a+ 1]q[s+ c+ 1]q[s− b+ 1]q
[2s+ 2]q

− q−(2n−1)/2[s− a]q[s+ a+ 1]q

+ q(c−b+2)/2[b− a− n+ 1]q[a+ c+ n+ 1]q + qa+(c−b+2)/2[n]q[b− c− n]q

+ q
n
2 +1
(
q−n−

1
2 [s+ n

2 ]q[s+ n
2 + 1]q − q

n
2 (c+a−b+1−n

2 )[a+ n
2 + 1]q[b− n

2 − 1]q[c+ n
2 + 1]q

+ q
1
2 (c+a−b+2−n

2 )[a+ n
2 ]q[b− n

2 ]q[c+ n
2 ]q

)
− q−

n−1
2 [n]q[2s+ 1]q

}
,

Ξ(s, n) = − q(b−a−c−2n−s)/2

[n]q[b− c− n]q[a+ c+ n]q[b− a− n]q

[s+ a+ 1]q[s+ c+ 1]q[s− b+ 1]q
[2s+ 2]q

.

4.1. Modification of non-standard q-Racah polynomials

In this section we consider the modification of the non-standard q-Racah
polynomials defined in (35) by adding two mass points, i.e., the polynomials
orthogonal with respect to the functional ũ = u+Aδ(x(s)−x(a))+Bδ(x(s)−
x(b−1)), where u is defined in (3). In other words, we study the polynomials
uα,β,A,Bn (s)q := uα,β,A,Bn (x(s), a, b)q that satisfy the following orthogonality
relation

b−1∑
s=a

uα,β,A,Bn (s)qu
α,β,A,B
m (s)qρ(s)[2s+ 1]q + Auα,β,A,Bn (a)qu

α,β,A,B
m (a)q

+Buα,β,A,Bn (b−1)qu
α,β,A,B
m (b−1)q = δn,md̃

2
n,

(38)

where ρ is the non-standard q-Racah weight function (see table 11).
From (31) and (32) we obtain the following expressions for the the values

at the points s = a and s = b−1 and the norm d̃2
n of the modified polynomials

1We have chosen ρ(s) in such a way that
∑b−1
s=a ρ(s)[2s+1]q = 1, i.e., to be a probability

measure.
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uα,β,A,Bn (s)q, respectively

uα,β,A,Bn (a)q =
(1 +BKα,β

n−1(b−1, b−1))uα,βn (a)q −BKα,β
n−1(a, b−1)uα,βn (b−1)q

κα,βn−1(a, b−1)
,

uα,β,A,Bn (b−1)q =
−AKα,β

n−1(b−1, a)uα,βn (a)q + (1 + AKα,β
n−1(a, a))uα,βn (b−1)q

κα,βn−1(a, b−1)
,

(39)

d̃2
n = d2

n+
A(uα,βn (a)q)

2{1+BKα,β
n−1(b−1, b−1)}+B(uα,βn (b−1)q)

2{1+AKα,β
n−1(a, a)}

κα,βn−1(a, b−1)

−
2ABuα,βn (a)qu

α,β
n (b−1)qK

α,β
n−1(a, b−1)

κα,βn−1(a, b−1)
,

where we use a notation similar to the one introduced in the previous section,

κα,βm (s, t) = 1 + AKα,β
m (s, s) +BKα,β

m (t, t)

+ AB
{

Kα,β
m (s, s)Kα,β

m (t, t)− (Kα,β
m (s, t))2

}
,

(40)

where Kα,β
m (s, t) are the kernels Kα,β

m (s, t) =
∑m

k=0 u
α,β
k (s)qu

α,β
k (t)q/d

2
k, and

d2
n denotes the squared norm of the n-th non-standard q-Racah polynomials

(see table 1).

Representation formulas for uα,β,A,Bn (s)q
To obtain the representation formulas we use (29) that yields

uα,β,A,Bn (s)q = uα,βn (s)q − Auα,β,A,Bn (a)qK
α,β
n−1(s, a)

−Buα,β,A,Bn (b− 1)qK
α,β
n−1(s, b− 1).

(41)

Next we use the expressions (9) and (10) for the kernels. In fact, using the
main data of non-standard q-Racah polynomial [11] (see Table 1), we find

Kα,β
n−1(s, a) = κα,β

a (s, n)uα,βn−1(s)q + κα,β
a (s, n)

∇uα,βn−1(s)q
∇x(s)

, (42)

where

κα,β
a (s, n) =

−q(α+β−2an+n+2a)/2(q
1
2 − q− 1

2 )2n−1(qα+β+2; q)2n−3

(q; q)n−1(qα+1; q)n−1(qb−a+α+β+1; q)n−1(qβ−a−b+1; q)n−1

× [α + β + n]q[s+ a+ n]q
[s+ a+ 1]q

,

(43)
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κα,β
a (s, n) =

q(α+β−2an+n+2a)/2(q
1
2 − q− 1

2 )2n−1(qα+β+2; q)2n−3

(q; q)n−1(qα+1; q)n−1(qb−a+α+β+1; q)n−1(qβ−a−b+1; q)n−1

× [s+ b]q[s+ a− β]q[b+ α− s]q
[s+ a+ 1]q

,

(44)

Kα,β
n−1(s, b− 1) = κα,β

b (s, n)uα,βn−1(s)q + κα,β
b (s, n)

∆uα,βn−1(s)q
∆x(s)

, (45)

where

κα,β
b (s, n) = − q(α+β+2bn+n−2b)/2(q

1
2 − q− 1

2 )2n−1(qα+β+2; q)2n−3

(q; q)n−1(qβ+1; q)n−1(qb−a+α+β+1; q)n−1(qa+b+α+1; q)n−1

× [α + β + n]q
[s+ b]q

{
[s+ b+ n− 1]q − [n− 1]q

(
q(s+b)/2 + q−(s+b)/2

)}
,

κα,β
b (s, n) = − q(α+β+2bn+n−2b)/2(q

1
2 − q− 1

2 )2n−1(qα+β+2; q)2n−3

(q; q)n−1(qβ+1; q)n−1(qb−a+α+β+1; q)n−1(qa+b+α+1; q)n−1

× [s+ a+ 1]q[s− a+ β + 1]q[b+ α + s+ 1]q
[s+ b]q

.

Substituting (42) and (45) in formula (41) one finds

uα,β,A,Bn (s)q = uα,βn (s)q + A(s, n)uα,βn−1(s)q +B(s, n)
∇uα,βn−1(s)q
∇x(s)

+ C(s, n)
∆uα,βn−1(s)q

∆x(s)
,

(46)

A(s, n) =− Auα,β,A,Bn (a)qκα,β
a (s, n)−Buα,β,A,Bn (b− 1)qκα,β

b (s, n),

B(s, n) =− Auα,β,A,Bn (a)qκα,β
a (s, n),

C(s, n) =−Buα,β,A,Bn (b− 1)qκα,β
b (s, n)

(47)

where uα,β,A,Bn (a)q and uα,β,A,Bn (b − 1)q are given in (39). Notice that from
formula (46) it is not easy to see that uα,β,A,Bn (s)q is a polynomial of de-
gree n in x(s) (which is a simple consequence of (41)). This is because in
(46) the involved functions A, B and C as well as ∇uα,βn−1(s)q/∇x(s) and

∆uα,βn−1(s)q/∆x(s) are not, in general, polynomials in x(s).
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Another representation follows from (17)

φ(s)uα,β,A,Bn (s)q = A(s;n)uα,βn (s)q +B(s;n)uα,βn−1(s)q, (48)

φ(s) = [s− a]q[s+ a+ 1]q[s− b+ 1]q[s+ b]q,

A(s, n) = φ(s)− 1

d2
n−1

{
Auα,β,A,Bn (a)qu

α,β
n−1(a)q[s− b+ 1]q[s+ b]q

+Buα,β,A,Bn (b− 1)qu
α,β
n−1(b− 1)q[s− a]q[s+ a+ 1]q

}
,

B(s, n) =
1

d2
n−1

{
Auα,β,A,Bn (a)qu

α,β
n (a)q[s− b+ 1]q[s+ b]q

+Buα,β,A,Bn (b− 1)qu
α,β
n (b− 1)q[s− a]q[s+ a+ 1]q

}
,

(49)

where uα,β,A,Bn (a)q and uα,β,A,Bn (b − 1)q are given in (39). Substituting the
relation (37) in (48) we obtain the following representation formula

φ(s)uα,β,A,Bn (s)q = a(s;n)uα,βn (s)q + b(s;n)uα,βn (s+ 1)q,

where, as in (19), a(s;n) = A(s;n)+B(s;n)Θ(s;n), b(s;n) = B(s;n)Ξ(s;n),
and A, B and Θ, Ξ are given by (49) and (37), respectively.

Therefore, by Proposition 3 one obtains the second order linear difference
equation for the uα,β,A,Bn (s)q polynomials where the coefficients are given in
(28).

Finally, using formulas (33) we obtain

α̃n = 1,

β̃n = βn −A

(
uα,β,A,Bn (a)qu

α,β
n−1(a)q

d2
n−1

−
uα,β,A,Bn+1 (a)qu

α,β
n (a)q

d2
n

)

−B

(
uα,β,A,Bn (b− 1)qu

α,β
n−1(b− 1)q

d2
n−1

−
uα,β,A,Bn+1 (b− 1)qu

α,β
n (b− 1)q

d2
n

)
,

γ̃n = γn
1+∆A,B

n

1+∆A,B
n−1

, ∆A,B
n =

Auα,β,A,Bn (a)qu
α,β
n (a)q

d2
n

+
Buα,β,A,Bn (b−1)qu

α,β
n (b−1)q

d2
n

where we use the notations defined in (39) and (40).
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Representation of uα,β,A,Bn (s)q in terms of basic series

In this section, we obtain some explicit formulas for the uα,β,A,Bn (s, a, b)q
polynomials in terms of basic hypergeometric series. To obtain the first
representation formula in terms of basic series of uα,β,A,Bn (s, a, b)q, we rewrite
(46) by using the identity [11]

∆uα,βn (s, a, b)q
∆x(s)

= [n]qu
α+1,β+1
n−1 (x(s+ 1

2
), a+ 1

2
, b− 1

2
)q, (50)

and substitute (35) into the resulting expression. This yields

uα,β,A,Bn (s, a, b)q =
(qa−b+2; q)n−2(qβ+2; q)n−2(qa+b+α+2; q)n−2

q
n
2

(2a+1)(q
1
2 − q− 1

2 )2n−4(qα+β+n+1; q)n−2

×

∞∑
k=0

(q−n, qα+β+n, qa−s, qa+s+1; q)k
(qa−b+2, qβ+2, qa+b+α+2, q; q)k

qkΠ4(qk),

where

(1−qa−b+n)(1−qa+b+α+n)(1−qα+β+n+k)(1−qa−b+k+1)(1−qβ+k+1)(1−qa+b+α+k+1)

(q
1
2−q−

1
2 )4(1−qβ+n)−1(1−qα+β+2n−1)(1−qα+β+2n)(1−qα+β+n)

+A(s, n) q
(2a+1)/2(1−q−n+k)(1−qa−b+k+1)(1−qβ+k+1)(1−qa+b+α+k+1)

(q
1
2−q−

1
2 )2(1−qα+β+n)(1−q−n)

+B(s, n)
q(2a+2−n

2 )[n−1]q(1−q−n+k)(1−q−n+k+1)(1−qα+β+n+k)(1−qa−s+k)
(1−qα+β+n)(1−q−n)(1−q−n+1)(1−qa−s)

+C(s, n) q
(2a+2−n

2 )(1−q−n+k)(1−q−n+k+1)(1−qα+β+n+k)(1−qa+s+k+1)

[n−1]−1
q (1−qα+β+n)(1−q−n)(1−q−n+1)(1−qa+s+1)

:= Π4(qk),

is a fourth degree polynomial in qk and A(s, n), B(s, n) and C(s, n) are
defined in (47). After some straightforward calculations, we have

Π4(qk) = Υα,β,A,B
n (s)(qk − qα1)(qk − qα2)(qk − qα3)(qk − qα4),

where

Υα,β,A,B
n (s) = q2a+2α+2β+n+3(1−qa−b+n)(1−qβ+n)(1−qa+b+α+n)

(q
1
2−q−

1
2 )4(1−qα+β+2n−1)(1−qα+β+2n)(1−qα+β+n)

+A(s, n) q(3a+α+β−n+
7
2 )

(q
1
2−q−

1
2 )2(1−qα+β+n)(1−q−n)

+B(s, n) q(3a+α+β−s−n+
5
2 )

(q
1
2−q−

1
2 )(1−qα+β+n)(1−q−n)(1−qa−s)

+C(s, n) q(3a+α+β+s−n+
7
2 )

(q
1
2−q−

1
2 )(1−qα+β+n)(1−q−n)(1−qa+s+1)
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and qα1 , qα2 , qα3 and qα4 (α1,2,3,4 := α1,2,3,4(n, s; a, b, A,B)) are the zeros of
Π4, that depend, in general, on s and n. Then, using the identity (qk −
qz)(q−z; q)k = (1− qz)(q1−z; q)k we find the following expression

uα,β,A,Bn (s)q = Dα,β,α1,2,3,4
n (s)×

8ϕ7

(
q−n, qα+β+n, qa−s, qa+s+1, q1−α1 , q1−α2 , q1−α3 , q1−α4

qa−b+2, qβ+2, qa+b+α+2, q−α1 , q−α2 , q−α3 , q−α4

∣∣∣∣ q , q) , (51)

where

D
α,β,α1,2,3,4
n (s) =

(qa−b+2; q)n−2(qβ+2; q)n−2(qa+b+α+2; q)n−2

q
n
2

(2a+1)(q
1
2 − q−

1
2 )2n−4(qα+β+n+1; q)n−2

Υα,β,A,B
n (s)

4∏
l=1

(1−qαl).

Notice that from (46) and (50) we can write the polynomial uα,β,A,Bn (s)q
as a linear combination of four basic series, namely

uα,β,A,Bn (s, a, b)q = Dα,β,a,b
n 4ϕ3

(
q−n, qα+β+n+1, qa−s, qa+s+1

qa−b+1, qβ+1, qa+b+α+1

∣∣∣∣ q , q)
+A(s, n)Dα,β,a,b

n−1 4ϕ3

(
q−n+1, qα+β+n, qa−s, qa+s+1

qa−b+1, qβ+1, qa+b+α+1

∣∣∣∣ q , q)
+B(s, n)[n− 1]qD

α+1,β+1,a+
1
2 ,b−

1
2

n−2 4ϕ3

(
q−n+2, qα+β+n+1, qa−s+1, qa+s+1

qa−b+2, qβ+2, qa+b+α+2

∣∣∣∣ q , q)
+ C(s, n)[n− 1]qD

α+1,β+1,a+
1
2 ,b−

1
2

n−2 4ϕ3

(
q−n+2, qα+β+n+1, qa−s, qa+s+2

qa−b+2, qβ+2, qa+b+α+2

∣∣∣∣ q , q) ,
where Dα,β,a,b

n =
q−

n
2

(2a+1)(qa−b+1; q)n(qβ+1; q)n(qa+b+α+1; q)n

(q
1
2 − q−

1
2 )2n(qα+β+n+1; q)n

.

Remark 5. Notice that from (41) it is easy to see that uα,β,A,Bn (s)q is a
polynomial of degree n in x(s), whereas from (51) it is not. This is beacuse

D
α,β,α1,2,3,4
n (s) and the parameters qα1, qα2, qα3, and qα4, that appear in the

formula (51) depend, in general, on s. A similar situation happens with the
representation as a sum of four basic series.

Let us obtain a more convenient representation in terms of the basic series.
For doing that we use (48). In fact, substituting (35) into (48) we obtain

φ(s)uα,β,A,Bn (s)q =
(qa−b+1; q)n−1(qβ+1; q)n−1(qa+b+α+1; q)n−1

q
n
2

(2a+1)(q
1
2 − q− 1

2 )2n−2(qα+β+n; q)n−1

×
∞∑
k=0

(q−n, qα+β+n, qa−s, qa+s+1; q)k
(qa−b+1, qβ+1, qa+b+α+1, q; q)k

qkΠ1(qk),

20



where φ(s), A(s, n) and B(s, n) are given in (49) and

Π1(qk) = A(s, n)
(1− qa−b+n)(1− qβ+n)(1− qa+b+α+n)(1− qα+β+n+k)

(q
1
2 − q− 1

2 )2(1− qα+β+2n−1)(1− qα+β+2n)

+B(s, n)
q(2a+1)/2(1− q−n+k)

(1− q−n)

= −q
(2a+1)/2

1− q−n
{
A(s, n)qα+β+nϑa,b,α,βn +B(s, n)q−n

}
(qk − qβ1),

(52)

being

qβ1 =
A(s, n)ϑa,b,α,βn +B(s, n)

A(s, n)qα+β+nϑa,b,α,βn +B(s, n)q−n
,

ϑa,b,α,βn =
q−(2a+1)/2(1− qa−b+n)(1− qβ+n)(1− qa+b+α+n)(1− q−n)

(q
1
2 − q− 1

2 )2(1− qα+β+2n−1)(1− qα+β+2n)
.

If we now use the same identity as before (qk−qz)(q−z; q)k = (1−qz)(q1−z; q)k
we obtain

φ(s)uα,β,A,Bn (s)q =Dα,β,β1
n (s)5ϕ4

(
q−n, qα+β+n, qa−s, qa+s+1, q1−β1

qa−b+1, qβ+1, qa+b+α+1, q−β1

∣∣∣∣q, q) (53)

where

Dα,β,β1
n (s) = −(qa−b+1; q)n−1(qβ+1; q)n−1(qa+b+α+1; q)n−1

q
n
2

(2a+1)(q
1
2 − q− 1

2 )2n−2(qα+β+n; q)n−1

(1− qβ1)

×q
(2a+1)/2

1− q−n
{
A(s, n)qα+β+nϑa,b,α,βn +B(s, n)q−n

}
.

Remark 6. Notice that the left hand side of (53) φ(s)uα,β,A,Bn (s)q is a poly-
nomial of degree n+ 2 in x(s) (this follows from (48) and (18)). To see that
formula (53) gives a polynomial of degree n+ 2 it is sufficient to notice that
the function Π1 defined in (52) is a polynomial in x(s), which follows from
that fact that A(s, n) and B(s, n) are polynomial of degree 2 and 1 in x(s),
respectively (see (18)).

It follows from the above remark that, contrary to the formula (51),
the representation (53) is a very convenient way of writing the polynomials
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uα,β,A,Bn (s)q. Notice also that the direct substitution of (35) into (48) leads
to the following representation formula

φ(s)uα,β,A,Bn (s, a, b)q = A(s, n)Λα,β,a,b
n 4ϕ3

(
q−n, qα+β+n+1, qa−s, qa+s+1

qa−b+1, qβ+1, qa+b+α+1

∣∣∣∣ q , q)
+B(s, n)Λα,β,a,b

n−1 4ϕ3

(
q−n+1, qα+β+n, qa−s, qa+s+1

qa−b+1, qβ+1, qa+b+α+1

∣∣∣∣ q , q) ,
where

Λα,β,a,b
n =

q−
n
2

(2a+1)(qa−b+1; q)n(qβ+1; q)n(qa+b+α+1; q)n

(q
1
2 − q− 1

2 )2n(qα+β+n+1; q)n
.

4.1.1. The case of one mass point

In this section we consider the case of non-standard q-Racah polynomials
but with one mass point at the value s = a. All the formulas follow from the
ones in section 4.1 just putting B = 0, then we include only the final results.

First of all, we have the representation formula (46)

uα,β,An (s)q = uα,βn (s)q + A(s, n)uα,βn−1(s)q +B(s, n)
∇uα,βn−1(s)q
∇x(s)

,

where now

A(s, n) = −Auα,β,An (a)qκα,β
a (s, n), B(s, n) = −Auα,β,An (a)qκα,β

a (s, n),

and

uα,β,An (a)q =
uα,βn (a)q

1 + AKα,β
n−1(a, a)

. (54)

Here the values κα,β
a (s, n), κα,β

a (s, n) are as in (43) and (44), respectively.
The representation formula (17) takes the form

φ(s)uα,β,An (s)q = A(s;n)uα,βn (s)q +B(s;n)uα,βn−1(s)q,

where φ(s) = [s− a]q[s+ a+ 1]q,

A(s, n) = φ(s)− A

d2
n−1

uα,β,An (a)qu
α,β
n−1(a)q,

B(s, n) =
A

d2
n−1

uα,β,An (a)qu
α,β
n (a)q,

(55)

22



and uα,β,An (a)q is given in (54). Finally, as in the previous case, we obtain the
third representation formula

φ(s)uα,β,An (s)q = a(s;n)uα,βn (s)q + b(s;n)uα,βn (s+ 1)q, (56)

where

a(s;n) = A(s;n) +B(s;n)Θ(s;n), b(s;n) = B(s;n)Ξ(s;n),

being A, B and Θ, Ξ given by (55) and (37), respectively. Notice that, as
for the two mass point cases, from the above representation formula (56) the
SODE (23) follows.

The coefficients of the TTRR in this case are given by (34)

α̃n = 1, β̃n = βn − A

(
uα,β,An (a)qu

α,β
n−1(a)q

d2
n−1

−
uα,β,An+1 (a)qu

α,β
n (a)q

d2
n

)
,

γ̃n = γn
1 + ∆A

n

1 + ∆A
n−1

, ∆A
n =

Auα,β,An (a)qu
α,β
n (a)q

d2
n

,

and the norm is given by

d̃2
n = d2

n +
A(uα,βn (a)q)

2

1 + AKα,β
n−1(a, a)

,

where dn is the norm of the non-standard q-Racah polynomials uα,βn (s)q.
Finally, let us mention that putting B = 0 in the basic series repre-

sentations formulas (51) and (53) we obtain the corresponding basic series
representations for the q-Racah-Krall polynomials uα,β,An (s)q.

4.2. Some limit cases

We start with the modification of dual q-Hahn polynomials defined in (36)
by adding two mass points at the end of the interval of orthogonality. I.e.,
the polynomials wc,A,Bn (s)q := wc,A,Bn (x(s), a, b)q satisfying the orthogonality
relation

b−1∑
s=a

wc,A,Bn (s)qw
c,A,B
m (s)qρ(s)[2s+ 1]q + Awc,A,Bn (a)qw

c,A,B
m (a)q

+Bwc,A,Bn (b− 1)qw
c,A,B
m (b− 1)q = δn,md̃

2
n.

(57)
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To obtain the values of wc,A,Bm (a)q, w
c,A,B
m (b−1)q and the norm d̃2

n we can use
the formulas (31) and (32), respectively, that yield

wc,A,Bn (a)q =
(1 +BKc

n−1(b−1, b−1))wcn(a)q −BKc
n−1(a, b−1)wcn(b−1)q

κcn−1(a, b−1)
,

wc,A,Bn (b−1)q =
−AKc

n−1(b−1, a)wcn(a)q + (1 +AKc
n−1(a, a))wcn(b−1)q

κcn−1(a, b−1)
,

(58)

d̃2
n = d2

n+
A(wcn(a)q)

2{1 +BKc
n−1(b−1, b−1)}+B(wcn(b−1)q)

2{1+AKc
n−1(a, a)}

κcn−1(a, b−1)

−
2ABwcn(a)qw

c
n(b−1)qK

c
n−1(a, b−1)

κcn−1(a, b−1)
,

where

κcm(s, t) = 1+AKc
m(s, s)+BKc

m(t, t)+AB
{

Kc
m(s, s)Kc

m(t, t)− (Kc
m(s, t))2

}
,

(59)
Kc
m(s, t) =

∑m
k=0w

c
k(s)qw

c
k(t)q/d

2
k, and d2

n denotes the norm of the dual q-
Hahn polynomials.

Notice that if we make the change β = a+ c in the orthogonality relation
for the non-standard q-Racah polynomials (38), take the limit qα → 0, and
use that limqα→0 u

α,a+c
n (s)q = wcn(s)q, we obtain the orthogonality relation

(57), and therefore, it is straightforward to see that

lim
qα→0

uα,a+c,A,B
n (s)q = wc,A,Bn (s)q.

Thus, all properties of the modified dual q-Hahn polynomials wc,A,Bn (s)q can
be obtained from the corresponding properties of the modified q-Racah poly-
nomials uα,β,A,Bn (s)q by taking the appropriate limit. For this reason we will
only include here the TTRR for the wc,A,Bn (s)q

α̃n = 1,

β̃n = βn − A

(
wc,A,Bn (a)qw

c
n−1(a)q

d2
n−1

−
wc,A,Bn+1 (a)qw

c
n(a)q

d2
n

)

−B

(
wc,A,Bn (b− 1)qw

c
n−1(b− 1)q

d2
n−1

−
wc,A,Bn+1 (b− 1)qw

c
n(b− 1)q

d2
n

)
,

γ̃n = γn
1 + ∆A,B

n

1 + ∆A,B
n−1

, ∆A,B
n =

Awc,A,Bn (a)qw
c
n(a)q

d2
n

+
Bwc,A,Bn (b−1)qw

c
n(b−1)q

d2
n

,
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where we use the notation defined in (58) and (59).
To conclude this paper we consider two important limit cases of the q-

Racah-Krall polynomials uα,β,A,Bn (s)q.
The first one is when we take the limit q → 1. In fact, if we take the

limit q → 1 in (35) we recover the non-standard Racah polynomials in the
quadratic lattice x(s) = s(s+ 1) [11, 29] (notice that they are different from
the standard Racah polynomials [24, page 190]), i.e.,

lim
q→1

uα,βn ([s]q[s+ 1]q, a, b)q = uα,βn (s(s+ 1), a, b),

where

uα,βn (s) =
(a− b+ 1)n(β + 1)n(a+ b+ α + 1)n

(α + β + n+ 1)n
×

4F3

(
−n, α + β + n+ 1, a− s, a+ s+ 1
a− b+ 1, β + 1, a+ b+ α + 1

∣∣∣∣ 1) , b− a ∈ N.

Straightforward calculations show that all the properties of the non-standard
q-Racah polynomials uα,βn (s)q becomes into the properties of the non-standard
Racah ones (see e.g. [10]). Thus, we have the following limit relation

lim
q→1

uα,β,A,Bn ([s]q[s+ 1]q, a, b)q = uα,β,A,Bn (s(s+ 1), a, b),

where uα,β,A,Bn (s(s + 1), a, b) denotes the modification of the non-standard
Racah polynomials by adding two delta Dirac masses at the points a and
b− 1.

Moreover, from the corresponding formulas of the q-Racah-Krall polyno-
mials uα,β,A,Bn (s)q we can obtain the main properties of the Racah-Krall (not
q) polynomials uα,β,A,Bn (s). Thus, taking appropriate limits one can construct
the analogue of the Askey Tableau but for the Krall type polynomials (not
q).

Another important family of Krall-type polynomials are the so called q-
Hahn-Krall tableau of orthogonal polynomials considered in [5, 9]. Let us
show how we can obtain it from our case.

First of all notice that the non-standard q-Racah polynomials are de-
fined on the lattice x(s) = [s]q[s + 1]q which is of the form (1) with c1 =
q1/2(q1/2 − q−1/2)−2, c3 = −q1/2 + q−1/2(q1/2 − q−1/2)−2, ζ = 1. Then, mak-
ing the transformation x(s) → q−a−1c1x(s), qα = µ, qβ = γ, q−b = q−N−1−a
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in (35), taking the limit qa → 0, and using the identity [2]

(qs1−s; q)k(q
s1+s+ζ ; q)k=(−1)kqk(s1+ζ+ k−1

2
)
k−1∏
i=0

[x(s)−c3

c1
−q−

ζ
2 (qs1+i+ ζ

2 +q−s1−i−
ζ
2 )
]
,

where s1 = a, we obtain

Cnu
α,β
n (x(s), a, b)q

qa→0−→ hγ,µn (x(s);N |q), (60)

where hγ,µn (x(s);N |q) are the q-Hahn polynomials on the lattice x(s) = q−s

hγ,µn (x(s);N |q) :=
(γq; q)n(q−N ; q)n

(γµqn+1; q)n
3ϕ2

(
q−n, γµqn+1, x(s)

γq, q−N

∣∣∣∣ q , q) ,
and

Cn := (q1/2 − q−1/2)2nq
n
2

(2a+1). (61)

The above limit relation allows us to obtain the q-Hahn-Krall polynomials.
For doing that we use

Cnu
α,β
n (a)

qa→0−→ hγ,µn (x(0);N |q) Cnu
α,β
n (b− 1)

qa→0−→ hγ,µn (x(N);N |q), (62)

and

Ckd
2
k

qa→0−→ d
2

k = (−γq)nq(n2 )−Nn (q, µq, γq, q−N , γµqN+2; q)n
(γµq2; q)2n(γµqn+1; q)n

,

where dk and d
2

k denote the norms for the non-standard q-Racah and the
q-Hahn polynomials, respectively. Then, applying the aforesaid transfor-
mation to (8) we obtain the following limit relation for the kernels of the
non-standard q-Racah and q-Hahn polynomials

Kα,β
n (s1, s2) :=

n∑
k=0

Cku
α,β
k (s1)qCku

α,β
k (s2)q

C2
kd

2
k

qa→0−→

n∑
k=0

hγ,µk (x(s1);N |q)hγ,µk (x(s2);N |q)
d

2

k

:= Kγ,µ
n (s1, s2).

(63)

From the limit relations (60), (62), and (63) and using (41) we obtain that

lim
qa→0

Cnu
α,β,A,B
n (s)q = hγ,µ,A,Bn (x(s);N |q) := hγ,µ,A,Bn (s)q,
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where Cn is given in (61). I.e., we obtain the q-Hahn-Krall polynomials on
the lattice x(s) = q−s which satisfy the orthogonality relation

N∑
s=0

hγ,µ,A,Bn (s)qh
γ,µ,A,B
m (s)qρ(s)∆x(s− 1

2
) + Ahγ,µ,A,Bn (0)qh

γ,µ,A,B
m (0)q

+Bhγ,µ,A,Bn (N)qh
γ,µ,A,B
m (N)q = δn,md

2

k, x(s) = q−s,

where ρ is the weight function of the q-Hahn polynomials (see [24, page 445]).

5. Concluding remarks

In the present work we have developed a method for constructing the
Krall-type polynomials on the q-quadratic non-uniform lattices, i.e., lattices
of the form x(s) = c1q

s+c2q
s+c3. As a representative example the modifica-

tion of the non-standard q-Racah polynomials was considered in detail. This
is an important example for two reasons: 1) it is the first family of the Krall-
type polynomials on a non-linear type lattice that has been studied in detail
and 2) almost all modifications (via the addition of delta Dirac masses) of the
classical and q-classical polynomials can be obtained from them by taking
appropriate limits (as it is shown for the dual q-Hahn, the Racah, and the q-
Hahn polynomials in section 4.2). Let us also mention here that an instance
of the Krall-type polynomials obtained from the Askey-Wilson polynomials
(with a certain choice of parameters), by adding two mass points at the
end of the orthogonality has been mentioned in [20, §6, page 330]. This
Askey-Wilson-Krall-type polynomials solve the so-called bi-spectral problem
associated with the Askey-Wilson operator. Then, it is an interesting open
problem to study the general Krall-type Askey-Wilson polynomials and to
obtain their main properties. This will be considered in a forthcoming paper.
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[10] R. Álvarez-Nodarse and Yu. F. Smirnov, The dual Hahn q-polynomials
in the lattice x(s) = [s]q[s+ 1]q and the algebras SUq(2) and SUq(1, 1),
J. Phys. A: Math. Gen. 29 (1996), 1435-1451.
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