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Abstract

We consider the different limit transition for modifications of the classical polyno-
mials via the addition of one or two point masses at the ends of the interval of orthog-
onality. The connections between Jacobi, Laguerre, Charlier, Meixner, Kravchuk and
Hahn generalized polynomials are established.

1 Introduction.

Polynomials orthogonal with respect to measures which are more general than weight func-
tions appear as eigenfunctions of a fourth order linear differential operator with polynomial
coefficients. This spectral approach leads to Laguerre-type, Legendre-type and Jacobi-type
polynomials introduced by H.L.Krall [20].

A general analysis when a modification of a linear functional in the linear space of poly-
nomials with real coefficients via the addition of one delta Dirac measure was started by
Chihara [9] in the positive definite case and Marcelldn and Maroni [22] for quasi-definite
linear functionals. For two point masses there exist very few examples in the literature. (see

[19], [11], [17] and [21])

A special emphasis was given to the modifications of classical linear functionals (Hermite,
Laguerre, Jacobi and Bessel) in the framework of the so-called semiclassical orthogonal poly-
nomials.

For discrete orthogonal polynomials, Bavinck and van Haeringen [7] obtained an infinite
order difference equation for generalized Meixner polynomials, i.e., polynomials orthogonal
with respect to the modification of the Meixner weight with a point mass at = 0. The
same was found for generalized Charlier polynomials by Bavinck and Koekoek [8].

In a series of papers [2]-[4] we obtained the representation as hypergeometric functions for
generalized Meixner, Charlier, Kravchuk and Hahn polynomials as well as the corresponding
second order difference equation that such polynomials satisfy. Notice that the coefficients
of those difference equations are polynomials of fixed degree and they depend on n as a
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parameter.

The aim of the present contribution is to obtain an analogue of the Askey tableau for such a
kind of generalized polynomials with the description of the continuous generalized orthogonal
polynomials as limit case of the discrete generalized orthogonal polynomials. Furthermore,
we deduce the explicit second order linear differential equations for two examples which
attracted the interest of the researchers: the Laguerre [13] and the Jacobi [19] case.

In Section 2 we present a summary of the more useful properties of classical polynomials
both in the discrete and continuous case.

Section 3 is devoted to an explicit representation of generalized polynomials in terms of the
classical ones when we add one point mass at zero (Laguerre, Meixner, Charlier, Kravchuk)
or two mass points at the ends of the convex hull of the support of the measure (Jacobi and
Hahn). Further, we obtain the explicit expression for second order differential equations
(SODE) in the cases of Laguerre and Jacobi. Notice that this SODE was found in [13]
for Laguerre case while for the Jacobi case [19] the coefficients were not deduced explicitly.
Moreover, an infinite order equation for the Laguerre case was found in [13] as well as for
the Gegenbauer case in [16].

In Section 4 the continuous case is obtained as a limit of the discrete one, as well as the
different transitions between the discrete families.

2 Some Preliminary Results.

In this Section we have summarized some formulas of the classical orthogonal monic poly-
nomials (P,(2) = 2" + ...) which we will use later on. These polynomials are orthogonal
with respect to a linear functional C on the linear space of polynomials with real coefficients

defined as (N = {0,1,2,...})

Z p(z)P(x), Hahn, Meixner, Kravchuk and Charlier
zeN
<C, P> = (1)

b
/ p(x)P(x)dz, Jacobi and Laguerre

where p(#) is a weight function satisfying a Pearson equation.

In the continuous case it has the form
Llo(@)p(@)] =
lo(x)p(a)) = 7(2)ple).
They satisfy a second order differential equation of hypergeometric type
o(x) Py () + 7(2) Py () + An Pa() = 0, (2)

where 7(z) is a polynomial of degree 1 and o(x) is a polynomial of degree at most 2, such
that o(x) vanishes at the ends of the interval of orthogonality. The polynomial solutions
of equation (2) are uniquely determined, up to a normalized factor (Ry), by the Rodrigues
formula (see [23] page 4 Eq.(1.2.8)):



R, d"

Pa) = o 7 ()] (3)

In the discrete case, the Pearson-type difference equation has the form

where
Vi) = flx) = fle—1), Af(x) = flx+1) = f(=).

The Pearson-type difference equation can be written in the equivalent form

plet 1) o(x)+ ()

pa) ot )

In this case instead of a differential equation, they satisfy a second order difference equation
of hypergeometric type

o(x) AT Py(x)+ 1(x) A Py(x) + Ay Po(z) =0, (4)

where 7(#) is also a polynomial of degree 1 and o(z) is a polynomial of degree at most 2,
such that o(x) vanishes at one of the ends of the convex hull of the support and o(z)+ ()
vanishes in the other. The polynomial solutions of equation (4) are uniquely determined,
up to a normalized factor (R, ), by the difference analog of the Rodrigues formula (see [23]
page 24 Eq.(2.2.7)):

Pu(z) = p?;) 7 o+ m) [ o+ 1) (5)

The orthogonality with respect to the linear funtional C means that

0 m#n
<C,PPyp> = . (6)

2 _
d: m=n

In both cases, they satisfy a three term recurrence relation of the form
l‘Pn(l‘) = anPn+1(x) + 6nPn(x) + 7nPn—1($)a n>0
P_1(x)=0 and Py(z)=1

and the Christoffel-Darboux formula

n—1
Z Pm(l‘)sz(y) _ 1 ana Pn(l‘)Pn—l(y)z_ Pn(y) Pr-1(x) n=1,23,... . (8
oy dm r—Y an dn—l

Here a,, i1s the leading coefficient of the polynomial, i.e.; the coefficient of the nth power of
z in the expansion (in our cases since P, is monic a, = 1)

Pn(x):anx"—i—bnxn_l—i—...:x"—l—bnxn_l—l—... (9)
We will consider the modification of the following classical monic orthogonal polynomials.

1. The discrete case.



1. The Meixner polynomials MY#(x), orthogonal with respect to the weight function
p(x) supported on [0, 00), where

oley=z, T(@)=yp—2x(l—p) ,0<pu<]l, y>0, A, =n(l—p),

and

1 “(1=p)r ) ™
(n—1) I(y)r( + ) (1—p)
2. The Kravchuk polynomials K2 (), orthogonal with respect to the weight function p(x)
supported on [0, N], with n < N

Np—
o(z)=x, 7(z)= 1p_pl’ ,0<p<l, An:lip’
and
Raz (o), ple)= Lo e o M)
' | N S (N —n)!

3. The Charlier polynomials C¥(), orthogonal with respect to the weight function p(x)
supported on [0, c0), where

oley=u, ,7(@)=p—x ,u>0, Ay=mn,

and .
n /’Lxe_ 2 n
n = (—1 = = dz = nlu™.
4. The Hahn polynomials h%?(z, N), orthogonal with respect to the weight function p(x)
supported on [0, N), where (o > —1, > —1)

o(z) =z(z+a—N), 7(z)=B+1)(N-1)—z(a+8+2) , A, =n(a+p+N+1),
and
(="
(a+B+n+1),’
(2) = T(N)T(a+ 8+ 2)T(a+ N —2)[(3+ 1+ )
A = Ta+ DIB+ Di(a+ 8+ N+ DI(N — o)[(1 + o)’

R, =

£ F(N)T(a+8+2)nT(a+n+ DI(B+n+ DI (a+f+N+n+1)(a+3+n+1);7?
" T(a+ )B4+ DI+ 8+ N+1)(a+B+2n+ 1)(N —n—T(a+F+n+1)

They satisfy the symmetry property

RN —1—x,N) = (—1)"h%"(z, N). (10)

n

2. The continuous case.



1. The Jacobi polynomials P2?(z), orthogonal with respect to the weight function p(z)
supported on [—1, 1], where

oe)=1-2° 7(@)=—(a+B+2)2+f—a , \y=nn+a+p+1),

_ (="
o = (n+a+8+1),’

Mo+ 5+2) N
plx) = 20 A+ T (o + DI(3 + 1)(1 —x)*(1 +$)ﬁ a>-1, 8>-1,
) 22°pIT(n+ o+ Dl(n+ g+ DI (a + 3+ 2)

d: = .
T T+ I+ DI(n+a+ B8+ 1)2n+a+ B+ 1)(n+a+5+1)2
They satisfy the symmetry property

Pl (—x) = (=1)" P (x). (11)

2. The Laguerre polynomials L% (#), orthogonal with respect to the weight function p(x)
supported on [0, c0), where

olx)y=u, T(r)=—-2z4+a+1 , A, =mn,
and

%% T'(n+ o+ 1)n!
W= (=1)" = -1 dy = =
B = (=" 2(2) = 55y *>=4 n T(at1)

In the above formulas we have scaled the weight functions p(z) such that they becomes
probability measures, i.e., total weight equal 1. This will be useful in order to obtain the

right limits between the corresponding generalized polynomials.

For all those monic polynomials we also know the values

MH0) = e KO = G Cho =

B (0.N) = 55 +(I)1()J$F_(itn1;1r(i)ﬂ;lﬁ)!+ 0y’

BP(N = 1LN) = F(Oz—I—l)f](\fa——i_nn——i_ll))!Eg—l—_Ozl)-:-ﬁ-l-1)n’ 12)
= Ry EE U

Lay~ ED Tt at 1)

Ia+1)

From the hypergeometric representation of Jacobi polynomials (see [23] - [25]) we can obtain
the following two expressions [24]

Pt ) (2n+a+B)(1 —2) dpgﬁ(x) .

7 2n+ a4+ P)
n- 2n(a+ n) dx

2(a+n)

PP () (13)



and

(2n+a+p)(z+1)dPr?
(B +n) dx

2n+ a4+ P)
284+mn) "

Pa+1’ﬁ(x) —

n—1

(x) =

B ().

(14)

For the kernels of the Charlier, Meixner, Kravchuk, Hahn, Jacobi and Laguerre polynomials

we have the following representation (see for instance [2]-[5] and [25])

1. Meixner case

Aer “(z,0)= 7 = y v M) H (=),
m=0 m
= Dmp”
Aer ~1(0,0) = Z -
m=0
2. Kravchuk case
n—1
RA@RL0) _ (=1
Ker x,0 Z = ol v K (x)
m=0
n—1 N'
- K
Ker,_4 Z_: mm' N =)l
3. Charlier case
n—1
Ch(x)Cr(0) _ (="'
Ker, _(z,0) = 7 TV CE(x)
m=0 m
n—1 /im
Ker,_1(0,0) = Z o)
m=0
4. Hahn case
n—1
hos ’ﬁ h“’ﬁ N
AerH’a’*@ (z,0)= (0, V) :nn(a,ﬁ)vhﬁ_l’ﬁ(l‘,m,
m=0 m

Kerf P (2 N — 1) = 5,(8, a)(=1)"F A RSP~ (2, N).

n—1

where kp (e, §) denotes the following quantity

(=) 'T(a+B+2n)(a+ Dl(a+ 3+ N +1)

ol ) = a4 ml(a+ g+ 0+ M) (e + 5+2)

”Z‘:lrm+6+1) (m+a+ﬁ+1)><

K H,oz,ﬁ

m=0

X(Qm—l—oz—l—ﬁ—l—l)(]\f—1)!F(0z—|—1)F(a—|—ﬁ+N+1)

Fla+m+ Dl (a+F+N+m+ DI(a+ 34 2)

(15)

(16)



_ 24
Z mFm—l—a—l—ﬁ—I—l)(?m—l—a—l—ﬁ—l—l)( - DM (a+ B+ N+1 (24)
— IN—m—-DIT(a+B8+N+m+ DI (a+3+2) ’
and, finally, from the symmetry of the Hahn polynomials (10) we obtain
Kerf®P(N —1,N —1) = Ker"5(0,0).
5. Laguerre case
n—1
- _ N n@Lg0) (=t oy
K er,Ll_l(x, 0) = Z d2 = n! (Ln)/(x)a (25)
m=0 m
n—1
R L P R C R
Kerkl_1(0,0) = mz_:o TR (26)
6. Jacobi case
n—1
PaB(z) PP (—1) g d
J,o, B8 _ — m m _ a—-1,8
Ker, "7 (x, 1)_mz_:0 el =no de (z), (27)
n—1
J, o, Pﬁé’ﬁ(l‘)Pﬁé’ﬁ(l) n a d a,B—
Ker;, f(a: 1)= Z e =(-1) +1775 T — P P 1(1‘), (28)
m=0 m
where n?, n%% denote the quantities
ool = (=1)""I02n 4+ a + B (a + 1)
n 22~ In!l(a +n)L(B+ Dl (a+ B+ 2)’
(29)
o = (=)' (2n+a+ B)T(B+ 1)

20n=1pI0(B + n)l(a + DI (e + 6+ 2)

n—1

Jo8( FG+m+Dl(a+B+m+1)2m+a+ 5+ D(a+1)
Kery2f(-1,-)= ), 2n=TmIT(8 + L)D(a +m + 1)D(a + B + 2) -

m=0

L(B+n+ Dl (a+B+n+ DI (a+1)
20=1n—=DIT B+ 2)T(a+n)T(a+3+2)

and

n—1
mF 1)(2 1
Aerj’a’ﬁ( L) = (a+f4+m+ )2m+a+tpf+ ):
221l (o + G+ 2)

m=0

(31)
(-D)" '+ B+n+1)
m=1(n — 1)!




and, finally, from the symmetry property of the Jacobi (11) polynomials we have

Kerp® P (1,1) = Kery P (=1, —1).

n— n—

Using the relations (13)-(14) we also obtain the following equivalent formulas for the
kernels (27) and (28)

dP>8
Ker?®P (2, —1) = 707 [(1 _ x)lei(x) +n pﬁv,ﬁ(x)] ’ (32)
xr
dP>8
Ker,{’fiﬁ(x, 1) = (_1)n+1ﬁg,a [(1 + x)”CT(m — nPﬁwi(l,)] ’ (33)

where 727, 9% denotes the quantities

a5 (=D"T@2n+a+ B+ Dl (a+1)
T T et n+ Dl(a+ B +2)
(34)
5o (=D"T@Cn+a+ B+ DB+ 1)
T T T TN (Ba+ DI(a + B+ 2)

3 The definition and the representation.

Firstly, we will consider the case when we add a point mass at x = 0. This case corresponds
to the Laguerre, Charlier, Meixner and Kravchuk polynomials. Later on, we will consider
the Jacobi and Hahn polynomials which involve two point masses at the ends of the interval
of orthogonality. The reason of such a choice of the point in which we will add our posi-
tive mass will be clear from formulas (39) and (41) from below, because in such formulas
appears the value of the kernel polynomials K, (#,y) and they have a very simple analyti-
cal expression in the case when y takes the values of the zeros of a(x) (for the continuous
case) or one of the zeros of o(x) and o(x) + 7(x) (for the discrete case). In fact this gives
us a simple expression for the kernels in terms of the same polynomials, its derivatives or
difference-derivatives (see (15)-(31)).

3.1 The Case of one point mass.

Consider the linear functional & on the linear space of polynomials with real coefficients

defined as

<U,P> =<C,P>+AP(00), , A>0 , (35)

where C is a classical moment functional (1) associated to some Meixner, Charlier and
Kravchuk polynomials of a discrete variable and Laguerre polynomials, respectively.

We will determine the monic polynomials P2 (x) which are orthogonal with respect to the
functional & and we will prove that they exist for all positive A (see (40) from below). To
obtain this, we can write the Fourier expansion of such generalized polynomials

n—1

Px) = Pa(a) + Y an i Pr(w), (36)



where P, denotes the classical monic orthogonal polynomial (CMOP) of degree n.

In order to find the unknown coefficients a,, ;, we will use the orthogonality of the polynomials
PA(z) with respect to U, i.e.,

<U,PA(x)Py(x) >=0 Yk < n.
Now putting (36) in (35) we find:

<U,PAx)Py(x) > = < C, PA(x)Pr(x) > + AP20)P(0). (37)

If we use the decomposition (36) and taking into account the orthogonality of the classical
orthogonal polynomials with respect to the linear functional C, then the coefficients a,,  are
given by

PA(0)P(0
an = —A %. (38)
k
Finally the equation (36) provides us the expression
n—1
Pp(0)P
Px) = Po(z) — APN0) Y % = P,(z) — AP}0)Ker,_1(x,0). (39)

k=0

From (39) we can conclude that the representation of P2(z) exists for any positive value of
the mass A. To obtain this it is enough to evaluate (39) in # = 0,

n—1
Pi(0))?
(1 4y %) PA(0) = Pa(0) # 0, (40)
k=0
and use the fact that
n—1
(Pr(0))?
HAZT > 0 n=1,2,3,..
k=0

From (40) we can deduce the values of P;;‘(O) as follows

P,(0)

1443 (o)

P (0) (41)

From (39) and taking into account formulas (15)-(25) as well as (41), we obtain the
following expressions for the generalized polynomials (for more details see [2],[3], [5] and

[13])
For Meixner polynomials
MY () = M () + By 7 M (2) = (I + By ) M) (2), (42)

)
p (L= )" ()n
nl(1+ AKer} (0,0))

B, =A4A

For Kravchuk polynomials



KPA(x) = KP(x) + A, 7 KE(2) = (I + A, ) KE(x), (43)

n

N! p*(1—p)t=n
nl(N —n)! (1 + AKerZX (0,0))°

A, = A
For Charlier polynomials
ChA(e) = Ci(2) + Dy v Ci(2) = (I + D7) Chi (2), (44)

n

n
nl(1+ AKerS (0,0))

D, =A
For Laguerre polynomials

LA ) = L3() 4 Date L) = (14 T o) L (), (45)

I — Ala 4+ 1), B Ala+ 1),

a1+ AKerE_(0,0)) (a42)n1 )’
( 10,00t (14 AL

3.2 The Case of two point masses.

Consider the linear functional & on the linear space of polynomials with real coefficients

defined as (A, B > 0)

<C,P>+AP(0)+ BP(N —1), Hahn case
<U,P> = . (46)
<C,P>+4+AP(1)+ BP(-1), Jacobi case
where C is a classical moment functional (1) associated with the classical Hahn and Jacobi

polynomials, respectively.

We will determine the monic polynomials P2 (z) which are orthogonal with respect to the
functional & and prove that they exist for all positive values of the masses A and B.

Let us write the Fourier expansion of such generalized polynomials in terms of the classical
monic orthogonal polynomials under consideration (Hahn or Jacobi).

n—1

PAB(x) = Pu(z)+ Y an i Pi(x). (47)

In order to obtain the unknown coefficients a,, ; we will use the orthogonality of the poly-
nomials P2B(z) with respect to U, i.e.,

<U, PAB(x) P(x) >=0 0<k<n.
Now putting (47) in (46) we find
0= <C,PYB(z)Pp(x) > +
APAB(0) P.(0) + BPAB(N — 1)P(N — 1), Hahn case (48)

_|_
APAMP(—1) Py(~1) + BPAP(1)P(1), Jacobi case

10



In order to obtain the coefficients a,, j of the Fourier expansion (47) we can use, as before, the
orthogonality of the classical orthogonal polynomials with respect to the linear functional C
and from equation (47) we obtain

—APAB(0) Kery_1(2,0) — BPAP(N — 1) Kerp,_1(z, N — 1), Hahn case (49)
—APAB(—1)Ker,_1(z,—1)— BPAB(1) Ker,_1(x, 1), Jacobi case

From the last expression and using the Eqs. (21)-(24) for the Hahn polynomials we find (for
more details see [4] )

RABB(z Ny = heP(z,N) — ARAPB(0, N)kn(a, ) 7 he~ 10 (2, N)—

(50)
BB (N — 1N g (B, ) (14 A 291 (2, N).

where k,(a, 3) is given in (22), kB8 (0, N) and hAB%P(N —1, N) are given by formulas

heP(0, N) BEerth %P0, N = 1)

h&F(N —1,N) 14 BKer%/(N —1,N - 1)

hA BP0, NY = , 51
.5) 1+ AKer%P(0,0) BEerth %P0, N = 1) (5D
AKer™ 2P0, N =1) 14 BKer 9P (N =1, N = 1)
and
1+ AKerf%f(0,0) hH:B(0, N
AKer2P (0, N = 1) hHE*B(N -1, N
hﬁ’B’a’ﬁ(N _ 1’ N) — Ve, ( ) n ( ) ’ (52)

1+ AKer%P(0,0) BEerth %P0, N = 1)

AKer %P (0N = 1) 14 BKerm 9 (N —1,N = 1)

n—1
respectively, or
hit PP (2, N) = b P (a0, N) 4 7457 0 by ™50 (e, N) =m0 A by~ Ha, N), - (53)

where TZ:%’ﬁ = — AR50, N)ky(a, B) and Tg:i’a = —BhBA5:2(0, N)k,(B,a). In the

case when B = 0 we obtaln Tgf’a =0 and

maf _ naf _ INT@B+n+DI(e+F8+n+ )T (a+1)
A 4,0 T(B+Dn!(N—n—DT(a+n)T(a+B+n+N)
54
y I(a+03+N+1) &9
[(e+ 8+ 2)(a+ 84 2n)(1 4+ AKer%7(0,0))

For Jacobi polynomials from Eq. (49) by using (27), (28), (29) we obtain (for more details
see [19])

11



d
p;;\,B,a,ﬁ(x) — pﬁv,ﬁ(x) — Apﬁ‘\,Bﬂﬁ(_l)ng,ﬁ_pg—lﬁ(x)_

dx
(55)
d
—BP;;"B’“’ﬁ(l)nﬁ’“(—l)”_ld—Pf’ﬁ_l(x),
x
where n2#, n2@ are given in (29) and PAB*F (1) and PAE*F(1, N) are given by
PXP(~1)  BRery®(~1,1)
P*P(1) 14 BKer?(1,1
Pf,B,a,ﬁ(_l) — S (ﬁ) \6rn_1 J( ﬁ) ’ (56)
1+ AKer; 7 (=1,-1)  BKer;%"(—1,1)
AKer?®P(=1,1) 14 BKer?%%(1,1)
and
1+ AKer?®P(=1,-1) P>F(=1)
AKer®%(~1,1 P&A(1
pABas(1) = Jaﬁ (=L1) ;aé ) , (57)
1+ AKer %7 (=1,-1)  BKer; 7 (—1,1)
AKer?®P(—1,1) 14 BKer?%%(1,1)
respectively, or
d d
PRSI (a) = PEP(a) 4 = PET () = PR @), (58)

B dx Ay

where XZ{%ﬁ = —APAB@B ()2 and Yy ’ﬁ @ = —BPBASa(_1)pbe,
Using the expressions (32), (33), (34) and (49) we obtain an equivalent representation,
similar to the representation obtained in [19] for the monic generalized polynomials

PABP () = (1= ndy " = nd ™) PP )+
(59)
n,a,f3 8,0 d a,f
HIAE (= D+ TR (U )] = PP (),

where J)'p" = —APABB (—1)j2h JB’ﬁ = —BPBAL(_1)7,(8,a) and 7% are de-
34

B
A
fined in (34).
Remark I From the last expressions for generalized Hahn and Jacobi polynomials we can
conclude their existence for all positive values of the masses. In fact, if we expand the de-
nominators in (51), (52), (56) and (57) and use the symmetry properties (10) and (11), as
well as the Cauchy-Schwarz inequality the desired result follows.

Remark IT From the representation formulas (53) and (58), as well as the symmetry prop-
erties (10) and (11) we can obtain the following symmetry properties for generalized poly-
nomials

hf,A,ﬁ,a(N —1— $) — (_1)nhﬁ,B,Oé,ﬁ(x)’ (60)
PHB’A’ﬁ’a(—l‘) = (—1)”Pf’B’a’ﬁ(l‘) (61)

12



The second order differential ecuation for generalized Jacobi and Laguerre poly-
nomials.

Before to obtain the limit relations between these generalized orthogonal polynomials, let
us to obtain explicitly the differential equation that the Koornwinder-Jacobi polynomials
PAB.«B(2) satisfy. In [19] Koornwinder proved that the generalized polynomials satisfy a
second order differential equation, but he did not write it explicitly. The existence of such a
differential equation is a straightforward consequence of the semiclassical character of such
polynomials [22]. We will present an algorithm to obtain the differential equation for the
both Laguerre and Jacobi generalized polynomials.

First of all, we will rewrite (45) and (59) in the unique form
Po(2) = CpPa() + 4p(2) - Pa(2), (62)

where P,(z) denotes the generalized Laguerre or Jacobi polynomials and P, (z) denotes the
corresponding classical polynomials, respectively. Here, C; = 1 and ¢;(#) = T, for the La-
guerre polynomials (45) and C; = (1 — nJZ’%’ﬁ —nJBA ) and ¢;(z) = (z — 1)(];4’5B +(1+

n,B,a
x)Jgf’;‘ for the Jacobi ones.

Taking derivatives in (62), multiplying by o(#) and using the second order differential equa-
tion that classical polynomials satisfy (2) o(2)PY () = —7(2) P/ (x) — A, Po(2) we obtain

()35

where ¢(z) = —gp(2)A, vy d(z) = 0(2)[Cp + ¢'] — 7(2)gp().

Now, taking second derivatives in (62), multiplying by o(2)? and using again (2), as well as
their derivatives we find the following

|=

Po(x) = () Pa(x) + d(2) £ Pa(x),

a

(63)

() 45 Po(x) = e(w) Pa() + f(2) £ Po(2),
e(x) = M {[r(@) + o' (2))gp(x) — [Cp + 24 )0 (x)} (64)

f(@) = gp(e){7(2)[r(z) + o' (2)] — o(2)[An + 7]} = [Cp + 2qp]o () 7 ().

Then the following determinant vanishes
(%)
o(x)Py(x) e(x) dx) | =0, (65)
!

where a(z) = C}, and b(z) = ¢p(z). Expanding the determinant in (65) by the first column
we obtain that the Laguerre and Jacobi polynomials satisfy the following equation:

() Pa) 70 () P () 4 A (0) P2,

where



To obtain the explicit form of the coefficients &, (%), , Tn(x) and :\n(x) we implement a little
program using the well-known program Mathematica [26]. Here will apply it to obtain the
Koornwinder-Jacobi’s differential equation.

In[1]:=

Remove['"Global ‘*"]

In[2]:=

plx_]:= CBA (x+1) + CAB (x-1)
dp=D[p[x],x];

const=1- n*CAB - n*CBA;
siglx_J:= 1-x"2;
delsiglx_]=D[siglx],x];
taulx_]:= (beta-alpha) - (alphatbeta+2)x
deltau=D[taulx],x];
ln=n(alpha+beta+n+1);

The functions a(z), ..., f(z), defined in (63)-(64) are denoted by a, ..., f, respectively.

In[10]:=
a= Expand[ const ];
=Expand[ plx] 1;
Expand[ -1n p[x] 1;
Expand[ (const + dp) siglx] - taulx] plx] 1;
e= Expand[ p[x]ln(delsig[x]+taulx])-

siglx] 1n (const+ 2 dp)];
f= Expand[ - (const + 2 dp) taulx] sig[x] +

plx] (taulx] ( taulx]+delsiglx])-siglx] (deltau+ln))];

In[16]:=
newsigma=sig[x] "2 Simplify[Expandla d - ¢ bl];
newtau=Expand[siglx] ( e b - a £)];
lambda=Expand[(c £ - e d) 1;
p=Simplify[{lambda , newtau , newsigma}/siglx]];

a o o
non

In[20]:=
Simplify[p/siglx]-{1n,taulx],siglx]1} //.{CAB->0,CBA->0}]
Out[20]=
{0, 0, 0}

Using the above algorithm and the Mathematica program we obtain

¢ Generalized Laguerre polynomials. [13]

Fn(z) == (—Fn—afn+Fn2n+x+an),

Tolz) = (—QFn—3oan—aZFn+2Fn2n+aFn2n—|—x+ax+
—|—2an+2afnx—Fn2nx—x2—anz),

An () :n(—QFn—aFn—Fnz—l—Fnzn—l—x—l—an).
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Taking the limit A — 0 we obtain

,alxlino An(2) =na =o(x)A,.

e Generalized Jacobi polynomials. [19]

Ga() = (1=22) (14357 —ad P+ BT + IR+ ad ™ = BT — 2005  nt
+2aJ""‘3 n—ZJ"ﬂ’ n—4J""ﬂJ"ﬂ’ n—ZQJ"C’ﬂJ"ﬂ’ n—ZﬁJ""ﬂJ"ﬂ’ n+
+2ﬁJ"‘3"’2n+2J""‘32n2+2J"‘3"’2 2—2J""ﬂx—20J""ﬂx+2J"ﬂ’ x+2on"ﬂ’ o
-2« Jnaﬂ nx—ZaJ"C’ﬂJnﬂ’ nx+2ﬁJnaﬂJnﬂ’ nx+2ﬁJnﬂ’ nx—2Jnaﬂ2n2x+
+2J"ﬂ’ nle—« +JZ)%ﬂx2+aJZ)%ﬂx2+ﬁJz)%ﬂx2+Jg)% x +an)i’ x +ﬁJg’)i’o‘
++2JZ)C];ﬂnx +2Jg’)i’anx2)

M) =n(tatfin) (1437057 —albf 4 pIms? _aa1naf? 3oy

tad S —pIpae +8J""ﬂJ"ﬂ’ +2aJ""ﬂJ"ﬂ’ +2,@J""ﬂJ"ﬂ’

n,B,a2 ncxﬂ n,o,B2 ncxﬂ n,B,a ncxﬂ n,B,a
ZﬁJB)A —ZJA)B n—ZJA)B n+20zJA)B n2—2JB)A n—28JA)B JB)A2
Ty TR = 2 T TR = 2T 2B I e § 2 T e

2 2

4285 0 4P e 2B P e 4 20 J NP e AT e L 20 % et

, , , , 5 , ; , 5
+2aJZZ%’ﬂJg’)i’ax—2@JZZ%’ﬂJg’)i’ax—2@Jg’)i’o‘ x+2JZ’)§;’ﬂ nx—ZonZ’)%’ﬂ nao—
—ZQJ"’a’ﬂJg’i’anx+2ﬁJ"’a’ﬂJ"’ﬂ’anx—ZJ"’ﬂ’a2nx+ZﬁJg’i’a2nx—2JZ’§;’ﬂ2n2x+
+2J"ﬂ’o‘2n2x z +J"D‘ﬂx2+aJ"C’ﬂx2+ﬁJ"C’ﬂx2+Jg’i’ax2+QJg’i’D‘x2+
+ﬁJ"ﬂ’ x +2J"D‘ﬂnx +2J"ﬂ’ nx2)

Fnlz) = —a+ﬁ+2J""ﬂ—aJ""ﬂ+a J""ﬂ+3ﬁJ""ﬂ 2aﬁJ""ﬂ+ﬁ Il o gnfe

—Ba e - 2J"ﬂ’ +,@J"ﬂ’ +2aﬁJ"ﬂ’ ,@2J"ﬂ’ foa J"D‘ﬂn—ZﬁJ""én+

o, B2

+20zJZ’)C];’ﬂ n—2a? JZ)C]’Bﬂ n+2aﬁJZ)§;ﬂ n+2an)i’ n—ZQJg)i’ n+6aJZ)%ﬂJg)i’an+
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+2ﬁJg’i’a2n2—Zx—ozx—ﬁx—6JZ§;ﬂx+3aJZ§;ﬂx+oz JZ%ﬂx—9@JZ’§;’ﬂx+2aﬁJZ’§;’ﬂx—
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+6« J"C’ﬂ2nx +20z J"C’ﬂ2nx +2aﬁJ"D‘ﬂ2nx —2on"ﬂ’ ne +2ﬁJ"ﬂ’ naol4
+6aJ"aﬂJ"ﬂ’ na? +20z J"D‘ﬂJ"ﬂ’ nxé—6ﬁJ"aﬂJ"ﬂ’ nw —2@2J"aﬂJ"ﬂ’ na’—
—6@J"ﬂ’o‘2nx —2aﬁJ"ﬂ’D‘2nx —2@2J"ﬂ’a2nx +6J"aﬂ2n2x +2onZ)C]’3ﬂ2n z24

+2@J"D‘ﬂ2 J"i’oﬂ 242~ J"ﬂ’a2n2x2—2ﬁJ"ﬂ’a2n2x +22° +az® + 8%
_2Jncxﬂ S_SQJnaﬂxS_aJnaﬂ S_Sﬁjncxﬂ 3_2aﬁjncxﬂ S—ﬁ Jnaﬂ3
—2J"‘j; —3aJ"‘3’ @3 J"ﬂ’ —BﬁJ"ﬂ’ —2a/3J"‘3’ ,@2J"ﬂ’ -

—4J"C’ﬂnx —ZOzJ"D‘ﬂnx —ZﬁJ"D‘ﬂnx —4J"ﬂ’ neo —2on"ﬂ’ nw —2@J"ﬂ’ nzd
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Taking the limit A, B — 0 we obtain

. ~ _ - 2
A}Jlgrgoan(x)_(l x) =o(x)”,

lim :\n(x):n (I+a+8+n) (1—1‘2) =o(2)An,

A Fa@) = (=2 (ot § =2 —ar=fa) = o(2)r(x).

4 Limit relations between modifications of orthogonal
polynomials.

In this Section we will study limit relations involving the modifications of the Jacobi and
Laguerre polynomials as well as the modifications of the classical polynomials of discrete
variables. In some way we will obtain an analogue of the Askey-scheme of hypergeometric
polynomials (for a review see [18]). Results are predictible but we have found nothing of this
kind in the literature. Anyway, we want to remark that the main difference with respect to
the classical case is the fact, as we will show below, that the point masses change.

4.1 Limit Meixner — Laguerre.

The limit relation between the classical Meixner and Laguerre polynomials is well known
li hnMoz-|—1,1—h (f) . )
Jim " M+ (D) = 1) (67
In order to obtain the analogues of this relation for generalized polynomials we notice that

(see (16) and (26))

n—1 a+1,1—h
) [MEH=R (0
\67“n_1( ’ ) ZO d%

2 T (a4 1)p(1 = )
)]:kZ_O(Jr)k(! )"

B
I

Then KerM [(0,0) = KerL_,(0,0) + O(h). Now from the representation formulas (42) we
find

Me+hi=hA () = ppoatii=h (f) A (a4 Dn(1=h)" y

h n!(14+ AKert_,(0,0))
Matll-h,A ( ) — Motll-hA (ﬂ)
n n h
A .
Multiplying this expression by the factor A", taking the limit when A — 0 and using (67) we
notice that the right side of the last expression becomes into the right side of (45). Then,
the following relation holds

z
> h

: nara+l,1—h A £ _ ro,A
lim A" M; (h) = LoA(z). (68)

4.2 Limit Meixner — Charlier.

We start again from the classical limit relation for monic Meixner and Charlier polynomials

lim MQ" (2) = CH(). (69)

¥ — 00
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For the kernels of Meixner polynomials we have (see (16) and (20))

n—-1
lim Kerd ,(0,0)=Y" % = Ker€_(0,0).
k=0 ’

¥ — 00

Now from formula (42) we find that

n

: 1
lim B, = A ,
Y00 nl(1+ AKerC_,(0,0))
which agrees with D, in the representation formula for Charlier polynomials (44). Now,

like in the previous case, we take the limit ¥ — oco. Hence, using (69) the following relation

holds i
lim M, " (z) = C/(z). (70)

¥ — 00

4.3 Limit Kravchuk — Charlier.

In this case the limit relation takes the form

Jim KF (z) = CH(x). (71)
N1 N?*(N —n)!
First of all, since e N™ then lim M = 1. Using these two relations we

find that lim KerX (0,0) = KerS_(0,0), and also from (43) we have
N—oo

n
n!(14+ AKerS 1(0,0))

lim A, = A
N—oo
Then from (44) we conclude that

lim K3 (2) = CPA(z). (72)

N—oo

4.4 Limit Hahn — Meixner.

From the hypergeometric representation of the Hahn and Meixner polynomials

a (_1)H(N_ 1)'F(6+n+ 1) -z, n+l,—n,
W N) = e SE 2 (TR

/’Ln F (—n —z, 1 )
241 4 ’ I—— )
(p—1) ! Il
it 1s easy to check that the following limit relation holds

(1—p) _
7T @, Ny = M) (). (73)

By using the well-known asymptotic formulafor the T' function (see for instance [1], Eq.(6.1.39)

in page 257). )
L(aN +b) ~ V2re™ N (aN)*N+0=2

17



and doing some straightforward, but tedious, calculation we obtain for the kernels K erH’a’ﬁ (0,0)
of the Hahn polynomials the following expression in terms of the kernels of the Meixner ones

. H, (—u) Nqy—1
lim Ker, | * K (0,0) = KerM (0,0).
— 00
From (54) we also notice that the constant 7 menf = TZ’g’ﬁ of the representation formula

(53) (here we are interested in the case when B =0)is equal to

n,oz,ﬁ: A n(l_ )_1(7)71

lim 7,

N—oo nl(1+ AKerM (0,0))

From the last two expressions and taking into account Eqgs. (73) and (42) we conclude that
the following limit transition between Hahn and Meixner generalized polynomials holds

=N
. y—1,A
lm h, *
N—oo

(2, N) = M4 (x). (74)

4.5 Limit Hahn — Kravchuk.

In a similar way, in this case we start from the classical relation

lim R(I=PItPt (2 N) = KE(z, N —1). (75)
Notice that in this relation the Hahn polynomials are defined for n < N, as well as the
Kravchuk polynomials are defined for n < N —1, i.e., the interval of orthogonality is reduced
in one unit. Besides, for the kernels we have the expression

lim K erH(l p)t’pt(O 0)=K er _1(0,0),

t—o0

and for the constant of the representation formula (53)

lim TZy(l—P)fypf — A pn(l _p)l_n(N - 1)!

— o0 U alN —n = D14+ AKerX_(0,0))

Finally, using the last two expressions from (53) and (43) we obtain the limit relation

lim ALl=PBPEA (3 Ny = KPA (g, N — 1). (76)

t—o0

4.6 Limit Hahn — Jacobi.

In this section we will analyze the limit relation involving Hahn and Jacobi polynomials. As
before we start from the classical relation

2" pap _ paB(o, _
J\;I_I};o T h (N =1z, N)=P "2z —1). (77)
In order to obtain the limit relation we will use the Eq. (49) for Hahn and Jacobi polynomials.

First of all, notice that

lim Aer ' ’ﬁ(O 0)= Aerj’a’ﬁ( 1,-1),

N—oo

lim Kerf™7(N = 1,N = 1) = Ker2{(1,1),

N—oo
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Figure 1: Limit relations involving the generalized polynomials.

and
. - H o o Jay
J\;I_I};o Aern_lﬁ(O,N -1)= Aern_lﬁ(—l, 1).

If we use now Eqs. (51), (52),(56) and (57), we conclude that

277,
Jim R BB (0,N) = PP (1),

and o
lim —hdBf (N -1, N)= PABF (1),
Jim ok ( N) = Py (1)

The following limit relation between the norms of the Hahn (dZ)? and Jacobi (d:)? poly-

nomials 1s also valid "

: 2 H\2 _ (7J\2
Putting all these formulas in Eq. (49), taking the limit N — oo and using the classical
relation (77) we finally obtain the limit relation between the generalized polynomials, i.e.,
Jim Whﬁﬂaﬁ (N —1)a, N) = PAB>B (2 — 1). (78)
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4.7 Limit Jacobi — Laguerre.

Finally, we stablish the limit relation between Jacobi and Laguerre polynomials. Like in the
previous cases we start from the classical relation

@hl?o (_Z#Pfﬁ (1 - %x) = L%(z). (79)

From the last relation we notice that it is reasonable that the connection should be between
the Jacobi polynomials with a mass point at + = 1 (i.e., A=0, B=A) and the generalized
Laguerre polynomials. In fact putting # = 0 we obtain

ﬁlim #Pgﬁ (1) = L(0).

Some straightforward calculations provide the relations

lim Kerl®P(1,1) = Kerk_,(0,0),

f—oo
and for the norms of the Jacobi (d7)? and Laguerre (d%)? polynomials
oo (dn)? = (d)*.

Then, from (39), (49) and (79) we obtain

. (=) 0,Aa,f 22\ _ a,A
ﬁlgr;o o P’ 1 5 = Lo (x). (80)
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