
LIMIT RELATIONS BETWEEN GENERALIZED ORTHOGONALPOLYNOMIALS .1R. �Alvarez-Nodarse2 and F. Marcell�an3Departamento de Matem�aticas. Escuela Polit�ecnica Superior.Universidad Carlos III de Madrid. Butarque 15, 28911,Legan�es,Madrid.Key words and phrases: Classical Orthogonal polynomials, Limit relations.AMS (MOS) subject classi�cation: 33A65AbstractWe consider the di�erent limit transition for modi�cations of the classical polyno-mials via the addition of one or two point masses at the ends of the interval of orthog-onality. The connections between Jacobi, Laguerre, Charlier, Meixner, Kravchuk andHahn generalized polynomials are established.1 Introduction.Polynomials orthogonal with respect to measures which are more general than weight func-tions appear as eigenfunctions of a fourth order linear di�erential operator with polynomialcoe�cients. This spectral approach leads to Laguerre-type, Legendre-type and Jacobi-typepolynomials introduced by H.L.Krall [20].A general analysis when a modi�cation of a linear functional in the linear space of poly-nomials with real coe�cients via the addition of one delta Dirac measure was started byChihara [9] in the positive de�nite case and Marcell�an and Maroni [22] for quasi-de�nitelinear functionals. For two point masses there exist very few examples in the literature. (see[19], [11], [17] and [21])A special emphasis was given to the modi�cations of classical linear functionals (Hermite,Laguerre, Jacobi and Bessel) in the framework of the so-called semiclassical orthogonal poly-nomials.For discrete orthogonal polynomials, Bavinck and van Haeringen [7] obtained an in�niteorder di�erence equation for generalized Meixner polynomials, i.e., polynomials orthogonalwith respect to the modi�cation of the Meixner weight with a point mass at x = 0. Thesame was found for generalized Charlier polynomials by Bavinck and Koekoek [8].In a series of papers [2]-[4] we obtained the representation as hypergeometric functions forgeneralized Meixner, Charlier, Kravchuk and Hahn polynomials as well as the correspondingsecond order di�erence equation that such polynomials satisfy. Notice that the coe�cientsof those di�erence equations are polynomials of �xed degree and they depend on n as a1October 29, 19962E-mail: renato@dulcinea.uc3m.es3E-mail: pacomarc@elrond.uc3m.es 1



parameter.The aim of the present contribution is to obtain an analogue of the Askey tableau for such akind of generalized polynomials with the description of the continuous generalized orthogonalpolynomials as limit case of the discrete generalized orthogonal polynomials. Furthermore,we deduce the explicit second order linear di�erential equations for two examples whichattracted the interest of the researchers: the Laguerre [13] and the Jacobi [19] case.In Section 2 we present a summary of the more useful properties of classical polynomialsboth in the discrete and continuous case.Section 3 is devoted to an explicit representation of generalized polynomials in terms of theclassical ones when we add one point mass at zero (Laguerre, Meixner, Charlier, Kravchuk)or two mass points at the ends of the convex hull of the support of the measure (Jacobi andHahn). Further, we obtain the explicit expression for second order di�erential equations(SODE) in the cases of Laguerre and Jacobi. Notice that this SODE was found in [13]for Laguerre case while for the Jacobi case [19] the coe�cients were not deduced explicitly.Moreover, an in�nite order equation for the Laguerre case was found in [13] as well as forthe Gegenbauer case in [16].In Section 4 the continuous case is obtained as a limit of the discrete one, as well as thedi�erent transitions between the discrete families.2 Some Preliminary Results.In this Section we have summarized some formulas of the classical orthogonal monic poly-nomials (Pn(x) = xn + : : :) which we will use later on. These polynomials are orthogonalwith respect to a linear functional C on the linear space of polynomials with real coe�cientsde�ned as (IN = f0; 1; 2; :::g)< C; P > = 8>>>><>>>>: Xx2IN �(x)P (x); Hahn, Meixner, Kravchuk and CharlierZ ba �(x)P (x) dx; Jacobi and Laguerre (1)where �(x) is a weight function satisfying a Pearson equation.In the continuous case it has the formddx [�(x)�(x)] = � (x)�(x):They satisfy a second order di�erential equation of hypergeometric type�(x)P 00n (x) + � (x)P 0n(x) + �nPn(x) = 0; (2)where � (x) is a polynomial of degree 1 and �(x) is a polynomial of degree at most 2, suchthat �(x) vanishes at the ends of the interval of orthogonality. The polynomial solutionsof equation (2) are uniquely determined, up to a normalized factor (Rn), by the Rodriguesformula (see [23] page 4 Eq.(1.2.8)): 2



Pn(x) = Rn�(x) dnd xn [�n(x)�(x)] : (3)In the discrete case, the Pearson-type di�erence equation has the form4[�(x)�(x)] = � (x)�(x);where 5f(x) = f(x) � f(x� 1); 4f(x) = f(x+ 1)� f(x):The Pearson-type di�erence equation can be written in the equivalent form�(x+ 1)�(x) = �(x) + � (x)�(x+ 1) :In this case instead of a di�erential equation, they satisfy a second order di�erence equationof hypergeometric type�(x)45Pn(x) + � (x)4 Pn(x) + �nPn(x) = 0; (4)where � (x) is also a polynomial of degree 1 and �(x) is a polynomial of degree at most 2,such that �(x) vanishes at one of the ends of the convex hull of the support and �(x)+ � (x)vanishes in the other. The polynomial solutions of equation (4) are uniquely determined,up to a normalized factor (Rn), by the di�erence analog of the Rodrigues formula (see [23]page 24 Eq.(2.2.7)): Pn(x) = Rn�(x) 5n "�(x+ n) nYk=1�(x+ k)# : (5)The orthogonality with respect to the linear funtional C means that< C; PnPm > = 8<: 0 m 6= nd2n m = n : (6)In both cases, they satisfy a three term recurrence relation of the formxPn(x) = �nPn+1(x) + �nPn(x) + 
nPn�1(x); n � 0P�1(x) = 0 and P0(x) = 1 (7)and the Christo�el-Darboux formulan�1Xm=0 Pm(x)Pm(y)d2m = 1x� y an�1an Pn(x)Pn�1(y) � Pn(y)Pn�1(x)d2n�1 n = 1; 2; 3; ::: : (8)Here an is the leading coe�cient of the polynomial, i.e., the coe�cient of the nth power ofx in the expansion (in our cases since Pn is monic an = 1)Pn(x) = anxn + bnxn�1 + : : : = xn + bnxn�1 + : : : (9)We will consider the modi�cation of the following classical monic orthogonal polynomials.1. The discrete case. 3



1. The Meixner polynomials M
;�n (x), orthogonal with respect to the weight function�(x) supported on [0;1), where�(x) = x; � (x) = 
� � x(1� �) ; 0 < � < 1; 
 > 0; �n = n(1� �);and Rn = 1(� � 1)n ; �(x) = �x(1� �)
�(
 + x)�(
)�(1 + x) ; d2n = n!(
)n�n(1 � �)2n :2. The Kravchuk polynomialsKpn(x), orthogonal with respect to the weight function �(x)supported on [0; N ], with n � N�(x) = x; � (x) = Np� x1� p ; 0 < p < 1; �n = n1� p ;and Rn = (p � 1)n; �(x) = pxN !(1� p)N�x�(N + 1� x)�(1 + x) ; d2n = n!N !pn(1� p)n(N � n)! :3. The Charlier polynomials C�n(x), orthogonal with respect to the weight function �(x)supported on [0;1), where�(x) = x; ; � (x) = �� x ; � > 0; �n = n;and Rn = (�1)n; �(x) = �xe���(1 + x) ; d2n = n!�n:4. The Hahn polynomials h�;�n (x;N ), orthogonal with respect to the weight function �(x)supported on [0; N ), where (� > �1; � > �1)�(x) = x(x+��N ); � (x) = (�+1)(N �1)�x(�+�+2) ; �n = n(�+�+N +1);and Rn = (�1)n(�+ � + n+ 1)n ;�(x) = �(N )�(�+ � + 2)�(�+ N � x)�(� + 1+ x)�(�+ 1)�(� + 1)�(�+ � + N + 1)�(N � x)�(1 + x) ;d2n = �(N )�(� + � + 2)n!�(�+ n+ 1)�(� + n + 1)�(�+ � + N + n + 1)(�+ � + n+ 1)�2n�(�+ 1)�(� + 1)�(�+ � + N + 1)(�+ � + 2n+ 1)(N � n� 1)!�(�+ � + n+ 1) :They satisfy the symmetry propertyh�;�n (N � 1� x;N ) = (�1)nh�;�n (x;N ): (10)2. The continuous case. 4



1. The Jacobi polynomials P�;�n (x), orthogonal with respect to the weight function �(x)supported on [�1; 1], where�(x) = 1� x2; � (x) = �(� + � + 2)x+ � � � ; �n = n(n+ �+ � + 1);Rn = (�1)n(n+ �+ � + 1)n ;�(x) = �(�+ � + 2)2�+�+1�(�+ 1)�(� + 1)(1 � x)�(1 + x)� � > �1; � > �1;d2n = 22nn!�(n+ �+ 1)�(n+ � + 1)�(�+ � + 2)�(�+ 1)�(� + 1)�(n + �+ � + 1)(2n+ �+ � + 1)(n+ �+ � + 1)2n :They satisfy the symmetry propertyP �;�n (�x) = (�1)nP�;�n (x): (11)2. The Laguerre polynomials L�n(x), orthogonal with respect to the weight function �(x)supported on [0;1), where�(x) = x; � (x) = �x+ �+ 1 ; �n = n;and Rn = (�1)n; �(x) = x�e�x�(�+ 1) � > �1; d2n = �(n+ �+ 1)n!�(�+ 1) :In the above formulas we have scaled the weight functions �(x) such that they becomesprobability measures, i.e., total weight equal 1. This will be useful in order to obtain theright limits between the corresponding generalized polynomials.For all those monic polynomials we also know the valuesM
;�n (0) = �n(� � 1)n �(n+ 
)�(
) ; Kpn(0) = (�p)nN !(N � n)! ; C�n(0) = (��)n;h�;�n (0; N ) = (�1)n�(� + n + 1)(N � 1)!�(� + 1)(N � n� 1)!(n+ �+ � + 1)n ;h�;�n (N � 1; N ) = �(�+ n+ 1)(N � 1)!�(�+ 1)(N � n� 1)!(n+ �+ � + 1)n ;P�;�n (1) = 2n(�+ 1)n(n+ �+ � + 1)n ; P�;�n (�1) = 2n(�1)n(� + 1)n(n + �+ � + 1)n ;L�n(0) = (�1)n�(n+ �+ 1)�(�+ 1) : (12)From the hypergeometric representation of Jacobi polynomials (see [23] - [25]) we can obtainthe following two expressions [24]P�;�+1n�1 (x) = (2n+ �+ �)(1 � x)2n(�+ n) dP�;�ndx (x) + (2n+ �+ �)2(�+ n) P�;�n (x) (13)5



and P�+1;�n�1 (x) = (2n+ �+ �)(x+ 1)2n(� + n) dP�;�ndx (x)� (2n+ �+ �)2(� + n) P�;�n (x): (14)For the kernels of the Charlier, Meixner, Kravchuk, Hahn, Jacobi and Laguerre polynomialswe have the following representation (see for instance [2]-[5] and [25])1. Meixner caseKerMn�1(x; 0) � n�1Xm=0 M
;�m (x)M
;�m (0)d2m = (�1)n�1(1� �)n�1n! 5M
;�n (x); (15)KerMn�1(0; 0) = n�1Xm=0 (
)m�mm! : (16)2. Kravchuk caseKerKn�1(x; 0) � n�1Xm=0 Kpm(x)Kpm(0)d2m = (p � 1)1�nn! 5Kpn(x); (17)KerKn�1(0; 0) = n�1Xm=0 pmN !(1� p)mm!(N �m)! : (18)3. Charlier case KerCn�1(x; 0) � n�1Xm=0 C�m(x)C�m(0)d2m = (�1)n�1n! 5 C�n(x); (19)KerCn�1(0; 0) = n�1Xm=0 �mm! : (20)4. Hahn caseKerH;�;�n�1 (x; 0) � n�1Xm=0 h�;�m (x;N )h�;�m (0; N )d2m = �n(�; �)5 h��1;�n (x;N );KerH;�;�n�1 (x;N � 1) = �n(�; �)(�1)n+14 h�;��1n (x;N ): (21)where �n(�; �) denotes the following quantity�n(�; �) = (�1)n�1�(� + � + 2n)�(�+ 1)�(�+ � + N + 1)n!�(�+ n)�(�+ � + n+ N )�(�+ � + 2) ; (22)KerH;�;�n�1 (0; 0) = n�1Xm=0 �(m + � + 1)�(m+ �+ � + 1)m!�(� + 1)(N �m� 1)! �� (2m + �+ � + 1)(N � 1)!�(�+ 1)�(�+ � +N + 1)�(�+m + 1)�(�+ � + N +m+ 1)�(�+ � + 2) ; (23)6



KerH;�;�n�1 (0; N � 1) == n�1Xm=0 (�1)m�(m + �+ � + 1)(2m + �+ � + 1)(N � 1)!�(�+ � + N + 1m!(N �m � 1)!�(�+ � + N +m + 1)�(�+ � + 2) ; (24)and, �nally, from the symmetry of the Hahn polynomials (10) we obtainKerH;�;�n�1 (N � 1; N � 1) = KerH;�;�n�1 (0; 0):5. Laguerre case KerLn�1(x; 0) � n�1Xm=0 L�m(x)L�m(0)d2m = (�1)n�1n! (L�n)0(x); (25)KerLn�1(0; 0) = n�1Xm=0 (�+ 1)mm! = (�+ 2)n�1(n � 1)! : (26)6. Jacobi caseKerJ;�;�n�1 (x;�1) � n�1Xm=0 P�;�m (x)P�;�m (�1)d2m = ��;�n ddxP��1;�n (x); (27)KerJ;�;�n�1 (x; 1) � n�1Xm=0 P�;�m (x)P�;�m (1)d2m = (�1)n+1��;�n ddxP�;��1n (x); (28)where ��;�n ; ��;�n denote the quantities��;�n = (�1)n�1�(2n+ �+ �)�(� + 1)2n�1n!�(�+ n)�(� + 1)�(�+ � + 2) ;��;�n = (�1)n�1�(2n+ �+ �)�(� + 1)2n�1n!�(� + n)�(�+ 1)�(�+ � + 2) : (29)KerJ;�;�n�1 (�1;�1) = n�1Xm=0 �(� +m + 1)�(�+ � +m + 1)(2m + �+ � + 1)�(�+ 1)2n�1m!�(� + 1)�(�+m + 1)�(�+ � + 2) == �(� + n+ 1)�(�+ � + n + 1)�(�+ 1)2n�1(n� 1)!�(� + 2)�(�+ n)�(�+ � + 2) ; (30)and KerJ;�;�n�1 (�1; 1) = n�1Xm=0 (�1)m�(�+ � +m+ 1)(2m+ �+ � + 1)2n�1m!�(�+ � + 2) == (�1)n�1�(�+ � + n+ 1)2n�1(n� 1)! : (31)7



and, �nally, from the symmetry property of the Jacobi (11) polynomials we haveKerJ;�;�n�1 (1; 1) = KerJ;�;�n�1 (�1;�1):Using the relations (13)-(14) we also obtain the following equivalent formulas for thekernels (27) and (28)KerJ;�;�n�1 (x;�1) = ~��;�n �(1� x)dP�;�n (x)dx + nP�;�n (x)� ; (32)KerJ;�;�n�1 (x; 1) = (�1)n+1~��;�n �(1 + x)dP�;�n (x)dx � nP�;�n (x)� ; (33)where ~��;�n ; ~��;�n denotes the quantities~��;�n = � (�1)n�(2n+ �+ � + 1)�(�+ 1)2nn!�(�+ n+ 1)�(�+ � + 2) ;~��;�n = � (�1)n�(2n+ �+ � + 1)�(� + 1)2nn!�(� + n+ 1)�(�+ � + 2) : (34)3 The de�nition and the representation.Firstly, we will consider the case when we add a point mass at x = 0. This case correspondsto the Laguerre, Charlier, Meixner and Kravchuk polynomials. Later on, we will considerthe Jacobi and Hahn polynomials which involve two point masses at the ends of the intervalof orthogonality. The reason of such a choice of the point in which we will add our posi-tive mass will be clear from formulas (39) and (41) from below, because in such formulasappears the value of the kernel polynomials Kn(x; y) and they have a very simple analyti-cal expression in the case when y takes the values of the zeros of �(x) (for the continuouscase) or one of the zeros of �(x) and �(x) + � (x) (for the discrete case). In fact this givesus a simple expression for the kernels in terms of the same polynomials, its derivatives ordi�erence-derivatives (see (15)-(31)).3.1 The Case of one point mass.Consider the linear functional U on the linear space of polynomials with real coe�cientsde�ned as < U ; P > =< C; P > +AP (0); ; A � 0 ; (35)where C is a classical moment functional (1) associated to some Meixner, Charlier andKravchuk polynomials of a discrete variable and Laguerre polynomials, respectively.We will determine the monic polynomials PAn (x) which are orthogonal with respect to thefunctional U and we will prove that they exist for all positive A (see (40) from below). Toobtain this, we can write the Fourier expansion of such generalized polynomialsPAn (x) = Pn(x) + n�1Xk=0 an;kPk(x); (36)8



where Pn denotes the classical monic orthogonal polynomial (CMOP) of degree n.In order to �nd the unknown coe�cients an;k we will use the orthogonality of the polynomialsPAn (x) with respect to U , i.e.,< U ; PAn (x)Pk(x) >= 0 8k < n:Now putting (36) in (35) we �nd:< U ; PAn (x)Pk(x) > = < C; PAn (x)Pk(x) > + APAn (0)Pk(0): (37)If we use the decomposition (36) and taking into account the orthogonality of the classicalorthogonal polynomials with respect to the linear functional C, then the coe�cients an;k aregiven by an;k = �A PAn (0)Pk(0)d2k : (38)Finally the equation (36) provides us the expressionPAn (x) = Pn(x) �APAn (0) n�1Xk=0 Pk(0)Pk(x)d2k = Pn(x) �APAn (0)Kern�1(x; 0): (39)From (39) we can conclude that the representation of PAn (x) exists for any positive value ofthe mass A. To obtain this it is enough to evaluate (39) in x = 0, 1 + A n�1Xk=0 (Pk(0))2d2k !PAn (0) = Pn(0) 6= 0; (40)and use the fact that 1 +A n�1Xk=0 (Pk(0))2d2k > 0 n = 1; 2; 3; :::From (40) we can deduce the values of PAn (0) as followsPAn (0) = Pn(0)1 +A n�1Xk=0 (Pk(0))2d2k : (41)From (39) and taking into account formulas (15)-(25) as well as (41), we obtain thefollowing expressions for the generalized polynomials (for more details see [2],[3], [5] and[13])For Meixner polynomialsM
;�;An (x) = M
;�n (x) +Bn5M
;�n (x) = (I +Bn5)M
;�n (x); (42)Bn = A �n(1� �)�1(
)nn!(1 + AKerMn�1(0; 0)) :For Kravchuk polynomials 9



Kp;An (x) = Kpn(x) +An5Kpn(x) = (I + An5)Kpn(x); (43)An = A N !n!(N � n)! pn(1� p)1�n(1 +AKerKn�1(0; 0)) :For Charlier polynomialsC�;An (x) = C�n(x) +Dn5C�n(x) = (I +Dn5)C�n(x); (44)Dn = A �nn!(1 +AKerCn�1(0; 0)) :For Laguerre polynomialsL�;An (x) = L�n(x) + �n ddxL�n(x) = (I + �n ddx )L�n(x); (45)�n = A(� + 1)nn!(1 +AKerLn�1(0; 0)) = A(�+ 1)nn!�1 + A (�+2)n�1(n�1)! � :3.2 The Case of two point masses.Consider the linear functional U on the linear space of polynomials with real coe�cientsde�ned as (A;B � 0)< U ; P > = 8<: < C; P > +AP (0) +BP (N � 1); Hahn case< C; P > +AP (1) +BP (�1); Jacobi case : (46)where C is a classical moment functional (1) associated with the classical Hahn and Jacobipolynomials, respectively.We will determine the monic polynomials PA;Bn (x) which are orthogonal with respect to thefunctional U and prove that they exist for all positive values of the masses A and B.Let us write the Fourier expansion of such generalized polynomials in terms of the classicalmonic orthogonal polynomials under consideration (Hahn or Jacobi).PA;Bn (x) = Pn(x) + n�1Xk=0 an;kPk(x): (47)In order to obtain the unknown coe�cients an;k we will use the orthogonality of the poly-nomials PA;Bn (x) with respect to U , i.e.,< U ; PA;Bn (x)Pk(x) >= 0 0 � k < n:Now putting (47) in (46) we �nd0 = < C; PA;Bn (x)Pk(x) > ++8<: APA;Bn (0)Pk(0) +BPA;Bn (N � 1)Pk(N � 1); Hahn caseAPA;Bn (�1)Pk(�1) +BPA;Bn (1)Pk(1); Jacobi case : (48)10



In order to obtain the coe�cients an;k of the Fourier expansion (47) we can use, as before, theorthogonality of the classical orthogonal polynomials with respect to the linear functional Cand from equation (47) we obtainPA;Bn (x) = Pn(x)++8<: �APA;Bn (0)Kern�1(x; 0)�BPA;Bn (N � 1)Kern�1(x;N � 1); Hahn case�APA;Bn (�1)Kern�1(x;�1)� BPA;Bn (1)Kern�1(x; 1); Jacobi case : (49)From the last expression and using the Eqs. (21)-(24) for the Hahn polynomials we �nd (formore details see [4] )hA;B;�;�n (x;N ) = h�;�n (x;N )�AhA;B;�;�n (0; N )�n(�; �)5 h��1;�n (x;N )��BhA;B;�;�n (N � 1; N )�n(�; �)(�1)n+14 h�;��1n (x;N ): (50)where �n(�; �) is given in (22), hA;B;�;�n (0; N ) and hA;B;�;�n (N �1; N ) are given by formulashA;B;�;�n (0; N ) = ������ h�;�n (0; N ) BKerH;�;�n�1 (0; N � 1)h�;�n (N � 1; N ) 1 +BKerH;�;�n�1 (N � 1; N � 1) ������������ 1 + AKerH;�;�n�1 (0; 0) BKerH;�;�n�1 (0; N � 1)AKerH;�;�n�1 (0; N � 1) 1 + BKerH;�;�n�1 (N � 1; N � 1) ������ ; (51)andhA;B;�;�n (N � 1; N ) = ������ 1 + AKerH;�;�n�1 (0; 0) hH;�;�n (0; N )AKerH;�;�n�1 (0; N � 1) hH;�;�n (N � 1; N ) ������������ 1 + AKerH;�;�n�1 (0; 0) BKerH;�;�n�1 (0; N � 1)AKerH;�;�n�1 (0; N � 1) 1 +BKerH;�;�n�1 (N � 1; N � 1) ������ ; (52)respectively, orhA;B;�;�n (x;N ) = h�;�n (x;N ) + �n;�;�A;B 5 h��1;�n (x;N )� �n;�;�B;A 4 h�;��1n (x;N ); (53)where �n;�;�A;B = �AhA;B;�;�n (0; N )�n(�; �) and �n;�;�B;A = �BhB;A;�;�n (0; N )�n(�; �). In thecase when B = 0 we obtain �n;�;�0;A � 0 and�n;�;�A � �n;�;�A;0 = A �(N )�(� + n+ 1)�(�+ � + n+ 1)�(�+ 1)�(� + 1)n!(N � n� 1)!�(�+ n)�(�+ � + n+N )�� �(� + � +N + 1)�(�+ � + 2)(�+ � + 2n)(1 +AKerH;�;�n�1 (0; 0)) : (54)For Jacobi polynomials from Eq. (49) by using (27), (28), (29) we obtain (for more detailssee [19]) 11



PA;B;�;�n (x) = P�;�n (x) �APA;B;�;�n (�1)��;�n ddxP��1;�n (x)��BPA;B;�;�n (1)��;�n (�1)n�1 ddxP�;��1n (x); (55)where ��;�n ; ��;�n are given in (29) and PA;B;�;�n (�1) and PA;B;�;�n (1; N ) are given byPA;B;�;�n (�1) = ������ P�;�n (�1) BKerJ;�;�n�1 (�1; 1)P�;�n (1) 1 + BKerJ;�;�n�1 (1; 1) ������������ 1 +AKerJ;�;�n�1 (�1;�1) BKerJ;�;�n�1 (�1; 1)AKerJ;�;�n�1 (�1; 1) 1 +BKerJ;�;�n�1 (1; 1) ������ ; (56)and PA;B;�;�n (1) = ������ 1 + AKerJ;�;�n�1 (�1;�1) P�;�n (�1)AKerJ;�;�n�1 (�1; 1) P�;�n (1) ������������ 1 +AKerJ;�;�n�1 (�1;�1) BKerJ;�;�n�1 (�1; 1)AKerJ;�;�n�1 (�1; 1) 1 + BKerJ;�;�n�1 (1; 1) ������ ; (57)respectively, orPA;B;�;�n (x) = P�;�n (x) + �n;�;�A;B ddxP��1;�n (x)� �n;�;�B;A ddxP�;��1n (x); (58)where �n;�;�A;B = �APA;B;�;�n (�1)��;�n and �n;�;�B;A = �BPB;A;�;�n (�1)��;�n .Using the expressions (32), (33), (34) and (49) we obtain an equivalent representation,similar to the representation obtained in [19] for the monic generalized polynomialsPA;B;�;�n (x) = (1� nJn;�;�A;B � nJn;�;�B;A )P�;�n (x)++[Jn;�;�A;B (x� 1) + Jn;�;�B;A (1 + x)] ddxP�;�n (x); (59)where Jn;�;�A;B = �APA;B;�;�n (�1)~��;�n , Jn;�;�B;A = �BPB;A;�;�n (�1)~�n(�; �) and ~��;�n are de-�ned in (34).Remark I From the last expressions for generalized Hahn and Jacobi polynomials we canconclude their existence for all positive values of the masses. In fact, if we expand the de-nominators in (51), (52), (56) and (57) and use the symmetry properties (10) and (11), aswell as the Cauchy-Schwarz inequality the desired result follows.Remark II From the representation formulas (53) and (58), as well as the symmetry prop-erties (10) and (11) we can obtain the following symmetry properties for generalized poly-nomials hB;A;�;�n (N � 1� x) = (�1)nhA;B;�;�n (x); (60)PB;A;�;�n (�x) = (�1)nPA;B;�;�n (x): (61)12



The second order di�erential ecuation for generalized Jacobi and Laguerre poly-nomials.Before to obtain the limit relations between these generalized orthogonal polynomials, letus to obtain explicitly the di�erential equation that the Koornwinder-Jacobi polynomialsPA;B;�;�n (x) satisfy. In [19] Koornwinder proved that the generalized polynomials satisfy asecond order di�erential equation, but he did not write it explicitly. The existence of such adi�erential equation is a straightforward consequence of the semiclassical character of suchpolynomials [22]. We will present an algorithm to obtain the di�erential equation for theboth Laguerre and Jacobi generalized polynomials.First of all, we will rewrite (45) and (59) in the unique form~Pn(x) = CpPn(x) + qp(x) ddxPn(x); (62)where ~Pn(x) denotes the generalized Laguerre or Jacobi polynomials and Pn(x) denotes thecorresponding classical polynomials, respectively. Here, Cl = 1 and ql(x) = �n for the La-guerre polynomials (45) and Cj = (1 � nJn;�;�A;B � nJB;An;�;�) and qj(x) = (x � 1)JA;B�;� + (1 +x)JB;A�;� for the Jacobi ones.Taking derivatives in (62), multiplying by �(x) and using the second order di�erential equa-tion that classical polynomials satisfy (2) �(x)P 00n (x) = �� (x)P 0n(x)� �nPn(x) we obtain�(x) ddx ~Pn(x) = c(x)Pn(x) + d(x) ddxPn(x);where c(x) = �qp(x)�n y d(x) = �(x)[Cp + q0]� � (x)qp(x): (63)Now, taking second derivatives in (62), multiplying by �(x)2 and using again (2), as well astheir derivatives we �nd the following�(x)2 d2dx2 ~Pn(x) = e(x)Pn(x) + f(x) ddxPn(x);e(x) = �nf[� (x) + �0(x)]qp(x) � [Cp + 2q0p]�(x)gf(x) = qp(x)f� (x)[� (x) + �0(x)]� �(x)[�n + � 0]g � [Cp + 2q0p]�(x)� (x): (64)Then the following determinant vanishes������ ~Pn(x) a(x) b(x)�(x) ~P 0n(x) c(x) d(x)�(x)2 ~P 00n (x) e(x) f(x) ������ = 0 ; (65)where a(x) = Cp and b(x) = qp(x). Expanding the determinant in (65) by the �rst columnwe obtain that the Laguerre and Jacobi polynomials satisfy the following equation:~�n(x) d2dx2 ~Pn(x) + ~�n(x) ddx ~Pn(x) + ~�n(x) ~Pn(x);where ~�n(x) = �(x)2[a(x)d(x)� c(x)b(x)];~�n(x) = �(x)[e(x)b(x)� a(x)f(x)];~�n(x) = c(x)f(x) � e(x)d(x): (66)13



To obtain the explicit form of the coe�cients ~�n(x); ; ~�n(x) and ~�n(x) we implement a littleprogram using the well-known program Mathematica [26]. Here will apply it to obtain theKoornwinder-Jacobi's di�erential equation.In[1]:=Remove["Global`*"]In[2]:=p[x_]:= CBA (x+1) + CAB (x-1)dp=D[p[x],x];const=1- n*CAB - n*CBA;sig[x_]:= 1-x^2;delsig[x_]=D[sig[x],x];tau[x_]:= (beta-alpha) - (alpha+beta+2)xdeltau=D[tau[x],x];ln=n(alpha+beta+n+1);The functions a(x); :::; f(x), de�ned in (63)-(64) are denoted by a; :::; f , respectively.In[10]:=a= Expand[ const ];b =Expand[ p[x] ];c= Expand[ -ln p[x] ];d= Expand[ (const + dp) sig[x] - tau[x] p[x] ];e= Expand[ p[x]ln(delsig[x]+tau[x])-sig[x] ln (const+ 2 dp)];f= Expand[ - (const + 2 dp) tau[x] sig[x] +p[x](tau[x]( tau[x]+delsig[x])-sig[x](deltau+ln))];In[16]:=newsigma=sig[x]^2 Simplify[Expand[a d - c b]];newtau=Expand[sig[x] ( e b - a f)];lambda=Expand[(c f - e d) ];p=Simplify[{lambda , newtau , newsigma}/sig[x]];In[20]:=Simplify[p/sig[x]-{ln,tau[x],sig[x]} //.{CAB->0,CBA->0}]Out[20]={0, 0, 0}Using the above algorithm and the Mathematica program we obtain� Generalized Laguerre polynomials. [13]~�n(x) = x ���n � ��n + �n2 n+ x+ �n x� ;~�n(x) = ��2�n � 3��n � �2 �n + 2�n2 n+ ��n2 n + x+ �x++ 2�n x+ 2��n x� �n2 nx� x2 � �n x2� ;~�n(x) = n ��2�n � ��n � �n2 + �n2 n+ x+ �n x� :14



Taking the limit A! 0 we obtainlimA!0 ~�n(x) = x2 = �(x)2;limA!0 ~�n(x) = (1 + �� x) x = �(x)� (x);limA!0 ~�n(x) = nx = �(x)�n:� Generalized Jacobi polynomials. [19]~�n(x) = �1� x2� ( 1 + Jn;�;�A;B � �Jn;�;�A;B + � Jn;�;�A;B + Jn;�;�B;A + �Jn;�;�B;A � � Jn;�;�B;A � 2Jn;�;�A;B n++2�Jn;�;�A;B 2 n� 2Jn;�;�B;A n� 4Jn;�;�A;B Jn;�;�B;A n� 2�Jn;�;�A;B Jn;�;�B;A n� 2� Jn;�;�A;B Jn;�;�B;A n++2� Jn;�;�B;A 2 n+ 2 Jn;�;�A;B 2 n2 + 2Jn;�;�B;A 2 n2 � 2Jn;�;�A;B x� 2� Jn;�;�A;B x + 2Jn;�;�B;A x+ 2�Jn;�;�B;A x��2�Jn;�;�A;B 2 nx � 2�Jn;�;�A;B Jn;�;�B;A nx+ 2 � Jn;�;�A;B Jn;�;�B;A nx+ 2 � Jn;�;�B;A 2 nx� 2Jn;�;�A;B 2 n2 x++2Jn;�;�B;A 2 n2 x� x2 + Jn;�;�A;B x2 + �Jn;�;�A;B x2 + � Jn;�;�A;B x2 + Jn;�;�B;A x2 + �Jn;�;�B;A x2 + � Jn;�;�B;A x2+ + 2Jn;�;�A;B nx2 + 2Jn;�;�B;A n x2 )~�n(x) = n (1 + �+ � + n) ( 1 + 3Jn;�;�A;B � �Jn;�;�A;B + � Jn;�;�A;B � 2�Jn;�;�A;B 2 + 3Jn;�;�B;A ++�Jn;�;�B;A � � Jn;�;�B;A + 8Jn;�;�A;B Jn;�;�B;A + 2�Jn;�;�A;B Jn;�;�B;A + 2� Jn;�;�A;B Jn;�;�B;A �2 � Jn;�;�B;A 2 � 2Jn;�;�A;B n� 2Jn;�;�A;B 2 n+ 2�Jn;�;�A;B 2 n� 2 Jn;�;�B;A n� 8Jn;�;�A;B Jn;�;�B;A n��2�Jn;�;�A;B Jn;�;�B;A n� 2� Jn;�;�A;B Jn;�;�B;A n� 2Jn;�;�B;A 2 n+ 2� Jn;�;�B;A 2 n+ 2Jn;�;�A;B 2 n2++2 Jn;�;�B;A 2 n2 � 4Jn;�;�A;B x� 2� Jn;�;�A;B x + 2�Jn;�;�A;B 2 x+ 4Jn;�;�B;A x + 2�Jn;�;�B;A x++2�Jn;�;�A;B Jn;�;�B;A x� 2 � Jn;�;�A;B Jn;�;�B;A x� 2� Jn;�;�B;A 2 x+ 2Jn;�;�A;B 2 nx � 2�Jn;�;�A;B 2 nx��2�Jn;�;�A;B Jn;�;�B;A nx + 2� Jn;�;�A;B Jn;�;�B;A nx � 2Jn;�;�B;A 2 nx + 2� Jn;�;�B;A 2 nx� 2Jn;�;�A;B 2 n2 x++2 Jn;�;�B;A 2 n2 x � x2 + Jn;�;�A;B x2 + �Jn;�;�A;B x2 + � Jn;�;�A;B x2 + Jn;�;�B;A x2 + �Jn;�;�B;A x2++� Jn;�;�B;A x2 + 2Jn;�;�A;B nx2 + 2Jn;�;�B;A nx2 )~�n(x) = ��+ � + 2Jn;�;�A;B � �Jn;�;�A;B + �2 Jn;�;�A;B + 3� Jn;�;�A;B � 2�� Jn;�;�A;B + �2 Jn;�;�A;B � 2 Jn;�;�B;A ��3�Jn;�;�B;A � �2 Jn;�;�B;A + � Jn;�;�B;A + 2�� Jn;�;�B;A � �2 Jn;�;�B;A + 2�Jn;�;�A;B n� 2� Jn;�;�A;B n++2�Jn;�;�A;B 2 n� 2�2 Jn;�;�A;B 2 n+ 2�� Jn;�;�A;B 2 n+ 2�Jn;�;�B;A n� 2� Jn;�;�B;A n+ 6�Jn;�;�A;B Jn;�;�B;A n++2�2 Jn;�;�A;B Jn;�;�B;A n� 6� Jn;�;�A;B Jn;�;�B;A n� 2�2 Jn;�;�A;B Jn;�;�B;A n � 2� Jn;�;�B;A 2 n� 2�� Jn;�;�B;A 2 n++2�2 Jn;�;�B;A 2 n+ 2Jn;�;�A;B 2 n2 � 2�Jn;�;�A;B 2 n2 + 2� Jn;�;�A;B 2 n2 � 2Jn;�;�B;A 2 n2 � 2�Jn;�;�B;A 2 n2++2� Jn;�;�B;A 2 n2 � 2x � �x� � x � 6 Jn;�;�A;B x + 3�Jn;�;�A;B x+ �2 Jn;�;�A;B x � 9� Jn;�;�A;B x+ 2�� Jn;�;�A;B x��3�2 Jn;�;�A;B x� 6Jn;�;�B;A x� 9�Jn;�;�B;A x � 3�2 Jn;�;�B;A x+ 3� Jn;�;�B;A x+ 2�� Jn;�;�B;A x + �2 Jn;�;�B;A x++4Jn;�;�A;B nx + 2�Jn;�;�A;B nx+ 2 � Jn;�;�A;B nx � 8�Jn;�;�A;B 2 nx� 4�� Jn;�;�A;B 2 nx + 4Jn;�;�B;A n x++2�Jn;�;�B;A n x+ 2� Jn;�;�B;A nx+ 16Jn;�;�A;B Jn;�;�B;A n x+ 12�Jn;�;�A;B Jn;�;�B;A nx + 4�2 Jn;�;�A;B Jn;�;�B;A nx++12� Jn;�;�A;B Jn;�;�B;A nx + 4�2 Jn;�;�A;B Jn;�;�B;A nx� 8� Jn;�;�B;A 2 nx� 4�� Jn;�;�B;A 2 nx � 8Jn;�;�A;B 2 n2 x��4� Jn;�;�A;B 2 n2 x � 8Jn;�;�B;A 2 n2 x� 4�Jn;�;�B;A 2 n2 x+ �x2 � � x2 + 6Jn;�;�A;B x2 + �Jn;�;�A;B x2���2 Jn;�;�A;B x2 + 9� Jn;�;�A;B x2 + 2�� Jn;�;�A;B x2 + 3�2 Jn;�;�A;B x2 � 6Jn;�;�B;A x2 � 9�Jn;�;�B;A x2��3�2 Jn;�;�B;A x2 � � Jn;�;�B;A x2 � 2�� Jn;�;�B;A x2 + �2 Jn;�;�B;A x2 � 2�Jn;�;�A;B nx2 + 2� Jn;�;�A;B nx2++6�Jn;�;�A;B 2 nx2 + 2�2 Jn;�;�A;B 2 nx2 + 2�� Jn;�;�A;B 2 n x2 � 2�Jn;�;�B;A nx2 + 2� Jn;�;�B;A nx2++6�Jn;�;�A;B Jn;�;�B;A nx2 + 2�2 Jn;�;�A;B Jn;�;�B;A nx2 � 6� Jn;�;�A;B Jn;�;�B;A nx2 � 2�2 Jn;�;�A;B Jn;�;�B;A nx2��6� Jn;�;�B;A 2 nx2 � 2�� Jn;�;�B;A 2 nx2 � 2�2 Jn;�;�B;A 2 nx2 + 6Jn;�;�A;B 2 n2 x2 + 2�Jn;�;�A;B 2 n2 x2++2� Jn;�;�A;B 2 n2 x2 � 6Jn;�;�B;A 2 n2 x2 � 2�Jn;�;�B;A 2 n2 x2 � 2� Jn;�;�B;A 2 n2 x2 + 2x3 + �x3 + � x3��2Jn;�;�A;B x3 � 3�Jn;�;�A;B x3 � �2 Jn;�;�A;B x3 � 3 � Jn;�;�A;B x3 � 2�� Jn;�;�A;B x3 � �2 Jn;�;�A;B x3��2Jn;�;�B;A x3 � 3�Jn;�;�B;A x3 � �2 Jn;�;�B;A x3 � 3 � Jn;�;�B;A x3 � 2�� Jn;�;�B;A x3 � �2 Jn;�;�B;A x3��4Jn;�;�A;B nx3 � 2�Jn;�;�A;B nx3 � 2 � Jn;�;�A;B nx3 � 4Jn;�;�B;A n x3 � 2�Jn;�;�B;A nx3 � 2� Jn;�;�B;A nx315



Taking the limit A;B ! 0 we obtainlimA;B!0 ~�n(x) = �1� x2�2 = �(x)2;limA;B!0 ~�n(x) = n (1 + �+ � + n) �1� x2� = �(x)�n;limA;B!0 ~�n(x) = �1� x2� (��+ � � 2x� �x� � x) = �(x)� (x):4 Limit relations between modi�cations of orthogonalpolynomials.In this Section we will study limit relations involving the modi�cations of the Jacobi andLaguerre polynomials as well as the modi�cations of the classical polynomials of discretevariables. In some way we will obtain an analogue of the Askey-scheme of hypergeometricpolynomials (for a review see [18]). Results are predictible but we have found nothing of thiskind in the literature. Anyway, we want to remark that the main di�erence with respect tothe classical case is the fact, as we will show below, that the point masses change.4.1 Limit Meixner �! Laguerre.The limit relation between the classical Meixner and Laguerre polynomials is well knownlimh!0hnM�+1;1�hn �xh� = L�n(x): (67)In order to obtain the analogues of this relation for generalized polynomials we notice that(see (16) and (26))KerMn�1(0; 0) = n�1Xk=0 [M�+1;1�hk (0)]2d2k = n�1Xk=0 (�+ 1)k(1� h)kk! :Then KerMn�1(0; 0) = KerLn�1(0; 0) + O(h). Now from the representation formulas (42) we�nd M�+1;1�h;An �xh� = M�+1;1�hn �xh�+ A (�+ 1)n(1� h)nn! (1 + AKerLn�1(0; 0))��M�+1;1�h;An � xh ��M�+1;1�h;An �x�hh �h :Multiplying this expression by the factor hn, taking the limit when h! 0 and using (67) wenotice that the right side of the last expression becomes into the right side of (45). Then,the following relation holds limh!0hnM�+1;1�h;An �xh� = L�;An (x): (68)4.2 Limit Meixner �! Charlier.We start again from the classical limit relation for monic Meixner and Charlier polynomialslim
!1M
; ��+
n (x) = C�n(x): (69)16



For the kernels of Meixner polynomials we have (see (16) and (20))lim
!1KerMn�1(0; 0) = n�1Xk=0 �kk! = KerCn�1(0; 0):Now from formula (42) we �nd thatlim
!1Bn = A �nn!(1 +AKerCn�1(0; 0)) ;which agrees with Dn in the representation formula for Charlier polynomials (44). Now,like in the previous case, we take the limit 
 !1. Hence, using (69) the following relationholds lim
!1M
; ��+
 ;An (x) = C�;An (x): (70)4.3 Limit Kravchuk �! Charlier.In this case the limit relation takes the formlimN!1K �Nn (x) = C�n(x): (71)First of all, since N !(N � n)! � Nn then limN!1 Nn(N � n)!N ! = 1. Using these two relations we�nd that limN!1KerKn�1(0; 0) = KerCn�1(0; 0), and also from (43) we havelimN!1An = A �nn!(1 +AKerCn�1(0; 0)) :Then from (44) we conclude thatlimN!1K �N ;An (x) = C�;An (x): (72)4.4 Limit Hahn �! Meixner.From the hypergeometric representation of the Hahn and Meixner polynomialsh�;�n (x;N ) = (�1)n(N � 1)!�(� + n+ 1)n!(N � n� 1)!�(� + 1) 3F2 ��x;�+�+n+1;�n1�N;�+1 ; 1�M
;�n (x) = (
)n �n(�� 1)n 2F1��n;�x
 ; 1� 1�� ;it is easy to check that the following limit relation holdslimN!1 h (1��)� N;
�1n (x;N ) = M
;�n (x): (73)By using the well-known asymptotic formula for the � function (see for instance [1], Eq.(6.1.39)in page 257). �(aN + b) � p2�e�aN (aN )aN+b� 12 ;17



and doing some straightforward, but tedious, calculation we obtain for the kernelsKerH;�;�n�1 (0; 0)of the Hahn polynomials the following expression in terms of the kernels of the Meixner oneslimN!1KerH; (1��)� N;
�1n�1 (0; 0) = KerMn�1(0; 0):From (54) we also notice that the constant �n;�;�A � �n;�;�A;0 of the representation formula(53) (here we are interested in the case when B = 0) is equal tolimN!1 �n;�;�A = A �n(1 � �)�1(
)nn!(1 +AKerMn�1(0; 0)) :From the last two expressions and taking into account Eqs. (73) and (42) we conclude thatthe following limit transition between Hahn and Meixner generalized polynomials holdslimN!1h (1��)N� ;
�1;An (x;N ) = M
;�;An (x): (74)4.5 Limit Hahn �! Kravchuk.In a similar way, in this case we start from the classical relationlimt!1h(1�p)t;ptn (x;N ) = Kpn(x;N � 1): (75)Notice that in this relation the Hahn polynomials are de�ned for n < N , as well as theKravchuk polynomials are de�ned for n < N�1, i.e., the interval of orthogonality is reducedin one unit. Besides, for the kernels we have the expressionlimt!1KerH;(1�p)t;ptn�1 (0; 0) = KerKn�1(0; 0);and for the constant of the representation formula (53)limt!1 �n;(1�p)t;ptA = A pn(1 � p)1�n(N � 1)!n!(N � n � 1)!(1 +AKerKn�1(0; 0)) :Finally, using the last two expressions from (53) and (43) we obtain the limit relationlimt!1h(1�p)t;pt;An (x;N ) = Kp;An (x;N � 1): (76)4.6 Limit Hahn �! Jacobi.In this section we will analyze the limit relation involving Hahn and Jacobi polynomials. Asbefore we start from the classical relationlimN!1 2nNnh�;�n ((N � 1)x;N ) = P�;�n (2x� 1): (77)In order to obtain the limit relation we will use the Eq. (49) for Hahn and Jacobi polynomials.First of all, notice that limN!1KerH;�;�n�1 (0; 0) = KerJ;�;�n�1 (�1;�1);limN!1KerH;�;�n�1 (N � 1; N � 1) = KerJ;�;�n�1 (1; 1);18
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�(68) ������	 (70)@@@@@@R (72)Figure 1: Limit relations involving the generalized polynomials.and limN!1KerH;�;�n�1 (0; N � 1) = KerJ;�;�n�1 (�1; 1):If we use now Eqs. (51), (52),(56) and (57), we conclude thatlimN!1 2nNnhA;B;�;�n (0; N ) = PA;B;�;�n (�1) ;and limN!1 2nNnhA;B;�;�n (N � 1; N ) = PA;B;�;�n (1) :The following limit relation between the norms of the Hahn (dHn )2 and Jacobi (dJn)2 poly-nomials is also valid limN!1 2nNn (dHn )2 = (dJn)2:Putting all these formulas in Eq. (49), taking the limit N ! 1 and using the classicalrelation (77) we �nally obtain the limit relation between the generalized polynomials, i.e.,limN!1 2nNnhA;B;�;�n ((N � 1)x;N ) = PA;B;�;�n (2x� 1): (78)19
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