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Abstract

In this paper we study some limit relations involving some g-special functions re-
lated with the A; (root system) tableau of Dunkl-Cherednik operators. Concretely
we consider the limits involving g-ultraspherical polynomials (g-Rogers polynomials),
ultraspherical polynomials (Gegenbauer polynomials), ¢-Hermite and Hermite poly-
nomials.
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1 Introduction.

In this paper we study some limit relations involving some g-special functions related
with the A;(root system) tableau of Dunkl-Cherednik operators. In fact we will continue
the research initiated by Tom Koornwinder (see [14]) on the A; classification of special
functions. In his paper [14] Koornwinder proved that the g-ultraspherical polynomials are
very closed related with the extended affine Hecke Algebra of type A; and starting from
them it is shown how several other families of g-special functions are related to this Hecke
algebra. It is important to notice that the g-ultraspherical polynomials are instances of the
celebrated Askey-Wilson polynomials for which the Hecke algebra approach also works,
for more details on this and further references see the very recent paper [16]. In his paper
[14] proved several limit relations involving the g-ultraspherical polynomials, ultraspheri-
cal polynomials and functions, the Hall-Littlewood polynomials and the Bessel functions.
Here we will complete it studying the limit relations involving the g-ultraspherical poly-
nomials, the g-Hermite and the Hermite polynomials.

For an introduction of a g-special functions see e.g. [7, 12] and for a review of the
theory of root systems see [10]. The connection of root system with hypergeometric func-
tions was studied in details in [9, 8] (see also the survey [13] for a detailed introduction).
The special functions associated to a root system have an algebraic interpretation [1, 2, 3]
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in the framework of affine and graded Hecke algebras [15] (see also [11]). Of particular
interest is the paper [16] where the connection between the Askey-Wilson polynomials
and the non-reduced affine root system of rank one is established and it is used for deriv-
ing several properties of the Askey-Wilson polynomials. The theory of Dunkl operators
is also used to introduce the multi-variable orthogonal polynomials (see [17] for the Her-
mite case and the nice book [5]) and for the connection with Bessel functions we refer to [4].

The structure of the paper is the following. In Section 2 we include some defini-
tions which will be useful in the next sections. In Section 3, some previous results on
g-ultraspherical polynomials are presented which allow in Section 4 to obtain the limit to
g-Hermite polynomials. Finally, in Sections 5 and 6 the limit from ¢g-Hermite polynomials
to Hermite polynomials and ultraspherical polynomials to Hermite polynomials are con-
sidered. In the last two cases it was necessary to work in the space of vector functions
instead of the standard space of Laurent polynomials.

2 Preliminaries

Let V be a d-dimensional real vector space with an inner product (-, -). For a € V'\{0}
let s, denotes the orthogonal reflection with respect to the hyperplane orthogonal to a:

2(B, o)
W(B) =B — : V).
wl)=p-20a (peV)
A root system in V is a finite subset R of V\{0} which spans V and satisfies
2(B, @)

sa(B) € R and

€7 VNa, B €R.
(a, &)

A root system R that satisfies the condition: if o, 8 € R and o = ¢f3 for some ¢ € R, then
¢ = %1, is called a reduced root system.

We will deal here with the irreducible root system A; which corresponds to the case
d=1and R = {£2} C R It is represented in figure 2

-2 ® +2

Fig. 1: Root System A;.

Here we will use the standard notation for the g-special functions [7]. Throughout the
paper we will suppose that ¢ € (0,1). For given g € (0,1) the g-basic hypergeometric
series ¢, is defined by

0 (al’“%---aar g z) :i(al;Q)k"'(ar;Q)k 2* [(_1)qu/2(k—1)]P—T+1
TP bubasn by T = (b3 @) (b3 @)k (459)k ’
(1)

where, for £k =0,1,2,...,

k—1 o)
(@:9)o =1, (aqk=[](1—aq™), (aq)= [](—ag™. (2)



From (1) it is clear that for a; = ¢~™ with n = 0,1, 2,.. the series terminates after k = n
terms.

Also we need the generalized hypergeometric function ,F,

= (a1)k(a2)g - - - (ap)k x_k
:1:) B z:: (b1)k(b2)k - - - (bg)k k!’ 3)

k=0

F a1,0a2,...,0p
PEA\ by, by, ..., by

where (a), is the Pochhammer symbol
(a)o:=1, (a)k :=ala+1)(a+2)---(a+k—1), k=1,2,3,... . 4)
Notice that for a1 = —n with n = 0,1, 2, .. the series also terminates after kK = n terms.

Let us now define the hypergeometric polynomials which will be considerd in this
paper. We start with the g-ultraspherical polynomials which are a particular case of the
Askey-Wilson polynomials [12]. They are the symmetric Laurent polynomials

-n/2 n/2+k k/2 k/2,-1
K, g ,q AN 172 1/2

Notice that be’q(z) are polynomials of degree n in Z+§_1. Here we are using the notation

introduced in [14] (for the standard notation see e.g. [7, 12]).

The polynomials Rf/q(z) are orthogonal with respect to a bilinear (positive definite in
the space of Laurent polynomials with real coefficients) form (F, G)y , defined by

7% ) oo(27% ) o0 ¢
<F, G)k,q = QLT('Z 0) F(Z)G(Z_l) (qk(ZQ; Z;ooqu zq2)7 q)oo d?’ (6)

and their norms are given by

2(1 — ¢*)¢"(¢; D)n(d*; Do ("5 @) 0

<R7I§,q7 Rfﬁq>k,q =

(1 + ¢ )(@%*; Q)@ oo (@ @)oo
The ultraspherical polynomials are given by
Kooy -n,n+2k 1 _z+z_1
R =k | T (-] @
They satisfy the orthogonality relation
i ; 0y - Val(k +1/2)
(RE,RE ), = /0 RE(e) Rl () sin 0 dp = YISl (8)

We want to point out here that
s . ) 1
| BB s 0do = [ Ri(o)Rl (0)(1 - oD 2,
0 -1
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The ultraspherical polynomials are related with the g-ultraspherical polynomials (5) by
the limit relation [12]
k _ k,q
RE(:) = lim RE(2) Q
The continuous g-Hermite polynomials are defined by
—-n

HI(2) = "oy ( "0, q) ———_ (10)

and satisfy the orthogonality property

1 dz 2
HI HI) = —— Hi(z)H], 2 (2% 00 (278 Q)eo— = —————Fpm. 11
< n m>q 27 (0) ( ) ( )( q) ( q) 2 (qn+17Q)oo ( )

They also can be obtained as a limit case of the g-ultraspherical polynomials (5) [12]

Hi(z) = lim ¢~ '/2"*Ri(2). (12)

k—o0

Finally, we will consider the Hermite polynomials defined by

Ho(2) = (22)7Fs ( /2 - ;—i) , (13)

_ T2

which satisfy the orthogonality property
(H,, Hp, / Hy(2)Hp(z)e ™ dz = 2"n!\/Tnm. (14)

They can be obtained as a limit case of the g-Hermite polynomials (13) [12]

(/7
Hy(z) = qu}I{{Ta (15)

2

or as a limit case of the ultraspherical polynomials (7) [12]

27" Hy(a) = lim K"/2R} (;E) . (16)

3 Asymmetric g-ultraspherical polynomials and Cherednik

operators.
Let us introduce the operators T, Y~ and Y+ depending on a parameter ¢t = g */2 and
acting on Laurent polynomials as follows

F(z) — F(z!

(TF)(z) = tF(z"") + (t—t7") (Z)l (), (17)
-z
F(a'/22) — F(g /2,71

(V* F)(a) = tF(g2) + (¢ - ) P2 T T2 ) (18)

q "z ~—



F(q~'/?2) — F(g~'/?27")

z72-1 ’
They are usually called generalized reflection (T') and g¢-difference-reflection (Y'*) oper-
ators and they are the so-called Cherednik operators. Notice that F(z) = F(z 1) (i.e.,
F is symmetric) iff TF = tF. The operators T and Y+ obey the following commutation
relations

(T-t)(T+tH)=0, TY" - Y T=0t-tHY", Y'Y =Y Yt=1I (20

(Y™ F)(2) = t7'F(gP2) + (t —t7") (19)

where I denotes the identity operator. The first relation is known as Hecke relation as
well as the algebra generated by these three operators is called the extended affine Hecke
algebra of type A; (see e.g. [13]).

The eigenfunctions of the operators Y+ are the so-called asymmetric g-ultraspherical
polynomials [14] defined by

qk+1/2(q1/2(w—k) _ q1/2(k—w))(q—lc/22 _ qk/22—1)Rk+1’q o1
T+ A=) w2

Ey(z) = RyI(2) +

forw==x(n+k), n=12 .. ie,
YE(2) = ¢ By (z) and Y ERY(2) = ¢/’ EB(2). (22)

Notice [14] that the operator Y + Y~ acting on any symmetric Laurent polynomial F
becomes into a g—difference operator

1— qk:zQ

0+ YOR(G) = gt (1

1—¢kz2 _
F(q'%2) + #F(q UZZ)) ;

then, using (22) we can recover [14] the eigenvalue equation for the g-ultraspherical poly-
nomials
1—gkz? 1—qgrz2 . _ - ky ok
EEeR 7 RUa ) = (a7 + ¢V RRA(2).

The asymmetric g-ultraspherical polynomials satisfy a biorthogonality relation with
respect to a bilinear form on the space of Laurent polynomials [14] defined as

RE(q'%2) +

z2' 00 Z*Q; 00 z
(F G = 2%” ?{ F#GE (qk&qlzg;qq))oo((qkzqg; 7)o d7' (23)

More concretely,

(1— )1+ ") "™ V(g; 9)n(d*; ) oo (@5 0)
. (1= q™)(a%; 0)n(4%; @)oo (4 @) o

);c’q = Owy
(1= @)1+ ¢*)d"(¢; 9)n (0" @)oo ("5 9) o0
(1 = ¢%**7)(¢%; q)n(4%%; ) 0o (45 @) o ’

In [14] the limits of g-ultraspherical polynomials to ultraspherical polynomials, g-
ultraspherical polynomials to ultraspherical functions, g-ultraspherical polynomials to
Hall-Littlewood polynomials among others have been successfully studied (in details).
Here we will consider other limits which are also interesting and which have not been con-
sidered there. In such a way we will complete the A; classification of ¢g-basic polynomials.

, w=-—-n—k

k. pokaa~
(B, Byl

w=n+k.



4 Limit g-ultraspherical polynomials to g-Hermite polyno-
mials

Let us consider the limit when k — oo (¢* — 0). We will define the operators X+, X!
and T in the following way

Xt = lim [¢*?v*], X := lim [¢*?Y"], T:= lim [¢*/?T). (24)
k—o0 k—o0 k—o0
This leads to . (o1
(@ F)e) = ) + PO 25
F 1/2,y _ F -1/2 -1
(X* F)(2) = FlgVz) + T2 B2 (26)
g z72—1
3 F q—1/2z _F q_1/2z_1
(x~ P = TCA D), (1)
and they satisfy the following commutation relation
T?=T, TXT-X"T=X" XtX " =X"X*"=0. (28)
Let define the functions E%, (z) as follows
. —1/2nk 1ok, _ n
BY(e) = im g ARG (2) = HI() + (0 = D2, ().
(29)

3 - ka —
El (2) = qlklgloq 1/Q”IC“L’“l?ﬂth,C(z) =zH! |(2),

where z = Z*'QL andn =1,2,3,... . Then, from relations (22) by taking the limit ¢ — 1—
we find

XTEi(z) = ¢ "?El(2), XVE",(z) =0, (30)

X"BL,(z) = ¢ "PEL,(2), X Ei(z)=0. (31)

The operators X+, X~ and T will act on the space Span{Eg, E?,}. A function in this
space is symmetric (F(z) = F(z7!)) iff it is proportional to the ¢g—Hermite polynomials
HY(z). This, joint with the definition of T, means that the g—Hermite polynomials are
the eigenfunctions of T'. Notice also that applying the operator X+ + X~ to a symmetric
polynomial F'(z) we find

1
+ - - = 1/2
(X*+ X)F(2) = 7= F(a"%2) +

— = Fa %),

then by using (30)—(31) we recover the eigenvalue equation for the g—Hermite polynomials
H(2) [12]

1 _ _
S HAG ) + 5 HAg ) = g "PHAG)



Finally, let us consider the orthogonality properties of the functions Ef, E?, . We can
do this in two different ways: 1- calculating directly the norms, 2- taking limits in the
expressions (23). Both leads us to the following result: The system Ex, E? satisfy the
following biorthogonality relation (compare with (11)) (n =0,1,...)

dz

~ 1 ~ B B
(Bi El)g= 5= ¢ El)E](z (02" Qoo (2% @)oo~ = Onudy, k1 ==%n, (32)
27 J (o) z

where the dual system Eg, Ein is defined as follows

El(2) = lim ¢"/"FESE (2) = HA(2),
q®—0

(33)
~ . kgt -
Boa(2) = qlklglo ql/anE—g—k(z) = Hl(z) — 2 1H3—1(z)a

and the norms are given by
1 1
(@)’

B (qn; Q)oo )
The above result (32) can be found directly from the fact that (¢"*';q)e0/(¢";9)00 =
(1 — ¢™)~! and the following straightforward lemma.

dy =

Lemma 4.1 Let (F, G)4 and (F, G), be the following two bilinear forms on the space
of Laurent polynomials

1 1y,.2. _9. dz

<Fa G)q - 271_2- (0) F(Z)G(Z )(Z =Q)oo(z aQ)oo P
p 1 -1 2. -2, dz
<Fa G)q - 27 (0) F(Z)G(Z )(qz 7Q)oo(z 7Q)oo P )

and suppose that f(z) and g(z) are symmetric functions (a function f is a symmetric
function if f(z) = f(z7Y)). Then, the following relations hold

(a) (2f. 29y =(f,9)q=3(f,9es (8) (f,29)q=1(2f,9)as (c) (2f,9)y=0,
(@) (f,927")q=0, (¢ (zf,2z7"9)=—5(f, 9)e-

5 Limit g-Hermite polynomials to Hermite polynomials

Let us consider the limit ¢g-Hermite polynomials to Hermite polynomials. Since the clas-
sical limit (15) involves functions on z and in (29) the functions depend explicitly on
z we are obliged to use, instead scalar functions F(z), vector functions of the form
f := (fi(z), f2(z))T, where, z = (z + 271)/2. They are related to each other by for-

mulas
F(z) = fi(z) + (z — 2 1) fa(),

F(z) - F(=")
2(z—271)

z 271 (39)
filw) = TALTE) g =



Notice that f; and fo are symmetric functions on z.

The next step is to rewrite the action of operators X+, X acting on the space of
Laurent polynomials F(z) as the equivalent matrix-operators X and X~ acting on the
space of vector functions (f;(z), f2(z))”. Using the definition (25)-(27) as well as (34) we
find that

+ +
+ Xll X12
Xt~ X = ,
+ +
X21 X22
where
1 1/2,4 —1/2,—1 —1/2,4 1/2,—1
+ z 2+ 2
Xisi(o) = L[ (22 (g ]
+ . 1/2,4 q=1/2,~1 1/2, 4 4=1/2,-1 —1/2, 4 g1/2,~1 —1/2, 4 g1/2,~1
X3 fa(z) = — (q ¢ (¢ s (4 4 fo (2222
f1 (q1/2z+q_1/2z_1) B f1 (q_1/2z+q1/2z_1)
2 2
X+ 1) =
21f( ) 2(2_271) )
1/2 —1/2,—1 1/2 —1/2,,-1 —1/2 1/2,—1 —1/2 1/2,—1
. _ (q z-}-q2 z )f2 (q z-l—q2 z )+(q z—;q z )f2 (q z—gq z )
X 2T ) = .
22f( ) 5 — 21

We are interested to find the eigenfunctions of the operator X*. Using Eq. (34) and
(29) we find that

Hi(z) + (¢" — 1)zH] (z) cH,_(z)
El(z) — , Bl (2)— . (35)
T H (o) 1HY_ (2

. . . - - . - /25—
Notice that with our notation M = cos(f — ilog./q) and M =
cos(0 + ilog \/q), © = cosf. In order to take limits (and obtain non-trivial relations) we

will consider the operator X — 1. Let w = %, i.e., ¢ =1 — 2w?, and let us suppose
that the following limits exist
. filwz) . folwz)
i S = he), Jim S = Rl 2

Let us consider the case of the vector function corresponding to E. Notice that, from
(15), in the case when f; and fo are given by the first Eq. in (35) the conditions (36)
hold. Moreover fi(z) = H,(z) and fo(z) = —nH,_i(x). Then, the first component of
the matrix equation equivalent to (30) becomes

Xt g Xt q—n/2 -1
1;2 fl(wm) + w—122f2(w:c) = Tfl ((Ul‘) (37)
If we divide (37) by w™ and take the limit when w — 0 we obtain the equation
1 & - . .
—iwfl(iv) — 2z f2(z) = nfi(z), (38)



or equivalently
1 d
2dz?
The last Eq. is equivalent to the second order differential equation satisfied by the
Hermite polynomials since 2nH,,_(z) = H}, ().

H,(z) 4+ 2enH,_1(z) = nHy(x).

For the other equation (the second component of the matrix equation equivalent to
(30)) we have

X5 ] fi(wz) n falwz) _ up o f2(we)
[T] X I e = 1) RS (39)
If we now take the limit w — 0, it becomes
1d -+ ~
- = — = 4
2 @)~ fota) =0, (40)
which, by using the conditions (36), gives the identity
2 @)+ nHa (@) =0, or - Hy(z) = 20H, 1 (2)
5 gg n(@) +nHn1(z) =0, or ——Hp(z) = 2nHy—1(2).

Next, we will consider the action of the operator X on the vector function corre-
sponding to E?_in (35). In this case we see that the conditions (36) do not hold. They
should be changed by the following ones

lim 71@%)
w—=0 W

lim fo(wz)

w—0 wn—1

= fi(=), fo(). (41)

Then, the Egs. equivalent to (37) and (39) lead to the Egs.

W2 [Xﬁ —I] file) | [Xf;] folwz)  fi(wz)

w? wn w

wn—l wn ?

b [xg - 2len)__hien)

w? X_2+1 fi(wz)
w w™
which in the limit w — 0 gives us the Eqgs.
—2fa(x) = —filz),  —falz) = —fala), (42)
respectively. A simple inspection on (35) (second formula) leads us to fi(z) = H,_1(z)

and fo(z) = $H, 1(z), so that the last formulas do not give any interesting result.

For the second operator X~ the procedure is analogously, in particular the conditions
(36) and (41) should be imposed. We will here only gives the resulting equations obtaining
by taking the corresponding limits, i.e., the equations equivalent to (38), (40) and (42).
They lead to the equations

H,(z) = Hy(z), $Hy(z)=2nH, 1(z), zH, 1(z)=zH, 1(z),
& Hoi(z) — 22 % Hyoi(z) +2(n — 1)Hp—1(z) = 0,

dx?

9



respectively.

Let us now consider the orthogonality property. First we need to rewrite the orthog-
onality for the functions E%, (32) in the space of vector functions. Notice that

(F, Gy =(f1, g1y +{(z—2 N fa, g1+ {f1, (z—2 Ng2)y+{(z=2"") f2, (z— 2 )g2)y-

Next we add the numbers (—2zf2, g1); = (f1, 22_192); = 0 (see lemma (4.1)) and use
the lemma (4.1) to find

(F, Gy = 3F1, g~ (ofa, 1) + (1, w00y + 21— ) fo, 92

which, in matrix form, can be written as

- 120()  wp(2) 0N\ 4,
<F7 G)q = 2—7” (fl(z)7f2(z)) 7 )
© —zp(z) 2(1—27)p(2) g2(271)
where z = 22 and p(2) = (2% ¢)oo(27%; @)oo
Because of Eq. (35), the above expression can be written for Ef as

1/2w(z) zw(z) H4 (z)

1
[ @) + @ - ety @), SR ELL @) dz
-1 —zw(z) 2(1 —z?)w(z) 0

where

o (1_9g k:+ 2k 1422 k‘l‘ 2kY(1 -2 k—|—1/2+ 2k+1 1+2qu+1/2_{_3q2k+1
) = Lo ¢"+q ¢“+q q q
V1—z?
As before, we will change x — wz, multiply by s(w)w ™ ™ and take the limits w — 0

(the corresponding scaling factor s(w) is such that s(w)w(wz) — %", see [12]). Then we
find (n # m)

w(z

2

- e 0\ [ Hal) . 2
(Hn(z),0) dz = _ H,(z)Hp,(z)e " dz =0,

0 2

i.e., the orthogonality property of the classical Hermite polynomials. The same procedure
(here we multiply by s(w)w™"""2) but with the E?,, functions leads to the orthogonality

(n #m)

oo le—= 0 0 oo
/_ 00(0, 1H, 1(z)) ( ’ ) (13 ) de = % /_ mHn,l(x)Hm,l(x)e—fda: =0,

0 2 1Hpo1(z)

which is similar to the previous one. Notice also that, as before, we were obliged to use
different scaling factors for the Ef, functions.

10



6 Limit ultraspherical polynomials to Hermite polynomials

Finally, we will consider the limit from ultraspherical polynomials to Hermite polynomials.
In [14] has been shown that the functions

k — _ 1
Ef(z) = lim EMI(2) = RE(z) + 227 % Rk+l

AT O oy g i), w=EmEk), (43

satisfy the Eq.
XEq(2) = —w Ey(2), (44)

where X is an operator on the space of Laurent polynomials obtained, formally, from the
operators (18) and (19) by putting Y+ = ¢'/2X and taking the limit ¢ — 1—. This yields

F(z) - F(=")

X F() = —kF(2) + zdip(z) gy : (45)

z 1—2~
The above Cherednik operator jointly with the operator s obtained from 7" given in (17)
(sF)(z) = lim (T F)(z) = F(z™")
g—1—

generate the graded affine Hecke algebra of type A; [14].

Let us now to take the limit ¢ — 1— in this case. As in the previous section we will
work in the space of vector functions defined in (34), but now X is given by

X1 X2
X ~ X =
Xo1 Xoo

where

Xufi(z) = —kfi(z), Xiafo(z) = (2k +1)22fo(z) + 2(2* — 1)L fo(z),

Xorfi(z) = 3L f1(x), Xoafo(z) = kfa(z),

and the functions Ei( ktn) (z) are given by

Ry (=) Rf(w)
Ef (2) — ) EF. _(2)— . (46)
k+1 k k+1
(k1) Fon D) (221;711)}% D)
Let consider the limit case corresponding to the first function E% , (2). Let w = k172
(k — 00, w — 0). Let us suppose that
. filwz) . folwz) -
tim 19D gy, i 29D g (47)

In the present case this is true and we have f;(z) = 27" H,,(z) and fo(z) = —27" 'nH,_(z).
Then the equations, equivalent to (44), transform into

fi(wz)

wn

[w2X11]7f1£;JLx) + wiwXy ]fg(wm) =

2 = (s + 1) LD (48)
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and

fi(wz) fo(wz) fo(wz)
which in the limits w — 0 lead to the Egs.
3 3 Hy(z) Hy(z)
—fi(@) =-filz), or ——— =,
and
YL @)+ o) = o)y or - H(s) = 2nH, 1 (2)
2d.’131$ 2\T) = 2\Z), T dz n\T) = &Ndlp_1\T),
respectively. In the other case Ek n_k» We need to impose that the limits
. filwz) . folwz)
(}JILHO wn - fl(w)a L}Jlin() wn—1 - f2($)7 (50)

exist and they are different from zero. It happens since in this case, from (46) one has
fi(z) = 27"H,(z) and fo(z) = 27" H,—1(z). Then providing similar calculations as
before we obtain instead of (48) and (49) the expressions

~Fi(@) = 2 folw) + 4fo(e) = fi(e) and fole) = ulw),

respectively. The first Eq. is equivalent to the raising operator acting on the Hermite
polynomials whereas the second is the trivial identity H,, 1(z) = H, 1(z).

Remark 6.1 Notice that in this case we have obtained two trivial identities involvig the
Hermite polynomials and two non trivial ones. If we want to obtain only non trivial
identities we can consider the limit terms for a next higher degrees of w. For example, if
we consider the terms in w? in (48)-(49) we obtain, in the matriz form,

(0 4x—2%> fi(z) o (1 0) filz) 1)
ld o Folz) 0 0 folz) )

H,(x) =2zH, 1(z) — H),_(z), H! (z) = 2nH,_1(z).

that leads to

A similar procedure can be done for all cases.

To conclude this section we will study the orthogonality relation. We start from the
fact that the functions Efl:(n +) are an orthogonal set of functions, i.e., they satisfy the

property
™ . Y Y
/ B () EF () sin(0)F db = 0, w % v.
s

The above relation can be rewritten in terms of the vector functions. In fact the set of

vector functions defined in (46) are an orthogonal set with respect to an inner product
defined by

(1 _$2)k—1/2 0 91(33)

1
(F, G =/ (f1(@), fol2)) iz |
—1 0 4(1 _ xZ)k+1/2 gg(.’l;)
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Let us show the results of taking limits in the both aforementioned cases E¥ , and
E* (n+k)- 10 the first case, changing = — wz, dividing by w™t™+1 and then taking the
limit, we find that the following orthogonality property

2

- 0 4e~" 0 -

For the second functions, changing = +— wz, dividing by w™™™~! and then taking the
limit, one gets

2

00 e’ 0 0
/ (0,2 " H,_(z)) dz
e 0 4e® 2~ H,, 1 (z)

2t [ .
= on+m / Hn—l(m)Hm—1($)6 2d$ =0.

The obtained relations are the corresponding orthogonality relations for the classical Her-
mite polynomials.

g-ultraspherical polynomials

\

Hall-Littlewood continuous g-Hermite
polynomials polynomials
Y
ultraspherical ultraspherical
functions polynomials
Bessel Hermite /
Functions polynomials

Fig. 2: Schema of the A; classification of special functions

To conclude this paper let us point out that from the results presented in this paper
and the ones given in [14], that are sumarized in figure 2, follows that the Cherednik’s
theory works quite well for the “most elementary” special funtions associate with the Ay
root system. Here again we should mention that for the Askey-Wilson a similar study
can be done as it is shown in [16]. Notice also that in the last two sections an instances
of vector valued polynomials appear in a very natural way. They can be considered as
the rows of the corresponding (bi)orthogonal matrix polynomials (for a detailed study of
matrix orthogonal polynomials see [6]).
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