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Abstract

We study a polynomial sequence of g-extensions of the classical Hermite polynomials
H,(z), which satisfies continuous orthogonality on the whole real line R with respect
to the positive weight function. This sequence can be expressed either in terms of the

g-Laguerre polynomials L,(za) (z;q), @« = £1/2, or through the discrete g-Hermite polyno-
mials h,(x;q) of type IIL

1 Introduction

There is a well-known family of the continuous ¢-Hermite polynomials of Rogers [1, 2]
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which are g-extensions of the classical Hermite polynomials H,(z) for ¢ € (0,1). Throughout
this paper we will employ the standard notations of the g-special functions theory , see [3]-[5].

In particular,
], o ), (1)

stands for the g-binomial coefficient and (a;q)9 = 1 and (a;q), = H?;&(l —ag’),n =
1,2,3,..., is the ¢-shifted factorial. Besides, explicit forms of g-polynomials from the Askey-
scheme [4] are often expressed in terms of the terminating basic hypergeometric polynomial

g ", az,...,a;
r¢s< b17b27"'7b5 ‘q’z>
= zn: (" Drlaz; @k -~ (ar; Qi 2 [(_1)qu(k71)/2]5"‘+1
= (b k(b2 e (b3 Dk (@9

'Boletin de la Sociedad Mexicana de Matemdticas 8 (2002), 221-232.

(1.3)




2 R. Alvarez-Nodarse et. al. On a q-extension of the Hermite polynomials H,(x)

of degree n in the variable z. So the continuous ¢-Hermite polynomials in (1) correspond to
the case when r =2 and s = 0.
The continuous ¢-Hermite polynomials Hy,(z|q) satisfy the three-term recurrence relation

20 Hy (2lq) = Hyt1(2lg) + (1 — ") Hoi (2]g) (1.4)

They are orthogonal on the finite interval z € [—1,1] with respect to the continuous weight
function [2]

w(z) [1 +2(1 - 202) gk + qQ’f] : (1.5)
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In the limit as ¢ — 1, they coincide with the ordinary Hermite polynomials H,(z), i.e.,

1— —n/2 1—
lim -4 H, a4 T
qg—1 2 2

There is another family, called the discrete ¢g-Hermite polynomials of type II , which is
a g-extension of the sequence of the Hermite polynomials H, (z) [6]. Their explicit form is

given (see [4, p. 119]) by
-n ,l-n 2
_ qa ",q 2 9
4, —qn> =z ( 0 q 7_P> - (1.7)

The discrete g-Hermite polynomials of type II, iLn(:zr;q), satisfy the three-term recurrence
relation

iz

b (3 q) == 17" g7 D/2 54 ( T

whn(239) = hny1(w39) + 2" (1= ¢")ho 1 (739) (1.8)
but, contrary to the polynomials H,(z|q) of Rogers (1.1), the sequence {h,,(z;¢q)} is orthog-
onal on the infinite interval x € R with respect to the discrete weight function, supported on
the points z = +¢¢¥,c > 0,k € Z. In the limit as ¢ — 1, the h,(z, q) reduce as well to the
Hermite polynomials Hy(z):

im(1 — ¢%) "2 hn (/T — g% q) = 2 " Hy(z). (1.9)
q—1

Now we are in a position to formulate the aim of this paper. We wish to find such ¢-
extensions of the Hermite polynomials Hy,(z), which satisfy the following requirements:

1. They are polynomials in the variable xz, which obey a three-term recurrence relation; 2.
They are orthogonal on the whole real line R with respect to a continuous positive weight
function; 3. In the limit as ¢ — 1 they coincide with the Hermite polynomials H,,(z).

Such a family is of great interest from the point of view of possible applications in math-
ematical physics. We remind the reader that the two most fundamental problems in nonrel-
ativistic quantum mechanics, the harmonic oscillator and the Coulomb system, are defined
on R? [7]. Thus our goal is equivalent to having such a g-deformed version of the linear
harmonic oscillator, which is still defined on the whole real line R and enjoys the continuous
orthogonality property on R with respect to a positive weight function.? We will not pursue
this viewpoint here. Instead we now focus on the mathematical properties of the g-extensions
of the Hermite polynomials H,(z) under discussion.

2Tt should be noted that there are, in fact, several publications (see [8]-[16] and references therein) devoted
to the study of explicit realizations, which represent g-extensions of the Hermite functions (or the wave
functions of the linear harmonic oscillator) H, (z) e ""/2. But none of these realizations satisfies all of the
aforementioned requirements : the continuous weight functions in [8, 10, 13] are supported on the finite
intervals; the continuous weight functions in [9, 15] are not positive; the g-extensions in [9], [12]-[15] are not
expressed in terms of polynomials in the independent variable; and, finally, the orthogonality relations in

[11]-[13], [16] are discrete.
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2 Definition of the sequence {H,(z;q)}

It is known that the Hermite polynomials H,(x) can be expressed through the Laguerre
polynomials Ll (x) as

Hop(z) = (—1)" 220 nl LGV (22),

(2.1)
Honga () = (=1)" 22l L2 (a2)
where
n k
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and (a), =T'(a+n)/T(a), n=0,1,2,..., is the shifted factorial.
It is also known that a g-extension of the Laguerre polynomials 3 L%“) (z;q), defined
a+1. —n
L) (z;q) = 5 191 ( qa+1

[17]-[19] as
(45 0)n g+t | _qn+a+1x>

771,_1, n+a
(q q) 2¢1 ( 0 q,9 + +1> )

satisfies two kinds of orthogonality relations, an absolutely continuous one and a discrete one.
The former orthogonality relation? is given by

(2.3)

/ Ex L) (w;q) L (23q) dx = di, ()0, @ > 1, (2.4)
q
0

where F,(z) is the Jackson g-exponential function,

o) =3 0 (g 2.5)
q z) = .72' = —Z;q 00 .
= (G Dn

and the normalization constant d,(a) is equal to

(@9)n  (6:9)oc sinm(a+1)

dp(a) = ¢" 2.6
(@) (@t @) (6% 9o 7r (26)
It remains only to remind the reader, that in the limit as ¢ — 1 we have
lim L{™ (1 — g)z; ¢) = L{M () . (2.7)
q—1

3There are also the continuous g-Laguerre polynomials P (z|q) with the orthogonality on the finite interval

€ [—1,1] and the Wall ( or the little g-Laguerre ) polynomials p,(z;a|g) with the discrete orthogonality on
the points ¢ = ¢*, k = 0,1,2,... (see [4], pp. 105 and 107, respectively).

1t is worth noting that the fact of the integrability of the weight function z*/FE,(z) in (2.4) directly follows

from the integral
t*tdt _T(@)r{d -«
= R 0
/E (- T-2) ce=

which is a particular case of the Ramanujan integral extension of the beta function [20].
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We can now define, in complete analogy with the relationship (2.1), a family of ¢-
extensions of the Hermite polynomials of the form

Hon(w39) == (=1)"(g:9)n Lty /> (2% q),
(2.8)
Hons1(z39) == (=1)"(g; @)z LY (2% ).

With the aid of the limit relation

ST
Lim Aogn (a)n (2.9)
(

it is not difficult to verify that from (2.8) and

lim(1 —q) 2 H,(\/1 — qz;q) = 2 "H,(z), (2.10)

q—1

2.3) one obtains

i.e., the polynomials H, (z;q) so defined are indeed g-extensions of the Hermite polynomials
H,(z). The next step is to establish a continuous orthogonality relation and a three-term
recurrence relation for the g-polynomials H,(z; q).

3 Orthogonality relation

We begin this section with the following theorem:

Theorem 1 The sequence of the q-polynomials {Hy(x; q)}, which are defined by the relations
(2.8), satisfies the orthogonality relation

[ i) Mtz ) ey = w0 (0502 00 (3.1)

on the whole real line R with respect to the continuous positive weight function w(x) =
1/E,(z?).

Proof. Since the weight function in (3.1) is an even function of the independent variable x
and H,(—z;q) = (—1)" H,(x; q) by the definition (2.8), the g-polynomials of an even degree
Hom(z;q) and of an odd degree Hopr1(x;q), m,n = 0,1,2,..., are evidently orthogonal to
each other. Consequently, it suffices to prove only those cases in (3.1), when degrees of
polynomials m and n are either simultaneously even or odd. Let us consider first the former
case. From (2.8) and (2.4) it follows that

/H2m(I;Q)H2n($;Q)$
= (1) (g (s e [ LD (%) L) (0 )
40 Eq(2?)
= m-+n (-1/2) (~1/2) x d (3-2)
2(=1)""(¢;9) (q,q)nO/L (2% q) Ly ’q)Eq(xQ)
_ (_qymin [ L1 119 (s ) L2
(=)™ @)m g On 0/ Lo s @) ™ (3 ) Eq(y)
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where we have used at the last step the equality (¢'/2;¢)n(q:¢)n = (¢'/%;¢*/?)2, and the
standard relation (for a = ¢'/? and § = 1/2)

(@5 ¢)oo
D (a;q)p (3.3)
which is valid for an arbitrary complex f.
In the same way we find
dz
H2m+1($ O Hon1 (759) 7757 (@)
7 2
_ 2(_1)m+n /L 1/2 511/2)($2,q) T dIz
x 1/24
(-1) ) i) s
= (q’ Vs Smn = g~ "D (g2 41130 11(6"%0)1 /2 O

dn(1/2)

where we have used the relation
(1 =" q)n = (1 — ") (g% q)n, (3.5)

which is a straightforward consequence of the general definition of the g-shifted factorial
(a; q)n. Putting (3.2) and (3.4) together results in the orthogonality relation (3.1).

The positivity of Jackson’s g-exponential function E,(z?) for z € R and ¢ € (0,1) is
obvious from its definition (2.5): for it is represented as an infinite sum of positive terms (or
an infinite product of positive factors). This completes the proof. [ |

To conclude this section, we note the obvious fact that in the limit as ¢ — 1 the orthog-
onality relation (3.1) reduces to the well-known orthogonality property

o0

/Hm e dr = /72" 1! S (3.6)

of the Hermite polynomials H,(z) with respect to the normal distribution e~ This follows
immediately from the limit relations (2.9) and (2.10), upon using the fact that

lim By (1 - q)2) = ¢°. (3.7)

4 Recurrence relation

The easiest way to identify the sequence (2.8) ( that is, to find its appropriate niche in the
Askey-scheme of g-polynomial families [4] ), is to derive a three-term recurrence relation for
it. Since an arbitrary polynomial p,(x) satisfies a recurrence relation of the form (see [21, p.
19))

(anT + by)pn(z) = ppy1(T) + capn-1(7), n>0, (4.1)

one can try to evaluate the right-hand side of (4.1) for p,(z) = H,(z;q) and to find then
such particular coefficient ¢, that leads to the left-hand side of (4.1) with some a,, and b,,.
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Before starting this derivation we note that in what follows it proves convenient to use
the following form

) q

(G = (@5

(g

n k(k+a)
L) (z;9) = [

n

] (12)
q

of the g-Laguerre polynomials Lq({l) (x;q), which comes from the first line in definition (2.3),

upon using the relation

(g™ @)k — (_1\k k(E=1)/2—nk | T
Gar [’f]q 43

Let us first consider the case when n in (4.1) is even. Then from (2.8) and (2.3) we find
that
Hon+1(2;q) + can(@) Han—1(z; )

nk(k+1/2)
_ 3 2 q n 2\k
= (-1 % xz 3/2 [ ] (—z%) (4.4)
q
nl k(k+1/2) [
n— q 1
+eanla) (-1) l(q?’/?;q)HxZm L e
kZO q ’q k q

The next step is to employ the relation (3.5) in order to rewrite the quotient (¢%/2; q)n/(¢*/?; @)x
from the first term in (4.4) as

(@000 1= "2 (¢% ),
(@259) 1= g2 (¢"/259)1

(4.5)

In the second term in (4.4) one can use the evident relation (¢*/2;q)n_1 = (¢"/%;¢)n/(1—¢"/?)
and the same formula (3.5) for the factor (¢%/2;q),. Also, we recall the property of the g-

binomial coefficient N
n—1] 1- Q" |n
RS 4)
q q

Putting this all together, we obtain

Hon11(7;5 q) + con(q)Han—1(z;q)

n o k(k+1/2) o 2\k 1_
n q n z n q
~ () e Y L M 1(_qk+)1/2{1—q S
? q

purll
The right-hand side of (4.7) should match with
n o k(k—1/2)
q n
Hon(:0) = (=1)"(@"% 00 Y 7757 [k] (—z*)F, (4.8)
(q 7q)k q

multiplied by as,(q)z 4 boy(q). This means that the coefficient ca,(g) can be found from the
equation

k=0

1 — qn—k
R
where d,(q) is some k-independent factor. It is not difficult to verify that the only solution
of the equation (4.9) is c2,(q) =1 — ¢" and d,,(q) = ¢". Thus

Hont1(z;q) + (1 — ¢")Hon—1(x;q) = ¢" x Hopn(z;q) - (4.10)

n+1/2

1—¢q — can(q =du(q) g ¥ (1 — g1/, (4.9)
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Similarly, in the case of an odd n from (4.8) we have

Hont2(w;q) + cont1(q)Han(z; q)

ntl ok(k=1/2) T,
= (=1)"* ("% Q)n+1z a [ Zl] (—2?)* (4.11)

= (q"/%;9)

n o k(k—1/2)
q
+eant1(@)(—1)"(q' ;1 q E @D [n] (—az®)¥.
q

In this case it is even easier to find the coefficient coy,+1(¢). Indeed, one will obtain from (4.11)
an expression [a2,11(q) T+ ban11(q)] Han+1(x; q) only if the two constant terms in (4.11) with
k = 0 cancel each other. This means that the ¢y,41(g) should satisfy the equation

1/2

(@%@ nr1 — (@200 c2n11(0) = (6% 0)n[1 — ¢" 2 = c2n11()] = 0. (4.12)

Consequently, co,41(q) = 1 — ¢"1t1/2 and, therefore, by (4.11) we obtain
Honva(z3q) + (1 — T/ Hop (23 q)

= ()" (g q)m%w {[”Hq - [g]} (2}

n (m+1)(m+1/2)
— (—1)*(¢*2; q) 22 g n+l| | n N
= (=D Z 3/2 {[m-l—l]q [m-l—l]q}( ")
m(m+1/2
= (=) Y2 (32, ),y 22 Z " o [”] (—22)™ = ¢"tY2 2 Hon i1 (23 q)
q

(4.13)

upon using the readily verified relation

[;:”q_ [mil]q:qn_m [ZL (4.14)

for the g-binomial coefficient [Z] . From (4.10) and (4.13) it thus follows that the g¢-

polynomials H, (z; q) satisfy the three-term recurrence relation of the form
M1 (2:9) + (1= ¢ Hn1(z59) = ¢"/* 2 Ha (23 q) (4.15)

An examination of the recurrence relation (4.15) reveals that the H,(z;q) are related to the
discrete g-Hermite polynomials ﬁ(m, q) of type II. Indeed, change the base ¢ — ¢* in (4.15)
and substitute into it

Hn(w;4%) = "2 b (5.9) (4.16)

to obtain the recurrence relation (1.8) for the discrete ¢g-Hermite polynomials iLn(il?, q) of type
1I.

There are two immediate consequences of the formula (4.16). Firstly, combining (4.16)
with (2.8), one obtains the relationship

hon(2;q) = (—=1)"g "D (g2 ¢?), TG /P (a ,q>
n(2n+1) (2 (1/2) (4.17)
hont1(z3q) = (=1)"g "D (¢4 ¢) 2 Ly (225 ¢%)
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between the discrete g-Hermite polynomials lNLn(a:, q) of type IT and the ¢-Laguerre polynomials
(2.3) with &« = £1/2. Secondly, one can represent the g-polynomials #,,(z; q), initially defined
by (2.8), in the unified form (cf (1.7))

1 9 —-n qlfn
¢ —q" ) = "D 24, ’0
(4.18)

As a consistency check, one may try to verify directly that H,(z;¢?), defined by (4.18),
does really coincide with the expressions, given by (2.8) for even and odd values of n, respec-
tively. This will lead to the two identities

. " ix
Ho(z:¢°) =i 2o < T @, —q*/z* | .

n -n ,1/2—n
2¢1 < q an q, qn+1/2> — qn(n—l)/2 yn2¢1 < q ’% QaQ/y> )
. (4.19)
n -n ,—(n+1/2
201 ( T e q"””) = g2y o gy ( T q’q/y> ’

between the terminating basic hypergeometric series o¢1. The relations (4.19) are straight-
forward to verify by using the expansion

=3 12 MG (4.20)

j=0 q

of the ¢-shifted factorial (z;q); in terms of powers of the variable x.
Yet another consequence of the relation (4.16) can be formulated as the following corollary
of theorem (1) in section 3.

Corollary 2 The sequence of the discrete q-Hermite polynomials En(:zr, q) of type II, defined
by (1.7), satisfies the orthogonality relation

o0

[ i) i) = 7 @001 2 (4.21)

— 00

on the whole real line R with respect to the continuous positive weight function w(x) =

1/E(2?).

Proof. Change the base ¢ — ¢? in (3.1) and then use the relation (4.16) to obtain (4.21). m

As we noted in the introduction, the discrete g-Hermite polynomials iLn(I, q) of type Il are
known as polynomials with the discrete orthogonality, supported on the points = 4 c¢*, ¢ >
0,k € Z. The fact that they satisfy also the continuous orthogonality relation (4.21) does
not contradict the general theory of orthogonal polynomials [22, 23]. The point is that the
Hamburger moment problem associated with {iLn(I, q)} is indeterminate, and therefore they
are orthogonal with respect to an infinite class of weight functions, both continuous and
discrete ones [19], [24]-[26]. C.Berg studied in [27] some families of discrete solutions to
indeterminate moment problems and showed how they can be used to generate absolutely
continuous solutions to the same moment problems. In particular, C.Berg derived in [27] the
continuous weight function w(z) = 1/E,2(z?) for the discrete g-Hermite polynomials b (23 q)
of type II and evaluated its moments. It should be emphasized that in our approach the
orthogonality relation (4.21) emerges as a simple consequence of the continuous orthogonality

relation (2.4) for the g-Laguerre polynomials L&EY?) (x;q).
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Observe that the continuous orthogonality relation (4.21) is useful for deriving some
integrals, involving the g-exponential function E,(z). We do not go into this question in
depth but merely present one of them as an example. One of the generating functions for
the discrete ¢g-Hermite polynomials of type II has the form (see [4, p. 119])

> n(n—1)/2 _ E
1 hn(a:; Q)tn = q(a:tg) .
(4 9)n Ep(t?)

(4.22)

n=0

Multiply both sides of (4.21) by a constant factor (itg™/?)™(=irq™?)" /(q; ¢)m(q; ¢)n and sum
over indices m and n from zero to infinity with the aid of the generating function (4.22) and
the definition of another Jackson’s g-exponential function

o0

n
eq(2) := , |z| < 1. (4.23)

n=0

This results in the following integral

o
E,(iq"/?xt) (—iql/QI’T)
/ ottt 2@2) Az = 7 (¢5%)1 2 eq(t7) By (—at) By (—ar?), Jtr| < 1.

(4.24)
Since limgy_,1 e4((1 — ¢)z) = e* and the g-exponential function F,(z) has the same limit (see
(3.7)), the formula (4.24) is a g-extension of the well-known integral

o0

/ZZ(Iyttdt \/_efy

—0o0

which reflects the important property of the normal distribution e~ of being its own Fourier

transform.

5 Concluding remarks

We have discussed in the preceding sections how one can construct the particular polynomial
sequence of g-extensions of the Hermite polynomials, either in terms of the ¢-Laguerre poly-
nomials Lg{l) (z;q), « = £1/2, or in terms of the discrete g-Hermite polynomials iLn(I, q) of
type I1I. The sequence so defined satisfies the continuous orthogonality on R with respect to
the positive weight function w(z) = 1/E,(z?). It was shown that this orthogonality relation
leads to an interesting integral, involving Jackson’s g-exponential functions.

It seems that the same approach can be implemented for deriving a g-extension of the
generalized Hermite polynomials H, ) (z) [28]-[30] with the continuous orthogonality property
(the case of discrete orthogonality requires a different technique, see [31]). This study is under
way.
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