arXiv:math/0001084v1 [math.CO] 14 Jan 2000

THE KRONECKER PRODUCT OF SCHUR FUNCTIONS
INDEXED BY TWO-ROW SHAPES OR HOOK SHAPES.

MERCEDES H. ROSAS

ABSTRACT. The Kronecker product of two Schur functions s, and s,, denoted
by s, * s, is the Frobenius characteristic of the tensor product of the irreducible
representations of the symmetric group corresponding to the partitions p and v.
The coefficient of s, in this product is denoted by ”yﬁ‘y, and corresponds to the
multiplicity of the irreducible character x* in x*x”.

We use Sergeev’s Formula for a Schur function of a difference of two alphabets
and the comultiplication expansion for s)[XY] to find closed formulas for the
Kronecker coefficients *yﬁu when A\ is an arbitrary shape and p and v are hook
shapes or two-row shapes.

Remmel [f], [[(] and Remmel and Whitehead [[[1]] derived some closed formulas
for the Kronecker product of Schur functions indexed by two-row shapes or hook
shapes using a different approach. We believe that the approach of this paper
is more natural. The formulas obtained are simpler and reflect the symmetry of
the Kronecker product.

1. INTRODUCTION

The aim of this paper is to derive an explicit formula for the Kronecker coef-
ficients corresponding to partitions of certain shapes. The Kronecker coefficients,
72,/, arise when expressing a Kronecker product (also called inner or internal prod-
uct), s, * s,, of Schur functions in the Schur basis,

(1) Sy * Sy = Z 72,/5)\'
JTR7,

These coefficients can also be defined as the multiplicities of the irreducible repre-
sentations in the tensor product of two irreducible representations of the symmetric
group. A third way to define them is by the comultiplication expansion. Given
two alphabets X = {1, 29, ---} and Y = {y1, 92, - - }

(2) SXYT =Y sulX]s Y],

where $,[XY] means sy(x1y1,21Yy2, -+, Zy;, -+ ). Remmel [g, and Remmel
and Whitehead [LI]] have studied the Kronecker product of Schur functions cor-

responding to two two-row shapes, two hook shapes, and a hook shape and a
1
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two-row shape. We will use the comultiplication expansion (B) for the Kronecker
coefficients, and a formula for expanding a Schur function of a difference of two
alphabets due to Sergeev [[l]] to obtain similar results in a simpler way. We believe
that the formulas obtained using this approach are elegant and reflect the symme-
try of the Kronecker product. In the three cases we found a way to express the
Kronecker coefficients in terms of regions and paths in N2,

2. BASIC DEFINITIONS

A partition X\ of a positive integer n, written as A F n, is an unordered sequence
of natural numbers adding to n. We write A as A = (A1, Ag, -+, A,), where \; >
A9 > ---, and consider two such strings equal if they differ by a string of zeroes.
The nonzero numbers A; are called the parts of A, and the number of parts is
called the length of A, denoted by I(A). In some cases, it is convenient to write
A\ = (1%12% ... ndn) for the partition of n that has d; copies of 4. Using this notation,
we define the integer zy to be 1%d;!2%d,! - - -ndd,!.

We identify \ with the set of points (i, 7) in N? defined by 1 < j < \;, and refer
to them as the Young diagram of . The Young diagram of a partition A is thought
of as a collection of boxes arranged using matrix coordinates. For instance, the
Young diagram corrresponding to A = (4,3, 1) is

To any partition A we associate the partition X', its conjugate partition, defined by
N, = |{j : A\; > i}|. Geometrically, ' can be obtained from A by flipping the Young
diagram of A\ around its main diagonal. For instance, the conjugate partition of A
is ' = (3,2,2,1), and the corresponding Young diagram is

We recall some facts about the theory of representations of the symmetric group,
and about symmetric functions. See [[]] or [[J] for proofs and details.

Let R(S,) be the space of class function in S,,, the symmetric group on n letters,
and let A be the space of homogeneous symmetric functions of degree n. A basis
for R(S,,) is given by the characters of the irreducible representations of S,,. Let
X" be the irreducible character of S,, corresponding to the partition p. There is a
scalar product ( , )s, on R(S,) defined by

(s = o S XM (o),

) UESn
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and extended by linearity.
A basis for the space of symmetric functions is given by the Schur functions.
There exists a scalar product ( , )a» on A™ defined by

(82, Spu)An = Oxps

where 0y, is the Kronecker delta, and extended by linearity.

Let p, be the power sum symmetric function corresponding to u, where p is a
partition of n. There is an isometry ch™ : R(S,,) — A™, given by the characteristic
map,

ch™(x) = > 2, X (1)py.

This map has the remarkable property that if x* is the irreducible character of
S, indexed by X, then ch”(x*) = sy, the Schur function corresponding to X. In
particular, we obtain that sy =3, 2, "X (1) py.- Hence,

(3) X (1) = (53, Pu)-
Let A\, i, and v be partitions of n. The Kronecker coefficients vﬁ‘u are defined by
v 1 v
(4) T = 0NN )5, = ZS X o) (0)x" (o).
oESY

Equation (fl) shows that the Kronecker coefficients fy;’),/ are symmetric in A, p, and
v. The relevance of the Kronecker coefficients comes from the following fact: Let
X* be the representation of the symmetric group corresponding to the character
x*. Then y*x" is the character of X* ® X”, the representation obtained by taking
the tensor product of X* and X". Moreover, fyﬁu is the multiplicity of X? in
XF® XY,

Let f and g be homogeneous symmetric functions of degree n. The Kronecker
product, f * g, is defined by

(5) fxg = ch™(uv),

where ch"u = f, ch"v = g, and wv(o) = u(o)v(c). To obtain ([) from this
definition, we set f =s,, g =s5,, u = x*, and v = x” in ().
The Kronecker product has the following symmetries:

Sp kS, = Sy x5,
Sp ¥ Sy = Sy k Sy

Moreover, if X is a one-row shape

A
fyluu - 6#71"
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We introduce the operation of substitution or plethysm into a symmetric function.
Let f be a symmetric function, and let X = {1, xs, -} be an alphabet. We write
X =z, + 29 + -+, and define f[X] by,

fIX] = f(wy,m9,--+).

In general, if u is any element of Q[[x1, %2, - ]|, we write u as ) cau, Where u,
is a monomial with coefficient 1. Then py[u] is defined by setting

Pn [U] = Z Caug

palu] = px[ul - -pa, [u]

for A = (A1,--+, ). We define f[u] for all symmetric functions f by saying that
flu] is linear in f.

The operation of substitution into a symmetric function has the following prop-
erties. For o and 3 rational numbers, (af + Bg)[u] = af[u] + Bg[u]. Moreover, if
co =1 for all o, then flu] = f(--- ,uq, ).

Let X =21 +22+--- and Y =y +y2+ - -- be two alphabets. Define the sum
of two alphabets by X +Y =21+ 23+ ---+y; +y2+ -+, and the product of two
alphabets by XY = zy; + -+ 2;y; +--- . Then

pn[X + Y] = pn[X] —l—pn[Y],
(6) P XY] = pu[X]palY].

The inner product of function in the space of symmetric functions in two infinite
alphabets is defined by

<7>XY:< a>X< a>ya

where for any given alphabet Z, ( | )Z denotes the inner product of the space of
symmetric functions in Z.
For all partitions p, we have that p,[XY] = p,[X]p,[Y]. If we rewrite (B) as

Pp =2, X (p)sa, then

(7) ZX)‘SA[XY] = ZX”XVSM[X]S,,[Y].

Taking the coefficient of x* on both sides of the previous equation we obtain
sXYT = O X ) sulX]s, [Y].

Finally, using the definition of Kronecker coefficients (f]) we obtain the comultipli-
cation expansion ([).
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Notation. Let p be a point in N2. We say that (i,7) can be reached from p,
written p ~ (4, ), if (¢,7) can be reached from p by moving any number of steps
south-west or north-west. We define the weight function w by

(i.) a'y!, i p~~ (i),
W Z? = .
Pt 0, otherwise.

In particular, og;(h) =0 if h < 0.

Notation. We denote by |z| the largest integer less than or equal to z and by
[x] the smallest integer greater than or equal to x.
If f is a formal power series, then [z%] f denotes the coefficient of % in f.
Following Donald Knuth we denote the characteristic function applied to a
proposition P by enclosing P with brackets,

1, if proposition P is true,
UUZ{

0, otherwise.

3. THE CASE OF TWO TWO-ROW SHAPES

The object of this section is to find a closed formula for the Kronecker coefficients
when p = (1, pe) and v = (11, 15) are two-row shapes, and when we do not have
any restriction on the partition \. We describe the Kronecker coefficients vﬁ‘u in
terms of paths in N2. More precisely, we define two rectangular regions in N? using
the parts of \. Then we count the number of points in IN? inside each of these
rectangles that can be reached from (s, us + 1), if we are allowed to move any
number of steps south-west or north-west. Finally, we subtract these two numbers.

We begin by introducing two lemmas that allow us to state Theorem [ in a
concise form.

Notation. We use the coordinate axes as if we were working with matrices with
first entry (0,0). That is, the point (7, j) belongs to the ith row and the jth column.
Lemma 1. Let k and | be positive numbers. Let R be the rectangle with width k,
height 1, and upper—left square (0,0). Define

oki(h) = ‘{(u,v) € RNN?:(0,h) ~ (u,v)}}

Then
(0, ifh <0
[(&+1)?], if 0 < h < min(k, )
ori(h) = € opa(s) + (552 min(k, 1),  if min(k,!) < h < max(k, )

L [E] — 0wy

(5] — op(k +1—h—4), if his even and max(k,l) < h
(k+1—h—4), ifhisodd and max(k,l) <h
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where s is defined as follows: If h — min(k,l) is even, then s = min(k,l) — 2;
otherwise s = min(k,l) — 1.

Proof. 1f h is to the left of the Oth column, then we cannot reach any of the points
in N? inside R. Hence, oy ;(h) should be equal to zero.

If 0 < h < min(k, ), then we are counting the number of points in N? that can
be reached from (0, k) inside the square S of side min(k, ). We have to consider
two cases. If h is odd, then we are summing 2+4+---+ (h+1) = [ (4 +1)]. On
the other hand, if h is even, then we are summing 1+ 3+ -+ (h+1) = (4 +1)2

If min(k,l) < h < max(k,l), then we subdivide our problem into two parts.
First, we count the number of points in N? that can be reached from (0, h) inside
the square S by o0y,(s). Then we count those points in N? that are in R but not
in S. Since h < max(k,!) all diagonals have length min(k,[) and there are 2% of
them. See Table 1.

If max(k, 1) < h, then it is easier to count the total number of points in N? that
can be reached from (0, /) inside R by choosing another parameter h big enough
and with the same parity as h. Then we subtract those points in N2 in R that are
not reachable from (0, h) because h is too close. If h is even this number is [kl/2].
If h is odd this number is |kl/2].

Then we subtract those points that we should not have counted. we express this
number in terms of the function o. The line y = —x + h + 2 intersects the line
y=1—1at x =h— 1+ 3. This is the x coordinate of the first point on the last
row that is not reachable from (0, /). Then to obtain the number of points that
can be reached from this point by moving south-west or north-west, we subtract
h —1+ 3 to k— 1. We have obtained that are oy ;(k + ! — h — 4) points that we
should not have counted. O

Example 2. By definition og5(4) counts the points in N2 in Table 1 marked with
o. Then 09 5(4) = 9. Similarly, o9 5(8) counts the points in N2 in Table 1 marked
either with the symbol o or with the symbol e. Then g 5(8) = 19.

O ©) @) [ ] [ ]

@] [ ] [ ]

Table 1.

Lemma 3. Let a,b,c, and d be in N. Let R be the rectangle with vertices (a,c),
(a+0b,¢), (a,c+d), and (a + b,c+ d). We define

C(a,b,c,d)(z,y) = }{(u,v) ER:(x,y)~ (u,v)}}
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Suppose that (x,y) is such that x > y. Then

Opy1,a+1( +y —a—c), 0<y<c
F(av bv ) d)(flf,y) = O-b-l-l,y—c—l—l(x - a) + O'b—l—l,c-l-d—y—l—l(x - a) - 67 c<y<c+ d
Opi1,d41 (T —y +c+d—a), c+d<y

where 0 is defined as follows If x < a, then 6 = 0. Ifa < x < a+ b, then
0= (%““W Finally, if x > a+ b then we consider two cases: If x —a — b is even

then 6 = (HTIL otherwise, 6 = V’JQF—IJ

Proof. We consider three cases. If 0 < y < ¢ then the first position inside R that
we reach is (x +y — a — ¢,¢). Therefore, we assume that we are starting at this
point. Similarly, if y > ¢+ d, then the first position inside R that we reach is
(x —y—+c+d—a,c). Again, we can assume that we are starting at this point.
On the other hand, if ¢ < y < ¢+d, then we subdivide the problem in two parts.
The number of position to the north of us is counted by op41,y—ci1(x — a). The
number of position to the south of us is counted by o441 c4d—y+1(x —a). We define §
to be the number of points in N? that we counted twice during this process. Then
it is easy to see that d is given by the previous definition. O

To compute the coefficient u, in the expansion f[X] = > uys,[X] for f € A,
it is enough to expand flzy + -+ +x,] = 32 uysy[r: + - + x,] for any n > I(v).
(See [7, section 1.3], for proofs and details.) Therefore, in this section we work with
symmetric functions in a finite number of variables.

Let p and v be two-row partitions. Set X = 1+ 2 and Y = 1 + y in the
comultiplication expansion (B]) to obtain

(8) (L9 (T +2)] =D sl +yls [l +a).
v

Note that the Kronecker coefficients are zero when [(\) > 4.

Jacobi’s definition of a Schur function on a finite alphabet s,[X] as a quotient
of alternants says that

det(x-kj+n_j)1<i i<n
(9) S\ X] = sa(zr, - wn) = : —=

Hi<j(xi — ;)

By the symmetry properties of the Kronecker product it is enough to compute
the Kronecker coefficients 7;)1, when v < puso.

Theorem 4. Let u, v, and A be partitions of n, where j = (1, o) and v = (v, vs)
are two two-row partitions and let X = (A1, A2, Ay, A1) be a partition of length less
than or equal to 4. Assume that vy < po. Then

v = (T(a,ba+b+1,¢) —=T(a,b,a+b+c+d+2,c))(va,u+ 1).
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where a = )\3"‘)\4, b= >\2—>\3, Cc = min()\l—)Q, >\3—)\4) and d = ‘>\1+)\4—)\2—>\3‘.

Proof. We expand the polynomial s[(1+y)(1+x)] = sx(1,y, z, zy) in two different
ways and obtain the Kronecker coefficients by equating both results. Let ¢ be the
polynomial defined by ¢ = (1 — z)(1 — y)sA(1,y, x, zy). Using Jacobi’s definition
of a Schur function we obtain

1 1 1 1
y)\1+3 y)\2+2 y)\g—l—l y)\4
1.)\1 +3 l.)\2+2 :L.)\g—l—l x}\4

()™ (wy)™ 2 (zy) (ay)™

ry(l = zy)(y — 2)(1 —2)(1 - y)
On the other hand, we may use Jacobi’s definition to expand s,[1+y] and s, [1+z]
as quotients of alternants. Substitute this into (§):

s+n0rn= Y () ()

p=(p1,p2) 4
v=(v1,12)

(10)

N xVQy,uz _ :E”2y“1+1 _ xl/1+1y,u2 + IV1+1yu1+1

(1 = 2 T—0 -y

p=(p1,p2)
v=(v1,v2)

Since 14 + 1 and p1 + 1 are both greater than | %], equation ([1]) implies that the

coefficient of x"2y*2 in p is fyﬁy. It is convenient to define an auxiliary polynomial
by

(12) C=1—zy)(y—2x)p.

Let & be the polynomial obtained by expanding the determinant appearing in ([[(]).
Equations ([() and ([2) imply

(=7t
zy(l —z)(1—y)
Let &; j be the coefficient of 2y’ in £&. ( Then &; ; is zero if i < 0 or j < 0, because

¢ is a polynomial divisible by zy.) Let ¢;; be the coefficient of z'y/ in (. Then

o 1 o . :
1) 2 Gory' = oy 2 e T 2 G

i,j>0 i,j>0 i,k >0

Comparing the coefficient of 2y’ on both sides of equation ([[J) we obtain that

(14> Ci,j = Z 5i+1—k,j+1—l = Z Z§k+1,z+1

k,01>0 k=0 =0
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We compute ¢; ; from ([[4)) by expanding the determinant appearing on (). We
consider two cases.
Case 1. Suppose that \; + Ay > Ay + A3. Then

MAFA+HA>ANFA+3>NFMMF2> A+ +2> A+ +1> A3+ A

We record the values of ;11,41 in Table 2. We use the convention that & j11 is
zero whenever the (i, 7) entry is not in Table 2.

Z\] As+Ad A+ +1 Ao+ A3+2 M+ +2 M+ A3+3 A+ A+4
As + A4 0 —1 +1 +1 —1 0
A2+ A +1 +1 0 —1 —1 0 +1
A2+ A3 +2 -1 +1 0 0 +1 —1
AL+ A +2 -1 +1 0 0 +1 —1
A1+ A3+ 3 +1 0 —1 -1 0 +1
Al +A2+4 0 —1 +1 +1 —1 0
Table 2

The values of €j+1,i+1 when )\1 + )\4 2 )\2 + )\3

Equation ([4) shows that the value of (; ; can be obtained by adding the entries
northwest of the point (4, j). In Table 3 we record the values of ¢ ;.

VIR COE C T CR TR SR (R L

L o o0 o0 o0 o0 0 0
P 0o 0 -1 0+1 0 O
I3 o +1 0 O 0 -1 0
1y o o0 o0 o0 o0 0 0
I5 0O -1 0 0 0 +1 O
Ig o 041 0 -1 0 O
I; o o0 o0 o0 0 0 0

Table 3
The values of (; ; when A\; + Ay > Ay + A3

where
I =10, A3+ A\4), Iy = A3+ Mg, Ao + A4,
13:[)\2+)\4+1,)\2+)\3+1], [4:[)\2+)\3+2,)\1+)\4+1],
Is =M+ M+2, M+ A3+ 2], Is =M+ A3+ 3, A + X+ 3],
[

I7: )\14—)\24—4,00).

Case 2. Suppose that \; + Ay < Ay + A3. Then
MAXNFA>AM+HA3+3> X+ A3+2> N+ M+2> 0+ +1> A3+ Ay
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Note that in Table 3, the rows and columns corresponding to A\; + Ay + 2 and
Ay + A3 + 2 are the same. Therefore, the values of & ; for Ay + Ay < Ao + A3 are
recorded in Table 3, if we set

Iz =D+ A+ 1,0+ N +1]
Ii=[Aa+ M +2, 0+ A3+ 1]
Is =Moo+ A3+ 2, A + A3+ 2],
and define the other intervals as before.
In both cases, let ¢; ; be the coefficient of 'y’ in ¢. Using ([J) we obtain that

Y= ( : Z Gy’

1 o
(15) i Z Gi—t,j—17'y’

1,J,120

P
= E Ci—k—l,j+k—l+13€ Y.

i,5,k,1>0

(Note: We can divide by y — x because ¢ = 0 when x = y.) Comparing the coeffi-
cients of 2y’ on both sides of equation ([[F), we obtain ¢; ; = D k0 Cimh—ljth—l11-
Therefore,

V2
(16) Proue = Z CVz—i—j,m-‘ri—j-i-l'

i,j=0
We have shown that %\V = (u, uo Can be obtained by adding the entries in Table 3
in all points in N? that can be reached from (v, 1o + 1). See Table 4.

Table 4
The right-most point in Table 4 has coordinates (3, 2).

By hypothesis v < ps < |n/2|. Then, if we start at (v, uo + 1) and move as
previously described, the only points in N? that we can possibly reach and that
are nonzero in Table 3 are those in Iy x I3 or Iy x I5. Hence, we have that ¢,, ,,
is the number of points in N2 inside I, x I3 that can be reached from (v, pio + 1)
minus the ones that can be reached in Iy x I;.
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Case 1 The inequality A1 + Ay > Xy + A3 implies that A\ + A\, +1 > [3].
Moreover, jiy > v, implies that we are only considering the region of N? given by
0 <i<j < |%]. The number of points in N? that can be reached from (v, p12+1)
inside Iy x I3 is given by T'(Ag3 + Mg, Ao — Az, Ao + Ay + 1, A3 — A\y). Similarly, the
number of points in N2 that can be reached from (v2, o + 1) inside I x I is given
by F()\g + >\4, )\2 - )\3, )\1 + )\4 + 2, )\3 - >\4)

Case 2 The inequality Ao + A3 > A1 + Ay, implies that A\ + Ay +1 > [5].
Moreover, jiy > v, implies that we are only considering the region of N? given by
0 <i<j <|%]. The number of points in N? that can be reached from (v, t12+1)
inside Iy x I3 is given by T'(A3 + Mg, Ao — Az, Ao + Ay + 1, Ay — Ag). Similarly, the
number of points in N2 that can be reached from (v2, o + 1) inside I x I is given
by F(>\3+>\4,)\2—)\3,)\2+)\3+2,)\1—>\2). O

Corollary 5. Let u = (u1, p2), v = (v1,10), and X = (A1, A2) be partitions of n.
Assume that vo < g < Xg. Then

Yo = —z)(y = ),

Ao— —Xo+1
where © = max (0’ [W—D and y = [w—‘ ]

Proof. Set A3 = Ay = 0 in Theorem []. Then we notice that the second possibility
in the definition of I', that is, when ¢ < y < ¢ + d, never occurs. Note that
Vg + g — No > 9 + g — Ay — 1 for all partitions u, v, and . Therefore,

7/)1\1/ = UA2+1,1(V2 + pe — Ag) — 0A2+1,1(1/2 +pg — A —1).

Suppose that v + pa — Ay < 0. From the definition of oy,,411 we obtain that
fyﬁy = 0. Therefore, in order to have 7;)1, not equal to zero, we should assume that
Vo + Mo — )\2 > 0.

If0§V2+M2—>\2 <)\2+1, then

V2+/J/2—>\2+1-‘

Orng+11(V2 + 12 — Ag) = [ 5

Similarly, if 0 < vy 4+ o — Ao < Ay + 1, then

V2+M2+)\2_n—‘

Ornt11(a+p0— A — 1) = [ 5

It is easy to see that all other cases on the definition of 0 ; can not occur. Therefore,
defining x and y as above, we obtain the desired result. O
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Example 6. If p =v =X = (,]) or p = v = (2[,2l) and A\ = (3[,1), then from
the previous corollary, we obtain that

= [ [2] i v

Note that to apply Corollary [] to the second family of shapes, we should first
use the symmetries of the Kronecker product to set v = A = (2[,21) and p = (3[,1).

Corollary 7. The Kronecker coefficients vﬁ‘w where p and v are two-row parti-
tions, are unbounded.

Proof. Tt is enough to construct an unbounded family of Kronecker coefficients.
Assume that p = v = XA = (3[,1). Then from the previous corollary we obtain that

[+1
A
7/.1,!12’7 2 —‘

4. SERGEEV’S FORMULA

In this section we state Sergeev’s formula for a Schur function of a difference of
two alphabets. See [l]] or [7, section 1.3] for proofs and comments.

Definition 8. Let X,, = 21 + - -- + x,, be a finite alphabet, and let
bm=(m—1,m—2,---,1,0). We define X’ by X = z""*.

é
- L1

Definition 9. Let i(a) denote the number of inversions of the permutation a. We
define the alternant to be

AfrErLP = Z (_1>i(a)P(xoc(l)7 o 7:1:oc(m))7
QESm

for any polynomial P(xy,--- ,x,).

Definition 10. Let A be the operation of taking the Vandermonde determinant
of an alphabet, i.e.,

A(X,,) = det(x?"b_j)%zl.

Theorem 11 (Sergeev’s Formula). Let X, = 1+ -+xy, and Y, = y1+---+yn

be two alphabets. Then
Sx[Xm — Vo] = A7 AL X ey H (zi —y5)

AX)AY) AL
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The notation (i,j) € A means that the point (i, j) belongs to the diagram of A.
We set z; = 0 for ¢ > m and y; = 0 for j > n.

We use Sergeev’s formula as a tool for making some calculations we need for the
next two sections.

1. Let = (1°'my) be a hook. (We are assuming that e; > 1 and my > 2.) Let
Xl = {xl} and X2 = {LEQ}

(17) suler — xa) = (1)@ af! (21 — xa).

2. Let v = (v1,15) be a two-row partition. Let Y = {y;,y2}. Then

vi—vo+1 _

(y112)"2 (11 et

(18) sulyn + ] = =

Y1 — Y2

3. We say that a partition A is a double hook if (2,2) € A and it has the form
A = (1424253 ny). In particular any two-row shape is considered to be a double
hook.

Let A be a double hook. Let U = {uy,us} and V = {vy,v9}. Then if ny # 0
then sy[u; + uy — vy — vo] equals

(ur — v1)(ug — v1)(uy — v2)(ug — va)
(ur — ug) (v — v2)

(19) (—1) " (urug)™ 2 (v109)™

% (ug4—n3+1 . u?4—n3+1) (Ugh-i-l . Uilﬁ_l) )

On the other hand, if ny = 0 then to compute s)[u; + ug — v1 — vo] we should
write A as (141292712 n3). That is, we set dy := dy, dy := dy — 1, n3 := 2, and
ny = nz in (I9).

4. Let A\ be a hook shape, A = (1%ny). (We are assuming that d; > 1 and
ny > 2.) Let U = {ug,us} and V = {wy,v9}. Then sylu; + ug — v — vg]
equals

IV 1
(20) ( 1) (ul . u2) (Ul _ 122) X

{ulvl(ul —v1)(uy — ve)(ug — vl)u?z_%frl
— U1U2(U1 — Ug)(ul — ’Ul)(UQ — UQ)U?2_2U31_1

— UV (Ug — Ul)(UQ — 112)(u1 — Ul)ugz_%)fl_l

+ UQ'UQ(UQ — ’U2)<u2 — Ul)(ul _ U2)ugz_2vgl_l,}
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5. THE CASE OF TWO HOOK SHAPES

In this section we derive an explicit formula for the Kronecker coefficients fy;),j
in the case in which p = (1°u), and v = (17v) are both hook shapes. Given a
partition A the Kronecker coefficient vﬁ‘y tells us whether point (u,v) belongs to
some regions in N? determined by p, v and \.

Recall that we denote the characteristic function by enclosing a proposition P
with brackets, (P).

Lemma 12. Let (u,v) € N? and let R be the rectangle with vertices (a,b), (b,
(¢,d), and (d,c), witha > b, ¢ > d, ¢ > a and d > b. (Sometimes, when ¢ =d =
we denote this rectangle as (a,b;e).)

Then (u,v) € R if and only if [v—u| <a—banda+b<u+v<c+d

)

Proof. Let Ly be the line of slope 1 passing through (u,v), and let Ly be the line
of slope —1 passing through (u,v). Then we have that

Li:y=x+v—u
Ly:y=—x4+u+v
The point (u,v) is in R if and only if L; is between the lines of slope 1 passing

throught (a,b) and (b,a). Thatis, a—b < v—u < b—a and L, is between the lines
of slope —1 passing throught (a,b) and (¢,d). That is, a+b<u+v<c+d O

Theorem 13. Let A\, pu and v be partitions of n, where p = (1°u) and v = (1/v)
are hook shapes. Then the Kronecker coefficients 7[)1/ are given by the following:
1. If X is a one-row shape, then %\V = Opu-
2. If X is not contained in a double hook shape, then vﬁ‘u = 0.
3. Let A = (1412%ng3ny) be a double hook. Let x = 2dy + dy. Then

e+7 —x
= (=1 L <7 - ol < i)
— 1
+(nggw++§n4)(|f—e\§d1+l).

Note that if ny = 0, then we shall rewrite A = (1912%712n3) before using the
previous formula.
4. Let A = (1%w) be a hook shape. Suppose that e < wu, f <wv, and d < w. Then

Y =(e<d+ f)d<e+ f)(f <e+d).

Proof. Set X = {1,z} and Y = {1,y} in the comultiplication expansion (f]) to
obtain

(21) sx[(1 =) Z VSl — 2]y [1 =y,
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We use equation ([[7) to replace s, and s, in the right hand side of (). Then
we divide the resulting equation by (1 — z)(1 — y) to get

[1—y—x—|—xy o)
(1-2)(1 ZVW :

Therefore,

sl =y — o+

1-z)1-y) °

Yo = [(—2)°(—y)’]

when ;1 and v are hook shapes.
Case 1. If X is not contained in any double hook, then the point (3,3) is in A,
and by Sergeev’s formula, s)[1 — y — = + zy] equals zero.

Case 2. Let A = (192%n3n,) be a double hook. Set u; = 1, uy = 2y, v, = =,
and vy = y in ([9). Then we divide by (1 —z)(1 —y) on both sides of the resulting
equation to obtain

s\ll —y —z+ayl

) oy

= (1) (a)etet

X (1—2)(1—7) (1 - (xy)"4‘"3+1) (xdlﬂ _ yd1+1) |

1—zy r—y

Note: If ny = 0 then we should write A = (141292712n,) in order to use ([[9).

Let p be a point in N2 We say that (i,7) can be reached from p, written p ~»
(1,7), if (4, ) can be reached from p by moving any number of steps south-west or
north-west. We have defined a weight function by

. z'y?,  if p~ (4,7);
wp(i, j) =

0, otherwise.

Let wy(T) = 2 jjerwpli,j) be the generating function of a region 7' in N2,
Let R be the rectangle with vertices (0,d;), (di,0), (di + ng — ng,ng — n3) and
(n4g — ng,d; + ng — ng). Then

1 — (xy)m;—ns-i-l ZL’d1+1 _ yd1+1
w(d1+n4—n37n4—n3)(R) = <

1—ay T —Yy
n4g—mns
=D D (ayldy
k=0 i+j=d;

See Table 5.
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1

1 1 1
1 1
1
Table 5.

di=4and nzs —nys =4

Recall that we are using matrix coordinates, and that the upper-left corner has
coordinates (0,0). The coordinates of the four vertices of R in Table 5 are (0,4),
(4,0), (8,4), and (4, 8).

We interpret the right-hand side of (Pg) as the sum of four different generat-
ing functions. To be more precise, the right-hand side of () can be written as
Z?:l wpi(ri) where P1 = (n4+d2— 1, n4—|—d2+d1 - 1) and R1 = {n3+d2+d1 - 1, ns—+
dy—1;n4 —ng}, po = (ng+do,ngd+dy+dy — 1) and Ry = {n3+ds +dy,n3 +ds —
1; n4—n3}, P3 = (n4+d2—1, n4+d2+d1) and Rg = {n3+d2+d1 —1, n3+d2; n4—n3},
and P4 = (n4—|—d2 +d1,n4+d2+d1) and R4 = {n3+d2+d1,n3+d2 —|—d1;n4 —ng}.

We observe that Ry U Ry (and Rz U Ry ) are rectangles in N2. Moreover,

(23) 72,/: ((e, f) € RiURy) + ((e, f) € R3U Ry).

The vertices of rectangle Ry U R, are given (using the notation of [[3) by
a=n3+dy+d —1 b=ng+dy—1
c=ny+dy+dy d=mn4+dy

Similarly, the vertices of rectangle Ry U R3 are given by
a=n3+dy+d; b=n3+dy—1
c=mn4+dy+ dy d=mny4+dy—1

Applying Lemma [[3 to (BJ) we obtain

T cnr el < )

— 1
+<n3§6+ffx+§

72u:(n3_1§

na)(|f —el < dy +1).
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Case 3. ) is a hook. Suppose that A is a hook, A = (1%w). Set u; = 1,
uy = zy, vy = x, and v = y in (BJ). Then we divide by (1 — z)(1 — y) on both
sides of the resulting equation to obtain

(a) 2=y rE] gy ( - y) (1 - <xy>t”)

(1-2)1-y) T —y 1—xy

() ()

We want to interpret this equation as a generating function for a region 7" using
the weight w. We proceed as follows:

Let Ry be the rectangle with vertices (d,0), (0,d), (d + w — 1,w — 1), and
(w—1,d+w —1). Then

(25)  We-tdrw-1)(R1) = (1 ;_(xjy)w) (Idz _:Z ) wzl >

=0 i+j=d

(See Table 5.) Similarly, let Ry be the rectangle with vertices (d, 1), (1,d), (d +
w—2,w—1),and (w—1,d+w —2). Then

(26)
1 — (xy)w! — w2
W(w—l,d+w—2)(R2) =Y ( 1( y) ) ( ) ry y
— 2y T — P

0 i+j=d—1

Observe that the points in N? that can be reached from (0,d) in R; and the
points in N? that can be reached from (1,d) in Ry are disjoint. Moreover, they
completely fill the rectangle R; U Ry. See Table 6.

1] -1 1
1
Table 6

d=4,w=06.
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Note that Ry is contained in R;. We obtain that
Waw—1d+w-1)(F1) + Ww-1drw-2)(F2) = [(e, f) € R
We use apply Lemma [[3 to the previous equation to obtain:
(le—=fl<d)d<e+f<d+2w-—2).

But, by hypothesis, e < u, f < v, and d < w. Therefore, this system is equivalent
to(d<e+ f)(f <e+d)(e<d+ f), as desired. O

Corollary 14. Let A, u, and v be partitions of n, where p = (1°u) and v =
(17v) are hook shapes and X = (A1, \2) is a two-row shape. Then the Kronecker
coefficients fy;’),/ are given by

e+ f+1
= m1<e< Mo =+ < LI <Al s <)
Proof. In Theorem [[3, set d; = dy = 0, ng = Ay and ny = A;. O

Corollary 15. Let A\, p and v be partitions of n, where i and v are hook shapes.
Then the Kronecker coefficients are bounded. Moreover, the only possible values
for the Kronecker coefficients are 0, 1 or 2.

6. THE CASE OF A HOOK SHAPE AND A TWO-ROW SHAPE

In this section we derive an explicit formula for the Kronecker coefficients in the
case p = (1°*my) is a hook and v = (14, 1) is a two-row shape. Given a partition
A, the Kronecker coefficients %\V tell us whether the point (e;,v») belongs to some
regions in N? determined by p, v and \.

Using the symmetry properties of the Kronecker product, we may assume that
if \ = (1%2%n3n,) then ny — n3 < dy. (If ny = 0 then we should rewrite \ as
(141292=12 n3). Moreover, our hypothesis becomes n3 — 2 < d;.)

Recall that we denote the value of the characteristic function at proposition P
by (P).

Theorem 16. Let A\, i1 and v be partitions of n, where yu = (1*my) is a hook and
v = (11,11) is a two-row shape. Then the Kronecker coefficients vﬁ‘u are given by
the following:

1. If X is a one-row shape, then fyﬁy =0y
2. If X is not contained in any double hook, then 7;)1, =0.
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3. Suppose \ = (1412%n3n,) is a double hook. Assume that ny —ns < d;.
(If ny = 0, then we should write A = (1929712 n3).) Then

Vo, = (n3 < vy —dy — 1 < ny)(dy + 2dy < €1 < dy + 2dy + 3)
+ (ng < wvg —dy < nyg)(dy +2dy < ey < dy + 2dy + 3)
+(n3 <wyg—do+1<my)(dy +2ds < 5 < dy +2dy + 3)
—(ng+do+dy =w)(dy +2ds + 1 < e < dy + 2ds + 2).

4. If X is a hook, see Corollary [[].

Proof. Set X = 14z and Y = 1+y in the comultiplication expansion (f) to obtain

(27) sxl(1—z)(1+y)] Z%WS# zlsu[1+y].

Use ([7) and ([§) to replace s, and s, in the right-hand side of (1), and divide
by (1 — x) to obtain

(28) sxl(1—2)(1+y)] _ Z Wﬁy(—x)ely’” (1 —1yj—u2+1).

11—z = (1o ma) Y

v=(v1,12)

If A\ is not contained in any double hook, then the point (3,3) is in A, and by
Sergeev’s formula, s,[(1 — z)(1 + y)] equals zero.

Since we already computed the Kronecker coefficients when A is contained in
a hook, we can assume for the rest of this proof that A is a double hook. Let
A = (192%n3n,). (Note: If ny = 0 then we should write A = (141292712 n,).)

Set uy = 1, ug = y, v; = x, and vy = zy in ([[9), and multiply by i:—:yc on both
sides of the resulting equation.

(29) . (o) (1—y ) = (y — @) (1 —ay)(1 - x)

p=(11mz)
v=(v1,2)

% (_x)d1+2d2yn3+d2—l (1 - yn4_n3+1)<1 - yd1+1) )
L—y
We have that (y — 2)(1 —zy)(1 —z) =y — z(1 + y + y?) + (1 + y + y?) — 23y.
Therefore, looking at the coefficient of = on both sides of the equation, we see that
fy;),j is zero if e; is different from dy + 2ds, di + 2ds + 1, di 4+ 2dy 4+ 2, or dq + 2ds + 3.
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Let e; = dy + 2dy or e; = dy + 2ds + 3. Since vp < n/2, we have that

Yo =W >

p=(1°1m3)
v=(v1,12)
=l Y. gy -yt (i +1>n/2)
—(11my)
ul/:(Vl,l/QQ)
Vo], n 1- yn4—n3+1 —r
= [y 2]y 3+d2(1 — yd1+1> <ﬁ) (Eq )

n4—mns

— [yvz]yn3+d2(1 _ yd1+1) Z yk
k=0

n4a—mns

— [yuz]yn3+d2 Z yk. (n3+d2+d1 Zn/2)
k=0

We have obtained that for e; = dy + 2dy or ey = dy + 2dy + 3
Yoy = (ng < v — dy < my).
Let e; = dy +2dy + 1 or ey = dy + 2dy + 2. Since 1, < [ 5] we have that
T =W Y

p=(1°1mg2)
v=(v1,r2)

=[] > -yt
p=(11mz)
v=(v1,12)

1 _ ,,ma—n3+1
— [yuz]yns—l-dz—l(l +y+ y2)(1 . yd1+1) ( Y )

I—y

. val, n3+do—1 2 1 - yn4_n3+l -

= | "y (I+y+y) T1—y —(n3 +ds +di = 1)
n4g—mns

= ([?JW]Z/nSerTl(l +y+y?) Z yk) —(n3 +do +di = 1)

k=0

We have obtained that for e; = dy + 2dy + 1 or e = dqy + 2dy + 2

(30) ”Yﬁu:(n3§V2—d2—1§n4)+(n3§1/2—d2§n4)
+(n3§V2—d2+1§n4)—(n3+d2+d1:u2).
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Corollary 17. The Kronecker cofficients, fy;)w where p 1s a hook and v is a two-
row shape are always 0, 1, 2 or 3.

7. FINAL COMMENTS

The inner product of symmetric functions was discovered by J. H. Redfield [
in 1927, together with the scalar product of symmetric functions. He called them
cup and cap products, respectively. D.E. Littlewood [[, f]] reinvented the inner
product in 1956.

More recently, .M. Gessel [J] and A. Lascoux [H] obtained combinatorial inter-
pretations for the Kronecker coefficients in some restricted cases; Lascoux in the
case where ;1 and v are hooks, and A a straight tableaux, and Gessel in the case
that p and v are zigzag shapes and A is an arbitrary skew shape. A. Lascoux in-
terpreted the Kronecker coefficients, when two of the shapes are hooks as counting
clases of words under some equivalence relation. We refer to ] or [ for a com-
plete statement of his results. The Corollary of Theorem 3 in this paper shows that
each class of words, under Lascoux’s equivalence, contains either 0, 1, or 2 different
representatives. [. Gessel worked on a more general framework, contemplating the
occurrence of skew tableaux. It was shown in [P that in the case where two of the
partitions are hook shapes, and the third one is an arbitrary straight shape, his
result is equivalent to Lascoux’s.

In [f], A.M. Garsia and J.B. Remmel founded a way to relate shuffles of per-
mutations and Kronecker coefficients. From here they obtained a combinatorial
interpretation for the Kronecker coefficients when A is a product of homogeneous
symmetric functions, and p and v are arbitrary skew shapes. They also showed
how Gessel’s and Lascoux’s results are related.

J.B. Remmel [{], [0}, and J.B. Remmel and T. Whitehead [T}, obtained formu-
las for computing the Kronecker coefficients in the same cases considered in this
paper. Their approach was mainly combinatorial:

First, they expanded the Kronecker product s, * s, in terms of Schur functions
using the Garsia-Remmel algorithm [[]. The problem of computing the Kronecker
coefficients was reduced to computing signed sums of certain products of skew
Schur functions.

Then they obtained a description of the coefficients that arise in the expansion
of the resulting product of skew Schur functions in terms of counting 3-colored
diagrams in [, and [[] or 4-colored diagrams in [[[I]]. At this point, they reduced
the problem to computing a signed sum of colored diagram.

Finally, they defined involutions on these signed sums to cancel negative terms,
and obtained the desired formulas by counting classes of restricted colored diagram.

In general, it is not obvious how to go from the determination of the Kronecker
coefficients fyﬁ,y when y and v are two-row shapes found in this paper, and the one
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obtained by J.B. Remmel and T. Whitehead [[1]. But, in some particular cases
this is easy to see. For instance, when A is also a two-row shape, both formulas are
exactly the same.
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