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Sevilla-Spain

E-mail: suarez@us.es & madelgado@us.es

Abstract

In this paper we are concerned with the nonlocal elliptic problem −∆u = f(u)
[∫

Ω
g(u)

]p

in Ω,

u = 0 on ∂Ω,

where Ω ⊂ IRN is a bounded smooth domain, f, g : IR → IR are given
functions and p is a fixed real number. We use variational methods to
prove multiplicity results.
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1 Introduction

In this paper we deal with a class of elliptic nonlocal problems whose

prototype is  −∆u = f(u)

[∫
Ω

g(u)

]p

in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ IRN , N ≥ 1, is a bounded smooth domain, f, g : IR → IR are

given functions and p is a fixed real number.

Nonlocal problems have been intensively studied since their first

appearance in the work of Kirchhoff [24] who studied a wave equation which

is a generalization of the D’ Alembert equation. On this subject the reader

may also consult Carrier [8] and Lions [28].

However, non-local problems are not restricted to mechanical motivations

as in the aforementioned works. They also appears in a wide variety of

applications as population dynamics (Chipot [14], [15], [13], [16], [17], [18]),

Ohmic heating (Freitas [21] and Lacey [27]), the formation of shear bands

in materials (Olmstead [30] and Bebernes [4]), heat transfer in thermistors

( Fowler [20]), combustion theory (Pao [31]), the electric ballast resistor

(Chafee [11]), microwave heating of ceramic materials (Bose-Kriegsmann [5]

and Kriegsmann [26]).

In particular, the present work was motivated by Gomes-Sanchez [22] who

studied a variational counterpart of problem (1.1), namely −∆u = f(u)

[∫
Ω

F (u)

]p

in Ω,

u = 0 on ∂Ω,
(1.2)

where f : IR → IR is a given function, with a sort of exponential growth, and

F (t) =

∫ t

0

f(s)ds,

Problems like (1.2),{ −∆u = δ eu∫
Ω eu in Ω,

u = 0 on ∂Ω,
(1.3)
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and {
−∆u = α e−u

(
∫
Ω e−u)

p in Ω,

u = 0 on ∂Ω,
(1.4)

were previously studied by several authors as Bebernes-Lacey [3] and

Caglioti-Lions-Marchiori-Pulvirenti [7] and appear in problems related with

the theory of gravitational equilibrium of polytropic stars, the fully turbulent

behavior of a real flow, among others.

Here, we attack cases in which f changes sign and the area of the bumps

of the graph of f plays a key role. Multiplicity of solutions are obtained by

exploring these geometric properties. At least to our knowledge, these types

of nonlinearities have not been previously studied in the context of nonlocal

problems.

In Section 2 we study the case in which f(0) ≥ 0 and f is positive near

zero.

In Section 3 we attack the problem in which f(0) = 0 and f is negative

near zero.

In Section 4 we approach the semipositone case.

Acknowledgement. This work was done while the first author was

visiting Dpto. de Ecuaciones Diferenciales y Análisis Numérico - Universidad

de Sevilla - Spain in a Post-Doctoral program and was supported by

Universidade Federal de Campina Grande and CNPq - Brazil (Proc.

201214/2008-3). Also, the first author thanks M. Delgado, A. Suarez and

the staff of the aforementioned Department for their warm hospitality.

2 f (0) ≥ 0 and f > 0 near 0

Here we will study problem (1.2) by establishing a multiplicity result related

with the number of zeroes of f and the areas of the bumps of the graph of

f . More precisely, we will suppose that f : [0, +∞) → IR is a continuous
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function of class C1 in (0, +∞) and satisfies

(f1) lim inf
t→0+

f(t)

tα
> 0,

where α, p are positive numbers satisfying

(αp)1 1 > α + αp + p,

(f2)


There are numbers 0 < θ1 < θ2 < θ3 such that

f(θ1) = f(θ2) = f(θ3) = 0, f(t) > 0 if 0 < t < θ1,
f(t) < 0 if θ1 < t < θ2 and f(t) > 0 if θ2 < t < θ3;

(F1) F (θ2) =

∫ θ2

0

f(s)ds > 0,

(F2) F (θ3) > F (θ1).

We point out that condition (F1), in particular, implies that F (t) > 0 for

all 0 < t < θ3 (in this way the term

[∫
Ω

F (u)

]p

makes sense), while condition

(F2) tells us that the area of the bump of the graph of f between (θ1, θ2) is

less than the area of the bump of the graph of f between (θ2, θ3).

We will suppose that Ω contains and it is near, in a sense that will be

clarified later, a ball BR =
{
x ∈ IRN ; |x| < R

}
with R sufficiently large such

that R(N−1)p > 1, N ≥ 2. This is equivalent to

R(N−1)(p+1) > RN−1 (2.1)

and will be strongly used in the proof of the second solution.

Note that the assumption (αp)1 implies that 0 < α < 1 and assuming

(f1) and if f(0) = 0, then f is not differentiable in 0. Indeed, f ′+(0) = +∞
and so (f1) is a kind of sublinearity at 0.
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For this fixed Ω we choose ε > 0 sufficiently small such that

(αp)2

[∫
Ω

ϕα+1
1

]p+1∫
Ω

ϕ2
1

≥ ε2−(α+1)(p+1),

where ϕ1 > 0 is an eigenfunction of (−∆, H1
0 (Ω)), associated to the first

eigenvalue λ1. This is possible because
[
∫
Ω ϕα+1

1 ]
p+1∫

Ω ϕ2
1

is a positive number and

condition (αp)1 is equivalent to 2− (α + 1)(p + 1) > 0.

The main result of this section is as follows:

Theorem 2.1 Let f ∈ C0[0,∞) ∩ C1(0,∞) be a function satisfying

(f1), (f2), (F1) and (αp)1. Then problem (1.2) possesses a positive solution

u1 satisfying 0 < |u1|∞ < θ1, whatever Ω bounded smooth domain. If, in

addition, f satisfies (F2) and Ω contains and it is near a ball BR, with radius

R sufficiently large, problem (1.2) possesses a second solution u2 satisfying

0 < |u1|∞ < θ1 < |u2|∞ < θ2. (2.2)

A standard bootstrap argument shows that such solutions are classical.

As we have said before, the term Ω contains and it is near a ball BR,

with radius R sufficiently large will be precisely established in the proof of

the second solution.

It is worthwhile to say that even in case Ω = BR we may not infer that the

solutions obtained are radial. We recall that in [23] the function f should be

of class C1[0, +∞) in order to obtain radial symmetry. As it is well known,

if we consider the problem
−∆u = uα in Ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω,

with 0 < α < 1, then nonradial solution may appear.

We will start by establishing a basic and simple lemma which will play a

key role in the proof of theorem 3.1.
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Lemma 2.1 Let f ∈ C0[0,∞)∩C1(0,∞) be a function such that f(θ) ≤ 0,

for some θ > 0, and f satisfies (F1). Then problem (1.2) does not possess a

classical positive solution u with |u|∞ = θ.

Proof. Suppose, on the contrary, that u ∈ C2(Ω)∩C(Ω) is a positive solution

of (1.2), that is,  −∆u = f(u)

[∫
Ω

F (u)

]p

in Ω,

u = 0 on ∂Ω,

with |u|∞ = θ. Consequently, 0 < u(x) ≤ θ for all x ∈ Ω and

| {x ∈ Ω; u(x) < θ} | > 0. Let M > 0 be such that f(t)+Mt ≥ 0 is increasing

on [0, θ]. Since −∆u + M

[∫
Ω

F (u)

]p

u =

[∫
Ω

F (u)

]p

[f(u) + Mu] in Ω,

u = 0 on ∂Ω

and  −∆θ + M

[∫
Ω

F (u)

]p

θ ≥
[∫

Ω

F (u)

]p

[f(θ) + Mθ] in Ω,

θ > 0 on ∂Ω

we obtain 
−∆(θ − u) + M

[∫
Ω

F (u)

]p

(θ − u) =[∫
Ω

F (u)

]p

[f(θ) + Mθ − (f(u) + Mu)]
6≡
≥ 0 in Ω,

θ − u > 0 on ∂Ω.

By the maximum principle, θ − u(x) > 0 on Ω and so |u|∞ < θ which

contradicts our assumption. This proves the lemma. �

Proof of the Theorem 2.1. First of all let us consider the problem −∆u = f1(u)

[∫
Ω

F1(u)

]p

in Ω,

u = 0 on ∂Ω,
(2.3)
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where f1 : IR → IR is the Hölder-continuous function defined by

f1(t) =


f(0) if t ≤ 0,
f(t) if 0 < t ≤ θ1,
0 if t > θ1,

where F1(t) =

∫ t

0

f1(s)ds.

We will find a solution of the problem (2.3) as a critical point of the

functional J1 : H1
0 (Ω) → IR given by

J1(u) =
1

2

∫
Ω

|∇u|2 − 1

p + 1

[∫
Ω

F1(u)

]p+1

, u ∈ H1
0 (Ω), (2.4)

where in H1
0 (Ω) we are considering the usual norm ‖u‖ =

(∫
Ω

|∇u|2
) 1

2

.

In view of the definition of f1, we have

∫
Ω

F1(u) ≥ 0 for all u ∈ H1
0 (Ω)

and so

[∫
Ω

F1(u)

]p

and

[∫
Ω

F1(u)

]p+1

are well defined. Also,

∫
Ω

F1(u) ≤

F1(θ1)|Ω| which implies that

J1(u) ≥ 1

2

∫
Ω

|∇u|2 − 1

p + 1
[F1(θ1)|Ω|]p+1

and so J1 is bounded from below. Besides of this, it is a standard matter to

show that J1 is weakly lower semicontinuous and belongs to C1(H1
0 (Ω), IR)

with

< J ′1(u), ϕ >=

∫
Ω

∇u∇ϕ−
[∫

Ω

F1(u)

]p ∫
Ω

f1(u)ϕ, ∀u, ϕ ∈ H1
0 (Ω). (2.5)

Hence J1 attains a minimum at u1 ∈ H1
0 (Ω) which is a weak solution of

(2.3).

If f(0) > 0 the solution u1 6≡ 0. In case f(0) = 0, we should show that

u1 6≡ 0 in Ω. For this it is enough to show that J1(u1) < 0. Let ϕ1 > 0 an

eigenfunction of (−∆, H1
0 (Ω)) satisfying (αp)2. Thus, taking ε > 0 such that
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0 < εϕ1(x) < θ1, we obtain

J1(εϕ1) =
1

2
ε2‖ϕ1‖2 − 1

p + 1

[∫
Ω

F (εϕ1)

]p+1

,

where F (t) =

∫ t

0

f(s)ds.

We now use condition (f1) to obtain 0 < t0 < θ1 and γ > 0 such that

f(t)

tα
≥ γ if 0 < t < t0.

Then we choose ε > 0 such that 0 < εϕ1(x) < t0 to obtain (because

F (εϕ1) = F1(εϕ1))

J1(εϕ1) =
1

2
ε2‖ϕ1‖2 − 1

p + 1

[∫
Ω

F (εϕ1)

]p+1

≤

1

2
ε2‖ϕ1‖2 − 1

p + 1

(
γ

α + 1

)p+1

ε(α+1)(p+1)

[∫
Ω

ϕα+1
1

]p+1

.

Consequently,

J1(εϕ1) ≤ ε(α+1)(p+1)

[
1

2
ε2−(α+1)(p+1)‖ϕ1‖2 − 1

p + 1

(
γ

α + 1

)p+1 [∫
Ω

ϕα+1
1

]p+1
]

and for ε > 0 small enough we have J1(εϕ1) < 0.

In this way, we have shown that u1 6≡ 0. Furthermore,

−∆u1 = f1(u1)

[∫
Ω

F1(u1)

]p

≥ 0

implies that u1 ≥ 0 and because u1 6≡ 0 we conclude that u1 > 0 in Ω.

By Lemma 3.1, u1 < θ1 in Ω and so 0 < u1(x) < θ1 for all x ∈ Ω.

Consequently, u1 is a solution of the former problem (1.2). Moreover, for a

future use, we remark that if u ∈ H1
0 (Ω), 0 < u(x) < θ1, one obtains

J1(u) > − 1

p + 1

[∫
Ω

F (u)

]p+1

.
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Indeed, if u ∈ H1
0 (Ω), 0 < u(x) < θ1 we have F (u(x)) < F (θ1) and so∫

Ω

F (u) < F (θ1)|Ω|.

Thus,

J1(u) > − 1

p + 1
[F (θ1)]

p+1|Ω|(p+1) (2.6)

for all u ∈ H1
0 (Ω) with 0 ≤ u(x) ≤ θ1.

It is clear that this first solution may be obtained by another method as,

for example, fixed point theory, including the case in which the problem is

not variational. However, we would like to use solely variational method in

order to obtain multiple solutions. In this way, (2.6) will play a key role.

Another fact it is worthy to recall is that the existence of u1 does not

depend on the size of Ω. The size of Ω is essential for the existence of the

second solution whose existence is shown by using a device motivated by

Klaasen-Mitidieri [25].

For this we should consider the truncation f2 : IR → IR given by

f2(t) =


f(0) if t < 0;
f(t) if 0 ≤ t ≤ θ3;
0 if t > θ3,

and the corresponding problem −∆u = f2(u)

[∫
Ω

F2(u)

]p

in Ω,

u = 0 on ∂Ω,
(2.7)

with F2(t) =

∫ t

0

f2(s)ds.

As we performed to obtain the first solution, we find a minimizer u2 ∈
H1

0 (Ω) to the functional

J2(u) =
1

2

∫
Ω

|∇u|2 − 1

p

[∫
Ω

F2(u)

]p+1

, u ∈ H1
0 (Ω).
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Such a minimizer is a weak solution of the problem (2.7) satisfying 0 <

u2(x) < θ2. We have to point out that u2 is positive because f2(t) + Mt is

positive for some M > 0 and for all t ∈ IR. So, u2 is a solution of (1.2).

However, we can not affirm, up to now, that u1 6= u2. For this, we consider

the function uR ∈ H1
0 (Ω) defined by

uR(x) =


θ3 if |x| ≤ R− 1,

(R− |x|)θ3 if R− 1 < |x| < R,
0 if x ∈ Ω \BR

and set

CR =
{
x ∈ IRN ; R− 1 < |x| < R

}
.

Thus

J2(uR) =
1

2

∫
CR

|∇uR|2 −
1

p + 1

[∫
BR−1

F (θ3) +

∫
CR

F (uR)

]p+1

J2(uR) =
1

2

∫
CR

|∇uR|2 −
1

p + 1

[
F (θ3)|BR−1|+

∫
CR

F (uR)

]p+1

J2(uR) =
θ2
3

2
|CR| −

1

p + 1

[
F (θ3)|BR−1|+

∫
CR

F (uR)

]p+1

.

Using[
F (θ3)|BR−1|+

∫
CR

F (uR)

]p+1

≥ (F (θ3)|BR−1|)p+1 +

[∫
CR

F (uR)

]p+1

⇓

J2(uR) ≤ θ2
3

2
|CR| −

1

p + 1
[F (θ3)]

p+1|BR−1|p+1 +
1

p + 1

[∫
CR

F (uR)

]p+1

⇓

J2(uR) ≤ θ2
3

2
hNRN−1− 1

p + 1
[F (θ3)]

p+1Kp+1
N (R−1)N(p+1)+C1h

p+1
N R(N−1)(p+1).

If R is taken as in condition (2.1) we obtain

J2(uR) ≤ CNR(N−1)(p+1) −Kp+1
N

[F (θ3)]
p+1

p + 1
(R− 1)N(p+1).
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We would like to show that

(∗)

CNR(N−1)(p+1) −Kp+1
N

[F (θ3)]
p+1

p + 1
(R− 1)N(p+1) < − 1

p + 1
[F (θ1)]

p+1|Ω|p+1.

Before to continue, we remember that N(p+1)− (N −1)(p+1) = p+1 and,

by virtue of (F2), [F (θ3)]
p+1 > [F (θ1)]

p+1.

It is worthy to remark that all the calculations made up to now are valid

for all BR ⊂ Ω, R > 1.

Here, we note that condition (F2) implies that for each r > 0, there exists

R = R(r) > 0 such that

CNR(N−1)(p+1) − Kp+1
N

p + 1

[
(F (θ3))

p+1(R− 1)N(p+1) − (F (θ1))
p+1RN(p+1)

]
< −r,

for R > R. Let us fix some R like this and remember that |BR| = KNRN .

So,

CNR(N−1)(p+1)−Kp+1
N

p + 1
(F (θ3))

p+1(R−1)N(p+1) < −r− 1

p + 1
(F (θ1))

p+1|BR|p+1

and choose Ω such that BR ⊂ Ω and

1

p + 1
(F (θ1))

p+1
[
|Ω|p+1 − |BR|p+1

]
< r.

This is the precise meaning of the expression contains and it is near a ball

BR.

Thus,

J2(u2) ≤ J2(uR) < − 1

p + 1
(F (θ1))

p+1|Ω|p+1 < J1(u1) = J2(u1).

This shows that u1 6= u2 and the proof of the theorem is over. �

Remark 2.1 We should emphasize that, in the previous theorem, if f(0) > 0

we may suppose that f is of C1-class on [0,∞). So, under this assumption

and if Ω = BR, the obtained solutions are radial and decreasing with respect

to r = |x|.
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Remark 2.2 As we have shown, u1 is a minimum of J1 and u2 is a minimum

of J2. We conjecture that u1 is also a minimum for J2. If this is the case, an

application of the Mountain Pass Theorem would lead us to a third solution

u3. However, we were not able to prove this. We also conjecture that u1 and

u2 are ordered, i.e., 0 < u1(x) < u2(x) for all x ∈ Ω.

Remark 2.3 As we have said before, if f(0) = 0, then f ′+(0) = +∞ which

combined with the fact that f(t) > 0, for 0 < t < θ1 and f(θ1) = 0 implies

that the graph of f crosses the graph of the straight line λ1(Ω)t for some

0 < t < θ1. It seems that this crossing produces the first solution u1.

However, the existence of positive solution fails if f(0) = 0 and (f1) does not

hold. To check this, let us suppose that the function f satisfies 0 ≤ f(t) ≤ mt,

for all t ≥ 0, 0 ≤ g(t) ≤ C and u is a positive solution of (1.1).

A simple calculations leads us to

0 < λ1(Ω) ≤ C|Ω|p

where C > 0 is a positive constant does not depend on Ω. This is a

contradiction because λ1(Ω) → +∞ as |Ω| → 0. The equation below −∆u = sin u

[∫
Ω

g(u)

]2p

in Ω,

u = 0 on ∂Ω,

(2.8)

with 0 ≤ g(t) ≤ C satisfies these conditions.

Example 2.1 In case f(0) > 0, the function f(t) = −t3 + (3 + a)t2 − (3a +

2)t + 2a, t ≥ 0, enjoys the assumptions of Theorem 2.1 in which the positive

zeroes of f are 4
10

= a < 1 < 2. Here whatever p, 0 < p < 1, is valid because

we can choose α verifying (αp)1 and f1.

Example 2.2 When f(0) = 0 we may consider the function f : [0,∞) → IR

defined by

f(t) = tα(t− a)(t− 1) for 0 ≤ t ≤ 1,
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f(t) = −(1− a)t2 + 3(1− a)t− 2(1− a) for t ≥ 1

where 0 < α < 1 and α+1
α+3

< a < 1. Such a function satisfies the assumptions

of the aforementioned result.

3 f (0) = 0 and f < 0 near 0

In this section we consider the problem −∆u = f(u)

[∫
Ω

F (u)

]2p

in Ω,

u = 0 on ∂Ω,

(3.1)

with p = 0, 1, 2, . . . and f ∈ C1[0,∞) satisfies

(f3)


f(0) = 0 and there are 0 < a1 < a2

such that f(a1) = f(a2) = 0,
f(t) < 0 if 0 < t < a1 and f(t) > 0 if a1 < t < a2.

(F3) F (a2) > 0, where F (t) =

∫ t

0

f(s)ds.

In view of condition (F3), there is 0 < a3 < a2 such that F (a3) = 0, F (t) < 0

if 0 < t < a3 and F (t) > 0 if a3 < t < a2.

From now on, we still denote by f the extension-truncation of f such that

f(t) = f(0) = 0 if t < 0 and f(t) = 0 if t > a2.

Let J : H1
0 (Ω) → IR be the energy functional associated to problem (3.1)

given by

J(u) =
1

2
‖u‖2 − 1

2p + 1

[∫
Ω

F (u)

]2p+1

(3.2)

where, as before, ‖ · ‖ is the usual norm of H1
0 (Ω).

Theorem 3.1 Under assumptions (f3) − (F3) and if Ω contains a ball BR

with R large enough, problem (3.1) possesses two positive solutions satisfying

a1 < |u1|∞, |u2|∞ < a2. Furthermore, if Ω = BR such solutions are radial

and ∂ui

∂r
< 0 for 0 < r < R and i = 1, 2.
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Proof. As in the previous result, we may show that J is coercive, bounded

from below, of C1-class and so on. Hence J attains a global minimum at a

certain u1 ∈ H1
0 (Ω). Since f(0) = 0 we have to show that u1 6≡ 0. For this,

we consider, like before, the function

uR(x) =


a2 if |x| ≤ R− 1,

(R− |x|)a2 if R− 1 < |x| < R,
0 if x ∈ Ω \BR.

Let us evaluate J(uR): Observing that 0 < uR(x) ≤ a2 for all x ∈ Ω, we

obtain

J(uR) =
1

2
a2

2|CR| −
1

2p + 1

[
F (a2)|BR−1|+

∫
CR

F (uR)

]2p+1

where CR =
{
x ∈ IRN ; R− 1 < |x| < R

}
. We now note that F (uR(x)) ≥

min
0≤t≤a2

F (t) = F (a1) to obtain

∫
CR

F (uR(x))dx ≥ F (a1)|CR| and so

F (a2)|BR−1|+
∫

CR

F (uR) ≥ F (a2)|BR−1|+ F (a1)|CR|

and, because the function t → t2p+1, t ∈ IR is increasing,[
F (a2)|BR−1|+

∫
CR

F (uR)

]2p+1

≥ [F (a2)|BR−1|+ F (a1)|CR|]2p+1 .

Consequently,

J(uR) ≤ 1

2
a2

2|CR| −
1

2p + 1
[F (a2)|BR−1|+ F (a1)|CR|]2p+1 .

We now point out that:

• 1
2
a2

2|CR| behaves like 1
2
a2

2R
N−1 at infinity;

• F (a2)|BR−1| behaves like F (a2)(R − 1)N at infinity and recall that

F (a2) > 0;

• F (a1)|CR| behaves like F (a1)R
N−1 at infinity.
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Thus (F (a2)|BR−1|+ F (a1)|CR|)2p+1 behaves like F (a2)
2p+1RN(2p+1) at

infinity and so

J(uR) < 0 if R is large enough.

From now on, we fix such a large R. Consequently, J(u1) ≤ J(uR) < 0 and

so u1 6≡ 0. Let u− be the negative part of u = u+ − u−. Multiplying both

sides of  −∆u1 = f(u1)

[∫
Ω

F (u1)

]2p

in Ω,

u1 = 0 on ∂Ω,

(3.3)

by u−1 and integrating by parts, we obtain

−‖u−1 ‖2 =

[∫
Ω

F (u1)

]2p ∫
Ω

f(u1)u
−
1 = 0.

Hence, u1 ≥ 0 in Ω and reasoning as in Lemma 2.1 and in view of the

maximum principle we conclude that 0 < u1(x) < a2 and a1 < |u1|∞ < a2.

We now claim that 0 is also a local minimum of J . Indeed, if t ≥ 0 we have

f(t) ≤ αt, for some α > 0, and so F (t) ≤ α
2
t2 for all t ≥ 0. Since F (t) = 0

if t < 0, this inequality remains true for all t ∈ IR. Hence,

∫
Ω

F (u) ≤ C‖u‖2

from which

[∫
Ω

F (u)

]2p+1

≤ C‖u‖2(2p+1). Consequently,

J(u) ≥ 1

2
‖u‖2 − C‖u‖2(2p+1) = ‖u‖2(

1

2
− C‖u‖4p) > 0

if ‖u‖ = ρ > 0, ρ small enough. This shows that 0 is a strict local minimum.

We now use the well known Mountain Pass Theorem due to Ambrosetti-

Rabinowitz [1]. For this we recall the following concepts:

We say that the functional of class C1, I : X → IR, X is a Banach space,

satisfies the Palais-Smale condition (PS) if any sequence (un) ⊂ X such that

|I(un)| ≤ C and I ′(un) → 0 in X∗ possesses a convergent subsequence.

(Mountain Pass Theorem) Let X be a reflexive Banach space and

I : X → IR a functional of class C1 satisfying the Palais-Smale condition

and the following geometric conditions:
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(i) I(0) = 0 and there exist ρ, α > 0 such that I(u) ≥ α if ‖u‖ = ρ where

‖ · ‖ is the norm in X;

(ii) there exists e ∈ X such that ‖e‖ > ρ and I(e) ≤ 0.

Then I has a critical value c ≥ α given by

c = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1]); γ(0) = 0, γ(1) = e}.
Combining the fact that

J(uR) < 0, if R is fixed and large enough,

with

J(u) ≥ 1

2
‖u‖2 − C‖u‖2(2p+1) = ‖u‖2(

1

2
− C‖u‖4p) > 0

we find ρ, α, with ρ > 0 small enough, so that e = uR and ‖e‖ = ‖uR‖ > ρ

and so J satisfies the geometry of the Mountain Pass Theorem.

For the sake of completeness we show that J enjoys the (PS) condition.

For this, let (un) ⊂ H1
0 (Ω) such that |J(un)| ≤ C and J ′(un) → 0 in

(H1
0 (Ω))∗ = H−1(Ω). Since J is coercive, it follows that (un) is bounded

in H1
0 (Ω) and so un ⇀ u, weakly in H1

0 (Ω), un → u in Lr(Ω) in Lr(Ω), 1 ≤
r ≤ 2∗, where 2∗ is the critical Sobolev exponent, and un(x) → u(x) a.e. in

Ω, perhaps for subsequences.

Furthermore,

< J ′(u), v >=

∫
Ω

∇u∇v −
[∫

Ω

F (u)

]2p ∫
Ω

f(u)v, for all u, v ∈ H1
0 (Ω)

and so

< ∇J(u), v >=< u, v > − < Tu, v > for all u, v ∈ H1
0 (Ω)
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where < , > is the usual inner product in H1
0 (Ω), ∇J(u) is the gradient of

J in u ∈ H1
0 (Ω) and T : H1

0 (Ω) → H1
0 (Ω) defined by

< Tu, v >=

[∫
Ω

F (u)

]2p ∫
Ω

f(u)v, for all u, v ∈ H1
0 (Ω)

and clearly is compact. Hence ∇J(u) = u − Tu and because ∇J(un) → 0

in H1
0 (Ω) and, in view of compactness of T , (T (un)) is convergent in H1

0 (Ω),

perhaps for a subsequence, we conclude that un → u in H1
0 (Ω) up to a

subsequence. This shows that J satisfies the assumptions of the Mountain

Pass Theorem and so problem (3.1) possesses a second solution u2.

To finish the proof we have to point out that both positive solutions we

have found are classical and satisfy a1 < |u1|∞, |u2|∞ < a2. In case we are

working in a ball, both u1, u2 are radial and ∂u1

∂r
, ∂u2

∂r
< 0 if 0 < r < R. �

Remark 3.1 Let u be a solution of problem (3.1) with 0 < u(x) < a2. Thus

‖u‖2 =

[∫
Ω

F (u)

]2p ∫
Ω

f(u)u.

and because

‖u‖2 =

[∫
Ω

F (u)

]2p [∫
0<u(x)≤a1

f(u)u +

∫
a1<u(x)≤a2

f(u)u

]
≤ ‖u‖2

we obtain

‖u‖2 ≤
[∫

Ω

F (u)

]2p ∫
a1<u(x)≤a2

f(u)u

because f(t) < 0 for 0 ≤ t < a1. Since f is bounded, we may find a constante

C > 0 such that f(t)t ≤ C(1 + t2) which yields

‖u‖2 ≤ C

[∫
Ω

F (u)

]2p ∫
a1<u(x)≤a2

(1 + u2).

Since u(x)
a1

> 1, we obtain

‖u‖2 ≤ C1

[∫
Ω

F (u)

]2p ∫
a1<u(x)≤a2

u2 ≤ C2

[∫
Ω

F (u)

]2p ∫
Ω

u2.
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We now use the variational characterization of λ1 = λ1(Ω), and recalling that

Ω = BR, to get

‖u‖2 ≤ C[F (a2)]
2p |Ω|2p

λ1(Ω)
‖u‖2

and so

0 < C ≤ |BR|2p

λ1(R)
→ 0 as R → 0.

Since the constant C does not depend on Ω, we conclude that problem (3.1)

does not posses solution if R > 0 is small.

It follows from this remark and theorem 3.1 that there are 0 < R0 ≤
R1 < ∞ such that problem (3.1) has no solution if R ∈ (0, R0] and has two

positive solutions if R ∈ [R∞,∞). Consequently, there is a range [R0, R∞]

for which we were not able to determine existence of solution.

Remark 3.2 From condition (F2), there exists a1 < a3 < a2 such that

F (a3) = 0, F (t) < 0 if 0 < t < a3 and F (t) > 0 if a3 < t < a2. We conjecture

that positive solutions u of (3.1) should satisfy a3 < |u|∞ < a2.

Example 3.1 The function f(t) = t(1− t)(t− a), 0 < a < 1
2
, which appears

in the FitzHugh-Nagumo equation, satisfies the assumptions of the above

result.

4 The Semipositone Case

In this section we study problem (3.1) under the semipositone point of view.

More precisely, we will consider f : [0,∞) → IR as a C1-function satisfying

(f4) f(0) = −a < 0.

Beside of this we also suppose

(f5)


There are 0 < b1 < b2 such that
f(b1) = f(b2) = 0, f(t) < 0 if 0 < t < b1

and f(t) > 0 if b1 < t < b2.
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and

(F4) F (b2) > 0.

Semipositone local problems (former called nonpositone) appear in several

physical situations as buckling of mechanical systems, design of suspension

bridges, chemical reactions, astrophysics (thermal equilibrium of plasmas),

combustion and management of natural resources. As it is said in Castro-

Maya-Shivaji [9], the difficulty of studying positive solutions to such problems

was first encountered by Brown-Shivaji [6] when they studied the perturbed

bifurcation problem

−∆u = λ(u− u3)− ε in Ω, u = 0 on Ω

where ε > 0 is a given number. However, the study of semipositone problems

was formally introduced by Castro-Shivaji [10]. For more informations on

this kind of problem the interested reader may consult [9] and the references

therein. With respect to nonlocal semipositone problems, at least to our

knowledge, the present work is the first one.

Here, we attack problem (3.1), with f(0) < 0, by using the device explored

in Arcoya-Calahorrano [2]. However, we believe that the approach used in

Costa-Tehrani-Yang [19], who use variational techniques for locally Lipschitz

continuous functional like the one contained in Chang [12], also works in our

present nonlocal problem.

In the context of semipositone problems we have to consider another

concept of solution. For this, we consider the multivalued problem −∆u ∈ f̂(u)

[∫
Ω

F̂ (u)

]2p

a.e. in Ω,

u = 0 on ∂Ω,

(4.1)

where f̂ : IR → 2IR is the multivalued function defined by

f̂(t) = 0 if t < 0; f̂(t) = [f(0), 0] if t = 0; f̂(t) = f(t) if t > 0.
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By a solution of (4.1) we mean a function u ∈ C1(Ω) ∩ C2(Ω∗), with

Ω∗ = {x ∈ Ω; u(x) 6= 0}, satisfying (4.1).

Note that, in view of boundedness of f and elliptic regularity one has

u ∈ W 2,p(Ω) for all p ≥ 1. Consequently, u ∈ C1,α(Ω) for some 0 < α < 1.

We observe that every solution of (4.1) is nonnegative. Indeed, let us

suppose, on the contrary, that the open set Ω− = {x ∈ Ω; u(x) < 0} 6= ∅.
Thus, if ϕ ∈ C∞

c (Ω−), we obtain∫
Ω−

∇u∇ϕ = 0, for all ϕ ∈ C∞
c (Ω−)

and so, by the maximum principle, u = 0 a.e. in Ω− which is a contradiction.

Consequently, u ≥ 0 a.e. in Ω. This implies that u solves the problem −∆u ∈ f̄(u)

[∫
Ω

F̄ (u)

]2p

a.e. in Ω,

u = 0 on ∂Ω,

(4.2)

where f : IR → 2IR is the multivalued function defined by

f̄(t) =

{
[f(0), 0] if t = 0;
f(t) if t > 0

and F̄ (t) =
∫ t

0
f̄(s)ds

We should emphasize that, in the context of semipositone problems, we

can not conclude that nonnegative solutions are, in fact, positive. In this

way, the reader may consult Castro-Shivaji [10] in which is given an example

of a semipositone problem where the solution is nonnegative and vanishes

at some points. However, in our present problem we are able to show the

positiveness of the solutions when we are dealing with a ball.

To attack problem problem (4.1) we consider the sequence of

approximating problems like the one considered in the previous section −∆u = fn(u)

[∫
Ω

Fn(u)

]2p

in Ω,

u = 0 on ∂Ω,

(4.3)
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where fn : IR → IR is the sequence of C1-functions defined by

fn(t) =

{
f(t) if t > 1

n
;

0 if t ≤ 0,

with fn(t) ≥ f(t) for t ∈ (0, 1
n
] and fn+1(t) ≤ fn(t) for all n ∈ IN and for all

t ∈ IR. Hence, F (t) ≤ Fn(t) for all t ≥ 0 and Fn+1(t) ≤ Fn(t) for all t ≥ 0,

where

Fn(t) =

∫ t

0

fn(s)ds

and

F (t) =

{
0 if t < 0,∫ t

0
f(s)ds if t ≥ 0.

From now on we fix BR ⊂ Ω, for R > 0 large enough as in the previous

section and consider the energy functional

In(u) =
1

2

∫
Ω

|∇u|2 − 1

2p + 1

[∫
Ω

Fn(u)

]2p+1

associated to the problem (4.1).

Theorem 4.1 Under assumptions (f4)− (f5)− (F4) and Ω is as in Theorem

3.1, problem (4.3) possesses at least two positive classical solutions un 6= vn

with ‖un‖∞, ‖vn‖∞ > b1.

Proof. As it is easy to see, problem (4.3) satisfies, for all n ∈ IN large

enough, all the assumptions of theorem 3.1. Furthermore,

In(uR) =
1

2

∫
Ω

|∇uR|2 −
1

2p + 1

[∫
Ω

Fn(uR)

]2p+1

≤

1

2

∫
Ω

|∇uR|2 −
1

2p + 1

[∫
Ω

F (uR)

]2p+1

<

1

2
b2
2|CR| −

1

2p + 1
[F (b2)|BR−1|+ F (b1)|CR|]2p+1 < 0,

for R > 0 large enough and fixed, where uR is the one introduced in sect.

3, because Fn(t) ≥ F (t) for all t ∈ IR, where the last inequality is obtained
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like in the previous section and does not depend on n ∈ IN . Also, because

Fn(t) ≤ F1(t) ≤ αt2 for all t ∈ IR, and some α > 0, we obtain

In(u) ≥ 1

2
‖u‖2 − C(R)‖u‖4p+2 = ‖u‖2

(
1

2
− C(R)‖u‖4p

)
where C(R) is a positive constant that depends on the fixed R > 0 but

does not depend on n ∈ IN . Consequently, there are positive constants

ρ = ρ(R), a = a(R) such that

In(u) ≥ a if ‖u‖ = ρ.

Hence, by minimization and the Mountain Pass Theorem, like in the previous

section, we obtain two positive solutions of problem (4.3) satisfying

In(un) ≤ δ < 0 < a ≤ In(vn)

where δ = δ(R) does not depend on n ∈ IN .

It is clear that b1 < |un|∞, |vn|∞ < b2. This finishes the proof of this

theorem. �

In what follows, by a limiting process, we prove the existence of two

nonnegative solutions for problem (4.1). The procedure is similar, mutatis

mutandis, to that contained in [2]. However, for the sake of completness we

will exhibit the details.

Theorem 4.2 Under the same assumptions of the Theorem 4.1, problem

(4.2) possesses at least two nonnegative solutions. Furthermore, if Ω = BR

such solutions are radial and positive and so they solve (3.1).

Proof. Since (un), (vn) are bounded sequences in the uniform norm, the

elliptic regularity theory shows that (un), (vn) are bounded in W 2,s(Ω) for all

s ≥ 1. So, up to a subsequence, we have un → u, vn → v in C1,ν(Ω) for some

0 < ν < 1. Consequently, u, v ≥ 0 in Ω and, thanks to, |un|∞, |vn|∞ > b1, for

all n ∈ IN , we have |u|∞, |v|∞ > b1 and so u, v 6≡ 0 in Ω.
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Noticing that Fn(t) → F (t) in IR and un → u, vn → v in C1,ν(Ω) for

some 0 < ν < 1, we may use the Lebesgue Dominated Convergence Theorem

to arrive in lim
n→∞

‖un‖2 = ‖u‖2, lim
n→∞

‖vn‖2 = ‖v‖2 and lim
n→∞

∫
Ω

Fn(un(x)) =

lim
n→∞

∫
Ω

F (u(x)),

∫
Ω

Fn(vn(x)) = lim
n→∞

∫
Ω

F (v(x)). Hence,

I(u) ≡ ‖u‖2

2
− 1

2p + 1

[∫
Ω

F (u)

]2p+1

≤ δ < 0 <

a <
‖v‖2

2
− 1

2p + 1

[∫
Ω

F (v)

]2p+1

≡ I(v)

which shows that u 6= v.

In order to show that u, v solve (4.2), we observe that lim
n→∞

fn(xn) = f(x)

if lim
n→∞

xn = x > 0 and lim
n→∞

∫
Ω

Fn(un) =

∫
Ω

F (u). Thus

Ω∗(u) = {x ∈ Ω; u(x) 6= 0} = {x ∈ Ω; u(x) > 0} .

Since Ω∗(u) is an open nonempty set we have∫
Ω∗(u)

∇un · ∇ϕ =

[∫
Ω

Fn(un)

]2p ∫
Ω∗(u)

fn(un(x))ϕ, ∀ϕ ∈ C∞
c (Ω∗(u)).

Consequently, by virtue of the convergence un → u in C1,ν(Ω) we obtain∫
Ω∗(u)

∇u∇ϕ =

[∫
Ω

F (u)

]2p ∫
Ω∗(u)

f̄(u)ϕ, ∀ϕ ∈ C∞
c (Ω∗(u)).

By the fundamental lemma of the calculus of variations

−∆u(x) = f(u(x)) in Ω∗(u)

and by the elliptic regularity theory u ∈ C2(Ω∗(u)). Using a well known

result by Stampacchia [29]

−∆u(x) = 0 in Ω/Ω∗(u),
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that is, −∆u(x) ∈ [−a, 0] = f̄(0). Hence,{
−∆u(x) ∈

[∫
Ω

F̄ (u)
]2p

f̄(u(x)) a.e. in Ω,
u = 0 on ∂Ω.

Reasoning as before, we may prove that v is also a solution of (4.1).

In case Ω is a ball the approximating sequence of solutions satisfy

‖un‖∞, ‖vn‖∞ > b1 are radial and ∂un

∂r
, ∂vn

∂r
< 0 if 0 < r < R. Consequently,

the limits u, v are nonnegative, nonidentically zero and ∂u
∂r

, ∂v
∂r
≤ 0, 0 < r < R,

which implies that both of them attains maximum at 0 ∈ BR. Consequently,

there is 0 < ρ ≤ R such that u(x) > 0 for |x| < ρ. Let us suppose that

ρ < R. Since u satisfies{
−∆u = f(u)

[∫
Ω

F (u)
]2p

in Bρ,
u = 0 on ∂Bρ

and so, by the maximum principle, and because u ∈ C1,δ(Ω), for some

0 < δ < 1, it follows that ∂u
∂r

(ρ) < 0. This contradicts with the fact that

ρ < R because, in this case, u would attains a minimum at all x with |x| = ρ.

Consequently, we would have ∂u
∂r

(ρ) = 0. Thus u is positive in BR and solves

(3.1). We reason in the same way for v. �

Example 4.1 For the semipositone case we may consider, as an example,

the function f(t) = −t2 + (1 + a)t− a with 0 < a < 1
3
.
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Non Linéaires, Dunod, Paris, 1969.

[29] C.B. Morrey, Multiple integrals in calculus of variations, Springer, Berlin

(1966).

[30] W.E. Olmstead, S. Nemat-Nasser & L. Ni, Shear bands as surfaces of

discontinuity, J. Mech. Phy. Solids, 42 (1994)697-709.

[31] C.V. Pao, Blowing-up of solutions for a nonlocal reaction-diffusion

problem in combustion theory, J. Math. Anal. Appl., 166 (1992)591-600.


