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Isorings and Related Isostructures.

RAÚL M. FALCÓN - JUAN NÚÑEZ VALDÉS

Sunto. – Lo scopo principale di questo articolo è dare una fondazione matematica, se-
ria e costante a delle parti dell’isoteoria di Santilli. Noi studiamo i sollevamenti
isotopici di anelli, sottoanelli ed ideali. Usando il modello della isomoltiplicazione,
condizioni necessarie che assicurano l’esistenza di tali isostrutture sono date. Tali
condizioni sono basate sulle leggi interne che originano gli elementi associati di
sollevamenti isotopici. Questi elementi permetteranno di estendere, da un punto di
vista diverso lo studio di Santilli di teoria generalizzata e non-lineare. Molti esem-
pi di queste isostrutture sono dati. Noi troviamo infine le differenze tra un isoanel-
lo quoziente ed un anello quoziente provenienti da un isoanello e da uno dei suoi
isoideali.

Summary. – The main goal of this paper is to give a mathematical foundation, serious
and consistent, to some parts of Santilli’s isotheory. We study the isotopic liftings
of rings, subrings and ideals, and we also introduce the concept of quotient isoring.
By using the isoproduct model, necessary conditions assuring the existence of such
isostructures are given. Such conditions are based on the inner laws which origi-
nate the associated elements of isotopy. These elements will allow to extend, from a
different point of view, the Santilli’s study of non-linear generalized theory. Several
examples of these isostructures are also shown. We finally find the differences be-
tween a quotient isoring and a quotient ring coming from an isoring and one of its
isoideals.

Introduction.

In 1978, the Italian-American theoretical physicist and mathematic Rug-
gero Maria Santilli proposes a generalization of conventional Lie’s theory by
using the concept of isotopy (in the Greek sense of being «axiom-preserving»,
also called isotopic lifting), which implies the origin of the actually known like
Santilli’s isotheory (see [4]). To do this, he extends the basic unit I4 (1
1, diag (11, R , 11), R of the initial structure to a generalized unit I× 4

I×(x , x
.
, x

..
, R , m , t , R), called isounit, which depends on the coordinate x and

its derivatives, on the density m , on the temperature t and, in general, on any
magnitude of the physic environment of the system in which we are. By using
it, Santilli does a step-by-step generalization of the more important mathemat-
ical structures, obtaining other new ones, characterized by the fact of having
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the same properties as the initial ones, while the new units satisfy more gener-
al conditions than the verified by the initial ones. Santilli gives the name of
mathematical isostructures to these new structures. In this way, he studies
isogroups, isorings, isofields, isovectorspaces and isoalgebras (see [5], [6], [7]
and [13], for instance). Isonumber theory has been also dealt by Jiang, in [2].

It allowed him to get in a fast way some development of physical applica-
tions, principally in Quantum Mechanics and Dynamical Problems of particles
and antiparticles. Santilli’s isotopies allow to map any given and fixed linear,
local and canonical structure into its most general possible non-linear, non-lo-
cal and non-canonical forms which are capable of reconstructing linearity, lo-
cality and canonicity in certain generalized isospaces and isofields within the
fixed inertial coordinates of the observer.

However, in the last years, Santilli has found some mathematical inconsis-
tencies in his early formulation of the isotheory. Due to it, Santilli and other
mathematicians have studied the isotopic liftings of Functional Analysis and
Differential Calculus (see [3] and [8]). It has allowed to get some important
applications in Physics (see [9], [10], [11] and [12], for instance).

So, as Santilli’s isotheory needs even a consistent mathematical foundation,
Santilli himself has proposed several subjects of research to the international
mathematical-scientific community. One of them consists on proving the exis-
tence of isostructures corresponding to the lifting of structures already known,
although they do not have a practical application in Physic. Santilli thinks that it
would be good to convince the scientific about the relevance of his research,
which would give bigger consistence and reliance to his isotheory.

So, we are trying to partially response to Santilli’s petition. Indeed, in a re-
cent paper (see [1]) we have begun to settle the mathematical foundations of this
theory by dealing with the simplest algebraic structure: the groups. Indeed, we
studied in that paper the isotopic liftings of groups and subgroups.

In this paper we continue this research by considering the following struc-
ture in an increasing order of importance: the rings. We firstly study the iso-
topic lifting of a ring and we deal next with ideals and quotient rings.

To do this, we previously give in Section 1 some basic definitions related to
isotopic liftings. Section 2 is devoted to the study of isorings. Section 3 deals
with isoideals, giving some examples. Finally, we introduce the concept of quo-
tient isoring and we distinguish between it and a quotient ring coming from an
isoring and one of its isoideals.

1. – Preliminaries.

Remember that for a given and fixed mathematical structure, an isotopy or
isotopic lifting is any lifting of it, which gives a new mathematical structure
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verifying the same basic axioms (or properties) as the first. This new structure
is called isotopic structure or isostructure (see [4]).

In 1978 (see [4]), Santilli proposes a possible model of isotopy, which he
calls Santilli’s isotopy, which allows to construct the named mathematical
isostructure, based on an isounit I. This isounit can be obtained starting from
the following definition:

Let E be any mathematical structure, defined on a set of elements C. Let
V*C be a set with an inner law ˜ and an unit element I. Such a set V is said to
be the general set of the isotopy. Let I× �V be such that its inverse T4 I×2I ,
with respect to the law ˜, exists. I will be called isotopic unit or isounit and it
will be the basic unit in the lifting of the structure E. T will be the isotopic ele-
ment. Finally, I× and ˜ are the elements of isotopy.

Then, Santilli proposes to reach an isostructure E× starting from the struc-
ture E , by considering the following construction levels:

a) Conventional level: (see [4]) It is the initial mathematical structure,
formed by a set of elements and the laws defined among them. In this level ap-
pear the usual mathematical structures with respect to usual units: E4

E(a , 1 , 3 , R).

b) General level: It is the general set V , in which are, particularly, the
isotopy elements used in the isoproduct construction model, that is, V4

V(a , ˜, x , R). It is important to note that E*4E(a , ˜, x , R) (the restric-
tion of V to E) must verify the same axioms as the initial structure E.

c) Isotopic level: (see [4]) It is the mathematical isostructure obtained
when lifting, that is E× 4 E×(a×, 1×, 3×, R).

It is formed by an isotopic set and the isolaws on it. Elements of such set,
which are usually denoted by using a hat, are given with respect to the isounit
of E×. So, fixed and given the isostructure (E×, 3×), with isounit I×, where I is the
unit of E with respect to ˜ , these elements are a× 4 a×3×I×, where Santilli de-
fines the law 3× as a×3×b× 4 ã b×. See then that, a×3×I× 4 ã I×4 a× 4 I×3×a×, which
implies that I× is the unit element of E× with respect to 3×.

It is immediate to check that the mapping I : EK E× : aK a× is a bijection,
because it is onto by construction and it is also injective, due to a× c b×, for all
a , b�E such that acb. Indeed, in E×, a× 4 a×3×I× c b×3×I× 4 b× with respect to the
isounit I× of E×; in the same way as a4a3ecb3e4b in E , where e is the unit
element of E with respect to 3.

d) Projection level: (see [8]) It appears when we consider the math-
ematical isostructure E× referred to the isotopy elements used in its construc-
tion. Its elements are denoted by a line superposed to the hat × of elements of
E×, that is, ×.

In this way, if we use the isotopy elements ˜ (with unit I) and I× to con-
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struct E× , then we obtain a structure E× in the projection level, whose elements
are referred to the unit I: a×4 ã I× 4 (ã I×) Ĩ.

The mapping p : E× KE× : a× Kp(a×) 4a× is named projection. In general, we
say that an element of E× is projected on its corresponding associated element
belonging to E×. Note that, by construction, the mapping p is onto.

In a first stage, E× is only doted with laws when p is linear with respect to
the isolaws associated with E×. So, fixed an isostructure (E×, 3×), if p is linear

with respect to 3×, the law 3× is defined on E× by a×3×b×4 a×3×b×. In such a case,
p : (E×, 3×) O (E× , 3×) is an onto morphism.

Therefore, this projection level is the most important in practice, because it
allows to obtain some mathematical models which would be no possible under
usual units.

There exists still another level which joins both conventional and isotopic
levels. It is the axiomatic level ([4]), which identifies every mathematical
structure verifying the same axioms.

So, in a schematic way, as the different construction levels appearing in an
isotopic lifting, as the relations among them can be observed in the following
diagram:

Conventional level

(E, 1, 3,R)
I

General level
(V,̃ , x,R)

K

l l--
(E,̃ , x,R)

I

Projection level Projection
J

Isotopic level

(E× , 1×, 3×, R) (E× , 1×, 3×, R)

Finally, we will say that an isotopic lifting of the structure E is injective if
X4Y , for all X , Y�E such that X×4Y×. It is equivalent, by construction, to say
that the projection p : E× KE× : a× Kp(a×) 4a× is an injective mapping. There-
fore, as a consequence, if the isotopic lifting of E is injective, then p : E× O E×

will be an isomorphism.

2. – Isorings.

In this Section we show the way in which rings can be isotopically lifted.
We start introducing a more general definition than the given by Tsagas and
Sourlas, in [13]:

DEFINITION 2.1. – Let (A , i , l) be a ring with unit element e . An isoring
A× is an isotopy of A , with two new inner composition laws, i× and l×, the sec-
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ond of them with unit element I× � A× (which is called isounit, not necessarily
belonging to A), verifying rings properties.

We already know that every isotopy is determined by an isounit and a
law ˜. However, on this occasion, we dispose of two isounits, S× and I×, in the
isostructure. So, we ask ourselves if two different isotopies are needed to con-
struct an isoring.

To answer this question, we fixe, in the first place, an associative law ˜ and
an isounit (which we denote by I×, because by construction we hope that it is the
same as the isounit with respect to i×). We now construct in an explicit way the
isotopic set A× associated with A , where A×4 ]a×4 ã I×Na�A(.

Next, we have to construct the lifting of the corresponding laws i and l.
To do this, we will begin with the isotopic lifting of the second law, l , to use
the isoproduct construction model, as follows. If I is the unit of ˜ and T4 I×2I ,
then the isoproduct will be the law l×, defined by

a×l×b× 4 ã b×4I(ã b), (a×, b× � A× .

So, if the isotopy is injective, we define in the projection level

a× l× b×4 a×l×b× 4 (ã b)˜I× 4a×̃ T̃ b× , (a , b�A .

Besides, we get in this way that l× is associative, due to ˜ is associative by
hypothesis. Moreover, if we demand that I�A , then we have I× � A×, and I× will
be the isounit with respect to l×, pointed out in the previous definition.

We have still to lift the first law i . If we proceed in a similar way as before,
we would need an isounit S× and a law x , similar to I× and ˜ , respectively. How-
ever, by taking into consideration that the isotopic set A× has been already con-
structed, the associated with x should coincide with the first one. That is,
]ã I× : a�A( 4 ]axS× : a�A(. So, if a× � A×, then one can find two elements a
and a in A , with ã I× 4a× and axS× 4a×.

In this way, to simplify, you can consider the general set associated with ˜
and x as the same. So, the elements of this set are related with these two
laws.

On the other way, as (A×, i×) should be an isogroup, then we need that S× � A×,
and so, it should be S×4 S̃ I× 4sxS×, with S , s�A. Apart from that, if the law x

has an unit s , we already know that to obtain an isogroup we must demand
that (A , x) is a group with s�A. Moreover, it will be sxS× 4 S× 4sxS× and so,
s4s.

We will also impose that x is associative and that the distributive property
on A× (related to x and ˜) is satisfied.

Now, to have an idea to construct the isosum i× on A×, we can firstly con-
struct i× on A× , in a similar way as we constructed l×. So, we need the element of
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isotopy S×2s. In general, it is not in A×. However, we will see later that it is suffi-
cient to suppose it, because all isotopies of rings can be studied under such
model. So, if S×2s 4 R× � A× (where R×4R˜I×, with R�A) is supposed, we can
construct the isosum i× as follows:

a× i× b×4a×xR×xb×4 ( (ã I×)x(R˜I×) )xb×4

( (axR)˜I×)x(b̃ I×) 4 (axRxb)˜I× for all a× , b×�A× .

Finally, we can define the isosum i× on A× as:

a× i× b× 4axRx×b4I(axRxb)

for all a×, b× � A×. Note that this isosum so defined is an inner law, due to
axRxb�A , since (A , x) is a group.

So, (A×, i×) is an isogroup and thus, to finish the construction, we would only
need that (A×, i×, l×) had the distributive property (in both senses). However,
this property is not going to be satisfied, in general. To see it, let consider
a×, b×, c× � A×. Then,

a×l×(b×i×c×) 4 a×l×I(bxRxc) 4I(ã (bxRxc) ) 4

I( (ã b)x(ã R)x(ã c) ) cI( (ã b)xRx(ã c) ) 4 (a×l×b×) i×(a×l×c×)

and, similarly, the left-distributivity is not satisfied either.
In the general case, as the distributive property is not satisfied (whereas

the rest of them are), the lifting obtained in this case is named pseudoisotopy.
In this way, a new kind of structure is obtained. It is named pseudoisostruc-
ture. So, in this case, we would have obtained a pseudoisoring (see [7]).

However, left and right distributivity can be satisfied. It is possible if and
only if ã R4R4R ã , (a�A. Thus, we would have already constructed the
isoring, coming from the isotopy of main elements I× and ˜, and secondary ele-
ments S× and x.

So, the following result is proved:

PROPOSITION 2.1. – Let (A , i , l) be a ring and I×, S×, ˜ and x be isotopic
elements as in the Definition given in Preliminaries, where I and s are the
respective units of ˜ and x , being S�A. Under these conditions, if (A , x , ˜)
has a ring structure with respective units s , I�A , then the isotopic lifting
(A×, i×, l×) constructed by the isoproduct model, corresponding to the isotopy of
main elements I× and ˜ , and secondary elements S× and x , has a structure of
isoring with respect to the multiplication if and only if ã R4R4R ã ,
(a�A , where R�A is such that R×4 S× 2s 4R˜I×. r

This proposition can be improved with the following lemmas:



ISORINGS AND RELATED ISOSTRUCTURES 443

LEMMA 2.1. – Under the conditions of Proposition 2.1, s̃ a4s4 ã s , for
all a�A.

PROOF. – Fixed a�A , by using that (A , x , ˜) must be a ring, we have that
s̃ a4 (sxs) ã4 (s̃ a)x(s̃ a). So, s4 (s̃ a)2s x(s̃ a)x(s̃ a) 4 s̃ a.

Similarly, ã s4s , which completes the proof. r

LEMMA 2.2. – Under the conditions of Proposition 2.1, (A×, i×, l×) is an isor-
ing with respect to the multiplication, if and only if R× 4 S×2s 4 s×.

PROOF. – a) By Proposition 2.1, (A×, i×, l×) is an isoring with respect to the
multiplication if and only if ã R4R4R ã , for all a�A. In this way, if a4s ,
Lemma 2.1 implies that s4 s̃ R4R4R s̃. So, R4s and thus, R× 4 s×.

b) We must prove ã R4R4R ã , for all a�A. But, in our case, R4s.
So, Lemma 2.1 implies the thesis. l

Particularly, Lemma 2.2 involves on A× the law a×i×b× 4 axRxb×4 axsxb×4

axb×, for all a , b�A. Moreover, S× 4 Sxs×4 S×i×s× 4 s×. So, S4s.
So, we have proved the following:

THEOREM 2.1. – Let (A , i , l) be a ring and I×, S×, ˜ and x be isotopic ele-
ments as in the Definition given in Preliminaries, where S�A and I and s
are the respective units of ˜ and x. Under these conditions, if (A , x , ˜) has
a ring structure with respective units s , I�A , then the isotopic lifting
(A×, i×, l×) constructed by the isoproduct model, corresponding to the isotopy of
main elements I× and ˜ , and secondary elements S× and x , has a structure of
isoring with respect to the multiplication if and only if S×2S 4 S× 4 s×.

Particularly, we define a×i×b× 4 axb×4I(axb) for all a , b�A. r

As a consequence, It is easy to prove the following:

COROLLARY 2.1. – Under the conditions of Theorem 2.1 the following as-
serts are verified:

a) The map I* : (A , x , ˜) K (A×, i×, l×) : aKI*(a) 4 a× is an isomorphism
of rings.

b) If the isotopy is injective, the followings maps are isomorphisms of
rings:

b.1) p : (A×, i×, l×) K (A× , i×, l×).

b.2) piI* : (A , x , ˜) K (A× , i×, l×). r

We will see next three examples of isorings:
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EXAMPLE 2.1. – Let (Z , 1 , 3) be the ring of integers, with the usual sum
and product. We consider now the elements of isotopy I× 41, ˜f3 , S× 40
and xf1.

In this way, I41 and s40 are the units of ˜ and x , respectively. We can
see that these two units belong to Z. Besides, (Z , x , ˜) f (Z , 1 , 3) and
thus, (Z , x , ˜) is a ring. Finally, S×2s 4020 40 4 S×. So, we can use Theorem
2.1 to say that the isotopic lifting of (Z , 1 , 3), obtained by the isoproduct
model, with main elements I× and ˜ and secondary elements S× and x is an
isoring.

If we want to obtain this isoring, we must firstly construct the isotopic set
Z×. To do it, we study the projection level and so we get Z×4 ]ã I× 4a31 4a :
a�Z( 4Z4 ]axS× 4a10 4a : a�Z(.
Now, it is sufficient to define the isoproduct generated by ˜ and x on the ele-
ments of Z×4Z. But, by fixing a , b�Z , we already know that these laws are
defined by

a×1×b× 4 axb×4 a1b×

a×3×b× 4 ã b×4 a3b× .

Moreover, in the projection level, we have:

a×1×b×4a×1b×

a×3×b×4a×3b× .

Note that we obtain in this way a trivial isotopy of the starting rings,
which was predictable because if the initial laws and unit do not change in
an isotopic lifting, then the initial structure does not change either. r

EXAMPLE 2.2. – We continue considering the ring (Z , 1 , 3). Take the law
˜f3 and the isounit I× 421, where T4 I×2I 4 (21)21 421 4 I×, since the
unit with respect to ˜ is I41. We try to construct an isoring with respect to
the product. We could have Z×21 as the isotopic set, being in the projection lev-
el Z×21 4 ]a×4a3 (21) 42a : a�Z( 4Z.

Then, the isoproduct is defined by a×3×b× 4 ã b×4 a3b× for all a×, b× � Z×21.
Moreover, in the projection level, a×3×b×4a×̃ T̃ b×42(a×3b×) 42( (2a)3

(2b) ) 42(a3b) 4a3b× for all a , b�Z.
We try now to lift the law 1 in such a way that it remains invariant. To

do this, it would be sufficient to use S× 40 as the secondary isounit and 1 it-
self as the law x , as we made in the previous example. Then, as the unit of x

would be s40, we would have that S×2s 4020 40. So, (Z , x , ˜) 4 (Z , 1 , 3)
is a ring verifying hypotheses of Theorem 2.1 and thus, the isotopic lifting
(Z×21 , 1×, 3×) results to be an isoring with respect to the product.r
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EXAMPLE 2.3. – By using the same ring (Z , 1 , 3), we are going to deal
with a new case, not previously considered until now: when the isounit I× be-
longs to the obtained isotopic set but the isotopic element does not. To do this,
it is sufficient to consider ˜f3 and I× 42, for instance. So, we would have
the isotopic set Z×2 , where Z×2 4 ]a× 4a32Na�Z( 4P4Z2 . On the other

hand, T4 I×2I 4221 4
1

2
�P , since the unit with respect to ˜ is I41. Then,

the isoproduct would be defined in the isotopic level by a×3×b× 4 a3b× and in

the projection level by a×3×b×4a×̃ 1

2
b̃×4 (a32)3

1

2
3 (b32) 4 (a3b)3

2 4a3b× , for all a×, b× � Z×2 .
In any case, if we want the law 1 to remain invariant, we could only take

S× 40 as the secondary unit, because it is the unique element such that S×2s 4

S×20 4 S×, which is a necessary condition for constructing the isoring, accord-
ing to Theorem 2.1. So, by completing the isotopy with the secondary ele-
ments S× 40 and xf1 , we would finally deduce that (Z×, 1×, 3×) is an isoring
with respect to the product. r

Finally, we must prove that the model used to construct an isoring can be
used for all cases.

PROPOSITION 2.2. – Any isotopy I : (A , i , l) K (A×, i×, l×) can be studied as
following the isoproduct model that we have seen. That is, any isoring is it
respect to the isomultiplication.

PROOF. – It is sufficient to consider the set (A , x , ˜) in the general level,
where any law l l-- is associated with the appropriate l l––

× on A×, by defining a l l--b4

I21 (a× l l––
× b×). It has sense because the map I : AK A× : aK a× is bijective by con-

struction. So, we get l l––
× defined as a× l l––

× b× 4I(a l l--b) 4 a l l--b×. That is, we get the same
result as when the isoproduct model is used.

Besides, by linearity we get that (A , x , ˜) is a ring. Moreover, the unit
with respect to l l-- will be by construction the element in A such that the isounit
of l l––

× is lifted of its.
So, we have the conditions for isoproduct model can be applied, obtaining

by construction the same mathematical structure which we firstly
had. r

Note that this proposition has very importance in the study of isotopies be-
cause it proves that we can always base our study of isorings on the isoproduct
model.

Next, we are going to study isotopies of the substructures related to rings:
the subrings.
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3. – Isosubrings.

In the first place, we introduce the definition of isosubring and secondly,
we study if it is possible to apply such a definition to the construction model of
isotopies which we are considering.

DEFINITION 3.1. – Let (A , i , l) be a ring and let (A×, i×, l×) be an associated
isoring with unit I× with respect to l×. Let B be a subring of A . We say that B× is
an isosubring of A× if, being an isotopy of B , (B×, i×, l×) is a subring of A×, that is,
if the following conditions are verified:

1. i× and l× are inner on B×, and verify associativity and distributivity.

2. (B×, i×) is an isosubgroup of (A×, i×).

3. I× � B×.

To see if the construction model of isotopies is compatible with this defini-
tion, we consider the ring (A , i , l) and the isoring (A×, i×, l×), constructed
starting from that ring by the isotopy of main elements I× and ˜ (with unit ele-
ment I), and secondary elements S× and x (with unit element s), verifying hy-
potheses of Theorem 2.1.

According to this model, the laws on the isosubring B× have to be the same
as those on the ring (A×, i×, l×). So, the main and secondary elements must be
also the same as the used to lift A. In this way, a necessary condition for B× to
be subring, which is B× ’ A×, is obtained. Moreover, by demanding that
(B , x , ˜) has an structure of ring, we will obtain condition (1) of Definition
3.1, by construction. Note that distributivity is also satisfied, because we are
under hypotheses of Theorem 2.1 and thus (B , x , ˜) inherits this property
from (A , x , ˜).

On the other hand, condition (3) is obtained by imposing I�B , from which
we deduce I× � B×. Finally, as (B , x) has a structure of group, due to (B , x , ˜) is
a ring, if we also impose that S�B , we will obtain that S× � B×, which is suffi-
cient for condition (2) to be satisfied.

From these reasons, it is deduced the following:

THEOREM 3.1. – Let (A , i , l) be a ring and (A×, i×, l×) be the associated
isoring corresponding to the isotopy of main elements I× and ˜ (with unit I),
and secondary elements S× and x (with unit S), under hypotheses of Theorem
2.1. Let B be a subring of A . If (B , x , ˜) is a subring of (A , x , ˜) with I�B
and S�B , then the isotopic lifting (B×, i×, l×), corresponding to the isotopy on
the same elements, is an isosubring of A×. r

We now give an example of isosubring:
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EXAMPLE 3.1. – Let consider the ring (Q , 1 , 3) of rational numbers with
the usual sum and product. Take the isounit I× 42 and the law ˜f3 . The
isotopic set will be Q×2 , where Q×2 4 ]a×4a32Na�Q( 4Q . As ˜f3 , we have

that the unit with respect to ˜ is I41 �Q and thus, T4 I×2I 4221 4
1

2
. The

isoproduct so obtained is a×3×b× 4 a3b× in the isotopic level and a×3×b×4

a×̃ 1

2
b̃×4ã b×4(ã b) 2̃4(a3b)32 in the projection level, for all a , b�Q .

If we now consider the secondary elements S× 40 and xf1 (then s4S4

0), we will obtain, in a similar way as in the Example 2.3, that (Q×2, 1×, 3×) 4

(Q , 1 , 3×) is an isoring.
We consider now the subring of integers (Z , 1 , 3) of (Q , 1 , 3), and we

try to construct the isotopy of this subring, with the same elements as the
used in the construction of the isoring (Q , 1 , 3×).

Then, we would have that the isotopic set is Z×2 , where Z×2 4 ]a×4a32Na�
Z( 4P . Therefore, since (Z , x , ˜) 4 (Z , 1 , 3) has a structure of subring of
(Q , x , ˜) 4 (Q , 1 , 3), with unit I41 �Z with respect to ˜ (the same as for
(Q , x , ˜) ) and s4S40 �Z , we deduce from Theorem 3.1 that (Z×2 , 1×, 3×) is
an isosubring of Q×2 , with (Z×2, 1×, 3×) 4 (P , 1 , 3×) in the projection level.

So, by considering Example 2.3, we observe that (P , 1 , 3×) can be
equipped with an structure as of isoring as of isosubring, with respect to the
same isotopy mentioned. r

Now, we can ask ourselves if every subring gives rise to an isosubring un-
der a determined isotopy or if every subring of a given isoring has a structure
of isosubring. Observe that a possible counterexample could be found in those
cases in which the conditions required by Theorem 3.1 were not satisfied. For
instance, it would be sufficient for it to have a subring B of A such that either
S�A or I�B.

Similarly, if we had a subring B× of the isoring A×, with S× � B×, such that S�
C , for all C , subring of A , we could not give a structure of isosubring to B×, be-
cause we could not find any subring in A which gave B× after making the corre-
sponding isotopic lifting. So, we can conjecture that, in general, a subring
could not be isotopically lifted to an isosubring by a fixed isotopy and more-
over, that a subring of an isoring could not have a structure of isosubring by
the isotopy corresponding with such an isoring.

4. – Isoideals of an isoring.

We introduce in this section the definition and some properties of the
isoideals of an isoring.
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DEFINITION 4.1. – Let (A , i , l) be a ring and (A×, i×, l×) be an associated
isoring. Let 4’A be an ideal of A . It is said that 4× is an isoideal of A× if, be-
ing an isotopy of 4 , 4× has a structure of ideal with respect to (A×, i×, l×).

We continue with the isotopy model which we are using. Suppose that we
have a ring (A , i , l) and the corresponding isoring (A×, i×, l×) obtained by the
isotopy of main elements I× and ˜ , and secondary elements S× and x. As we al-
ready made, we only deal with isorings with respect to the product.

We continue demanding that given an ideal 4 of A , the lifted isoideal has
the same associated laws as in (A×, i×, l×). Then, if we use the isoproduct con-
struction model, we will have the same main and secondary elements, respect-
ively, as the used to construct the isoring (A×, i×, l×). In this way, we will have
that 4× ’ A×, due to 4’A.

Under these suppositions, it will be sufficient to impose 4 to be an ideal of
the ring (A , x , ˜), because in this way we will have that 3×l×a× 4 x̃ a×� 4×, for
all 3×� 4× and a× � A×, since x̃ a�4 due to 4 is an ideal of (A , x , ˜).

So, we finally get that 4× is an isoideal of A×, and thus, the following result
has been proved:

THEOREM 4.1. – Let (A , i , l) be a ring and (A×, i×, l×) be the associated
isoring corresponding to the isotopy of main elements I× and ˜ , and sec-
ondary elements S× and x , under hypotheses of Theorem 2.1. Let 4 be an ideal
of (A , i , l). If 4 is an ideal of (A , x , ˜), being (4 , x) a subgroup of (A , x),
then the isotopic lifting (4×, i×, l×) corresponding to the isotopy of elements the
above mentioned is an isoideal of A×. r

We give now some examples of isoideals:

EXAMPLE 4.1. – Let consider the ring (Z , 1 , 3) and the associated isor-
ing (Z×, 1×, 3×) from Example 2.2. Take P4Z2 as an ideal of (Z , 1 , 3). So,
according to the notations of that example, (P , 1) is a subgroup of (Z , 1),
with unit 0 �P , being (P , x , ˜) 4 (P , 1 , 3) an ideal of (Z , 1 , 3). Theo-
rem 4.1 involves that (P×21 , 1×, 3×) is an isoideal of (Z×, 1×, 3×). Then, as P×21 4

]a×4 ã (21) 4a3 (21) 42a : a�P( 4P , we have that in the projection
level, (P×21, 1 , 3×) 4 (P , 1 , 3×) is the required isoideal. r

EXAMPLE 4.2. – Let consider the ring (Z , 1 , 3) and the associated
isoring (Z×, 1×, 3×), as in Example 2.3. Taking again the ideal (P , 1 , 3)
of (Z , 1 , 3), we would have that (P , x , ˜) 4 (P , 1 , 3), which is also
an ideal of (Z , x , ˜) 4 (Z , 1 , 3), being (P , x) a subgroup of (Z , x) with
unit I40 �POZ. Therefore, Theorem 4.1 implies that (P×2 , 1×, 3×) is an
isoideal of Z . In other way, P×2 4 ]a×4 ã 2 4a32Na�P( 4Z4 and thus,
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in the projection level, (P×2, 1 , 3×) 4 (Z4 , 1 , 3×) is the required isoide-
al. r

We will now introduce the concept of isosubideal:

DEFINITION 4.2. – Let (A , i , l) be a ring, (A×, i×, l×) be an associated isor-
ing and 4 an ideal of A , such that the corresponding isotopic lifting 4× is an
isoideal. Let J be a subideal of 4 . We say that J× is an isosubideal of 4× if, being
an isotopy of J , (J×, i×, l×) is a subideal of 4× with respect to (A×, i×, l×).

By using the same isotopic construction model, it is easy to prove the
following:

THEOREM 4.2. – Let (A , i , l) be a ring and (A×, i×, l×) be the associated
isoring, corresponding to the isotopy of main elements I× and ˜ and sec-
ondary elements S× and x , under hypotheses of Theorem 2.1. Let 4 be an ideal
of A such that the corresponding isotopic lifting, (4×, i×, l×), is an isoideal of A×.
Let J be a subideal of 4 . If (J , x , ˜) is a subideal of (4 , x , ˜), then the corre-
sponding isotopic lifting (J×, i×, l×) is an isosubideal of 4×. r

Observe that this construction model allows that J× ’ 4×, since J’4 and the
used elements of isotopy are the same as the ones used to construct 4×.

We show the following example of a subideal:

EXAMPLE 4.3. – In the Example 4.1, let consider the subideal (Z6 , 1 , 3) of
(P , 1 , 3). We have that (Z6 , x , ˜) 4 (Z6 , 1 , 3) is a subideal of
(P , x , ˜) 4 (P , 1 , 3). Then, from Theorem 4.2 (Z6

×, 1×, 3×) is an isosubideal
of (P×, 1×, 3×), being Z6×21 4 ]a×4 ã (21) 4a3 (21) 42aNa�Z6 ( 4Z6 . So,
in the projection level, (Z6 , 1 , 3×) is the required isosubideal. r

In the following section we will complete the study of the isotopic liftings of
the rings by introducing the concept of quotient isoring.

5. – Quotient isorings.

DEFINITION 5.1. – Let (A , i , l) be a ring, 4 be an ideal of A and A/4 be the
quotient ring, with the usual structure (A/4 , 1 , 3). We say that A/4× is a
quotient isoring if, being an isotopy of A/4 , (A/4×, 1×, 3×) has a structure of
quotient ring, that is, if there exists a ring (B , q , {) and an ideal J of B ,
such that A/4×4B/J , being 1× and 3× the usual laws of quotient rings, coming
from q and { , respectively.

Note that this definition allows that the ring B and its ideal J do not have
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to be, in general, the isotopic liftings of the ring A and of its ideal 4 , which at
once allows to set a difference between the concepts of quotient isoring and
quotient ring constructed starting from an isoring and one of its isoideals. In
fact, it is possible from a theoretician point of view that either B or J only is an
isotopic lifting of A or 4 , respectively. In this way, although all of them had a
structure of quotient ring, there would have to distinguish among the possible
sets B/J , A× /J , B/4× and A× /4×.

Apart from that, although the quotient ring A× /4× could be constructed, we
know that the isotopies used to obtain A× and 4× must have the same main and
secondary elements, respectively. Then, as we use the isoring construction
model to construct A/4× starting from the quotient ring A/4 , our isotopy
should have two main elements and two secondary elements too. Naturally, as
the rings A and A/4 have different characteristics, the elements of isotopy will
not be the same, in general, due to, particularly, the laws would be defined on
different sets. However, we are now going to see in the following example that
the equality A/4×4 A× /4× is possible in some case, although it is not verified in
general.

EXAMPLE 5.1. – Let consider the ring (Z , 1 , 3) and its ideal (Z3 , 1 , 3),
with the usual sum and product. By constructing the isotopy of main ele-
ments I× 42 and ˜f3 and secondary elements S× 40 and xf1 , we obtain
the isoring (P , 1 , 3×) and its isoideal (Z6 , 1 , 3×) (we have to take into con-
sideration that Z3

×
2 4 ]a×4a32Na�Z3 ( 4Z6 ). In this way, we would con-

struct the quotient ring Z×2 / Z3
×

2 4P/Z6 4 ]01Z6 , 21Z6 , 41Z6 (, with the
usual sum and product, coming from 1 and 3× (to simplify the notations,
from now on, both laws will be denoted by the same symbols as before).

We will give in an explicit way the second of them, seen in the projection
level:

1. (01Z6 ) 3× (a1Z6 ) 4 (0 3×a) 1 Z6 4 g03
1

2
3ah 1 Z6 4 0 1 Z6 4

(a1Z6 ) 3×(01Z6 ), for all a� ]0, 2 , 4(.

2. (21Z6 ) 3×(21Z6 ) 4 (2 3×2)1Z6 4g23
1

2
32h1Z6 421Z6

3. (21Z6 ) 3×(41Z6 ) 4g23
1

2
34h1Z6 441Z6 4 (41Z6 ) 3×(21Z6 ).

4. (41Z6 ) 3×(41Z6 ) 4g43
1

2
34h1Z6 481Z6 421Z6 .

In this way we deduce that the unit element of P/Z6 4Z2 /Z6 4 Z×2 / Z3
×

2 is
21Z6 .

On the other hand, let consider now the quotient ring Z/Z3 , with usual
laws coming from the ring (Z , 1 , 3). We denote both laws by i and l , re-
spectively. We now make a similar lifting as before, with main elements I× 4

21Z3 and ˜fl , and secondary elements S× 401Z3 and xfi . Note that in
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this case, T4 I×2I 4 I×. So, in a similar way as previous examples, the isotopy
so constructed is in the projection level the isoring (Z/Z3 , i , l×), where the
isoproduct l× is defined by:

1. (01Z3 ) l×(a1Z3 ) 4 ( (01Z3 )3 (21Z3 )3 (a1Z3 ) ) 401Z3 4 (a1

Z3 ) l×(01Z3 ), for all a� ]0, 1 , 2(.

2. (11Z3 ) l×(11Z3 ) 4 ( (11Z3 )3 (21Z3 )3 (11Z3 ) ) 421Z3 .

3. (11Z3 ) l×(21Z3 ) 4 ( (11Z3 )3 (21Z3 ) )3 (21Z3 ) 411Z3 4 (21

Z3 ) l×(11Z3 ).

4. (21Z3 ) l×(21Z3 ) 4 ( (21Z3 )3 (21Z3 ) )3 (21Z3 ) 421Z3

In this way, the isoring so obtained is a quotient isoring because it has
been constructed starting from the ring (Z, 1, 3) and its ideal (Z3 , 1, 3).

Finally, observe that although used isotopies have been very similar, we
obtain that Z/Z3

×
c Z× /Z3

× (we do not intentionally point out the isounits to
which both sets are referred, to emphasize the difference between them). It
proves that it is important to distinguish between a quotient isoring and a
quotient ring coming from an isoring and one of its isoideals. r
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