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Abstract. We establish an interesting link between differential geometry and graph
theory by defining submanifolds weakly associated with graphs. We prove that, in a local
sense, every submanifold satisfies such an association, and other general results. Finally,
we study submanifolds associated with graphs either in low dimensions or belonging to
some special families.
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1. Introduction

When we study a submanifold isometrically immersed in an almost Hermitian manifold
(M̃, J, g), it is important to take into account its behaviour with respect to the sur-
rounding almost complex structure J . Many submanifolds presenting a homogeneous
behaviour in this sense have been defined: complex submanifolds, totally real submani-
folds, CR-submanifolds, and, more recently, slant, semi-slant, bi-slant or quasi-slant
submanifolds. Most of them have something in common: they can be associated with
graphs representing the above-mentioned algebraic behaviour.

This fact has been pointed out in the previous paper [3], in which the first two authors
defined submanifolds associated with graphs, by using the graphic representation proce-
dure introduced in [2] in order to visualize the behaviour of a submanifold with respect to
J . Actually, they constructed a graph describing such behaviour at a point of the submani-
fold, and then they said that it is associated with the submanifold if it can be differentiably
extended to any other point, in a certain way.

The idea of that association comes from the study of slant surfaces, and we can use them
to show our method. Given such a surface, with slant angle θ , immersed in a 4-dimensional
almost Hermitian manifold, it can be studied through a special local orthonormal frame
{X1, X2, X3, X4} such that X1, X2 are tangent to M , X3, X4 are normal to M and they
satisfy the following equalities:

g(JX1, X2) = −g(JX3, X4) = cos θ, g(JX1, X3) = g(JX2, X4) = sin θ,

g(JX1, X4) = g(JX2, X3) = 0, (1.1)

which completely determine the behaviour of the almost complex structure J on M

(see [4]).
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Figure 1. Graph associated with a slant surface.

Now, we can define a graph by following these steps:

1. We consider a vertex for every field of the frame, labelled with its corresponding natural
index.

2. We say that the {i, j} edge exists if and only if g(JXi, Xj ) �= 0.
3. We assign on every edge the weight given by g2(JXi, Xj ).

Hence, we obtain the graph shown as Graph 1 in figure 1. If we do not follow Step 3,
we just obtain Graph 2. The difference between these two graphs will be an important fact
for us: the first one is a weighted graph and the second one is not (see the preliminaries
section for a better explanation of these notions).

Notice that we obtain an additional visual information by putting the vertices corre-
sponding to tangent fields at an imaginary bottom line and those which correspond to
normal fields at a top line.

As we have already said, the definition of the association between submanifolds and
graphs was given in [3] and we will recall it later. In that paper, some general properties
and characterizations were obtained and the special case of submanifolds associated with
graphs in dimension 4 was completely studied and classified.

Now, in this paper, we complete that notion by introducing the idea of a ‘weak associa-
tion’, which basically means not to take into account the weights of the edges. We prove
the important Theorem 3.1 establishing that every submanifold of an almost Hermitian
manifold admits an open submanifold which is weakly associated with a graph; that is,
our definition is not strange at all.

The main goal of this paper is therefore to study the graphs which can be ‘weakly
associated’ with a submanifold. To do so, in §3, we first improve some results of [3] and
we introduce some new general ones concerning how such graphs look like. By using
them, we analyze these graphs in dimensions 4 and 6 in §4 and we completely deter-
mine all of them. In fact, concerning the 4-dimensional case, we extend the study done
in [3] by means of the improved results presented in the previous section for the weak
association. In dimension 6, we prove that only 12 of the 156 graphs with 6 vertices
can be weakly associated with a submanifold (see Theorem 4.3). Moreover, we construct
examples to show that there exist submanifolds weakly associated with some of those
12 graphs.

Finally, in this paper we also study submanifolds associated with some special families
of graphs: forests (in §3), cycles and generalizations, and cubic graphs (in §5). For
instance, we characterize the submanifolds associated with disjoint unions of cycles
(see Theorems 5.5 and 5.7) and we completely determine the cubic graphs weakly
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associated with a submanifold in dimension 8 (see Theorem 5.9), with the corresponding
examples.

2. Preliminaries

With respect to differential geometry, here we just recall the definitions of the submani-
folds we will be talking about through this paper. For details and background on complex
manifolds, we refer to the standard reference [10].

A submanifold M of an almost Hermitian manifold (M̃, g, J ) is said to be slant [4] if for
each nonzero vector X tangent to M at p, the angle θ(X), 0 ≤ θ(X) ≤ π/2, between JX

and TpM is a constant, called the slant angle of the submanifold. In particular, complex
and totally real submanifolds appear as slant submanifolds with slant angle 0 and π/2,
respectively. A slant submanifold is called proper slant if it is neither complex nor totally
real. Moreover, if the angle depends on the point, the submanifold is said to be quasi-
slant [5].

Similarly, a differentiable distribution D on M is said to be a slant distribution if for any
nonzero vector X ∈ Dp, the angle between JX and the vector space Dp is constant, that
is, it is independent of the choice of p ∈ M and of X ∈ Dp. Then, a submanifold M is
said to be a bi-slant submanifold [2] if there exist on M two differentiable orthogonal slant
distributions D1 and D2 (with angles θ1 and θ2, respectively) such that T M = D1⊕D2. It is
shown in [2] that CR submanifolds [1] and semi-slant submanifolds [7] appear as particular
cases of bi-slant submanifolds with θ1 = 0, θ2 = π/2 and θ1 = 0, θ2 �= 0, respectively.

On the other hand, a graph G is a pair (V , A), where V is a finite nonempty set of
vertices and A is a prescribed set of unordered pairs of distinct vertices of V , called edges.
Given a pair {i, j} in A, i and j are said to be adjacent vertices and {i, j} is said to be
incident with both i and j . The degree of a vertex is the number of edges incident with
it. The graph consisting of just two vertices and one edge between them is called K2. The
cycle Cn (n ≥ 3) is the graph determined by an alternating sequence of distinct vertices
and edges beginning and ending with the same point, in which each edge is incident with
the two vertices immediately preceding and following it.

Throughout this paper, we are labelling graphs by distinguishing their vertices from one
another by consecutive natural numbers. Therefore, we identify the vertex set of a graph
with n vertices with the set {1, . . . , n}. We will deal with weighted graphs too, i.e. graphs
such that every edge has an assigned weight (a real number).

In graph theory, an isomorphism between two graphs is a one-to-one correspondence
between their vertex sets which preserves adjacency. Given that we are considering labelled
(and sometimes weighted) graphs, we also impose from now on that isomorphisms preserve
labels (and sometimes weights). Therefore, for our purpose, an isomorphism (resp. weak
isomorphism) between two such graphs with n vertices will just be the identity map from
{1, . . . , n} into itself, preserving adjacency and edge weights (resp. adjacency). As usual,
we say that two graphs are isomorphic (resp. weakly isomorphic) if there exists an isomor-
phism (resp. a weak isomorphism) between them. For more background on graph theory,
we refer to [6].

3. Submanifolds (weakly) associated with graphs

Let Mm be a Riemannian manifold isometrically immersed in an almost Hermitian mani-
fold (M̃n, J, g). Let B = {X1, . . . , Xn} be a local orthonormal frame defined on a neigh-
bourhood U of a point p ∈ M . Then, for any q ∈ U , we define the weighted graph
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GB,q given by the set of vertices {1, . . . , n} such that the edge {i, j} exists if and only if
gq(JqXiq, Xjq) �= 0, with weight g2

q(JqXiq, Xjq). Note that this is just a generalization
of the initial construction procedure.

Now we can define the association between submanifolds and graphs. Let G be a
weighted graph with vertices {1, . . . , n}. Then, we say that M is associated (resp. weakly
associated) with G if for any p ∈ M there exists a neighbourhood U(p) and a local
orthonormal frame B = {X1, . . . , Xn} on U satisfying the following conditions:

(a) {X1, . . . , Xm} are tangent to M and {Xm+1, . . . , Xn} are normal to M .
(b) For any q ∈ U , the graph GB,q is isomorphic (resp. weakly isomorphic) to G.

Obviously, every submanifold associated with a graph is also weakly associated with it,
since graph isomorphisms are in particular weak isomorphisms. On the other hand, it is
not necessary for G to be a weighted graph to define the weak association.

Note that the above definition depends on the chosen orthonormal frame. Nevertheless,
this situation is not a big obstacle because a natural equivalence relationship on the class
of graphs associated with submanifolds was introduced in [3] to overcome it. In fact, two
weighted labelled graphs G and G′ were said to be equivalent if for any submanifold M

associated with G, M is associated with G′ and for any submanifold M ′ associated with G′,
M ′ is associated with G. Therefore, submanifolds associated with graphs can be classified
through this relationship (for example, the case of dimension 4 was completely done in
[3]), but this is not the objective of this paper.

First of all, let us point out how the weak association of submanifolds with graphs is not
so strange at all. Indeed, the following result shows that it is a natural local fact for any
submanifold.

Theorem 3.1. Given any submanifold M of an almost Hermitian manifold, there exists
an open submanifold of M which is weakly associated with a graph.

Proof. Let Mm be a submanifold of an almost Hermitian manifold (M̃n, J, g), and
B = {X1, . . . , Xn} be a local orthonormal frame defined on an open subset U ,
such that {X1, . . . , Xm} are tangent to M and {Xm+1, . . . , Xn} are normal to M . Put
fij = g(JXi, Xj ), i < j . It is clear that every fij is a diferentiable function on U .

Let us now put {(i, j) / i, j = 1, . . . , n, i < j} = {(i1, j1), . . . , (ir , jr )}. Then, we can
carry through the following construction procedure. Put U0 = U . For each k = 1, . . . , r ,
if fikjk

= 0 on Uk−1, then put Uk = Uk−1. If not, by using continuity properties, we
know that there exists a non-empty open subset Uk ⊆ Uk−1 such that fikjk

(q) �= 0, for
any q ∈ Uk . At the end, we obtain an open subset Ur satisfying that, if there exists a point
q ∈ Ur with fij (q) = 0, then fij = 0 on Ur . Therefore, it is clear that, if we construct
the graphs GB,p for any p ∈ Ur , all of them are weakly isomorphic to each other, and
consequently the open submanifold Ur is weakly associated with such graphs. �

Nevertheless, we are interested in studying submanifolds which present such an asso-
ciation in a global (and differentiable) way. We can first give some examples:

Example 3.2. It was proved in [3] that a θ -slant submanifold is associated with the graph
shown in figure 2. Similarly, it can be seen that every quasi-slant submanifold M such that
θp ∈ (0, π/2), for any p ∈ M , is weakly associated with the same graph.
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Figure 2. Graphs associated with slant submanifolds.

Figure 3. Graphs associated with bi-slant submanifolds.

Example 3.3. Similarly, if we have a bi-slant submanifold with slant distributions D1 and
D2 satisfying g(JX, Y ) = 0 for any X ∈ D1 and any Y ∈ D2, then it is associated with
the graph shown in figure 3.

In [3], the first two authors completely determined and classified the submanifolds
associated with graphs in dimension 4 by examining directly all the graphs with 4 vertices.
To do so, it was very useful to know how a graph associated with a submanifold looked
like. At this point, we want to study, for later use, what is the ‘shape’ of a graph weakly
associated with a submanifold M of an almost-Hermitian manifold (M̃, J, g). From now
on, let G be such a graph. Let p ∈ M and let {X1, . . . , Xn} be the local orthonormal frame
which determines the association between M and G in a neighborhood U(p) of p. If A

denotes the matrix

A = (g(JXr, Xs)) , 1 ≤ r, s ≤ n,

then, since J 2 = −Id and g is compatible with J , it is easy to show that

A2 = (ars) = −Id. (3.1)

First, by using (3.1), we can improve some results proved in [3]. Indeed, the following
lemma generalizes Lemma 3.3 of that paper.

Lemma 3.4. Let i be a vertex of G. Then

n∑
j=1

g(JXi, Xj )
2 = 1.

Proof. It follows directly from the fact of being aii = −1. �
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Furthermore, we can also improve some other results from [3]. For example, the fol-
lowing ones generalize Lemma 3.4 and Proposition 3.5 of [3], respectively, with the same
proofs.

Lemma 3.5. G has no isolated vertices.

PROPOSITION 3.6

G has no isolated triangles.

On the other hand, the following proposition improves Proposition 3.6 of [3].

PROPOSITION 3.7

Let i be a vertex in G with degree 1. Then, the connected component containing i in G is
just a K2.

Proof. Let j be the adjacent vertex to i. From Lemma 3.4, we have g(JXi, Xj )
2 = 1.

From the compatibility between g and J , it follows that g(JXj , Xi)
2 = 1, which implies,

by using Lemma 3.4 again, that i is the only vertex adjacent to j and so the proof is
complete. �

From the above proposition, we can improve the characterization of CR-submanifolds
by means of trees (connected graphs without cycles) and forests (disjoint unions of trees,
see [6]) given in [3], by extending it to weak association.

Theorem 3.8. A submanifold is weakly associated with a forest if and only if it is a
CR-submanifold. In this case, every tree is a K2.

Finally, Theorem 3.8 of [3] can also be generalized by using the notion of weak associ-
ation.

Theorem 3.9. Let M2 be a surface isometrically immersed in an almost Hermitian mani-
fold. Then, there exists a graph G such that M is weakly associated with G if and only if M
is a totally real surface, a complex surface or a quasi-slant surface such that θp ∈ (0, π/2)

for any p ∈ M .

Proof. Suppose that a surface M is weakly associated with a graph G. Let 1, 2 be the
tangent vertices of G. If these vertices are not adjacent, then it is clear that M is a totally
real surface. Now, suppose that 1 and 2 are adjacent. If there are no other vertices adjacent
with neither 1 nor 2, then M is a complex surface. If not, we have g(JXi, Xj ) ∈ (0, 1) at
any point, i, j = 1, 2, which implies that M is a quasi-slant surface satisfying the above
condition.

The converse is a particular case of Example 3.2. �

As we have pointed out in the Introduction, one of the aims of this paper is to follow
the research line introduced in [3] by studying the low-dimensional cases for a weak
association. Nevertheless, we now find a new difficulty to use the same method of that
paper: the graphs with 4 vertices are quickly examined, one by one, given that there are
only 11 non-isomorphic (in the sense of graph theory) of them. But since there are 156
different graphs with 6 vertices (see [8]), we now need to look for new general results in
order to do a similar exam with the 6-dimensional case in §4.

Next, we are going to prove two new lemmas concerning how the ‘shape’ of a graph
weakly associated with a submanifold is restricted.
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Figure 4. Graphic representation of Lemma 3.10.

Lemma 3.10. Let i be a vertex of G with degree 2 and let j, k denote its adjacent vertices.
Then j and k cannot be adjacent vertices. Moreover, if there is another vertex l, different
from i and k, which is adjacent to j, then l is also adjacent to k (see figure 4).

Proof. First, from (3.1), since i �= j , we get

aij =
n∑

h=1

g(JXi, Xh)g(JXh, Xj ) = 0. (3.2)

Now, if h �= j, k, then g(JXi, Xh) = 0 and (3.2) reduces to

g(JXi, Xk)g(JXk, Xj ) = 0.

Thus, since g(JXi, Xk) �= 0, we have that g(JXk, Xj ) = 0, that is, the vertices j and
k are not adjacent.

On the other hand, since i �= l, from (3.1) we obtain

ail =
n∑

h=1

g(JXi, Xh)g(JXh, Xl) = 0. (3.3)

By using g(JXi, Xh) = 0 (h �= j, k) again, from (3.3):

g(JXi, Xj )g(JXj , Xl)+ g(JXi, Xk)g(JXk, Xl) = 0.

Therefore, if k and l are not adjacent vertices, then g(JXk, Xl) = 0 and so,
g(JXi, Xj )g(JXj , Xl) = 0, which is a contradiction since g(JXi, Xj ) �= 0 and
g(JXj , Xl) �= 0. �

Note that the above lemma generalizes Proposition 3.6, that is, if there is a triangle in
a graph weakly associated with a submanifold, then all its vertices should have degree
greater than or equal to 3.

Lemma 3.11. Let i be a vertex of G with degree 3 and let j, k, l denote its adjacent vertices.
The following properties are satisfied:
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Figure 5. Graphic representation of Lemma 3.11.

(i) If j and k are adjacent, then l is adjacent to both j and k.
(ii) If there is another vertex h, different from i, k, l which is adjacent to j, then, h is also

adjacent to either k or l (see figure 5).

Proof. First, from (3.1), since i �= j , we have

aij =
n∑

h=1

g(JXi, Xh)g(JXh, Xj ) = 0. (3.4)

But we know that g(JXi, Xh) = 0 if h �= j, k, l and from (3.4),

g(JXi, Xk)g(JXk, Xj )+ g(JXi, Xl)g(JXl, Xj ) = 0.

Consequently, we deduce that the vertices j and l should be adjacent because, if this
is not the case, then g(JXl, Xj ) = 0 and so, g(JXi, Xk)g(JXk, Xj ) = 0, which is a
contradiction. Similarly, we obtain that the vertices k and l are also adjacent by using, from
(3.1), that

aik =
n∑

h=1

g(JXi, Xh)g(JXh, Xk) = 0.

On the other hand, to prove statement (ii), from (3.1) again and since i �= h, we get

aih =
n∑

s=1

g(JXi, Xs)g(JXs, Xh) = 0. (3.5)
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Next, since i has degree 3 and j, k, l are its adjacent vertices, from (3.5) we see that

g(JXi, Xj )g(JXj , Xh)+ g(JXi, Xk)g(JXk, Xh)+ g(JXi, Xl)g(JXl, Xh) = 0.

If we suppose that g(JXk, Xh) = 0 and g(JXl, Xh) = 0, then

g(JXi, Xj )g(JXj , Xh) = 0,

which is a contradiction. �

We observe that statement (i) of the above lemma implies that if there is a triangle in a
graph associated with a submanifold and one of its vertices has degree 3, then the triangle
lies in a tetrahedron.

Now, we can generalize Lemma 3.10 and Lemma 3.11 by considering a vertex with any
degree.

PROPOSITION 3.12

Let i denote a vertex of G with degree t ≥ 3 and j1, . . . , jt its adjacent vertices. If two of
these vertices, jr and js, 1 ≤ r, s ≤ t, are adjacent, then jr (resp. js) is also adjacent, at
least, to jr ′ (resp. js′ ), with 1 ≤ r ′, s′ ≤ t, r ′, s′ �= r, s (see figure 6).

Proof. Since i �= jr , from (3.1) we get

aijr =
n∑

h=1

g(JXi, Xh)g(JXh, Xjr ) = 0. (3.6)

If we suppose that, except for the vertex js , none of the vertices jk , 1 ≤ k ≤ t , is
adjacent to jr , then (3.6) reduces to

g(JXi, Xjs )g(JXjs , Xjr ) = 0,

which is a contradiction. Similarly, by using the element aijs , we deduce the same result
for the vertex js . �

Figure 6. Graphic representation of Proposition 3.12.



306 A Carriazo, L M Fernández and A Rodrı́guez-Hidalgo

Figure 7. Graphic representation of Proposition 3.13.

Consequently, we have obtained that, in the conditions of the above proposition, the
vertices jr and js lie in, at least, two triangles with vertices i, jr , js and either i, jr , jr ′ ,
1 ≤ r ′ ≤ t and r ′ �= r, s or i, js, js′ , 1 ≤ s′ ≤ t and s′ �= r, s, respectively. If, moreover,
r ′ = s′, then we see that the triangle with vertices i, jr , js lies in the tetrahedron determined
by the vertices i, jr , js, jr ′(= js′).

PROPOSITION 3.13

Let i denote a vertex of G with degree t ≥ 2 and j1, . . . , jt its adjacent vertices. If there is
another vertex h, different from them, which is adjacent to any of the vertices jr , 1 ≤ r ≤ t,

then h is adjacent to, at least, another of the vertices jk, 1 ≤ k ≤ t and k �= r (see figure 7).

Proof. Since i �= h, from (3.1), we have

aih =
n∑

s=1

g(JXi, Xs)g(JXs, Xh) = 0. (3.7)

Suppose that none of the adjacent vertices to i, except for the vertex jr , is adjacent to
h, that is, g(JXjl

, Xh) = 0, 1 ≤ l ≤ t , l �= r . Then,

g(JXi, Xjr )g(JXjr , Xh) �= 0,

which is a contradiction with (3.7). �

4. Low-dimensional cases

Our goal in this section is to determine the graphs which can be weakly associated with a
submanifold of an almost Hermitian manifold of dimension either 4 or 6.

In the first case, the work was basically done in [3]. Actually, in that paper the authors
did not consider weak association, but, by using their arguments with the improved results
presented in the above section, it can be easily seen that the only graphs with 4 vertices
which can be weakly associated with a submanifold are those of figure 8.

Now, we can focus on the 6-dimensional case, that is, on graphs with 6 vertices. As we
have already pointed out, there are 156 graphs. They can be seen in pages 9–11 of [8].
By using the general results obtained in the above section, a general glance at these graphs
allows us to reject all of them, except possibly 15, for being associated with a submanifold
(see figure 9).
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Figure 8. Graphs possibly associated with a submanifold in dimension 4.

However, we need to check if those 15 graphs are really weakly associated with a sub-
manifold. Actually, the graphs G13−G15 are not. We will show this fact in two proposi-
tions, because the proofs for G13 and G15 are similar.

PROPOSITION 4.1

The graphs G13 and G15 of figure 9 can not be weakly associated with a submanifold.

Proof. Let M̃ be a 6-dimensional almost Hermitian manifold and suppose that there exists
a submanifold M of M̃ and a local orthonormal frame of vector fields B = {X1, . . . , X6}
of M̃ such that M is weakly associated with G13 via B, where we can assume that its
vertices are labelled by i1, . . . , i6 from top to bottom and from left to right. Then, since
g(JXi1 , Xi6) = 0, from Lemma 3.4, we have

5∑
k=2

g(JXi1 , Xik )
2 = 1 (4.1)

and

5∑
k=2

g(JXi6 , Xik )
2 = 1. (4.2)

Moreover, since the vertices i2, i3, i4, i5 have degree 2, by using the same lemma we
obtain

g(JXik , Xi1)
2 = 1− g(JXik , Xi6)

2, k = 2, . . . , 5. (4.3)

But (4.1)–(4.3) are contradictory due to the compatibility of g and J .
Now, if the graph G15 is weakly associated with a submanifold of a 6-dimensional

almost Hermitian manifold (M̃, J, g) via a local orthonormal frame of vector fields B =
{X1, . . . , X6}, where we can assume that its vertices are labelled by i1, . . . , i6 from top to
bottom and from left to right as above, then, by using Lemma 3.4 as always, we get

1 = g(JXi1 , Xi2)
2 + g(JXi1 , Xi3)

2 + g(JXi1 , Xi4)
2

+ g(JXi1 , Xi5)
2 + g(JXi1 , Xi6)

2; (4.4)

1 = g(JXi2 , Xi1)
2 + g(JXi2 , Xi5)

2 + g(JXi2 , Xi6)
2, (4.5)

1 = g(JXi3 , Xi1)
2 + g(JXi3 , Xi5)

2 + g(JXi3 , Xi6)
2, (4.6)

1 = g(JXi4 , Xi1)
2 + g(JXi4 , Xi5)

2 + g(JXi4 , Xi6)
2, (4.7)

1 = g(JXi5 , Xi1)
2 + g(JXi5 , Xi2)

2 + g(JXi5 , Xi3)
2

+ g(JXi5 , Xi4)
2 + g(JXi5 , Xi6)

2, (4.8)
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Figure 9. Graphs possibly associated with a submanifold in dimension 6.

1 = g(JXi6 , Xi1)
2 + g(JXi6 , Xi2)

2 + g(JXi6 , Xi3)
2

+ g(JXi6 , Xi4)
2 + g(JXi6 , Xi5)

2. (4.9)
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Now, if we sum (4.5)–(4.7) and take into account (4.4), (4.8) and (4.9), we obtain

g(JXi1 , Xi5)
2 + g(JXi1 , Xi6)

2 + g(JXi5 , Xi6)
2 = 0,

which is a contradiction. �

PROPOSITION 4.2

The graph G14 of figure 9 can not be weakly associated with a submanifold.

Proof. Let M̃ be a 6-dimensional almost Hermitian manifold and suppose that there exists
a submanifold M of M̃ and a local orthonormal frame of vector fields B = {X1, . . . , X6}
of M̃ such that M is weakly associated with G14 via B, where we can assume that its
vertices are labelled by i1, . . . , i6 from top to bottom and from left to right. Then, from
(3.1) we have

0 = ai2i4 =
6∑

k=1

g(JXi2 , Xik )g(JXik , Xi4)

= g(JXi2 , Xi1)g(JXi1 , Xi4)+ g(JXi2 , Xi6)g(JXi6 , Xi4)

and

0 = ai3i4 =
6∑

k=1

g(JXi3 , Xik )g(JXik , Xi4)

= g(JXi3 , Xi1)g(JXi1 , Xi4)+ g(JXi3 , Xi6)g(JXi6 , Xi4),

that is, at each point, (g(JXi1 , Xi4), g(JXi6 , Xi4)) is a non-null solution of the system:

{
g(JXi2 , Xi1)x1 + g(JXi2 , Xi6)x2 = 0,

g(JXi3 , Xi1)x1 + g(JXi3 , Xi6)x2 = 0.

This implies that

g(JXi2 , Xi1)g(JXi3 , Xi6)− g(JXi2 , Xi6)g(JXi3 , Xi1) = 0. (4.10)

On the other hand, from (3.1) again, we obtain that

0 = ai2i3 = g(JXi2 , Xi1)g(JXi1 , Xi3)+ g(JXi2 , Xi6)g(JXi6 , Xi3)

and, since g(JXij , Xik ) = −g(JXik , Xij ), we observe, together with (4.10), that at each
point, (g(JXi2 , Xi1), g(JXi2 , Xi6)) is a non-null solution of the system:

{
g(JXi3 , Xi6)x1 − g(JXi3 , Xi1)x2 = 0,

g(JXi3 , Xi1)x1 + g(JXi3 , Xi6)x2 = 0.

Then, g(JXi3 , Xi6)
2 + g(JXi3 , Xi1)

2 = 0, which is a contradiction. �
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Consequently, we have proved the following theorem:

Theorem 4.3. If a submanifold of a 6-dimensional almost Hermitian manifold is weakly
associated with a graph, then this graph must be one of the G1−G12 of figure 9.

Now, the natural question is: are really all of them weakly associated with a submanifold?
For graphs G1−G11, the answer is positive. In fact, we are going to present an example
of submanifold associated (not only weakly) with each one of them.

We consider R6 with Cartesian coordinates (x1, x2, x3, y1, y2, y3) and endowed with
its standard almost Hermitian structure given by the tensor fields g and J defined by

g

(
∂

∂xi

,
∂

∂xj

)
= δij , g

(
∂

∂xi

,
∂

∂yj

)
= 0, g

(
∂

∂yi

,
∂

∂yj

)
= δij ,

J

(
∂

∂xi

)
= ∂

∂yi

, J

(
∂

∂yi

)
= − ∂

∂xi

.

The structure of the examples we are going to present is the following: for each graph Gi ,
i = 1, . . . , 11, labelled, as above, from top to bottom and from left to right, we shall give
an orthonormal frame B = {X1, . . . , X6} on R6 such that the corresponding graphs GB,q

are isomorphic to Gi , and satisfying that all their brackets products vanish. Therefore, any
distribution spanned by some of these vector fields is involutive and the corresponding
integral submanifold is the desired one.

The orthonormal frames corresponding to graphs G1−G11 appear in tables 1–3.
The question for graph G12 remains still open.

5. Some relevant families of graphs

Since the number of graphs grows very quickly with respect to the number of their ver-
tices, at this moment the task of analyzing graphs weakly associated with submanifolds in
dimensions greater than 6 seems to be unapproachable. Therefore, we think that it is more
interesting to deal with some particular families of graphs.

As we have shown above, submanifolds weakly associated with graphs without cycles
(forests) are completely determined. Thus, in this section we study submanifolds weakly
associated with graphs containing cycles. As a first step, we begin by considering this
question when the graphs are just cycles.

The first examples of such submanifolds are just particular cases of those from
Example 3.2.

Example 5.1. Proper θ -slant surfaces immersed in a 4-dimensional almost Hermitian
manifold are submanifolds associated with Graph 1 shown in figure 1. On the other hand,
if M is a quasi-slant submanifold of M̃4 such that θp ∈ (0, π/2) for any p ∈ M , then M

is a submanifold weakly associated with Graph 2 shown in figure 1.

We can also construct some new examples.

Example 5.2. Let us consider R4 with its usual cartesian coordinates (x1, x2, y1, y2) and
put X1 = ∂/∂x1 , X2 =

√
2/2((∂/∂y1)+ (∂/∂y2)), X3 = ∂/∂x2 and X4 =

√
2/2((∂/∂y1)−

(∂/∂y2)). Then, it is clear that the distribution D spanned by X1, X2, X3 is integrable and
so, it determines a foliation of submanifolds associated with the cyclic graph C4,5 shown
in figure 10, with a2 = b2 = 1/2.
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Table 1. Orthonormal frames corresponding to graphs G1−G5.

Graph Corresponding orthonormal frame

G1 X1 = ∂

∂x1
;X2 = ∂

∂y1
;X3 = ∂

∂x2
;

X4 = ∂

∂y2
;X5 = ∂

∂x3
;X6 = ∂

∂y3
.

G2 X1 = ∂

∂x1
;X2 = ∂

∂y1
;X3 = ∂

∂x3
;

X4 = sin α
∂

∂x2
− cos α

∂

∂y3
;X5 = cos α

∂

∂x2
+ sin α

∂

∂y3
;X6 = ∂

∂y2
;

α ∈
(

0,
π

2

)
.

G3 X1 = ∂

∂x1
;X2 = ∂

∂y1
;X3 = 1√

2

∂

∂x3
− 1

2

(
∂

∂x2
+ ∂

∂y3

)
;

X4 = 1√
2

∂

∂x3
+ 1

2

(
∂

∂x2
+ ∂

∂y3

)
;X5 = ∂

∂y2
;X6 = 1√

2

(
∂

∂y3
− ∂

∂x2

)
.

G4 X1 = ∂

∂x1
;X2 = 1√

2

(
∂

∂y1
+ ∂

∂y2

)
;X3 = 1√

2

(
∂

∂y2
− ∂

∂y1

)
;

X4 = 1√
2

(
∂

∂x2
+ ∂

∂y3

)
;X5 = 1√

2

(
∂

∂y3
− ∂

∂x2

)
;X6 = ∂

∂x3
.

G5 X1 = 1√
2

(
sin α

∂

∂x1
+ cos α

∂

∂x2
+ ∂

∂x3

)
;X2 = 1√

2

(
∂

∂y1
+ ∂

∂y3

)
;

X3 = cos α
∂

∂x1
− sin α

∂

∂x2
;X4 = ∂

∂y2
;

X5 = 1√
2

(
sin α

∂

∂x1
+ cos α

∂

∂x2
− ∂

∂x3

)
;X6 = 1√

2

(
∂

∂y3
− ∂

∂y1

)
;

α ∈
(

0,
π

2

)
.

Example 5.3. Every regular curve in a 4-dimensional almost Hermitian manifold is a
submanifold associated with the cyclic graph C4,1 shown in figure 10, for any a, b such
that a2 + b2 = 1. To prove this, it is enough to consider the unit tangent vector field X

along the curve and a vector field Y such that {X, JX, Y, JY } is a local orthonormal frame.
Then, we just define the association frame by X1 = X, X2 = aJX + bJY , X3 = Y and
X4 = bJX − aJY .
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Table 2. Orthonormal frames corresponding to graphs G6−G9.

Graph Corresponding orthonormal frame

G6 X1 = 1√
2

(
∂

∂x2
+ ∂

∂x3

)
;X2 = 1√

2

∂

∂x3
− 1

2

(
∂

∂y3
− ∂

∂x2

)
;

X3 = 1√
2

∂

∂x3
+ 1

2

(
∂

∂y3
− ∂

∂x2

)
;X4 = 1√

2

(
∂

∂y1
+ ∂

∂y2

)
;

X5 = 1√
2

(
∂

∂y2
− ∂

∂y1

)
;X6 = ∂

∂x1
.

G7 X1 = sin α
∂

∂x1
+ cos α

∂

∂x2
;X2 = sin γ

∂

∂y1
+ cos γ

∂

∂y3
;

X3 = sin β
∂

∂x3
+ cos β

∂

∂y2
;X4 = sin α

∂

∂x2
− cos α

∂

∂x1
;

X5 = sin β
∂

∂y2
− cos β

∂

∂x3
;X6 = sin γ

∂

∂y3
− cos γ

∂

∂y1
;

α, β, γ ∈
(

0,
π

2

)
.

G8 X1 = ∂

∂y3
;X2 = 1√

2

(
∂

∂y3
− ∂

∂y2

)
;X3 = 1

2

(
∂

∂x1
− ∂

∂x2

)
− 1√

2

∂

∂y1
;

X4 = 1

2

(
∂

∂x1
− ∂

∂x2

)
+ 1√

2

∂

∂y1
;X5 = 1

2

(
∂

∂x1
+ ∂

∂x2
+ ∂

∂x3
+ ∂

∂y2

)
;

X6 = 1

2

(
∂

∂x1
+ ∂

∂x2
− ∂

∂x3
− ∂

∂y2

)
.

G9 X1 = 1

2

(
∂

∂x1
+ ∂

∂x2
+ ∂

∂x3
+ ∂

∂y2

)
;X2 = 1√

2

(
∂

∂x1
− ∂

∂x2

)
;

X3 = 1

2

(
∂

∂x3
− ∂

∂y2

)
+ 1√

2

∂

∂y1
;X4 = 1

2

(
∂

∂x1
+ ∂

∂x2
− ∂

∂x3
− ∂

∂y2

)
;

X5 = 1

2

(
∂

∂x3
− ∂

∂y2

)
− 1√

2

∂

∂y1
;X6 = ∂

∂y3
.

Similarly, we have the following.

Example 5.4. Every orientable hypersurface M of a 4-dimensional almost Hermitian
manifold is a submanifold associated with the cyclic graph C4,5 shown in figure 10, for
any a, b such that a2 + b2 = 1. In this case, we just choose a local orthonormal frame
{JC, X, JX, C} where C is the normal to M and X is tangent to M , and we define
X1 = aJX + bJC, X2 = X, X3 = bJX − aJC and X4 = C.
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Table 3. Orthonormal frames corresponding to graphs G10 and G11.

Graph Corresponding orthonormal frame

G10 X1 = 1√
2

(
∂

∂x1
− ∂

∂x2

)
;X2 = 1√

2

(
∂

∂y1
+ ∂

∂y3

)
;

X3 = 1

2

(
∂

∂x1
+ ∂

∂x2
+ ∂

∂x3
+ ∂

∂y2

)
;

X4 = 1

2

(
∂

∂x1
+ ∂

∂x2
− ∂

∂x3
− ∂

∂y2

)
;

X5 = 1√
2

(
∂

∂y1
− ∂

∂y3

)
;X6 = 1√

2

(
∂

∂x3
− ∂

∂y2

)
.

G11 X1 = 1

2

(
∂

∂x1
+ ∂

∂x2
+ ∂

∂x3
+ ∂

∂y2

)
;

X2 = 1√
2

∂

∂y1
+ 1

2

(
∂

∂x1
− ∂

∂x2

)
;X3 = 1√

2

∂

∂y3
− 1

2

(
∂

∂x3
− ∂

∂y2

)
;

X4 = 1

2

(
∂

∂x1
− ∂

∂x2

)
− 1√

2

∂

∂y1
;X5 = 1

2

(
∂

∂x3
− ∂

∂y2

)
+ 1√

2

∂

∂y3
;

X6 = 1

2

(
∂

∂x1
+ ∂

∂x2
− ∂

∂x3
− ∂

∂y2

)
.

Figure 10. Cycles weakly associated with submanifolds.
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Therefore, we see that there are ample examples of submanifolds associated with a cycle
with 4 vertices (C4). In fact, the following results show that this is the only possibility for
the number of vertices of a cycle weakly associated with a submanifold:

Theorem 5.5. Let (M̃n, J, g) be an almost Hermitian manifold. Suppose that there exist
a point p ∈ M̃ and a local orthonormal frame of vector fields B = {X1, . . . , Xn} on a
neighbourhood of p such that an isolated cycle Cr (r ≤ n) appears in the graph GB,p.
Then, r = 4.

Proof. We denote by i1, . . . , ir the vertices of Cr , consecutively and we put ek = Xk(p).
If r > 4, then from (3.1), we have

0 = ai1i3 =
n∑

k=1

g(J ei1 , eik )g(J eik , ei3) = g(J ei1 , ei2)g(J ei2 , ei3),

which is a contradiction. On the other hand, if r = 3, then from (3.1) again, we get

0 = ai1i2 =
n∑

k=1

g(J ei1 , eik )g(J eik , ei2) = g(J ei1 , ei3)g(J ei3 , ei2),

which is also a contradiction. �

We then obtain the following direct corollary.

COROLLARY 5.6

Let (M̃n, J, g) be an almost Hermitian manifold. If there exists a submanifold weakly
associated with a cycle in M̃n, then n = 4. In particular, this cycle is just C4.

Hence, every cycle weakly associated with a submanifold must be one of those drawn
in figure 10 (actually, all of them are isomorphic, in a general sense, to C4). Notice that
the first three cycles only differ on the labelling of vertices. The same fact is true for the
last three ones. On the other hand, it is clear that C4,1, C4,2 and C4,3 correspond to curves,
C4,4 is weakly associated with surfaces and C4,5, C4,6 and C4,7 represent hypersurfaces.

If we want to study submanifolds associated with these graphs, we need to assign weights
a2, b2 as shown in the figure, such that a2+ b2 = 1. This follows from Lemma 3.3 of [3],
and we refer to that paper for a detailed analysis of submanifolds associated with graphs
in dimension 4.

Now, we can study graphs consisting of finite disjoint unions of C4’s and K2’s. For
example, the graph shown in figure 3 is such a graph. Actually, the following result shows
that this kind of graphs characterize a natural generalization of bi-slant submanifolds
appearing in Example 3.3.

Theorem 5.7. A submanifold M of an almost Hermitian manifold (M̃n, J, g) is associated
with a graph consisting of a finite disjoint union of some C4’s and K2’s if and only if its
tangent bundle admits a direct orthogonal decomposition

T M = D ⊕D⊥ ⊕D1 ⊕ · · · ⊕Dr

such that D is a complex distribution, D⊥ is a totally real distribution and, for any i =
1 . . . r, Di is a θi-slant distribution satisfying g(JX, Y ) = 0 for any X ∈ Di and any
Y ∈ Dj , i �= j .



Submanifolds weakly associated with graphs 315

Figure 11. Non-disjoint union of C4’s referred in text.

Proof. This proof can be made directly by reasoning through association frames, just by
taking into account that the vertices corresponding to tangent horizontal K2’s define the
complex distribution, the tangent vertices appearing in vertical K2’s define the totally real
distribution, and those corresponding to each group of C4’s with the same horizontal weight
determine a distribution which can be proved to be slant. Moreover, the definition of these
distribution does not depend on the chosen association frame. The converse follows by
choosing suitable adapted frames. �

Notice that these submanifolds are a particular case of skew CR submanifolds (see [9]).
The next step in our study could be to deal with graphs consisting of non-disjoint union

of cycles, i.e., union of cycles with some edges connecting them. An idea to determine the
shape of such a graph is to choose a vertex and try to fix the necessary edges incident on it,
working at every step with the smallest possible degrees. In this sense, we have obtained
the following proposition.

PROPOSITION 5.8

Let G be a graph consisting of the non-disjoint union of two C4’s such that one of its
vertices has degree 2, and with the smallest degrees on the other vertices. If G is weakly
associated with a submanifold, then it must be the graph of figure 11.

Proof. Let i1 be one vertex of G with degree 2, and denote by i2, i3 its adjacent vertices
(which lie, of course, in the same C4 as i1). If we suppose that both i2 and i3 also have
degree 2, then the remaining vertex of the cycle, say i4, should be adjacent to at least one
vertex of the other cycle, say i5. But, if we apply Lemma 3.10 to vertices i1, i2, i4, i5 (with
i2 as the settled vertex with degree 2), it follows that i5 must be adjacent to i1, which is
impossible. Therefore, either i2 or i3 must have degree at least 3. Actually, let us show that
both of them have degree greater than or equal to 3:

From Lemma 3.10 we know that they can not be adjacent to each other. Hence, if i2
has degree d ≥ 3, then it is adjacent to i1 (of course), to the remaining vertex of the cycle
i4, and to d − 2 vertices of the other cycle. But, if we now apply Lemma 3.10 to vertices
i1, i2, i3, i5 (with i1 as the settled vertex with degree 2), i5 being any of those d−2 vertices
adjacent to i2, then we deduce that i5 is also adjacent to i3, and so the degree of this vertex
is also greater than or equal to 3. A similar argument can be followed if we suppose that
i3 has degree d ≥ 3 to prove the same property for i2.

Let us go back and suppose that i2 has just degree 3. As we have pointed out above, we
already know that it is adjacent to i1, the remaining vertex of the cycle i4 and to one vertex
of the other cycle, say i5, which is adjacent, in its turn, to i3. Let us denote by i6, i7 the
vertices adjacent to i5 in the second cycle. We can now apply Lemma 3.11(ii) to vertices
i1, i2, i4, i5, i6 (with i2 as the settled vertex with degree 3) and we have that i6 must be
adjacent to i4. Moreover, by applying the same result to i1, i2, i4, i5, i7, we also have that
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Figure 12. Cubic graphs associated with a submanifold in dimension 8.

i7 is adjacent to i4. At this point, we have already obtained a graph isomorphic (in the
general sense) to that of figure 11. �

Actually, some different examples of submanifolds associated with the graph of figure 11
can be obtained from Example 4.2 of [2].

Finally, let us offer one result concerning another relevant family of graphs: cubic graphs.
A graph is said to be a cubic graph if all its vertices have degree 3. The first two authors
proved in [3] that the only cubic graph with 4 vertices (namely, the tetrahedron, called the
complete graph K4 in graph theory) is associated with some submanifolds. With respect
to cubic graphs with 6 vertices, there are two of them (see [8]), and we have seen in §4 that
only one can be associated with submanifolds (namely, graph G5 of figure 9, better known
as K3,3 in graph theory). We have also given some examples of such an association. Now,
we obtain the following theorem concerning cubic graphs with 8 vertices.

Theorem 5.9. Let G be a cubic graph weakly associated with a submanifold of an almost
Hermitian manifold of dimension 8. Then, G must be either the disjoint union of two
tetrahedrons or a cube (see figure 12).

Proof. Let i1 denote any of the vertices of G whose degree must be 3 since G is a cubic
graph. Then, let i2, i3, i4 denote its adjacent vertices and let H be the subgraph of G

induced by its non-adjacent vertices. There are two cases to take into account:

Case I. There are at least two adjacent vertices among i2, i3 and i4. Thus, from
Lemma 3.11(i), i1, i2, i3 and i4 induce a tetrahedron. Moreover, since the vertices of H

are of degree 3 and not adjacent to i1 − i4, we get that H is another tetrahedron.

Case II. There are no adjacent vertices among i2, i3 and i4. Then, since all vertices of H

are of degree 3, we easily show that H has three edges.

In this situation, if any vertex of H is of degree 2 in H , it has to be adjacent to exactly one
of i2−i4 since it is of degree 3 in G, but this fact contradicts Lemma 3.11(ii). Consequently,
there is one vertex in H , say i5, which is adjacent to the other three vertices of H , all of
them of degree 1 in H because H has only three edges, and so, adjacent exactly to two
vertices of i2 − i4.

Let us denote the vertices adjacent to i2 and i5 by i6 and i7 and the vertex adjacent to
i5 but not to i2 by i8. If i3 is adjacent to i6 and i7, then the vertex i4 can not be adjacent
to any of them and thus, it is adjacent only to i1 and maybe to i8, which is a contradiction
because i4 is of degree 3. Therefore, i3 is adjacent to i8 and one among i6 and i7, say i6.
Finally, i4 should be adjacent to i7 and i8 since all vertices are of degree 3. Thus, G is
isomorphic to a cube and this completes the proof. �
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Actually, we do have some examples of submanifolds associated with graphs of figure 12.
With respect to the graph K4 � K4 consisting of the disjoint union of two tetrahedrons,
we have shown in Example 3.3 that a bi-slant submanifold M with slant angles θ1, θ2 ∈
(0, π/2) and slant distributions D1 and D2 satisfying g(JX, Y ) = 0 for any X ∈ D1 and
any Y ∈ D2, is associated with the disjoint union of two C4’s (labelled, as in figure 3, from
bottom to top and from left to right). Then, if we denote by {X1, . . . , X8} the corresponding
association frame, we just have to take into account the changes

Y1 = λ1X1 + μ1X2, Y2 = μ1X1 − λ1X2, Y3 = λ2X3 + μ2X4,

Y4 = μ2X3 − λ2X4,

Yj = Xj , j = 5, . . . , 8,

with λ2
i = c2

i / sin2 θi , μ2
i = d2

i / sin2 θi , ci, di being real numbers such that c2
i + d2

i =
sin2 θi , i = 1, 2. Therefore, M is associated with K4 �K4 through {Y1, . . . , Y8}, with the
appropriate weights on the graph (cos2 θi on the horizontal edges, c2

i on the vertical ones
and d2

i on the diagonals, i = 1, 2).
On the other hand, some different examples of submanifolds associated with a cube were

given by the first author in [2]. But we can also understand the cube as the non-disjoint
union of two C4’s (for example, its top and bottom faces). Thus, we have the following
obvious corollary from Theorem 5.9.

COROLLARY 5.10

Let G be a graph consisting of the non-disjoint union of two C4’s such that all its vertices
have degree 3. If G is weakly associated with a submanifold, then it must be a cube.
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