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THE EQUIVARIANT CATEGORY
OF PROPER G-SPACES

R. AYALA, F.F. LASHERAS AND A. QUINTERO

Introduction. If G is a Lie group, then by a G-space we mean
a completely regular space X together with a fixed action of G on
X. We follow the standard notation of the theory of transformation
groups used in [5] and [9]. In this paper we deal with “minimax
invariants” of a G-space. If one restricts consideration to compact Lie
groups, then a substantial general theory of G-genus, G-index, as well
as G-category in the sense of Lusternik-Schnirelmann has already been
developed. See [1], [11] and [17]. In contrast, if G is not compact,
results on such invariants become scarce in the literature. The aim
of this paper is to give a general overview of the invariants of type
Lusternik-Schnirelmann for an interesting class of G-spaces without
the assumption of compactness for the group G; that is, G-spaces with
proper actions. The crucial result that allows such a generalization is
due to Palais [19]. Namely, Palais shows that “slices” still exist for
proper G-spaces. This fact leads us to extend a remarkable amount
of the theory of G-spaces with G compact to G-spaces with proper
actions.

With this paper we intend to point out that there is no real difficulty
in extending to proper actions the notion of equivariant Lusternik-
Schnirelmann category defined for compact transformation groups in
[11] and [17]. In fact, we show that the basic properties of equivariant
“minimax” invariants still hold for proper G-spaces and more generally
for Cartan G-spaces.1 See Section 1 for definitions. Moreover, in many
cases the computation of the equivariant category of a proper G-space
can be reduced to the compact case, see (2.6) below. The main result
of this paper states a Kranosielski type theorem for proper actions of
discrete groups on acyclic manifolds (Theorem 4.2). Incidentally, we
give in addition an alternative proof of a Kranosielski type theorem for
(co)homology spheres due to Marzantowicz (Theorem 4.4). Finally we
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give a Lusternik-Schnirelmann theorem for critical points ofG-invariant
real functions on proper G-manifolds (Theorem 5.3). Most of the proofs
of the basic results are formally similar to the corresponding ones for G
compact already in the literature. See [7], [8], [11] and [17]. However,
we include here several proofs to emphasize the crucial role played by
Palais’s results as well as to avoid an excessively dull exposition.

1. Basic results on proper actions. In this section we collect
the basic notations and results on proper actions contained in [3], [9],
[16] and [19]. Let G be a Lie group (with trivial element e ∈ G)
not necessarily compact. If X is a space, an action of G on X is a
homomorphism T of G into the group of homeomorphisms of X such
that the map G ×X → X given by (g, x) �→ T (g)x is continuous. We
will write gx for T (g)x if the action T is clear from the context. A G-
space is a completely regular space together with a fixed action of G on
X. A map between two G-spaces f : X → Y is said to be G-invariant
(or a G-map) if f(gx) = gf(x) for all g ∈ G and x ∈ X. A real
function h : X → R is called invariant if h(gx) = hx. A G-homotopy
H : X × I → Y is a homotopy such that H(gx, t) = gH(x, t).

The isotropy group of x ∈ X is the subgroup Gx ⊆ G, Gx = {g ∈
G; gx = x}. The action is said to be free if Gx = {e} for all x ∈ X.
The set of fixed points is the set XG = {x ∈ X;Gx = G}. The orbit
of x ∈ X is the subset Gx = {gx; g ∈ G}. Moreover the saturation of
the subset S ⊆ X is the subset GS = {gs; s ∈ S}. The subset S ⊆ X
is said to be G-invariant (or a G-set) if GS = S. Finally, X/G stands
for the set of orbits of X topologized with the usual quotient topology.

Following Bourbaki [3, Chapter 3], the action of G on X is said to
be proper if the map ψ : G×X → X ×X defined by ψ(g, x) = (gx, x)
is proper. We recall that a continuous map f : Y → Z is proper if f is
closed and f−1(z) is compact for any z ∈ Z. If the action of G on X is
proper, then X is called a proper G-space. Equivalently, a G-space X is
proper if for each pair of points x, y ∈ X there exist neighborhoods Vx

and Vy of x and y respectively, such that the set {g ∈ G; gVx∩Vy 	= ∅}
has compact closure in G. See [9] and [19] for details. Obviously,
any G-space with G compact is a proper G-space. Moreover, if G acts
properly on X, then the restriction of the action to any closed subgroup
H ⊆ G is also proper. Clearly if X is a proper G-space, the isotropy
group Gx is compact for all x ∈ X, and hence XG = ∅ if G is not
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compact. Moreover, each orbit Gx is closed in X and the natural map
G/Gx → Gx defined by [g] �→ gx is a homeomorphism; see [9].

Remark 1.1. Palais [19] considers a more restrictive definition of a
proper G-space X by requiring that for each x ∈ X there exists a
neighborhood Ux such that for all y ∈ X there exists a neighborhood
Uy such that the set {g ∈ G; gUx ∩Uy 	= ∅} has compact closure in G.
Palais also introduces the weaker notion of Cartan G-space by requiring
that for each x ∈ X there exists a neighborhood Ux such that the set
{g ∈ G; gUx ∩ Ux 	= ∅} has compact closure in G. Clearly one has
Palais-proper ⇒ Bourbaki-proper ⇒ Cartan G-space. In general, the
converses are not true. See [13] and [16], respectively. However, the
three notions coincide for locally compact spaces and more generally if
X/G is regular. See [19, p. 303].

Examples 1.2. Examples of proper actions are the following:

(1) If G is a Lie group, any closed subgroup H ⊆ G acts properly on
G by left translations. Moreover, ifK ⊆ G is a compact subgroup, then
the left translation action of H on G/K is proper. See [9, Example 24].

(2) It follows from the previous observations that every closed (e.g.,
discrete) subgroup H ⊆ G of a connected Lie group acts properly
on some Euclidean space. The proof of this fact follows from a well-
known result which states thatG contains a maximal compact subgroup
K ⊆ G (unique up to conjugation) such that G/K is diffeomorphic to
a Euclidean space. See [14].

(3) A G-space M is called a G-manifold if M is a manifold and
the map x �→ gx is differentiable for each g ∈ G. Note that G acts
on the tangent space TM via the differential; that is, gv = (dg)xv if
v ∈ TxM . In addition, M is called a Reimannian G-manifold if M is
endowed of a Riemannian metric R for which the maps x �→ gx are
isometries. That is, R is a section of the dual bundle (TM ⊕ TM)∗

such that for each x ∈ M , Rx is an inner product and for each
g ∈ G, Rgx((dg)xv, (dg)xw) = Rx(v, w) for all v, w ∈ TxM . If M is
a Riemannian G-manifold and G is a closed subgroup of the isometry
group Iso (M) of M , then the action of G is proper. Moreover, if M
is a proper G-manifold, then there exists a G-invariant Riemannian
metric on M (i.e., the action of G is an isometric with respect to that
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metric). Therefore, a G-manifold is proper if and only if there exists a
Riemannian metric on M such that G is a closed subgroup of Iso (M).
See [20] for details.

(4) The group of deck transformations of a covering p : X̃ → X acts
properly on X̃. More generally, if the completely regular space X is
the total space of a principal G-bundle, then X is a Cartan G-space
(1.1). In particular, X is a proper G-space if X is locally compact or,
more generally, if X/G is regular. Conversely, if X is a proper G-space
or, more generally, a Cartan G-space, and G acts freely on X, the orbit
map X → X/G is a locally trivial principal G-bundle. See (1.1) and
[19, 4.1].

(5) In the language of dynamical systems (i.e., R-spaces) proper
flows are called dispersive flows, and they coincide with parallelizable
flows for metrizable locally compact spaces. We recall that a flow
φ : X × R → X on the space X is said to be parallelizable if the
orbit map X → X/R is a trivial bundle. See [13].

Important objects in a transformation group theory are tubes and
slices. We recall here some basic properties of them which will be
used below. A tube about x in a G-space X is an open G-invariant
neighborhood U ⊆ X of x in X for which there exists a G-invariant
map π : U → Gx called a projection of U . A slice at x is a subset
S ⊆ X which is Gx-invariant and such that the map G ×Gx

S → X
taking [g, s] to gs yields a homeomorphism onto a tube U about x.
We recall that, for a subgroup H ⊆ G and an H-space X, the twisted
product G×H X is the orbit space of the H-action h(g, x) = (gh−1, hx)
on G × X. Tubes and slices come in pairs. Actually, if π : U → Gx
is a projection of the tube U about x, then S = π−1(x) is a slice at
x. Conversely, if S is a slice at x, then GS is a tube about x with
projection π(gs) = gx. Also, if S is a slice at x in the G-space X, then
the natural map S/Gx → X/G is a homeomorphism onto the open
subspace GS/G. See [5, II.4.7]. The following existence theorem is
crucial in dealing with proper G-spaces. See [5] for compact groups
and [19] for the general case.

Theorem 1.3 (Palais). Let X be a proper G-space. Then there
exists a slice at each point x ∈ X. More precisely, Cartan G-spaces are
exactly the G-spaces for which there is a slice at each point.
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Theorem 1.3 allows one to generalize many results on compact trans-
formation groups to proper actions. We next state some of them which
will be used below. The first one is the path lifting theorem for proper
G-spaces. We give a proof to illustrate the way of generalizing results
already known for G-spaces with G compact to proper G-spaces.

Theorem 1.4. Let X be a proper G-space and let α : I → X/G be
any path. Then there exists a lifting α′ : I → X of α with respect to
the orbit map p : X → X/G.

Proof. If Sx is a slice at x ∈ X, the family {GSx/G} is an open
cover of the orbit space X/G. Then by Lebesgue’s lemma one finds
a positive integer n such that for each 0 ≤ i ≤ n, the restriction
αi = α|[i/n, (i + 1)/n] is contained in some GSxi

/G ∼= Sxi
/Gxi

for
some xi ∈ X. We now apply the path lifting theorem for compact
groups [5, II.6.2] to the Gxi

-space Sxi
, and we get a lifting of αi,

α̃i : [i/n, (i + 1)/n] → Sxi
⊆ GSxi

for all 0 ≤ i ≤ n. Moreover,
p(α̃i((i + 1)/n)) = p(α̃i+1((i + 1)/n)) for 0 ≤ i ≤ n − 1. Hence there
exists gi+1 ∈ G with α̃i((i+1)/n) = gi+1α̃i+1((i+1)/n), 0 ≤ i ≤ n−1.
Then α̃(t) = g1 . . . giα̃i(t) if i/n ≤ t ≤ (i+ 1)/n is a lifting of α.

As it was pointed out by Palais [19, 4.5], the covering homotopy
theorem [5, II.7.3] can also be extended to proper G-spaces. Namely,
the following theorem holds

Theorem 1.5. Let X and Y be separable metrizable proper G-spaces,
and let f̃0 : X → Y be a G-map. If F : X/G × I → Y/G is any
homotopy with F0 the map induced by f̃0 and F (p(X(H))×I) ⊆ p(Y(H)))
for all orbit type (H), then there exists a G-homotopy F̃ : X × I → Y
with F̃0 = f̃0 which covers F .

We recall that for a subgroup H ⊆ G, the orbit type of x ∈ X is
said to be (H) if Gx = gHg−1 for some g ∈ G. The subset X(H) ⊆ X
is the union of all orbits in X of type (H). A proof of Theorem 1.5
can be given along the lines of the proof in [5] for compact groups.
Moreover, since for a proper G-space the set of fixed points XG is
empty, one actually skips Part D in that proof. In addition, that
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proof also shows that the previous theorem also holds for hereditarily
paracompact spaces X and Y .

2. The equivariant category of proper G-spaces. We now
proceed to extend the definition and basic properties of the equivariant
category as introduced in [11] and [17] for compact Lie groups to proper
actions of arbitrary Lie groups. This extension is completely natural,
and it will be carried out more or less by way of showing what can be
done.

Definition 2.1. Let X be a proper G-space or, more generally, a
Cartan G-space in the sense of Remark 1.1. A G-set A ⊆ X is said to
be of G-category 1 if there exists an orbit Gx such that the inclusion
iA : A ⊆ X is G-homotopic in X to a G-map A→ Gx ⊆ X.

Given a G-set A ⊆ X, the G-category (or equivariant category),
of A in X, catG(A;X), is the smallest number k such that there
exists a cover A ⊆ ∪k

j=1Aj consisting of closed G-sets in X of G-
category 1. If no such cover exists for all k, then catG(A,X) = ∞.
As usual, catG(X) will replace catG(X,X). The classical Lusternik-
Schnirelmann category, cat (−), defined with closed covers [15] is
obtained as cat (A,X) = catG(A,X) for the trivial group G = {e}.

Remark 2.2. As usual, the invariant catG(−) can be extended to G-
maps f : X → Y in such a way that catG(idX) = catG(X). Namely,
catG(f) is the smallest k such that there exists a cover {X1, . . . , Xk}
of X consisting of closed G-sets such that for each i one has an orbit
Gyi ⊆ Y such that the restriction f |Xi is G-homotopic in Y to a G-map
Xi → Gyi ⊆ Y .

At this point we should mention the connection of the above definition
with the general definition of equivariant category introduced by Clapp
and Puppe in [7]. That definition starts by fixing a class A of G-spaces
for some compact Lie group G. Then they define A − cat (f) ≤ k if
there exist spaces Ai ∈ A such that the restriction f |Xi is G-homotopic
to a composition of G-maps Xi → Ai → Y . If G is now an arbitrary
Lie group, we can consider the corresponding definition by choosing a
family Aproper of proper G-spaces. We recover the definition of catG(−)
above if Aproper = {G/H;H ⊆ G is a compact subgroup}.
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Notions of relative equivariant category as well as G-genus and A-
genus can also be studied for proper G-spaces. See [21], [8], [1] and
[7].

As one expects, the fundamental properties of “minimax” invariants
extend to proper G-spaces. Namely,

Proposition 2.3. Let A,B be closed G-sets of the proper G-space
X. Then

(1) (Subadditivity). catG(A ∪B,X) ≤ catG(A,X) + catG(B,X).

(2) (Deformation monotonicity). Assume that there exists a G-
homotopy H : A × I → X such that H0 = idA and H1(A) ⊆ B. Then
catG(A,X) ≤ catG(B,X). In particular catG(X) is a G-homotopy
invariant of X.

(3) (Continuity). If X is a G-ANR, then there exists a G-neighborhood
U of A in X with catG(A,X) = catG(U,X).

Properties (1) and (2) are easily checked following the classical
arguments, and they are left to the reader. Compare [15] and [7].
Similarly for property (3), but some further remarks are needed in this
case since G-ANR spaces are usually studied in the literature only for
compact groups (see [18]). In Section 3 we include the results on proper
G-ANR needed for the proof of (3). We now continue with some results
concerning proper free actions.

Proposition 2.4. If X is a proper G-space and A is a closed G-
set, then cat (A/G,X/G) ≤ catG(A,X). Moreover, if X is separable
metrizable and G acts with only one orbit type, in particular freely, then
catG(A,X) = cat (A/G,X/G).

Proof. Let p : X → X/G be the orbit map. The first part
is obvious since given a cover A ⊆ ∪m

i=1Ai of closed G-sets with
catG(Ai, X) = 1 one has that {p(Ai)} is a closed categorical cover
of X/G and hence the first inequality is proved. Assume now the
extra hypothesis, then we will show catG(A,X) ≤ cat (A/G,X/G).
Let {Uj}1≤j≤n be a closed cover of X/G with cat (Uj , X/G) = 1. Let
Hj : Uj × I → X/G be a deformation of the inclusion Uj ⊆ X/G
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to a point p(xj) ∈ X/G. Clearly, the inclusion kj : p−1(Uj) ⊆ X is
an equivariant lifting of the inclusion Hj

0 : Uj ⊆ S/G. Since G acts
with only one orbit type, we can apply the covering homotopy theorem
(1.5), and one finds an equivariant homotopy H̃j with covers Hj and
with H̃j

0 = kj . In particular, H̃j
1(x) ∈ Gxj for all x ∈ p−1(Uj). Hence

catG(p−1(Uj), X) = 1, and the proof is finished.

We now consider the relationship between catG and catH when
H ⊆ G is a closed subgroup. The following general result is available.

Proposition 2.5. Let X be a proper G-space and H ⊆ G be a closed
subgroup. Then catH(X) ≤ catG(X)max{catH(Gx) : x ∈ X}.

The proof is similar to that of [1, 2.14]. In particular, if G acts
freely and X is separable metrizable, then (2.4) yields catH(X) ≤
catG(X)cat(G/H). Moreover, if H is a maximal compact subgroup
of the connected Lie group G, then G/H ∼= Rm for some m (see (1.2))
and one gets catH(X) ≤ catG(X). The next result shows that the latter
inequality actually holds for any G-space, and furthermore it turns out
to be an equality in many cases.

Proposition 2.6. Let G be a connected Lie group, and let X be a
proper G-space. If H ⊆ G is a maximal compact subgroup in G, then
catH(X) ≤ catG(X). Moreover, if the action is free, the space X is
metrizable and separable, and the orbit spaces X/G and X/H have the
homotopy type of CW -complexes, then catH(X) = catG(X).

Proof. Assume that H contains the isotropy group Gx for some
x ∈ X. Then the bundle G/Gx → G/H of fiber H/Gx and group
H is trivial since G/H ∼= Rm for some m. Hence, the composition of
the trivialization G/Gx

∼= G/H × H/Gx with the second projection
π2 : G/H ×H/Gx → H/Gx is a homotopy H-equivalence Gx � Hx.

Now let A be a G-set such that the inclusion A ⊆ X is G-homotopic
(and hence H-homotopic) to a G-map A → Gz ⊆ X. As Gz is
compact and the maximal compact subgroups are uniquely determined
up to conjugation, there exists g ∈ G such that gGzg

−1 = Ggz ⊆ H.
Therefore, Hgz is homotopy H-equivalent to Gz = Ggz. Hence,



EQUIVARIANT CATEGORY OF PROPER G-SPACES 1119

catH(A,X) = 1, and it readily follows that catH(X) ≤ catG(X).

Assume now that G acts freely. According to (1.2)(4), X → X/G and
X → X/H are principal bundles of fibers G and H, respectively. Then
the exact sequences of homotopy groups of these bundles as well as the
bundle G → G/H yield isomorphisms πn(X/H) ∼= πn(X/G) for all n.
Hence X/H and X/G have the same homotopy type by Whitehead’s
theorem [24, V.3.5] and so catG(X) = cat(X/G) = cat(X/H) =
catH(X).

Corollary 2.7. Let G be a contractible Lie group acting properly on
a separable metrizable space X. Then catG(X) = cat(X).

Proof. Since G is contractible, then G contains no compact subgroup
other than the trivial subgroup {e}. Therefore, any proper action of G
is necessarily free and hence the result follows from (2.6).

Let G now be an arbitrary Lie group acting properly on X. Assume
that H ⊆ G is a closed and open subgroup. Then the H-orbit Hx is
closed and open in the G-orbit Gx for all x ∈ X. This follows from
the fact that the canonical maps H → Hx and G → Gx are both
closed and open. For this we use the homeomorphisms Hx ∼= H/Hx

and Gx ∼= G/Gx since G acts properly. After these observations, one
can prove

Proposition 2.8. Assume that X is a path connected separable
and metrizable G-space. Assume that H is a closed and open subgroup
such that the action restricted to H has only one orbit type. Then
catH(X) ≤ catG(X).

Proof. Let {U1, . . . , Uk} be a cover of X by closed G-sets such that
for all i there is a G-deformation (and so an H-deformation) φi in X
to G-orbits Gxi. Let Gxi = ∪Hyi

j be the decomposition of Gx into
H-orbits. According to the previous observations, each Hyi

j is open
and closed in Gxi, and hence Gxi/H is a discrete space. Since X/G is
path connected, we consider paths γi

j : I → X/H running from [yi
j ] to

some fixed point [x0]. Since the H-action has only one orbit type, we
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can apply the covering homotopy theorem (1.5) to lift each path γi
j to

an H-homotopy F i
j : Hyi

j × I → X such that F i
j (x, 1) ∈ Hx0 for all

x ∈ Hyi
j . Hence F

i = ∪F i
j : Gxi × I → X is an H-deformation of Gxi

toHx0. By using F i and φi, one can easily construct anH-deformation
of Ui to Hx0 and so catH(X) ≤ catG(X).

Corollary 2.9. Let H be a subgroup of a discrete group G. If X is
a separable metrizable proper G-space and the action of G is free, then
catH(X) ≤ catG(X). In particular, if H is the trivial subgroup, one
gets cat(X) ≤ catG(X).

3. The equivariant category of proper G-ANR spaces. We
recall that a separable metrizable G-space Y is called a G-equivariant
absolute neighborhood retract (G-ANR space) if, given a closed G-
subspace A of a metrizable separable G-space X and a G-map f : A→
Y , there exists an extension f̃ : U → Y to some G-neighborhood U of
A in X. Usually G-ANR spaces are studied in equivariant topology for
compact Lie groups. See [18]. We give here some basic properties of
proper G-ANR. Here by a proper G-ANR we mean a G-ANR for which
the action of G is proper. Again, Palais’s results in [19] allow us to
extend the theory of G-ANR spaces with G compact to proper G-ANR
spaces in a straightforward way. Moreover, proper G-manifolds remain
examples of proper G-ANR spaces.2 We prove it in (3.3) below. For
this we need the following result.

Lemma 3.1. Let X be a metrizable separable proper G-space. Then

(a) For any cover U = {Uα} of X consisting of open G-sets, there
exists a partition of unity of invariant maps {f̃α : X → I} subordinate
to U .

(b) If A1, A2 ⊆ X are disjoint closed G-sets, there exists an invariant
map f : X → I with f |A1 = 0 and f |A2 = 1.

(c) If A ⊆ X is a closed G-set and U is an open G-neighborhood of
A, there is a closed G-neighborhood V of A with A ⊆ V ⊆ U .

Proof. (a) In fact the orbit space X/G is metrizable by (4.3.4) in
[19]. Hence X/G is paracompact and the open cover {p(Uα)} admits
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an ordinary partition of unity {fα}. Then we set f̃α = fαp.

(b) The open G-sets Ui = X − Ai, i = 1, 2, cover X and by (a) one
finds two G-maps fi : X → I with f1+ f2 = 1 and {x; fi(x) 	= 0} ⊆ Ui.
Then f1 is the required map.

(c) Let f : X → I be the invariant map obtained by applying (b) to
A1 = A and A2 = X−U . Then V = f−1([0, 1/2]) satisfies the required
properties.

Lemma 3.2. Any orbit Gx in a proper G-ANR X is a proper G-
ANR.

Proof. One easily checks that any open G-set U ⊆ X is a G-ANR.
Then one applies that Gx is a G-retract of an open G-neighborhood U
of Gx in X. See [19, 2.3.3.1].

Proposition 3.3. Any proper G-manifold M is a proper G-ANR
space.

Proof. When G is compact, the result is proved in [18, 8.8]. Let
x ∈ M and Sx be a slice at x. Then Sx is a Gx-manifold [20, 5.1 and
5.2]. Since Gx is compact, we apply the compact case in [18, 8.7] to
get that Sx is a Gx-ANR space. Now G×Gx

Sx is G-homeomorphic to
a tube Ux ⊆M about x which is G-ANR. The proof of this fact mimics
the proof of [18, 8.5] by using (3.2). Since M is separable metrizable,
only countably many tubes Un are needed to coverM . Next one checks
that the countable union of open G-ANR subspaces {Un} is again a G-
ANR. For this, the proof for countable unions of ordinary ANR [2,
IV.10.2] can be mimicked by taking into account that any separable
metrizable proper G-space admits an invariant metric [19, 4.3.4].

We state below some properties of proper G-ANR spaces in con-
nection with the equivariant category. The next result yields that all
proper G-ANR spaces admit open covers consisting of G-sets of equiv-
ariant category 1.

Proposition 3.4. Let X be a proper G-ANR. Then each orbit Gx
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has a G-neighborhood W which can be deformed equivariantly to Gx
inside X.

Proof. Let r : V → Gx be the retraction of a G-neighborhood of Gx
given by [19, 2.3.3.1]. By (3.1)(c) we can assume that V is actually
closed. Now the proof fits the usual pattern. One considers the G-map
H : C = V ×{0, 1}∪Gx× I → X given by H(v, 0) = v, H(v, 1) = r(v)
and H(y, t) = y for v ∈ V , y ∈ Gx and t ∈ I. Since X is G-ANR,
we find a G-neighborhood Ω of the closed G-set C in X × I and a G-
extension H̃ : Ω → X of H. Let Uy be a neighborhood of y ∈ Gx with
Uy × I ⊆ Ω. Then W = ∪y∈GxGUy ⊆ Ω is a G-neighborhood of Gx
with W × I ⊆ Ω. Hence H̃|V × I is a G-deformation of the inclusion
V ⊆ X onto Gx in X.

The equivariant version of Borsuk’s theorem also holds for proper
G-ANR spaces. Namely, by using (3.1)(c), one can repeat the classical
proof [2, IV.8.1] to get

Proposition 3.5. Let Y be a proper G-ANR. If A is a closed G-
subset of a metrizable separable G-space X, then the pair (X,A) has
the G-homotopy extension property with respect to Y .

At this point we can give a proof of (2.3)(3). Compare [7, Appendix
B].

Proof of (2.3)(3). We can assume catG(A,X) = n < ∞ (otherwise
take U = X). Let A ⊆ A1 ∪ · · · ∪ An with Ai a closed G-set with
catG(Ai, X) = 1. It will suffice to show that each Ai has a closed G-
neighborhood Vi with catG(Vi, X) = 1. Let Hi be a G-homotopy with
Hi

0 the inclusion ki : Ai ⊆ X and Hi
1(Ai) ⊆ Gxi for some xi ∈ X.

By (3.5) we can extend Hi to a G-homotopy H̃i : X × I → X with
H̃i

0 = idX . By (3.4), we choose a G-neighborhood Wi of Gxi which
is deformed equivariantly inside X. Then H̃i

1(Ai) ⊆ Wi. Now (3.1)(c)
gives a closed G-neighborhood Vi of Ai with H̃i

1(Vi) ⊆ Wi and so by
(2.3)(2) one gets catG(Vi, X) ≤ catG(H̃i

1(Vi), X) ≤ catG(Wi, X) = 1.
Hence catG(Vi, X) = 1.
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Corollary 3.6. If X is a G-ANR space, one can indistinctly use
open or closed covers of invariant sets to define catG(X).

Proof. Let X = U1 ∪ · · · ∪ Uk be a cover with catG(Ui, X) = 1
and each Ui an open G-set. We use (3.1)(a) to get an equivariant
partition of unity {fi} subordinated to {Ui}. Then the family of
supports Ai = {x; fi(x) 	= 0} is a cover of X by closed G-sets and
catG(Ai, X) = 1 for all i. The converse follows from (2.3)(3).

For a proper G-ANR space X, there is also available an upper bound
for the G-category in terms of dimX/G. For this we recall that an
orbit type (H) of X is said to be minimal if there is no x ∈ X with
H 	⊆ Gx. See [5, p. 42]. Then one can prove

Proposition 3.7. If X is a path connected proper G-ANR space and
A ⊆ X is a closed G-set, then

catG(A,X) ≤ (1 + dimA/G)
∑

c(H).

Here c(H) denotes the (cardinal) number of components of the orbit
space GXH/G and (H) ranges over the set of minimal orbit types of
X.

Of course, the above formula is only of interest if
∑
c(H) <∞. The

proof of (3.7) uses the same arguments as the proof of the compact case
in [17, 1.10]. The crucial point in the proof is the path lifting theorem
which still holds for proper actions, see (1.4). We leave the details to
the reader. As a corollary, we have

Corollary 3.8. If X is a path connected proper G-ANR space
with only one orbit type (H), then catG(X) ≤ (1 + dimX/G)c(H).
Moreover, if the fixed point set XH is connected, then catG(X) ≤
1 + dimX/G.

4. Kranosielski type theorems for proper free actions of dis-
crete groups. The classical Kranosielski theorem states cat(Sn/G) =
n+1 for any free action of a finite group G on the n-sphere Sn. Several
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generlizations can be found in the literature. In particular, Marzantow-
icz has shown that the same result holds for any (co)homology sphere
[17, 2.6]. We prove here similar results for proper free actions of in-
finite discrete groups on acyclic manifolds. Incidentally, we use the
same arguments to give an alternative proof of Marzantowicz’s result.
The crucial point in the results below is the following theorem in [12,
Proposition 3].

Theorem 4.1 (Eilenberg-Ganea). If X is a paracompact space and
cat (X) ≤ n, there exist an (n−1)-dimensional polyhedron L and a map
g : X → L which induce an isomorphism g∗ : π1(X) ∼= π1(L) between
fundamental groups.

We are now ready to show

Theorem 4.2. Let X be an acyclic n-manifold, n ≥ 3. Assume
that G is a discrete group acting properly and freely on X with X/G
compact. Then catG(X) = cat (X/G) = n+ 1.

Proof. For the Eilenberg-Maclane space K(G, 1) we consider the
associated universal G-bundle qG : E(G, 1) → K(G, 1). Moreover,
we have the diagram

X

u

π

w
f̃

E(G, 1)

u

qG

X/G w
f

K(G, 1)

where f is the classifying map of the G-bundle π : X → X/G. See
(1.2)(4).

Assume now that catG(X) = cat(X/G) ≤ n. Then by (4.1) there
exists a map g : X/G → L where L is an (n − 1)-polyhedron and
g∗ : π1(X/G) → π1(L) is an isomorphism. It is easily checked that the
inverse g−1

∗ can be realized by a map h : L2 → X/G from the 2-skeleton
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L2 ⊆ L. That is, the diagram

π1(L)

π1(L2)
N
N
N
NNP

i∗

w
h∗ π1(X/G)

u

g∗

is commutative. As πn(K(G, 1)) is trivial for all n ≥ 2, one readily
extends the map fh : L2 → K(G, 1) to a map f ′ : L → K(G, 1) for
which the following diagram commutes up to homotopy

X/G

u

g

w
f

K(G, 1)

L
N
N
N
NNP

f ′

Since X/G is compact, we can assume without loss of generality that
in the above diagram L is actually a finite complex. Moreover, as f is
the classifying map of π : X → X/G, we have a commutative diagram
of total spaces of the corresponding pullback constructions

g∗f ′∗E ∼= X

u

g̃

w
f̃

E = E(G, 1)

f ′∗E
A
A
A
A
AAC

f̃ ′

We next observe that both the augmented cellular chain complex
C(E(G, 1)) and the augmented cellular chain complex C(X) are free
ZG-resolutions of Z, and by [6, I.7.5] it follows that the induced
homomorphism f̃∗ : C(X) → C(E(G, 1)) is a homotopy equivalence
of chain complexes, and hence f̃∗ : H∗(G,ZG) ∼= H∗(G,ZG) is
an isomorphism. Therefore, the above diagram yields the following
commutative diagram of augmented cellular chain complexes

C(X)

u

g̃∗

w
f̃∗
� C(E)

C(f ′∗E)
h
h
hhj

f̃ ′
∗
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From this we get a commutative diagram

Hn(G;ZG)

u

f̃ ′∗

w
f̃∗

∼= Hn(G;ZG) ∼= Hn
c (X;Z) ∼= Z

Hn(C(f ′∗E);ZG) = 0
h
h
hhj

g̃∗

where the isomorphism Hn
c (X,Z) ∼= Hn(G;ZG) is given by the proof

of [6, VIII.7.5] since X/G is compact and Cm(X) = 0 for m ≥ n + 1.
Finally Hn(C(f ′∗E);ZG) = 0 since dim f ′∗E = dimL ≤ n − 1. This
finishes the proof.

Remark 4.3. a) In case X is contractible, the orbit space X/G
is an Eilenberg-MacLane space K(G, 1) (i.e., X/G is an aspherical
n-manifold with π1(X/G) = G) and Theorem 4.2 follows, in fact,
from a well-known theorem by Eilenberg and Ganea [12] which states
cat (K(G, 1)) = cd (G)+1 except possibly for the case cat (K(G, 1)) = 3
and cd (G) = 2. Here “cd” stands for cohomological dimension; that is,
cd (G) is the smallest n such that Hq(G;M) = 0 for all q > n and all
ZG-modulesM . See [6]. Moreover, for G as above, one gets cd (G) = n
by [6, VIII.8.1], and so catG(X) = n+ 1 when n 	= 2. For n = 2, X/G
is an orientable surface ( 	= S2) and it is well known that cat (X/G) = 3.

b) The group G in Theorem 4.2 is necessarily torsion free. More
explicitly, let G be a discrete group acting properly on an acyclic n-
manifold X with X/G compact. Then the action is free if and only if
G is torsion free. Indeed, if the action is free, then we have cd (G) = n
as in a) above, and so G is torsion free [6, VIII.2.5]. Conversely, since
the action is proper all isotropy groups Gx are finite and so trivial since
G is torsion free.

Theorem 4.2 above can be regarded as the noncompact counterpart
of the result by Marzantowicz [17, 2.6] on free actions of finite groups
on (co)homology spheres. Actually, the arguments used in the proof
of (4.2) allow us to give an alternative proof of Marzantowicz’s result.
Namely, we now prove

Theorem 4.4. Let X be a (co)homology n-sphere, and let G be a
finite group acting freely on X. Then catG(X) = cat (X/G) = n+ 1.
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Here a (co)homology n-sphere is an n-manifold whose integral (co)-
homology coincides with the (co)homology of the n-sphere Sn. The
universal coefficient theorem [23, 5.5.3] shows that homology and
cohomology spheres coincide. As in the original, Marzantowicz’s proof
of (4.4), we shall use the following crucial result on degrees of G-maps
between (co)homology spheres also due to Marzantowicz [17, 2.9].

Theorem 4.5 (Marzantowicz). Let f : X → Y be a Zp-map between
(co)homology spheres. If the action of Zp is free, then deg (f) 	= 0
(mod p).

In the proof of (4.4) we shall also use the following elementary fact
for (co)homology spheres of even dimension.

Lemma 4.6. If dimX = n is even, then Z2 is the only finite group
acting freely on X.

This result is an immediate consequence of the formula L(f) =
1 + (−1)ndeg (f) for any map f : Sn → Sn where L(f) stands for
the Lefschetz number of f . See [23, 4.7.9].

Proof of 4.4. Let p be a prime divisor of the order of G. Then Zp is
a subgroup of G and according to (2.9) and (3.8) we have catZp

(X) ≤
catG(X) ≤ n+ 1. Therefore, it will suffice to show catZp

(X) = n+ 1.
Assume on the contrary that catZp

(X) = cat(X/Zp) ≤ n. Then
by (4.1) there exist an (n − 1)-dimensional polyhedron L and a map
g : X/G → L which induce an isomorphism g∗ : π1(X/G) → π1(L).
Next we consider the diagram

X

u

π

w
f̃

E(Zp, 1) = Ep

u

qp

X/Zp w
f

K(Zp, 1) = Kp

defined by the classifying map f of the Zp-bundle π : X → X/Zp. Now
we construct a map h : L2 → X/Zp realizing the inverse g−1

∗ as in the
proof of (4.2). Moreover, by using the asphericity of Kp, we can extend
fh to a map f ′ : L→ Kp such that f ′g � f .
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At this point we consider two cases:

a) p = 2. Then E2 = S∞ and K2 = RP∞. Moreover, by
the cellular approximation theorem [23, 7.6.18], we can assume that
f(X/Z2) ⊂ RPn and f̃(X) ⊆ Sn. Now we apply (4.5) to the Z2-
equivariant map f̃ : X → Sn and we get deg (f̃) = 1 (mod 2). Then the
differentiable (or simplicial) definition of degree yields that deg (f) = 1
(mod 2), and so

f∗ : Hn(X/Z2;Z2) ∼= Z2 −→ Hn(RPn;Z2) ∼= Hn(RP∞;Z2) ∼= Z2

is an isomorphism. This leads to a contradiction since f∗ factorizes
through Hn(L;Z2) = 0.

b) p 	= 2. Then by (4.6) dimX = n = 2k + 1 is odd. Moreover,
Ep = S∞ and Kp = L∞(p) is the infinite lens space. It is known
that L∞(p) is a CW -complex such that the lens space L2m+1(p) is
its (2m + 1)-skeleton for each m. See [24, p. 91]. As in case a) we
can assume f(X/Zp) ⊆ L2k+1(p) and f̃(X) ⊆ S2k+1, and by (4.5),
deg (f̃) 	= 0 (mod p). As H2k+1(X/Zp;Zp) ∼= Zp [5, Example III.3],
we argue as above to get that

f∗ : H2k+1(X/Zp;Zp) ∼= Zp −→ H2k+1(L2k+1(p);Zp)
∼= H2k+1(L∞(p);Zp) ∼= Zp

is an isomorphism, and we conclude as in case a).

5. Critical points on proper G-manifolds. In this final sec-
tion we illustrate how the equivariant category of proper G-manifolds
provides an upper bound for the number of critical orbits of invari-
ant smooth functions. In the action-free case, one requires the Palais-
Smale condition (PS). Namely, if M is a complete Riemannian man-
ifold, the smooth function f : M → R satisfies condition (PS) if any
sequence {xn} ⊆ M for which |f(xn)| is bounded and ‖∇fxn

‖ con-
verges to zero admits a convergent subsequence. Then the Lusternik-
Schnirelmann theorem states that a smooth function bounded below
satisfying condition (PS) has at least cat (M) critical points. Recall
that ∇f : M → TM is the gradient vector field defined as the dual of
the differential df . Explicitly, for any vector field Y and any x ∈ M ,
dfx(Yx) = Rx(Yx,∇fx). Here R is the Riemannian structure of M .
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In the equivariant setting any invariant function f :M → R gives rise
to an equivariant gradient ∇f : M → TM ; that is, ∇fgx = dgx∇fx.
Moreover, if the Riemannian metric on M is G-invariant, then ‖∇f‖ :
M → R is an invariant function and the flow {φt} generated by ∇f
commutes with the action (i.e., φt(gx) = gφt(x)). In addition, if x is a
critical point of f , then the whole orbit Gx consists of critical points,
and so if the group G is not compact, then the usual condition (PS) is
not satisfied. In such a case we replace condition (PS) by the following
orbitwise Palais-Smale condition (OPS).

Definition 5.1. Let M be a complete Riemannian proper G-
manifold and f : M → R a smooth invariant function. The function
f satisfies condition (OPS) if, given a sequence {xn} ⊆ M such that
|f(xn)| is bounded and ‖∇fxn

‖ converges to zero, then the sequence
of orbits {Gxn} contains a convergent subsequence in the orbit space
M/G.

Remark 5.2. (1) Let Sf ⊆ M denote the set of critical orbits of
f . Since Sf is a G-set, the restriction f |Sf yields a continuous map
f̃ : Sf/G → R. Then one readily checks that condition (OPS) implies
that f̃ is proper. In particular, f̃(Sf/G) = f(Sf ) ⊆ R is a closed set.

(2) Since the orbit space is not in general a smooth manifold, in
order to avoid the possibly singular space M/G, condition (OPS) is
often replaced by the Palais-Smale condition modulo G (G-PS): Given
the sequence {xn} ⊆M for which |f(xn)| is bounded and ‖∇fxn

‖ → 0,
there exists a sequence {gn} ⊆ G such that the sequence {gnxn} has
a convergent subsequence in M . Clearly (G-PS) implies (OPS) and in
case G is compact, (PS) implies (G-PS).

Theorem 5.3. Let M be a complete Riemannian G-manifold and
f : M → R a smooth invariant function satisfying condition (OPS).
Then f has at least catG(M) critical orbits.

The proof of (5.3) just mimics the proof of the classical Lusternik-
Schnirelmann theorem in [20]. Compare also with [11] for G compact.
More precisely, one considers the (equivariant) flow {φt} generated by
−∇f . Then one shows that for all t > 0, φt is defined on all of M , and
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for any x ∈M , limt→∞ φt(x) is a critical point of M . The proof is the
same as [20, 9.1.6]. Next one proceeds to use the flow {φt} to prove the
following equivariant deformation theorem. For this, let Sc denote the
union of all critical orbits in f−1(c) and Mc = f−1((−∞, c]), c ∈ R.

Lemma 5.4 (Deformation theorem). For any G-neighborhood U of
Sc in M , there exists ε > 0 such that φ1(Mc+ε − U) ⊆ Mc−ε. In
particular, if c is a regular value, (i.e., Sc = ∅), then φ1(Mc+ε) ⊆
Mc−ε.

Proof. Let d denote the (invariant) distance on M induced by
its Riemannian structure. Then the family N of G-sets Nδ(Sc) =
{x ∈ M ; d(x, Sc) < δ}, δ > 0, is a basis of G-neighborhoods of Sc

in M . Indeed, by [19, 4.3.4], if p : M → M/G is the orbit map
d̃(p(x), p(y)) = inf {d(z, w); z ∈ Gx,w ∈ Gy} is a distance on M/G.
Moreover, by (5.2)(1), the set p(Sc) is compact in M/G and so the sets
Ñδ(p(Sc)) = {x̃ ∈M/G; d̃(x̃, p(Sc)) < δ} form a basis of neighborhoods
of p(Sc) in M/G. Now the inclusion p(Nδ(Sc) ⊆ Ñδ(p(Sc))) easily
implies that N is the required basis. At this point the proof is carried
out formally in the same way as in [20, 9.2.3].

Now we have the ingredients for a proof of (5.3) along the lines of
the classical proof in [20, 9.2.9]. For this, one applies the properties
of catG in (2.3). As usual, one defines for m ≤ catG(M) the minimax
number cm(f) of f with respect to the family Fm of G-sets F ⊆ M
with catG(F,M) ≥ m. Namely,

cm(f) = inf {sup f(F );F ∈ Fm} = inf {a ∈ R; catG(Ma,M) ≥ m}.

Then, clearly c1(f) = inf f(M) and cm(f) ≤ cm+1(f). Moreover, the
property that limt→∞ φt(x) is always a critical point yields that c1(f)
is actually the minimum of f . Lemma (5.4) is used to check that the
rest of minimax numbers cm(f) are critical values of f . Therefore,
Theorem 5.3 will follow if one shows that c = cm(f) = cm+k(f) implies
that Sc contains at least k + 1 critical orbits. Suppose not. Then Sc

is the union ∪{Gxj ; 1 ≤ j ≤ r} of r ≤ k critical orbits. Since M is a
G-ANR space by (3.3), one finds by (2.3)(3) a G-neighborhood U of Sc

with catG(U,M) = catG(Sc,M) ≤ r.
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Moreover, by (5.4) there exists ε > 0 such that catG(Mc+ε−U,M) ≤
catG(Mc−ε,M) ≤ m − 1. For this we use property (2.3)(2) of catG
and c = cm(f). Now the equality c = cm+1(f) yields the contradiction
m+k ≤ catG(Mc+ε,M) ≤ catG(Mc+ε−U,M)+catG(U,M) ≤ m+k−1.
For this, we use property (2.3)(1) of catG. This finishes the proof of
(5.3).
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ENDNOTES

1. After having finished the manuscript we learned about the thesis of E. Shaw
[22] where the equivariant LS category of proper G-spaces is also considered. In
fact, (2.3) and (2.4) also appear in Shaw’s thesis.

2. This result also appears in the thesis of E. Elfving [10].
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