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Abstract

In this paper we analyze the approximate and null controllability of the classical
heat equation with nonlinear boundary conditions of the form ∂y

∂n + f(y) = 0 and
distributed controls, with support in a small set. We show that, when the func-
tion f is globally Lipschitz-continuous, the system is approximately controllable.
We also show that the system is locally null controllable and null controllable for
large time when f is regular enough and f(0) = 0. For the proofs of these asser-
tions, we use controllability results for similar linear problems and appropriate fixed
point arguments. In the case of the local and large time null controllability results,
the arguments are rather technical, since they need (among other things) Hölder
estimates for the control and the state.
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1 Introduction

Let Ω ⊂ R
N be a bounded connected open set whose boundary ∂Ω is regular

enough (N ≥ 1). Let O ⊂ Ω be a (small) nonempty open subset and let T > 0.
We will use the notation Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ) and we will
denote by n(x) the outward unit normal to Ω at the point x ∈ ∂Ω. In the
sequel, γ0 will stand for the usual trace operator γ0 : H

1(Ω) 7→ H1/2(∂Ω). On
the other hand, we will denote by C, C1 , C2 , . . . generic positive constants
(usually depending on Ω, O, T and possibly other data).
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We will consider the heat equation with nonlinear Fourier (or Robin) condi-
tions





∂y

∂t
−∆y = v1O in Q,

∂y

∂n
+ f(y) = 0 on Σ,

y(x, 0) = y0(x) in Ω.

(1)

Here, we assume that v ∈ L2(O × (0, T )) (at least), 1O is the characteristic
function of O, y0 ∈ L2(Ω) and f : R 7→ R is a given function. In (1), y = y(x, t)
is the state and v = v(x, t) is the control; it is assumed that we can act on the
system only through O × (0, T ).

For the existence, uniqueness, regularity and general properties of the solu-
tions to problems like (1), see for instance [1], [2] and [7]. An illustrative
interpretation of the data and variables in (1) is the following. The function
y = y(x, t) can be viewed as the relative temperature of a body (with respect
to the exterior surrounding air). The parabolic equation in (1) means that a
heat source v1O acts on a part of the body. On the boundary, − ∂y

∂n
can be

viewed as the normal heat flux, inwards directed, up to a positive coefficient.
Thus, the equality

−
∂y

∂n
= f(y)

means that this flux is a (nonlinear) function of the temperature. Accordingly,
it is reasonable to assume that f is nondecreasing and f(0) = 0.

Of course, the simplified linear model corresponds to the case

−
∂y

∂n
= ay,

where a is a constant. For the reasons above, it is natural to assume that
a > 0.

The main goal of this paper is to analyze the controllability properties of (1).

System (1) is said to be approximately controllable in L2(Ω) at time T if, for
any y0, y1 ∈ L2(Ω) and ε > 0, there exist a control v ∈ L2(O× (0, T )) and an
associated solution y ∈ C0([0, T ];L2(Ω)) satisfying

‖y(·, T )− y1‖L2 ≤ ε. (2)

On the other hand, it will be said that system (1) is null controllable at time
T if, for each y0 ∈ L2(Ω), there exist v ∈ L2(O × (0, T )) and an associated
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solution y ∈ C0([0, T ];L2(Ω)) such that

y(x, T ) = 0 in Ω. (3)

The controllability properties of linear and semilinear time dependent systems
have been studied intensively these last years, see for instance [8], [10], [15],
[17], [22] and [24]. In this paper, we will be concerned with (1), where the
nonlinearity is in the boundary condition. This is more difficult to analyze
than the cases considered in [5], [8] and [10], where the boundary condition is
linear and the equations are of the form

∂y

∂t
−∆y + F (y) = v1O

or
∂y

∂t
−∆y + F (y,∇y) = v1O .

In order to justify this assertion, let us consider the following relatively simple
system, one-dimensional in space:





∂y

∂t
−

∂2y

∂x2
= v1(α,β) in (0, 1)× (0, T ),

(
−
∂y

∂x
+ a0y

)
(0, t) =

(
∂y

∂x
+ a1y

)
(1, t) = 0 for t ∈ (0, T ),

y(x, 0) = y0(x) in (0, 1).

(4)

Here, we assume that 0 < α < β < 1 and a0 and a1 are given in C0([0, T ])
(for instance). Let us introduce the function ã, with

ã(x, t) = −a0(t)x+ (a0(t) + a1(t))
x2

2

and the new variable z, with

z = eã(x,t)y.

Then y solves (4) for some v ∈ L2((α, β) × (0, T )) and y0 ∈ L2(0, 1) if and
only if z satisfies





∂z

∂t
− Lz −

∂ã

∂t
z = eã(x,t)v1(α,β) in (0, 1)× (0, T ),

∂z

∂x
(0, t) =

∂z

∂x
(1, t) = 0 for t ∈ (0, T ),

z(x, 0) = eã(x,0)y0(x) in (0, 1),

(5)
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where we have set

Lz =
∂2z

∂x2
− 2

∂ã

∂x

∂z

∂x
−

∂2ã

∂x2
z +

(
∂ã

∂x

)2

z.

Therefore, the approximate (resp. null) controllability of (4) is equivalent to
the approximate (resp. null) controllability of a linear heat equation with a
possibly singular coefficient ∂ã

∂t
in the zero order term, completed with homo-

geneous Neumann conditions. This indicates that the case under study in this
paper is indeed more intrincate.

Remark 1 Recall that the linear heat equation completed with terms of the
form B · ∇y and Dirichlet boundary conditions has been considered in [13].
There, null controllability is established under the assumption B ∈ L∞(Q)N .
The proof relies on an appropriate Carleman estimate for the solutions of the
adjoint equation

−
∂ϕ

∂t
−∆ϕ−∇ · (ϕB) = 0.

Trying to apply the same techniques to (5), we readily see that what is needed
is a Carleman estimate for the solutions to the equation

−
∂

∂t
((1 + ã)ϕ)− L∗ϕ = 0 in (0, 1)× (0, T ),

where L∗ is the adjoint of L. But this seems much more complicate.

The first main result in this paper concerns the approximate controllability of
(1). It is the following:

Theorem 2 Assume that f : R 7→ R is globally Lipschitz-continuous and
T > 0. Then (1) is approximately controllable in L2(Ω) at time T .

Notice that, under these assumptions, using standard arguments, it can be
shown that for each y0 ∈ L2(Ω) and each v ∈ L2(O × (0, T )) the nonlinear
system (1) possesses exactly one solution y that satisfies:

y ∈ L2(0, T ;H1(Ω)) ∩ C0([0, T ];L2(Ω)),
∂y

∂t
∈ L2(0, T ;H−1(Ω)). (6)

Remark 3 The global null controllability of (1) for a globally Lipschitz-conti-
nuous function f without any assumption on the size and regularity of y0 is
an open problem. In fact, at present, this is an unsolved question even for
similar linear systems, when the nonlinear boundary Fourier condition in (1)
is replaced by

∂y

∂n
+ a(x, t)y = 0 on Σ. (7)
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Indeed, if the coefficient a is only assumed to be in L∞(Σ) (and this seems to
be the natural assumption), the null controllability of the system is unknown
(see [11] and remark 15 in Section 3).

In order to state our second main result, it will be convenient to introduce
some notation. For α, β ∈ [0, 1), Cα,β(Q) will stand for the space formed by
all functions u ∈ C0(Q) such that

[u]α,β = sup
Q

|u(x, t)− u(x′, t)|

|x− x′|α
+ sup

Q

|u(x, t)− u(x, t′)|

|t− t′|β
< +∞.

The natural norm in Cα,β(Q) is

‖u‖α,β = ‖u‖L∞(Q) + [u]α,β .

With this norm, Cα,β(Q) is a Banach space.

The second main result in this paper concerns the local null controllability of
(1). It is the following:

Theorem 4 Assume that f ∈ C3(R) and f(0) = 0. Then we can find a
positive η = η(Ω,O, α, T ) with the following property: If we have y0 ∈ C2+α(Ω)
for some α ∈ (0, 1), the compatibility condition

∂y0

∂n
+ f(y0) = 0 on ∂Ω (8)

is fulfilled and ‖y0‖C2+α(Ω) ≤ η, there exists a control v ∈ Cα,α/2(Q) such that
the associated solution y of (1) satisfies (3).

This theorem indicates that the nonlinear system (1) is locally null controllable
when f is regular enough and vanishes at 0. It will be clear from the proof
that the same local property holds when f is C3 just in a neighbourhood of 0.

Our third main result deals with the case in which f is nondecreasing. It is a
consequence of theorem 4 and reads as follows:

Theorem 5 Assume that f ∈ C4(R), f(0) = 0 and f ′(s) ≥ 0 for all s ∈
R. Then (1) is null controllable in large time intervals. In other words, for
every y0 ∈ L2(Ω) there exist T = T (y0) and v ∈ L2(O × (0, T (y0))) such the
associated solution to (1) satisfies (3).

Again, it will be noticed in the proof of this result that f has only to be C4

in a neighborhood of 0.

The rest of this paper is organized as follows. In Section 2, we prove theorem 2.
It will be seen that the proof relies on an approximate controllability result
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for a linear system similar to (1) where the boundary condition is again of the
kind (7) and an appropriate fixed point argument. In Section 3, we give the
proof of theorem 4. In this case, we have to introduce and estimate controls
in a much more regular space (in fact, this is the reason the argument works
only when y0 is sufficiently close to zero). Section 4 deals with the proof of
theorem 5. This is achieved in several steps: we start from y0 at t = 0 and
we first choose a control such that the associated state becomes small in the
C2+α-norm at t = T ∗ for T ∗ large enough; then we apply theorem 4 and we
find a control that leads the state to zero at a time T (y0) > T ∗. Finally, in
Section 5 we make some comments.

2 Proof of the approximate controllability result

This Section is devoted to prove theorem 2. As usual, the proof relies on
an approximate controllability result for similar linear problems and a fixed
point argument. This strategy was introduced in [22], in the framework of the
controllability of the semilinear wave equation. See also [8] and [10] for sim-
ilar results concerning the semilinear heat equation with Dirichlet boundary
conditions.

2.1 The approximate controllability of similar linear problems

We consider the following linear system:





∂y

∂t
−∆y = v1O in Q,

∂y

∂n
+ a(x, t)y = 0 on Σ,

y(x, 0) = 0 in Ω,

(9)

where the coefficient a ∈ L∞(Σ). For each v ∈ L2(O × (0, T )), (9) possesses
exactly one solution y satisfying (6).

We have the following result:

Lemma 6 Assume that T > 0 and a ∈ L∞(Σ). Then (9) is approximately
controllable in L2(Ω) at time T . In other words, for each z1 ∈ L2(Ω) and each
ε > 0, there exists a control v ∈ L2(O × (0, T )) such that the corresponding
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solution of (9) satisfies

‖y(·, T )− z1‖L2(Ω) ≤ ε. (10)

Furthermore, the control v can be found such that

‖v‖L2(O×(0,T )) ≤ C1(Ω,O, T, ε, ‖a‖L∞(Σ), ‖z
1‖L2), (11)

where C1(Ω,O, T, R, ‖z1‖L2) is nondecreasing in R.

Sketch of the proof: For the proof, we will adapt the arguments in [8]
(more details are given in [4]).

Let T > 0 and a ∈ L∞(Σ) be given. We will use the well known fact that
the approximate controllability of the linear problem (9) is equivalent to the
unique continuation property for the solutions to the following adjoint system
(where ϕ0 ∈ L2(Ω)):





−
∂ϕ

∂t
−∆ϕ = 0 in Q,

∂ϕ

∂n
+ a(x, t)ϕ = 0 on Σ,

ϕ(x, T ) = ϕ0(x) in Ω.

(12)

That is to say, (9) is approximately controllable in L2(Ω) at time T if and
only if the following holds:

If ϕ0 ∈ L2(Ω), ϕ is the associated solution to (12) and we have ϕ = 0 in
O × (0, T ), then ϕ ≡ 0.

It is clear that this property holds. Actually, we have a much stronger result
in which the boundary conditions play no role:

If ϕ ∈ L2
loc(Q) (for instance),

∂ϕ

∂t
− ∆ϕ = 0 in Q and we have ϕ = 0 in

O × (0, T ), then ϕ ≡ 0.

In fact, this is also true for much more general parabolic equations, see for
instance [21]. Thus, if z1 is given in L2(Ω) and ε > 0 is fixed, there exist
controls v ∈ L2(O× (0, T )) such that the corresponding solution of (9) verifies
(10).
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It is also clear that v can be chosen of minimal L2-norm. Let us introduce the
functional Jε(· ; a, z

1), with

Jε(ϕ
0 ; a, z1) =

1

2

∫∫

O×(0,T )
|ϕ|2 dx dt+ ε‖ϕ0‖L2 − (z1, ϕ0)L2 (13)

for all ϕ0 ∈ L2(Ω), where ϕ is the associated solution of (12). This is a contin-
uous and strictly convex functional on L2(Ω). Furthermore, using the previous
unique continuation property, it can be proved that Jε(· ; a, z

1) is coercive on
L2(Ω). Assume the minimum is attained at ϕ̂0. We can then take

v̂ = ϕ̂|O×(0,T ) ,

where ϕ̂ is the solution to (12) for ϕ0 = ϕ̂0. This control v̂ is such that (10)
holds. Moreover, v̂ is the unique control with the following property: If v is
another control such that the solution of (9) verifies (10), then

‖v̂‖L2(O×(0,T )) ≤ ‖v‖L2(O×(0,T )) .

We can now argue as in [8] to deduce that v̂ satisfies (11) for some C1 =
C1(Ω,O, T, R, ‖z1‖L2) that is nondecreasing inR. In fact, we have the following
stronger result, whose proof is essentially based on the arguments of [8]:

Lemma 7 Let Φ : L∞(Σ)× L2(Ω) 7→ L2(Ω) be given by Φ(a, y1) = ϕ̂0, where
ϕ̂0 is the unique minimizer of Jε(· ; a, y

1) in L2(Ω). If B is a bounded subset
of L∞(Σ) and K is a compact subset of L2(Ω), then Φ(B ×K) is a bounded
subset of L2(Ω). Moreover, if aµ → a weakly-∗ in L∞(Σ) and y1µ → y1 strongly
in L2(Ω), then ϕ̂0

µ → ϕ̂0 weakly in L2(Ω).

This ends the proof of lemma 6.

2.2 Proof of theorem 2. The fixed point argument

We will first consider the case in which f is C1 in (−1, 1). Let us take y0, y1 ∈
L2(Ω) and ε > 0. We denote by g the following function:

g(s) =





f(s)− f(0)

s
if s 6= 0,

f ′(0) if s = 0.

(14)
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Then g is continuous and uniformly bounded (because f is globally Lipschitz-
continuous) and we have

|g(s)| ≤ L ∀s ∈ R. (15)

Let us introduce the mapping Γ : L2(Σ) 7→ L2(Σ) as follows: For each z ∈
L2(Σ), we put Γ(yz) = γ0yz , where yz = uz + wz , uz is the solution of





∂uz

∂t
−∆uz = 0 in Q,

∂uz

∂n
+ g(z)uz = −f(0) on Σ,

uz(x, 0) = y0(x) in Ω

(16)

and wz is (together with vz) the solution to the approximate controllability
problem






∂wz

∂t
−∆wz = vz1O in Q,

∂wz

∂n
+ g(z)wz = 0 on Σ,

wz(x, 0) = 0 in Ω,

‖wz(· , T )− (y1 − uz(· , T )) ‖L2 ≤ ε

(17)

furnished by lemma 6 (thus, vz is the unique minimal L2-norm control for
which the inequality ‖wz(· , T )− (y1 − uz(· , T )) ‖L2 ≤ ε is satisfied). We then
have 




∂yz
∂t

−∆yz = vz1O in Q,

∂yz
∂n

+ g(z)yz = −f(0) on Σ,

yz(x, 0) = y0(x) in Ω,

‖yz(· , T )− y1‖L2 ≤ ε

and

‖vz‖L2(O×(0,T )) ≤ C1(Ω,O, T, ε, L, ‖y1 − uz(· , T )‖L2).

We will see that Schauder’s theorem can be applied to Γ. This will serve to
deduce that Γ possesses a fixed point and will suffice to prove theorem 2 in
this case.
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Let us first check that Γ is a compact mapping. The systems in (16) and (17)
are linear. In view of (15), g(z) is uniformly bounded in L∞(Σ). Thanks to
the regularizing effect of the heat equation, we can affirm that uz belongs to
a fixed compact set of L2(Q) and uz(· , T ) belongs to a fixed compact set of
L2(Ω) as z runs over L2(Σ).

Let us put z1 = y1−uz(· , T ) and consider the functional Jε(· ; g(z), z
1) (given

by (13) with a = g(z)). We have

vz = ϕ̂|O×(0,T ),

where ϕ̂ is the solution of (12) associated to the final data ϕ̂0 , the unique
minimizer in L2(Ω) of Jε(· ; g(z), z

1). In view of lemma 7, ϕ̂0 is uniformly
bounded in L2(Ω) (independently of z). Accordingly, the associated solution
ϕ̂ belongs to a compact set in L2(Q) and, in particular, vz belongs to a compact
set of L2(O × (0, T )).

Since the right hand side of (17) is vz1O , we can affirm that the correspond-
ing solution wz belongs to a bounded set of L2(0, T ;H1(Ω)), with the time
derivative ∂wz/∂t in a bounded set of L2(0, T ;H−1(Ω)) (among other things).
Thus, wz belongs to a compact set of L2(Q).

For simplicity of notation, let us put

Y = { y ∈ L2(0, T ;H1(Ω)) :
∂y

∂t
∈ L2(0, T ;H−1(Ω)) }.

Notice that Y is a Hilbert space for the natural norm

‖y‖Y =
(
‖y‖2L2(H1) + ‖y‖2L2(H−1)

)1/2
.

Taking into account that yz = uz + wz , we deduce that yz lies in a bounded
set of Y . Since H1(Ω) is compactly embedded in Hs(Ω) for all s < 1, the
embedding Y →֒ L2(0, T ;Hs(Ω)) is compact for all s < 1. Consequently,

yz belongs to a compact set of L2(0, T ;Hs(Ω)) for all s < 1.

We will now use the following results:

• If w ∈ Hs(Ω) with s > 1/2, we can define the trace γ0w = w|∂Ω as an
element of Hs−1/2(∂Ω) and we have that w 7→ γ0w is a linear continuous
mapping from Hs(Ω) into Hs−1/2(∂Ω), cf. [18].

• For each s > 1/2, the embedding L2(0, T ;Hs−1/2(∂Ω)) →֒ L2(Σ) is con-
tinuous.

• In particular, we deduce that γ0yz belongs to a compact set of the space
L2(0, T ;Hs−1/2(∂Ω)) for each s ∈ (1/2, 1).
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This proves that Γ is a (compact) mapping that maps the whole space L2(Σ)
into a compact set of L2(Σ).

Now, let us see that Γ is also continuous. Let {zk} be a sequence in L2(Σ)
such that

zk → z in L2(Σ).

Our aim is to prove that

Γ(zk) → Γ(z) in L2(Σ).

Let us set Γ(zk) = γ0yk for all k. Recall that yk = uk + wk is, together with
some vk , a solution to the controllability problem





∂yk
∂t

−∆yk = vk1O in Q,

∂yk
∂n

+ g(zk)yk = −f(0) on Σ,

yk(x, 0) = y0(x) in Ω,

‖yk(· , T )− y1‖L2 ≤ ε,

constructed as above. We are going to prove that γ0yk converges strongly in
L2(Σ) to Γ(z). Obviously, it will sufficient to check this for a subsequence.

Since zk converges to z in L2(Σ) and the function g is continuous, we deduce
that there exists a subsequence zµ such that

zµ → z a.e. in Σ,

g(zµ) → g(z) weakly-∗ in L∞(Σ) and a.e.
(18)

On the other hand, at least for a subsequence {vµ}, we must also have

vµ → vz strongly in L2(O × (0, T )). (19)

To prove this, it suffices to argue in a similar way as we did when the com-
pactness of Γ was shown. More precisely, let us recall that yµ = uµ + wµ and
let us observe that, at least for a new subsequence, we have

uµ → uz weakly in L2(0, T ;H1(Ω)),

∂uµ

∂t
→

∂uz

∂t
weakly in L2(0, T ;H−1(Ω))
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and

uµ(· , T ) → uz(· , T ) strongly in L2(Ω). (20)

Taking into account (18), (20) and lemma 7, we deduce at once that the
corresponding ϕ̂0

µ satisfy

ϕ̂0
µ → ϕ̂0

z strongly in L2(Ω).

Accordingly, the associated solutions of (12) satisfy

ϕ̂µ → ϕ̂z strongly in L2(Q),

which implies (19).

It is now clear that the functions wµ satisfy

wµ → wz weakly in L2(0, T ;H1(Ω)),

∂wµ

∂t
→

∂wz

∂t
weakly in L2(0, T ;H−1(Ω)).

Thus, we have

yµ → yz weakly in L2(0, T ;H1(Ω)),

∂yµ
∂t

→
∂yz
∂t

weakly in L2(0, T ;H−1(Ω))

and

γ0yµ → γ0yz strongly in L2(Σ),

i.e. Γ(zµ) → Γ(z) strongly in L2(Σ). This proves that Γ is continuous.

In view of Schauder’s theorem, the mapping Γ possesses al least one fixed
point y satisfying





∂y

∂t
−∆y = v1O in Q,

∂y

∂n
+ g(y)y = −f(0) on Σ,

y(x, 0) = y0(x) in Ω, ‖y(· , T )− y1‖L2 ≤ ε

for some v ∈ L2(O × (0, T )). Recall that

‖v‖L2(O×(0,T )) ≤ C2
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where C2 only depends on Ω, O, T , ε, ‖g‖L∞(R) , |f(0)|, ‖y
0‖L2 and ‖y1‖L2 .

This proves the desired result when f is C1 in (−1, 1).

Let us now assume that f : R 7→ R is (only) a globally Lipschitz-continuous
function. Using the convolution product, we can easily construct a sequence of
functions fm which are C1 in (−1, 1), uniformly globally Lipschitz-continuous
and satisfy

fm → f uniformly on the compact sets of R.

For each m ≥ 1, we can argue as before. This provides controls vm ∈ L2(O ×
(0, T )) and states ym satisfying






∂ym
∂t

−∆ym = vm1O in Q,

∂ym
∂n

+ fm(ym) = −f(0) on Σ,

ym(x, 0) = y0(x) in Ω

(21)

and
‖ym(· , T )− y1‖L2 ≤ ε.

Since the functions fm are uniformly globally Lipschitz-continuous, it can be
assumed that the controls vm are uniformly bounded in L2(O × (0, T )). Ar-
guing as in the case of regular data, we deduce (eventually after extracting a
subsequence) that

vm → v weakly in L2(O × (0, T )),

ym → y weakly in L2(0, T ;H1(Ω)), weakly-∗ in L∞(0, T ;L2(Ω)),

∂ym
∂t

→
∂y

∂t
weakly in L2(0, T ;H−1(Ω)),

γ0ym → γ0y strongly in L2(Σ).

Hence, passing to the limit in (21) as m → +∞, we find a control v ∈ L2(O×
(0, T )) such that (1) possesses a solution y satisfying (2). This ends the proof
of theorem 2.

Remark 8 Many variants and generalizations of theorem 2 can be proved in
a similar way:

• Thus, following the ideas in [8], we can construct quasi bang-bang controls
that lead the solution to (1) from y0 to a state as close as we want to y1.
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• We can also consider systems of the form





∂y

∂t
−∆y + F (y) = v1O in Q,

∂y

∂n
+ f(y) = 0 on Σ,

y(x, 0) = y0(x) in Ω,

where f and F are globally Lipschitz-continuous functions. With arguments
similar to those above, it can be proved that this system is again approxi-
mately controllable in L2(Ω) at any time T > 0.

• We can even permit in the previous equation nonlinear terms of the form
F (y,∇y).

• Another interesting generalization of theorem 2 concerns simultaneous fi-
nite dimensional and approximate controllability. More precisely, under the
assumptions of theorem 2, the following holds: Let E ⊂ L2(Ω) be a finite
dimensional subspace and let us denote by Π the corresponding orthogonal
projector; then, for any y0, y1 ∈ L2(Ω) and any ε > 0, there exist a con-
trol v ∈ L2(O × (0, T )) and an associated solution y ∈ C0([0, T ];L2(Ω))
satisfying

‖y(·, T )− y1‖L2 ≤ ε and Π(y(·, T )) = Π(y1). (22)

This controllability property was introduced and analyzed in [23] for semi-
linear heat equations with Dirichlet boundary conditions. For the proof of
the previous assertion, it suffices to adapt the arguments in that reference.

3 Proof of the local null controllability result

The main goal of this Section is to prove theorem 4. As in the previous Section,
we will begin by analyzing the situation for similar linear problems.

3.1 Some previous results for a linear problem

We will consider here the linear system




∂y

∂t
−∆y = v1O in Q,

∂y

∂n
+ a(x, t)y = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(23)

14



where (at least) a ∈ L∞(Σ) and y0 ∈ L2(Ω).

In the sequel, we will denote by at the time derivative of a. The null control-
lability of (23) is ensured by the following result:

Theorem 9 Assume that a ∈ L∞(Σ), at ∈ L∞(Σ) and y0 ∈ L2(Ω). Then
(23) is null controllable with controls v ∈ C∞(Q) furthermore satisfying

‖v‖Cℓ(Q) ≤ C3(Ω,O, T, ℓ, ‖a‖L∞(Σ) , ‖at‖L∞(Σ)) ‖y
0‖L2 (24)

for all integer ℓ ≥ 0.

Proof: The null controllability of (23) with controls in L2(O × (0, T )) is
essentially proved in [11]. In this reference, the authors assume in fact that a ∈
C1(Σ), but the argument works as well under the assumptions we have made
above. We will provide here a different proof which leads to an improvement
of the regularity of the control.

Our goal is to prove that, under the previous assumptions for a, (23) is null
controllable with regular controls. For convenience, we will first perform a
change of variable. Thus, let θ ∈ C∞([0, T ]) be such that

0 ≤ θ ≤ 1, θ = 1 near t = 0 and θ = 0 near t = T .

Let us put y = θ(t)q + w, where q is the solution of





∂q

∂t
−∆q = 0 in Q,

∂q

∂n
+ a(x, t)q = 0 on Σ,

q(x, 0) = y0(x) in Ω.

(25)

Then we have





∂w

∂t
−∆w = −θ′(t)q(x, t) + v1O in Q,

∂w

∂n
+ a(x, t)w = 0 on Σ,

w(x, 0) = 0 in Ω.

(26)

The control v which gives the null controllability of (26) also provides the null
controllability of (23) (and viceversa). So, we want to find v = v(x, t) with
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support in O × [0, T ] such that

w(x, T ) = 0 in Ω. (27)

In a first step, we will construct a control ṽ in L2(O×(0, T )) with this property.
Then, using the regularizing property of the heat equation, we will be able to
find a more regular control v such that (27) also holds.

First of all, let us recall from [11] a global Carleman inequality for the adjoint
system (12). To this end, let us introduce a nonempty open set O0 satisfying
O0 ⊂⊂ O and a function α0 = α0(x) satisfying α0 ∈ C4(Ω) and

α0 > 0 in Ω, α0 = 0 on ∂Ω and ∇α0 6= 0 in Ω \ O0 .

The existence of such a function α0 is justified in [11]. One has the following:

Lemma 10 Assume that a ∈ L∞(Σ) and at ∈ L∞(Σ). There exists a positive
number λ1 depending on Ω, O, T , ‖a‖L∞(Σ) and ‖at‖L∞(Σ), with the following
property: For each λ ≥ λ1 , there exist positive constants C and s1 , again
depending on Ω, O, T , ‖a‖L∞(Σ) and ‖at‖L∞(Σ) , such that

∫∫

Q
(e−2sα + e−2sα̃)t−3(T − t)−3|ϕ|2 dx dt

≤ C
∫∫

O0×(0,T )
(e−2sα + e−2sα̃)t−3(T − t)−3|ϕ|2 dx dt

for all s ≥ s1 . Here, ϕ is the solution of (12) associated to ϕ0 ∈ L2(Ω) and
the functions α = α(x, t) and α̃ = α̃(x, t) are given by

α(x, t) =
e2λ‖α0‖∞ − eλα0

t(T − t)
, α̃(x, t) =

e2λ‖α0‖∞ − e−λα0

t(T − t)
.

For the proof of this result, see [11]. We can now deduce an observability
estimate for the solutions to (12) whose proof is postponed to the end of this
paragraph:

Lemma 11 There exist positive constants C4 and M depending on Ω, O, T ,
‖a‖L∞(Σ) and ‖at‖L∞(Σ) such that

∫∫

Q
e−

M
T−t |ϕ|2 dx dt ≤ C4

∫∫

O0×(0,T )
|ϕ|2 dx dt (28)

for any ϕ0 ∈ L2(Ω).

Arguing as in [9], we can deduce from (28) that (26) is null controllable with
L2-controls supported in O0 × [0, T ]. More precisely, let y0 ∈ L2(Ω) be given
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and let us introduce the functional Kε(· ; a), with





Kε(ϕ
0 ; a) =

1

2

∫∫

O0×(0,T )
|ϕ|2 dx dt+ ε‖ϕ0‖L2 −

∫∫

Q
θ′(t)qϕ dx dt

∀ϕ0 ∈ L2(Ω)

(recall that q is the solution to (25)). Then Kε(· ; a) is continuous, strictly
convex and coercive in L2(Ω). This is due to the unique continuation property
of the solutions to the adjoint system (12).

Let ϕ0
ε be the unique minimizer ofKε(· ; a) and let ϕε be the associated solution

to (12). Then the control vε = ϕε|O0×(0,T ) is such that the corresponding
solution wε to (26) (with O replaced by O0) satisfies

‖wε(· , T )‖L2 ≤ ε.

On the other hand, thanks to the fact that θ′ = 0 near t = T , we have

(∫∫

Q
e

M
T−t |θ′(t)q|2 dx dt

)1/2

≤ C‖y0‖L2 (29)

for some C depending only on Ω, O, T , ‖a‖L∞(Σ) and ‖at‖L∞(Σ) . Then the
optimality conditions satisfied by ϕ0

ε give

∫∫

O0×(0,T )
|ϕε|

2 dx dt+ ε‖ϕ0
ε‖L2 =

∫∫

Q
θ′(t)qϕε dx dt

≤
(∫∫

Q
e

M
T−t |θ′(t)q|2 dx dt

)1/2 (∫∫

Q
e−

M
T−t |ϕε|

2 dx dt
)1/2

.

Therefore, from the estimates (28) and (29), we easily find that

‖vε‖L2(O0×(0,T )) =

(∫∫

O0×(0,T )
|ϕε|

2 dx dt

)1/2

≤ C ‖y0‖L2 ,

for a new constant C only depending on Ω, O, T , ‖a‖L∞(Σ) and ‖at‖L∞(Σ) .

Thus, at least for a subsequence, we have vε → ṽ weakly in L2(O0× (0, T )). In
this way, we have found a control ṽ that vanishes outside O0× (0, T ), satisfies

‖ṽ‖L2(O0×(0,T )) ≤ C(Ω,O, T, ‖a‖L∞(Σ) , ‖at‖L∞(Σ)) ‖y
0‖L2 (30)

and is such that the solution to (26) associated to ṽ satisfies (27). Obviously,
this proves that (23) is null controllable with controls in L2(O0 × (0, T )).

Let us finally indicate the way we can obtain from ṽ a second (regular) control
v with similar properties.
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Let us introduce a C∞ function ξ = ξ(x) such that

ξ = 1 in a neighborhood of O0 and ξ ∈ D(O).

Let us set w = (1− ξ)w̃, where w̃ is the solution to (26) associated to ṽ. Then
w is the solution of





∂w

∂t
−∆w = −θ′(t)q(x, t) + v1O in Q,

∂w

∂n
+ a(x, t)w = 0 on Σ,

w(x, 0) = 0, w(x, T ) = 0 in Ω,

where
v = ξ(x)θ′(t)q + 2∇ξ · ∇w̃ + (∆ξ)w̃.

We have therefore built a new control v which provides the null controllability
of (23).

In view of the interior regularity properties for the solution of (25), we have

q ∈ C∞(Ω′ × (ε, T ))

and

‖q‖Cℓ(Ω′×(ε,T )) ≤ C(Ω,Ω′, ε, T, ℓ, ‖a‖L∞(Σ)) ‖y
0‖L2 (31)

for any integer ℓ ≥ 0, any ε > 0 and any open set Ω′ ⊂⊂ Ω. Using this fact,
the interior regularity properties satisfied by w̃ (the solution to (26) for v = ṽ)
and the fact that ξ is constant in a neighborhood of O0 and outside O, we
have that v ∈ C∞(Q), the estimates (24) hold and, obviously, the associated
solution to (26) satisfies (27). This ends the proof of theorem 9.

Proof of lemma 11: Let us first apply lemma 10 in the time interval [T/4, T ]
for fixed and sufficiently large λ and s. We obtain:

∫∫

Ω×(T/4,T )
(e−2sα + e−2sα̃)t−3(T − t)−3|ϕ|2 dx dt

≤ C
∫∫

O0×(0,T )
(e−2sα + e−2sα̃)t−3(T − t)−3|ϕ|2 dx dt.

(32)

In view of the form of the weight functions in (32), we can easily deduce that
there exist positive constants K1 and M depending only on Ω, O, T , ‖a‖L∞(Σ)

and ‖at‖L∞(Σ) such that

∫∫

Ω×(T/4,T )
e−

M
T−t |ϕ|2 dx dt ≤ K1

∫∫

O0×(0,T )
|ϕ|2 dx dt. (33)
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On the other hand, multiplying (12) by ϕ and integrating in Ω, we get

−
1

2

d

dt

∫

Ω

|ϕ|2 dx+
∫

Ω

|∇ϕ|2 dx ≤ ‖a‖L∞(Σ)

∫

∂Ω

|ϕ|2 dσ

≤
∫

Ω

|∇ϕ|2 dx+ C(‖a‖L∞(Σ))
∫

Ω

|ϕ|2 dx

for every t > 0. From these inequalities, it is immediate that

∫∫

Ω×(0,T/4)
|ϕ|2 dx dt ≤ eC(T,‖a‖L∞(Σ))

∫∫

Ω×(T/4,T/2)
|ϕ|2 dx dt

and we also find that
∫∫

Ω×(0,T/4)
|ϕ|2 dx dt ≤ eC(T,‖a‖L∞(Σ))+2M/T

∫∫

Ω×(T/4,T/2)
e−

M
T−t |ϕ|2 dx dt.

Using (33), we see that

∫∫

Ω×(0,T/4)
|ϕ|2 dx dt ≤ K2

∫∫

O0×(0,T )
|ϕ|2 dx dt, (34)

where K2 = K1 exp
(
C(T, ‖a‖L∞(Σ)) + 2M/T

)
. Now, from (33) and (34), the

desired observability estimate (28) follows with C4 = K1 +K2 . This ends the
proof.

Remark 12 It is possible to find an estimate of the constant in (30) that
is explicit in ‖a‖L∞(Σ) and ‖at‖L∞(Σ) . This can be made arguing as in [9],
using sharp estimates of the constants λ1 and s1 in the Carleman inequality
in lemma 10. All this yields the following estimate of the cost C(y0) of the null
controllability of (23) with controls in L2(O × (0, T )):

C(y0) ≤ e
C(Ω,O)

(
1+T+ 1

T
+‖a‖2

L∞(Σ)
+‖at‖L∞(Σ)+T‖a‖2

L∞(Σ)

)

‖y0‖L2 .

In this estimate, we find ‖a‖L∞(Σ) and, unfortunately, also ‖at‖L∞(Σ) . This is
the main reason we cannot give a positive answer to the global null control-
lability problem for (1) when f is Lipschitz-continuous (see remark 15 below
for additional details). In fact, an estimate of the cost for problem (23) of the
form

C(y0) ≤ e
C(Ω,O)

(
1+T+ 1

T
+γ(‖a‖L∞(Σ))+T‖a‖2

L∞(Σ)

)

‖y0‖L2 ,

where γ is a positive increasing function, would lead to the null controllability
of (1) even when f is locally Lipschitz-continuous and slightly superlinear
at infinity. Results of this kind were deduced in [10] when the nonlinearity
is in the partial differential equation and we impose homogeneous Dirichlet
conditions.
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3.2 The local null controllability of the nonlinear problem

We will need the (Banach) spaces

C̃1+α,1(Q) = { u ∈ C1(Q) : D1
xu ∈ Cα,α/2(Q) },

C̃1+α,1/2+α/2(Q) = { u ∈ Cα,1/2+α/2(Q) : D1
xu ∈ Cα,α/2(Q) }

and

C̃2+α,1+α/2(Q) = { u ∈ C0(Q) : D1
xu ∈ C1+α,1/2+α/2(Q),

∂u

∂t
∈ Cα,α/2(Q) }.

Here, we have used Dm
x u to denote all space derivatives of u of order m put

together. We will denote by C̃n+α,r+β(Σ) the Banach space formed by the
restrictions to Σ of the functions in C̃n+α,r+β(Q).

For linear systems of the form





∂z

∂t
−∆z = k(x, t) in Q,

∂z

∂n
+ a(x, t)z = 0 on Σ,

z(x, 0) = z0(x) in Ω,

(35)

one has the following result, whose proof is given in [14], p. 320:

Lemma 13 Assume that k ∈ Cα,α/2(Q), a ∈ C̃1+α,1/2+α/2(Σ), z0 ∈ C2+α(Ω)
and the following compatibility condition is satisfied:

∂z0

∂n
+ a(x, 0)z0 = 0 on ∂Ω.

Then (35) possesses exactly one solution z, with z ∈ C̃2+α,1+α/2(Q) and





‖z‖
C̃2+α,1+α/2(Q)

≤ C(Ω, T, ‖a‖
C̃1+α,1/2+α/2(Σ)

)
(
‖k‖Cα,α/2(Q) + ‖z0‖C2+α(Ω)

)
.

(36)

Assume that f is of class C3, f(0) = 0 and y0 ∈ C2+α(Ω) satisfies the com-
patibility condition (8). Let us introduce the function g, given by (14). Then
g is a C2 function and

g(s) =





f(s)

s
if s 6= 0,

f ′(0) if s = 0.
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Let us introduce the Banach space

Z = C̃1+α,1(Σ)

and the closed linear manifold

Z0 = { z ∈ Z : z(x, 0) = y0(x) on ∂Ω }.

For each z ∈ Z0, we will consider the null controllability problem for the linear
system






∂y

∂t
−∆y = v1O in Q,

∂y

∂n
+ g(z(x, t))y = 0 on Σ,

y(x, 0) = y0(x) in Ω.

(37)

This can be solved arguing as in the previous paragraph. Indeed, in view of
theorem 9, there exist controls vz ∈ C∞(Q) satisfying

‖vz‖Cα,α/2(Q) ≤ C5(Ω,O, T, ‖g(z)‖Z) ‖y
0‖L2 , (38)

such that the solution yz to (37) with v = vz satisfies

yz(x, T ) = 0 in Ω. (39)

Furthermore, the constant C5 in (38) can be chosen nondecreasing with re-
spect to the last argument ‖g(z)‖Z . From the compatibility condition (8), the
fact that z ∈ Z0 and lemma 5, we deduce that yz ∈ C̃2+α,1+α/2(Q) and an
estimate like (36) holds. Notice that, here, we are using the fact that g is twice
continuously differentiable, which gives g(z) ∈ C̃1+α,1/2+α/2(Σ). This is why
we need f of class C3.

Let A(z) be the family formed by all the controls in Cα,α/2(Q) such that (38)
and (39) hold and let us set

Λ(z) = { γ0yz : yz is the solution of (37) associated to v ∈ A(z) }.

Notice that Λ(z) ⊂ Z0 for all z ∈ Z0. Then, for all q ∈ Λ(z), we have

‖q‖Z ≤ C6(Ω,O, α, T, ‖g(z)‖Z) ‖y
0‖C2+α(Ω) (40)
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and

‖q‖
C̃2+α,1+α/2(Σ)

≤ C7(Ω,O, α, T, ‖g(z)‖Z) ‖y
0‖C2+α(Ω) (41)

for some constants C6 and C7 again nondecreasing in ‖g(z)‖Z .

We will consider the set-valued mapping z 7→ Λ(z). We will check that, for
some η(Ω,O, α, T ) > 0, the inequality ‖y0‖C2+α(Ω) ≤ η is sufficient to ensure
that Λ possesses at least one fixed point in Z. To this end, we will check that,
under these conditions, Kakutani’s fixed point theorem can be applied to Λ
(for the statement and proof of this result, see for instance [3]).

Of course, this will imply the existence of a control v ∈ Cα,α/2(Q) such that
the corresponding solution to (1) satisfies (3).

Indeed, it is not difficult to see that Λ(z) is, for each z ∈ Z0, a nonempty
closed convex set in Z0. Furthermore, from (41) and the compactness of the
embedding C̃2+α,1+α/2(Σ) →֒ Z, we deduce that for each z ∈ Z0 there exists a
compact set Kz ⊂ Z0 such that

Λ(z) ⊂ Kz .

We also have the following result, whose proof is given below:

Lemma 14 Under the assumptions of theorem 4 and with the previous no-
tation, the set-valued mapping z → Λ(z) is upper hemicontinuous. In other
words, for each bounded linear form ξ ∈ Z ′, the real-valued function

z 7→ sup
q∈Λ(z)

〈ξ, q〉

is upper semicontinuous.

Now, let R > 0 be given, let us assume that z ∈ Z0 satisfies

‖z‖Z ≤ R

and let us denote by M(R) the following quantity:

M(R) = sup
‖z‖Z≤R

C6(Ω,O, α, T, ‖g(z)‖Z)

Let us set η = R/M(R) and let us assume that the initial state y0 satisfies
‖y0‖C2+α(Ω) ≤ η (besides (8)). Let us put

K(y0) = { z ∈ Z0 : ‖z‖Z ≤ R }.
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Then K(y0) is a nonempty closed convex set in Z. In view of (40) and (41), Λ
maps K(y0) into a fixed compact set K ⊂ K(y0). Consequently, all hypotheses
of Kakutani’s theorem are certainly satisfied and the existence of a fixed point
of Λ in K(y0) is ensured.

This ends the proof of theorem 4.

Proof of lemma 14: Let us see that the set

B(κ, ξ) = { z ∈ Z0 : sup
q∈Λ(z)

〈ξ, q〉 ≥ κ }

is closed for every κ ∈ R and every ξ ∈ Z ′. Thus, assume that zm ∈ B(κ, ξ)
for all m and

zm → z in Z.

Our aim is to prove that z ∈ B(κ, ξ) . In view of the regularity of g, we have

g(zm) → g(z) in Z.

Since all sets Λ(zm) are compact, for each m we must have

κ ≤ sup
q∈Λ(zm)

〈ξ, q〉 = 〈ξ, qm〉 (42)

for some qm ∈ Λ(zm) ⊂ K. From the definitions of Λ(zm) and A(zm), there
must exist controls vm ∈ Cα,α/2(Q) and associated states ym satisfying






∂ym
∂t

−∆ym = vm1O in Q,

∂ym
∂n

+ g(zm(x, t))ym = 0 on Σ,

ym(x, 0) = y0(x), ym(x, T ) = 0 in Ω

and qm = γ0ym . We also have

‖vm‖Cα,α/2(Q) ≤ C5(Ω,O, T, ‖g(zm)‖Z) ‖y0‖L2

and
‖qm‖C̃2+α,1+α/2(Σ)

≤ C7(Ω,O, α, T, ‖g(zm)‖Z) ‖y
0‖C2+α(Ω) .

Hence, qm (resp. vm) is uniformly bounded in C̃2+α,1+α/2(Σ) (resp. Cα,α/2(Q)).
Therefore, we can write the following at least for a subsequence:

qm → q̂ strongly in Z,

vm → v̂ strongly in C0(Q)
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and v̂ ∈ Cα,α/2(Q).

Now, it is easy to deduce that v̂ ∈ A(z) and q̂ = γ0ŷ, with





∂ŷ

∂t
−∆ŷ = v̂1O in Q,

∂ŷ

∂n
+ g(z(x, t))ŷ = 0 on Σ,

ŷ(x, 0) = y0(x), ŷ(x, T ) = 0 in Ω.

In particular, we have q̂ ∈ Λ(z). Now, we can take limits in (42) and this gives

κ ≤ 〈ξ, q̂〉 ≤ sup
q∈Λ(z)

〈ξ, q〉,

that is to say, z ∈ B(κ, ξ). This proves that z 7→ Λ(z) is upper hemicontinuous.

Remark 15 To prove a (global) null controllability result for (1), a natural
strategy is a fixed point approach similar to the argument we have used in Sec-
tion 2. But the requirement at ∈ L∞(Σ), which seems to be necessary in the
proofs of lemma 10 and theorem 9, is apparently too strong. Indeed, we would
need in practice functions z such that the trace of the time derivative of g(z)
belongs to L∞(Σ). Thus, we are not too far from

∂z

∂t
∈ L∞(0, T ;W 1,N+κ(Ω)),

with κ > 0. But the spaces of this kind seem to be too small to permit
compactness and good estimates for the fixed point mapping. Hence, as we
already mentioned at the end of Section 1, the global null controllability of
(1) is an open question.

4 Proof of the large time null controllability result

This Section is devoted to prove theorem 5. To this end, we will argue as
follows:

• Starting from an arbitrary large y0 ∈ L2(Ω), we first use the local feedback
law v = −y1O . This provides a first control v1 for t ∈ [0, T1] which leads
the system to a state y1 = y(·, T1) which is small in the H1-norm.

• Then, we simply take v2 = 0 for t ∈ [T1, T2]. This leads to a second inter-
mediate state y2 = y(·, T2) which is small in the H2-norm.
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• Starting from y2 at time t = T2 and setting again v3 = 0 for t ∈ [T2, T
∗], we

arrive now at a state y∗ = y(·, T ∗) such that

‖y∗‖C2+α ≤ η(Ω,O, α, ε), (43)

where η is the constant arising in theorem 4 and ε is arbitrarily small.
• Let us introduce T = T ∗ + ε. In view of (43) and theorem 4, we can find a
control v∗ defined for t ∈ [T ∗, T ] such that the associated state y∗ satisfies

y∗(x, T ) = 0 in Ω. (44)

Obviously, this ends the proof.

Let us now give more details. For simplicity, we will assume that N ≤ 4. This
assumption is not strictly necessary but will make the argument easier and will
clarify the presentation we can give. We will use well known regularity results
for linear and semilinear parabolic systems, see for instance [14] and [18].

Thus, let y0 ∈ L2(Ω) be given and let us choose α ∈ (0, 1) and ε > 0.

First Step: Consider the closed-loop controlled system






∂y

∂t
−∆y = −y1O in Ω× (0,+∞),

∂y

∂n
+ f(y) = 0 on ∂Ω× (0,+∞),

y(x, 0) = y0(x) in Ω.

(45)

This semilinear system possesses exactly one solution ŷ, with

ŷ ∈ L2(0,+∞;H1(Ω)) ∩ C0([0,+∞);L2(Ω)).

Furthermore, using standard techniques, we see at once that





1

2
‖ŷ(·, t)‖2L2 +

∫ t

τ
‖∇ŷ(·, s)‖2L2 ds

+
∫ t

τ

∫

O
|ŷ(x, s)|2 dx ds+

∫ t

τ

∫

∂Ω
f(ŷ)ŷ dΓ ds

=
1

2
‖ŷ(·, τ)‖2L2

(46)

for all t, τ ∈ [0,+∞) with τ < t. Since f(s)s ≥ 0 for all s, we deduce that

‖ŷ(·, t)‖2L2 + C
∫ t

τ
‖ŷ(·, s)‖2H1 ds ≤ ‖ŷ(·, τ)‖2L2 (47)
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for 0 ≤ τ < t < +∞ and also

‖ŷ(·, t)‖2L2 ≤ e−Ct‖y0‖2L2 (48)

and

∫ t+1

t
‖ŷ(·, s)‖2H1 ds ≤ Ce−Ct‖y0‖2L2 (49)

for all t ≥ 0.

For each δ > 0, we also have

‖ŷ(·, t)‖L∞ ≤ ‖ŷ(·, δ)‖L∞ ≤ Cδ‖y
0‖L2 ∀t ≥ δ. (50)

This last estimate can be easily deduced, for instance, by comparing in Ω ×
(δ,+∞) the functions ŷ and −ŷ with the solution w to the linear problem






∂w

∂t
−∆w = −w1O in Ω× (0,+∞),

∂w

∂n
= 0 on ∂Ω× (0,+∞),

w(x, 0) = |y0(x)| in Ω.

We will choose T1 > 0 large enough (to be precised below) and such that

‖ŷ(·, T1)‖
2
H1 ≤ e−CT1‖y0‖2L2 . (51)

In view of (49), many such times T1 exist.

Second Step: Let us set y1 = ŷ(·, T1) and let us consider the uncontrolled
system





∂y

∂t
−∆y = 0 in Ω× (T1,+∞),

∂y

∂n
+ f(y) = 0 on ∂Ω× (T1,+∞),

y(x, T1) = y1(x) in Ω.

(52)
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In view of the assumptions we have made on f , there exists a unique solution
ỹ to (52), with

ỹ ∈L2(T1,+∞;H2(Ω)) ∩ C0([T1,+∞);H1(Ω)) ∩ L∞(Ω× (T1,+∞)).(53)

Indeed, if we multiply the equation in (52) (written for ỹ) by the time deriva-
tive of ỹ and we integrate with respect to x and t, we easily find that





∫ t

τ
‖
∂ỹ

∂t
(·, s)‖2L2 ds+

1

2
‖∇ỹ(·, t)‖2L2 +

∫

∂Ω
F (ỹ(x, t)) dΓ

=
1

2
‖∇ỹ(·, τ)‖2L2 +

∫

∂Ω
F (ỹ(x, τ)) dΓ

(54)

for all t, τ ≥ T1 with τ < t. On the other hand, if we multiply the same
equation by −∆ỹ and we integrate again with respect to x and t, we see that





1

2
‖∇ỹ(·, t)‖2L2 +

∫

∂Ω
F (ỹ(x, t)) dΓ +

∫ t

τ
‖∆ỹ(·, s)‖2L2 ds

=
1

2
‖∇ỹ(·, τ)‖2L2 +

∫

∂Ω
F (ỹ(x, τ)) dΓ

(55)

for all these t and τ . In (54) and (55), F stands for the following function:

F (s) =
∫ s

0
f(σ) dσ ∀s ∈ R. (56)

Since F (s) ≥ 0 for all s, we easily deduce from (54), (55) and the estimates
in the first step that

‖ỹ(·, t)‖2H1 +
∫ t

T1

‖ŷ(·, s)‖2H2 ds ≤ Ce−CT1‖y0‖2L2 (57)

and

∫ t+1

t
‖ỹ(·, s)‖2H2 ds ≤ Ce−CT1‖y0‖2L2 (58)

for all t ≥ T1 . Consequently, we can choose T2 > T1 such that

‖ỹ(·, T2)‖
2
H2 ≤ Ce−CT1‖y0‖2L2 . (59)

In fact, (58) indicates that there are “many” T2 with this property. Also, notice
that T2 can be chosen arbitrarily close to T1.
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Third Step: Let us set y2 = ỹ(·, T2) and let us look at the restriction of ỹ to
the time interval [T2,+∞). We have





ỹ ∈ L2(T2,+∞;H2(Ω)) ∩ C0([T2,+∞);H1(Ω)),

∂ỹ

∂t
∈ L2(T2,+∞;H1(Ω)) ∩ L∞(T2,+∞;L2(Ω)).

(60)

Indeed, if we compute the time derivative of the equation satisfied by ỹ, we
multiply by ∂ỹ

∂t
and we integrate in space and time, the following is found:






1

2
‖
∂ỹ

∂t
(·, t)‖2L2 +

∫ t

τ
‖∇

∂ỹ

∂t
(·, s)‖2L2 ds

+
∫ t

τ

(∫

∂Ω
f ′(ỹ)|

∂ỹ

∂t
|2 dΓ

)
ds

=
1

2
‖
∂ỹ

∂t
(·, τ)‖2L2

(61)

for all t, τ ≥ T2 with τ < t. Since

∂ỹ

∂t
(x, T2) ≡ ∆ỹ(x, T2)

and f ′(s) ≥ 0 for all s, we deduce from (59) and (61) that

‖
∂ỹ

∂t
(·, t)‖2L2 +

∫ t

T2

‖∇
∂ỹ

∂t
(·, s)‖2L2 ds ≤ Ce−CT1‖y0‖2L2 (62)

for all t ≥ T2 .

We are now going to perform a classical bootstrap argument, using the fact
that

∂ỹ

∂n
= −f(ỹ) on ∂Ω× (T2,+∞). (63)

Thus, let us set F̃ = f(ỹ) (a function defined in the whole cylinder Ω ×
(T2,+∞)) and let f̃ be the “lateral” trace of F̃ on Σ. Since f ∈ C4(R), we
have:






F̃ ∈ L2(T2,+∞;H2(Ω)) ∩ C0([T2,+∞);H1(Ω))

∂F̃

∂t
∈ L2(T2,+∞;H1(Ω))

(64)
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and





f̃ ∈ L2(T2,+∞;H3/2(∂Ω)) ∩ C0([T2,+∞);H1/2(∂Ω))

∂f̃

∂t
∈ L2(T2,+∞;H1/2(∂Ω))

(65)

(here, we have used that N ≤ 4).

Reading the boundary condition in (52) in the form (63), we deduce from (65)
that 




ỹ ∈ L2(T2,+∞;H3(Ω)) ∩ C0([T2,+∞);H2(Ω)),

∂ỹ

∂t
∈ L2(T2,+∞;H1(Ω)) ∩ L∞(T2,+∞;L2(Ω)),

with estimates of ỹ and ∂ỹ
∂t

in these spaces bounded by Ce−CT1‖y0‖L2 .

Now, let us choose T21 > T2 such that

‖ỹ(·, T21)‖
2
H3 ≤ Ce−CT1‖y0‖2L2 .

Once more, it is clear that many such T21 exist. Again, taking into account
that f is of class C4, we see that F̃ is as regular as ỹ for t ∈ [T21,+∞) and





f̃ ∈ L2(T2,+∞;H5/2(∂Ω)) ∩ C0([T2,+∞);H3/2(∂Ω)),

∂f̃

∂t
∈ L2(T2,+∞;H1/2(∂Ω)).

(66)

Consequently,





ỹ ∈ L2(T21,+∞;H4(Ω)) ∩ C0([T21,+∞);H3(Ω)),

∂ỹ

∂t
∈ L2(T21,+∞;H2(Ω)),

(67)

with the norms bounded by Ce−CT1‖y0‖2L2 .

At this moment, let us introduce T22 , with T22 > T21 and such that

‖ỹ(·, T22)‖
2
H4 ≤ Ce−CT1‖y0‖2L2 .
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Again, it is clear that many such T22 exist. We have now






F̃ ∈ L2(T22,+∞;W 3,p1(Ω)) ∩ C0([T22,+∞);W 2,p1(Ω)),

∂F̃

∂t
∈ L2(T22,+∞;W 1,p1(Ω)),

(68)

where p1 is the Sobolev embedding exponent for H1(Ω), i.e.

p1 =





2N

N − 2
if N = 3 or N = 4,

arbitrary but finite if N = 2.

Hence, arguing as above we find that




ỹ ∈ L2(T22,+∞;W 4,p1(Ω)) ∩ C0([T22,+∞);W 3,p1(Ω)),

∂ỹ

∂t
∈ L2(T22,+∞;W 2,p1(Ω)).

(69)

In this way, we can repeat the argument and find subsequent times T23 , T24 ,
. . . with T22 < T23 < T24 . . . such that

‖ỹ(·, T2i)‖
2
W 4,pi−2 ≤ Ce−CT1‖y0‖2L2

and ỹ is as in (69) with T22 and p1 respectively replaced by T2i and pi−1

for i = 3, 4, . . . Here, for each i, pi is the Sobolev embedding exponent of
W 1,pi−1(Ω). Of course, we also have the norms of ỹ and ∂ỹ

∂t
in the corresponding

spaces bounded by Ce−CT1‖y0‖L2 .

Obviously, for i large enough (only depending on N), we have

W 3,pi−1(Ω) →֒ C2+α(Ω),

whence ỹ ∈ C0([T2i,+∞);C2+α(Ω)) and

‖ỹ(·, t)‖C2+α(Ω) ≤ C8e
−C9T1‖y0‖L2 ∀t ≥ T2i (70)

for some constants C8 and C9 . We will set T ∗ = T2i for this i. We will also set
y∗ = ỹ(·, T ∗).

Fourth Step: Let us assume that T1 has been chosen in the first step such
that

C8e
−C9T1‖y0‖L2 ≤ η(Ω,O, α, ε), (71)
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where η is the constant furnished by theorem 4 and let us set T = T ∗ + ε.
Then, in view of (70), we deduce that, for some v∗ = v∗(x, t), the solution y∗

to the system 




∂y

∂t
−∆y = v∗1O in Ω× (T ∗, T ),

∂y

∂n
+ f(y) = 0 on ∂Ω × (T ∗, T ),

y(x, T ∗) = y3(x) in Ω.

satisfies (44). As explained above, the proof of theorem 5 is now achieved.

Remark 16 It is clear that, in the previous proof, the times T2 , T
∗ and T

can be chosen arbitrarily close to T1 . It is also clear that T1 can be chosen of
the form

T1 = C10 log ‖y
0‖L2 + C11 ,

where C10 and C11 only depend on Ω, O and f .

5 Some final comments and open questions

5.1 Null controllability

Assume that the function f in (1) is Lipschitz-continuous. In this case, we do
not know at present whether or not (1) is null controllable in an arbitrarily
small time interval.

What we would need to give a positive answer to this question is, essentially,
a Carleman estimate like the one in lemma 10 valid for all a ∈ L∞(Σ) (with
constants λ1 , s1 and C only depending on Ω, O, T and ‖a‖L∞(Σ)). As we have
explained above, “good” estimates of λ1 , s1 and C would even lead to the null
controllability of some slightly superlinear systems. But, unfortunately, this is
unknown.

5.2 The role of blow-up

On the other hand, if the nonlinearity is too strong, it is expected that the
system blows up in such a way that null controllability is impossible (unless
the control acts in the whole domain). This was shown in [10] for semilinear
parabolic equations completed with Dirichlet boundary conditions.
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In order to clarify this point, let us consider the relatively simple case of a
radial solution of the system





∂y

∂t
−∆y = 0 in BR × (0, T ),

∂y

∂n
− h(y) = 0 on ∂BR × (0, T ),

y(x, 0) = y0(x) in BR.

(72)

where BR is the open ball in R
N of radius R. We will assume here that h ∈

C1(R) is nondecreasing, h(s) > 0 for all s > 0 and

∫ +∞

0

1

h(s)
ds < +∞.

Assume that y0 is a regular radial function such that y0r(x) = ∇y0(x)·x/|x| ≥ 0
and

m(0) =
∫

BR

y0(x) dx > 0.

Let us denote by y the associated solution to (72) and let us set

m(t) =
∫

BR

y(x, t) dx

for all t. Then, following for instance [19], it is not difficult to prove that

m′(t) =
∫

BR

yt(x, t) dx =
∫

BR

∆y(x, t) dx

=
∫

∂BR

∂y

∂n
(x, t) dΓ =

∫

∂BR

h(y(x, t)) dΓ

≥ Ah(B
∫

BR

y(x, t) dx)

and thus

m′(t) ≥ Ah(Bm(t)) (73)

for some positive constants A and B. Notice that we have used here the fact
that yr(x, t) = ∇y(x, t) · x/|x| ≥ 0 for all t.

In particular, we deduce from (73) that m(t) > 0 for all positive t.

Let us introduce the functions H and L, with

H(s) =
∫ +∞

s

1

h(σ)
dσ and L = H−1.
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Then, it can be easily deduced from (73) that, for some C > 0, one has

H(Bm(0))−H(Bm(t)) ≥ Ct

and

m(t) ≥
1

B
L (H(Bm(0))− Ct)

for all t. Since L (H(Bm(0))− Ct) → +∞ as t → 1
C
H(Bm(0)), we have

blow-up before t = T ∗ = 1
C
H(Bm(0)).

Unfortunately, the arguments in [10] cannot be applied to a system of the
kind (1), since they rely strongly on the fact that, there, the nonlinear term
interacts with the elliptic operator −∆ in Ω \ ω.

Indeed, to apply the techniques in [10] in the context of (72), we have to
introduce a cut-off function ρ = ρ(x) with support in BR \ ω and we have to
analyze the evolution of

m̃(t) =
∫

BR

ρ(x)y(x, t) dx.

It would be satisfactory to have for m̃ a differential inequality of the kind (73).
But this time we have

m̃′(t) =
∫

BR

ρ(x)yt(x, t) dx =
∫

BR

ρ(x)∆y(x, t) dx

=
∫

BR

∆ρ(x)y(x, t) dx+
∫

∂BR

(
ρ(x)

∂y

∂n
(x, t)−

∂ρ

∂n
(x)y(x, t)

)
dΓ.

By choosing ρ such that
∂ρ

∂n
(x) = 0 on ∂BR , we find that

m̃′(t) =
∫

BR

∆ρ(x)y(x, t) dx+
∫

∂BR

ρ(x)h(y(x, t)) dΓ,

but it seems complicate to bound from below the sum of these integrals by
an expression of the form Ah(Bm̃(t)) − C (notice that we do not have now
yr ≥ 0).

Thus, for systems like (1) a new argument is required and, for the moment,
the question is open.

For other basic facts on the blow-up due to the presence of nonlinear boundary
conditions, see for instance [6], [19], [20] and [16].
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5.3 A variant for systems of the Stokes kind

Let us now consider the Stokes system with nonlinear slip boundary conditions






∂y

∂t
−∆y +∇π = v1O, ∇ · y = 0 in Q,

y · n = 0, (σ(y, π) · n)tg + f(y)tg = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(74)

where v ∈ L2(O × (0, T ))N , y0 ∈ H and f : RN 7→ R
N is globally Lipschitz-

continuous. Here, we have used the following notation:

atg = a− (a · n)n is the tangential component of a,

σ(y, π) = −π Id+ (∇y + t∇y) is the usual stress tensor,

H = { v ∈ L2(Ω) : ∇ · v = 0 in Ω, v · n = 0 on ∂Ω }.

Arguing as in Section 2, it can be proved that (74) is approximately control-
lable in H for all T > 0. Furthermore, the control v can be chosen of the form
v = (v1, v2, 0), with vi ∈ L2(O × (0, T )) (see [4]).

However, the null controllability of (74) is an open problem. It seems rea-
sonable to expect results similar to theorems 4, 5 and 9. But, again, this is
unknown at present.

Acknowledgements: The authors are indebted to the anonymous referee for
his/her comments and suggestions. These have contributed to a substantial
improvement of the paper.
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