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Abstract

In this paper, we present new controllability results for some nonlinear
coupled parabolic systems considered in a bounded domain Ω of IRN

(with N ≥ 1 being arbitrary) when the control force acts on a unique
equation of the system through an arbitrarily small open set ω ⊂ Ω. As
a model example, we consider a nonlinear phase field system with certain
superlinear nonlinearities and prove the null controllability, the exact
controllability to the trajectories and the approximate controllability of
the model. The crucial point in this paper is the new strategy developed
to deal with the null controllability of linear coupled parabolic systems
by a unique control force. Global Carleman estimates and the parabolic
regularizing effect of the problem are used.

Key words. Controllability; Nonlinear coupled systems of parabolic
type.

1 Introduction

The aim of the present paper is the description of a new approach that allows
one to prove new controllability results for some (linear and nonlinear) coupled
parabolic systems considered in a bounded domain Ω ⊂ IRN (for arbitrary
N ≥ 1) when they are controlled by a unique control force that acts on an
arbitrarily small open set ω ⊂ Ω. In order to describe our strategy, we will
consider (as a model example) a system of two nonlinear coupled parabolic PDEs
that generalizes the phase field model introduced by Caginalp in its enthalpy
formulation (cf. [1]).

Suppose that a material that may be in either of two phases (e.g. solid and
liquid) occupies a bounded region Ω in the space IRN (N ≥ 1 arbitrary), with
boundary ∂Ω of class C2. For a given T > 0, the nonlinear phase field system
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reads as follows:




∂tu−∆u + f(u,∇u, φ,∇φ) = −∆φ+ v1ω in Q = Ω× (0, T ),

∂tφ−∆φ+ h(φ) = u in Q,

u = 0, φ = 0 on Σ, u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω,

(1)

where f : IR × IRN × IR × IRN → IR is a locally Lipschitz-continuous function,
h : IR → IR is a C1-function, the initial datum (u0, φ0) is given in a suitable
space, and v ∈ L2(Q) is a control function to be determined. Here, ω ⊂ Ω
is an arbitrarily small open control set, Σ = ∂Ω × (0, T ), and 1ω denotes the
characteristic function of ω.

This model provides a mathematical description of free boundary problems
arising from physical phenomena that occurs with a phase transition, such as
the phenomenon of solidification of a liquid. The variable φ is the so-called
phase field function and is used to distinguish between the two phases of the
material involved in the solidification process. The enthalpy of the system, u, is
given by u = θ+φ, where θ is the temperature of the material. From a physical
point of view, observe that θ (which satisfies a nonlinear heat equation such as
∂tθ + ∂tφ −∆θ + F (θ,∇θ) = v1ω in Q) is the variable to be controlled. Thus,
in system (1) we control on the equation satisfied by u.

We are interested in analyzing the controllability properties of system (1)
when nonlinearities with a slight superlinear growth at infinity are considered.
This analysis is more intricate than the study of the controllability properties
for a scalar superlinear heat equation (cf. [2] and [3], for instance) since we want
a coupled parabolic system to be controlled by a unique distributed control
and, even in the linear case, additional technical difficulties arise owing to the
coupling of the equations.

The first controllability results for a nonlinear phase field system by one
control force are proved in [4] under certain restriction on the dimension N .
For 1 ≤ N ≤ 5, Ammar Khodja et al. prove the exact controllability to the
trajectories when f ≡ 0 and h satisfies h(0) = 0 and

lim
|σ|→∞

|h(σ)|

|σ| log3/2(1 + |σ|)
= 0. (2)

In [5], the authors introduce a new approach to deal with the null controllability
of some linear coupled parabolic systems that makes it possible to generalize
the results in [4] to a more general phase field system such as (1), where both
f and h are allowed to have a slight superlinear growth at infinity. The proof
of these results as well as the above-mentioned strategy, sketched in [5], are
developed in the present paper. To be precise, assume that f(0, 0, 0, 0) = 0 and

f(s, p, σ, π) = g1(s, p, σ, π)s+G1(s, p, σ, π) · p+ g2(s, p, σ, π)σ +G2(s, p, σ, π) · π

for any (s, p, σ, π) ∈ IR × IRN × IR × IRN , where gi : IR × IRN × IR × IRN → IR
and Gi : IR × IRN × IR × IRN → IRN , i = 1, 2, are some L∞

loc functions. First,
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we prove a null controllability result for system (1) (see Theorem 2.1) when the
nonlinearities satisfy, together with other assumptions, hypothesis (2) and






lim
|s|,|σ|→∞

|g1(s, p, σ, π)|

log3/2(1 + |s|+ |σ|)
= 0, lim

|s|,|σ|→∞

|G1(s, p, σ, π)|

log1/2(1 + |s|+ |σ|)
= 0,

lim
|s|,|σ|→∞

|g2(s, p, σ, π)|

log2(1 + |s|+ |σ|)
= 0, and lim

|s|,|σ|→∞

|G2(s, p, σ, π)|

log(1 + |s|+ |σ|)
= 0

uniformly in p, π ∈ IRN .

Under slightly different hypothesis on the nonlinearities, we also show a result
on the exact controllability to the trajectories for system (1), Theorem 2.2, that
extends the results given in [4]. As a consequence, an approximate controllability
result for (1) is obtained (see Theorem 2.3).

Theorem 2.1 in the present paper and the main results in [4] can be
proved, as is already usual (see [6], [3], and [7], for instance), by combining
a similar controllability result for the corresponding linearized system with and
appropriate fixed-point argument. The presence of superlinear nonlinearities
leads to obtain, in the linear case, a ‘good’ control to the effect that a fixed
point in an appropriate space can be obtained. One of the main goals of the
present paper is to develop the strategy sketched in [5] to obtain such a good
control in the linear case. It is worth pointing out that this approach, which
is completely different from the one used in [4], makes it possible to obtain
controllability results which are valid for arbitrary N ≥ 1.

In Section 4, we develop in detail the above-mentioned strategy to prove the
null controllability of a linear phase field system by one control force. For the
sake of clarity, let us describe in this introduction the main ideas in our method
to deal with a simpler linear null controllability problem.

The strategy of fictitious control functions: We consider the linear null
controllability problem






∂tu−∆u = a1u+ b1φ+ v1ω in Q,

∂tφ− ν∆φ = a2u+ b2φ in Q,

u = 0, φ = 0 on Σ, u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω,

(3)

u(x, T ) = 0, φ(x, T ) = 0 in Ω, (4)

where ai, bi ∈ L∞(Q) (i = 1, 2), u0, φ0 ∈ L2(Ω) (at least), and v ∈ L2(Q) is a
control function to be determined (ω ⊂ Ω is the control open set and ν > 0 is the
diffusion coefficient of the second PDE). Assume that there exist a nonempty
open set B and a constant a0 > 0 such that

B ⊂⊂ ω, |a2| ≥ a0 > 0 in B × (0, T ).

We are interested in obtaining a control v such that the corresponding solution
(u, φ) to (3) not only satisfies (4) but also lies in L∞(Q)2. Appropriate estimates
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of the control v and the solution (u, φ) with respect to the size of the data must
also be obtained.

We proceed in two steps. Let B0 be a nonempty open set such that B0 ⊂⊂ B.
In the first place, we introduce a fictitious control in the second PDE in (3) and
prove the null controllability of the linear system





∂tu−∆u = a1u+ b1φ+ v̂11B0
in Q,

∂tφ− ν∆φ = a2u+ b2φ+ v̂21B0
in Q,

u = 0, φ = 0 on Σ, u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω.

(5)

It is proved that there exist two control functions v̂1, v̂2 ∈ L2(Q), with

supp v̂1, supp v̂2 ⊂ B0 × [0, T ], such that the corresponding solution (û, φ̂) to (5)
satisfies (4). Moreover, v̂1 and v̂2 can be chosen so that

||v̂1||
2
L2(Q) + ||v̂2||

2
L2(Q) ≤ exp (CH0)

(
||u0||

2
L2(Ω) + ||φ0||

2
L2(Ω)

)
,

with C = C(Ω,B0, ν) > 0 and H0 = H0(T, ‖a1‖∞, ‖a2‖∞, ‖b1‖∞, ‖b2‖∞) > 0
(the explicit dependence of the constant H0 with respect to T and the size of
the potentials can be given). This controllability result is a consequence of the
observability inequality

‖ϕ(0)‖2L2(Ω) + ‖ψ(0)‖2L2(Ω) ≤ exp (CH0)

∫∫

B0×(0,T )

(
|ϕ|2 + |ψ|2

)
dx dt

(C and H0 as above) for the solutions to the adjoint system





−∂tψ −∆ψ = a1ψ + a2ϕ in Q,

−∂tϕ− ν∆ϕ = b1ψ + b2ϕ in Q,

ϕ = 0, ψ = 0 on Σ,

ϕ(x, T ) = ϕ0(x), ψ(x, T ) = ψ0(x) in Ω (ϕ0, ψ0 ∈ L2(Ω)),

which is deduced by combining an appropriate Carleman inequality and the
energy estimates for these solutions.

In a second step, we eliminate v̂2 and construct a control v ∈ Lr(Q)
(r ∈ [2,∞) being arbitrary) that gives the null controllability of system (3),
with associated solution (u, φ) in L∞(Q)2. This can be carried out by adapting
to the present situation the technique of construction of regular controls (from
L2-controls) introduced in [8] (also see [9]). We proceed as follows. Let
η ∈ C∞([0, T ]) be such that η ≡ 1 in [0, T/3], η ≡ 0 in [2T/3, T ], and 0 ≤ η ≤ 1,
|η′(t)| ≤ C/T in [0, T ]. We introduce the change of variables u = U + ηu,
φ = Φ+ ηφ, where (u, φ) is the weak solution to






∂tu−∆u = a1u+ b1φ in Q,

∂tφ− ν∆φ = a2u+ b2φ in Q,

u = 0, φ = 0 on Σ, u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω.
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Observe that a control v solves the null controllability problem (3), (4) if and
only if v solves:






∂tU −∆U = a1U + b1Φ− η′u+ v1ω in Q,

∂tΦ− ν∆Φ = a2U + b2Φ− η′φ in Q,

U = 0, Φ = 0 on Σ,

U(x, 0) = 0, Φ(x, 0) = 0, U(x, T ) = 0, Φ(x, T ) = 0 in Ω.

(6)

Thus, we are reduced to obtaining a control force in Lr(Q) (r ∈ [2,∞)) that

solves (6). To this end, let (û, φ̂) be the solution to system (5) associated to two
arbitrary L2-controls v̂1 and v̂2 that give the null controllability of (5). We can

write û = Û + ηu and φ̂ = Φ̂ + ηφ, with η and (u, φ) as above and (Û , Φ̂) being
the solution to





∂tÛ −∆Û = a1Û + b1Φ̂− η′u+ v̂11B0
in Q,

∂tΦ̂− ν∆Φ̂ = a2Û + b2Φ̂− η′φ+ v̂21B0
in Q,

Û = 0, Φ̂ = 0 on Σ, Û(x, 0) = 0, Φ̂(x, 0) = 0 in Ω,

which also satisfies Û(x, T ) = 0 and Φ̂(x, T ) = 0 in Ω. We now consider a
function θ ∈ D(B) satisfying θ ≡ 1 in a neighborhood of B0. We set

Φ = (1 − θ) Φ̂, U = (1 − θ) Û +
1

a2

(
θη′φ+ 2ν∇θ · ∇Φ̂ + ν(∆θ)Φ̂

)
,

and

v = θη′u+2∇θ·∇Û+(∆θ)Û+(∂t−∆−a1)

[
1

a2

(
θη′φ+ 2ν∇θ · ∇Φ̂ + ν(∆θ)Φ̂

)]
.

By local parabolic regularity, under appropriate assumptions on the potentials
a2 and b2, the functions U , Φ, and v are regular enough. In addition, for regular
initial data, the functions u = U + ηu and φ = Φ+ ηφ are also regular. Suitable
estimates for (u, φ) and v can be obtained. Furthermore, v (together with
(U,Φ)) solves (6), thus v (together with (u, φ)) solves the null controllability
problem (3), (4). Notice that, in fact, it suffices to assume that |a2| ≥ a0 > 0 in
B × (0, T0) for certain T0 ∈ (0, T ), since we can drive, in this case, system (3)
to zero at time T0 and set v ≡ 0 for the rest of the time interval.

Let us end this introduction with a brief comment on the last main result in
this paper. We consider the linear coupled system:





−∂tϕ−∆ϕ+ cϕ−∇ · (Fψ) + eψ = −∆ψ in Q,

−∂tψ −∆ψ −∇ · (Bψ) + aψ = ϕ in Q,

ϕ = 0, ψ = 0 on Σ, ϕ(x, T ) = ϕ0(x), ψ(x, T ) = ψ0(x) in Ω,

(7)

where a, c, e ∈ L∞(Q), B,F ∈ L∞(Q)N , and ϕ0, ψ0 ∈ L2(Ω). For a given open
set B0, Theorem 2.4 provides a Carleman inequality for the solutions (ϕ, ψ)

5



to (7), by means of which, some global terms of ϕ and ψ are bounded just in
terms of ψ ‘localized’ in B0 (see (12)). Although we have opted in this paper
for the strategy of introducing a fictitious control, Theorem 2.4 leads to an
observability result for the solutions to (7) that allows one to prove the null
controllability of a linear phase field system such as (16) by a control v̂ ∈ L2(Q)
supported in B0 × [0, T ], and the L2-norm of v̂ can be estimated.

The rest of the present work is organized as follows. Our main results
are stated in the following Section. In Section 3, we compile some technical
results which will be used later. Section 4 provides an exhaustive study of the
null controllability property for a linear phase field system. In the next three
Sections, we prove the controllability results for system (1) stated in Section 2,
and Section 8 is devoted to proving Theorem 2.4. We end the paper with further
results and comments.

2 Main results

We devote this Section to stating the relevant results in this paper. Assume
that f : IR × IRN × IR × IRN → IR is a locally Lipschitz-continuous function,
with f(0, 0, 0, 0) = 0, and h ∈ C1(IR), both with certain superlinear growth at
infinity (which is specified below). Notice that, under these assumptions, one
can write

f(s, p, σ, π) = g1(s, p, σ, π)s+G1(s, p, σ, π) · p+ g2(s, p, σ, π)σ +G2(s, p, σ, π) · π

for any (s, p, σ, π) ∈ IR × IRN × IR × IRN , where gi : IR × IRN × IR × IRN → IR
and Gi : IR × IRN × IR × IRN → IRN , i = 1, 2, are the L∞

loc-functions defined,
respectively, by

g1(s, p, σ, π) =

∫ 1

0

∂sf(λs, λp, λσ, λπ) dλ,

G1(s, p, σ, π) =

∫ 1

0

∂pf(λs, λp, λσ, λπ) dλ,

g2(s, p, σ, π) =

∫ 1

0

∂σf(λs, λp, λσ, λπ) dλ, and

G2(s, p, σ, π) =

∫ 1

0

∂πf(λs, λp, λσ, λπ) dλ,

for any (s, p, σ, π) ∈ IR× IRN × IR× IRN . Here we denoted by ∂sf (resp. ∂σf) the
derivative of f with respect to s (resp. σ) and by ∂pf (resp. ∂πf) the gradient
of f with respect to p (resp. π). Our first main result establishes the null
controllability of system (1).

Theorem 2.1 Let f : IR× IRN × IR× IRN → IR be a locally Lipschitz-continuous
function such that f(0, 0, 0, 0) = 0 and let h ∈ C1(IR) satisfy h′′ ∈ L∞

loc(IR) and
h(0) = 0. Let us assume that:
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i) For any R > 0, there exists MR > 0 such that

|g1(s, p, σ, π)| + |G1(s, p, σ, π)| + |g2(s, p, σ, π)|+ |G2(s, p, σ, π)| ≤MR

for every s, σ ∈ [−R,R] and p, π ∈ IRN ;

ii)






lim
|s|,|σ|→∞

|g1(s, p, σ, π)|

log3/2(1 + |s|+ |σ|)
= 0, lim

|s|,|σ|→∞

|G1(s, p, σ, π)|

log1/2(1 + |s|+ |σ|)
= 0,

lim
|s|,|σ|→∞

|g2(s, p, σ, π)|

log2(1 + |s|+ |σ|)
= 0, and lim

|s|,|σ|→∞

|G2(s, p, σ, π)|

log(1 + |s|+ |σ|)
= 0

uniformly in p, π ∈ IRN ;

lim
|σ|→∞

|h(σ)|

|σ| log3/2(1 + |σ|)
= 0. (8)

Then, for any T > 0 and (u0, φ0) ∈ (W 2−2/s1,s1(Ω) ∩ H1
0 (Ω))

2, with s1 ∈
(N/2 + 1,∞), there exists a control function v ∈ L2(Q) such that system (1)
possesses a solution (u, φ) ∈ L∞(Q)2 that satisfies

u(x, T ) = 0, φ(x, T ) = 0 in Ω.

The proof of this Theorem combines a similar null controllability result for the
corresponding linearized system with and appropriate fixed-point argument, and
will be given in Section 5.

Remark 2.1 In particular, under the hypothesis in Theorem 2.1, for any
(u0, φ0) ∈ (W 2−2/s1,s1(Ω) ∩ H1

0 (Ω))
2, with s1 ∈ (N/2 + 1,∞), there exists a

control v such that system (1) admits a solution (u, φ) which is globally defined
in [0, T ]. Observe that this assertion does not remain valid for any control
term v and any initial datum (u0, φ0) since we are in the range of nonlinearities
for which blow-up phenomena may occur at an instant T ∗ < T .

Under hypothesis (on the nonlinearities) slightly different from the ones
in Theorem 2.1, one is able to show a result on the exact controllability to
the trajectories of system (1). To be precise, for arbitrary (s0, p0, σ0, π0) and
(s, p, σ, π) in IR× IRN × IR× IRN , let us now write

f(s0 + s, p0 + p, σ0 + σ, π0 + π) = f(s0, p0, σ0, π0)

+ g1(s0, p0, σ0, π0; s, p, σ, π)s +G1(s0, p0, σ0, π0; s, p, σ, π) · p

+ g2(s0, p0, σ0, π0; s, p, σ, π)σ +G2(s0, p0, σ0, π0; s, p, σ, π) · π,

where

g1(s0, p0, σ0, π0; s, p, σ, π) =

∫ 1

0

∂sf(s0 + λs, p0 + λp, σ0 + λσ, π0 + λπ) dλ,

G1(s0, p0, σ0, π0; s, p, σ, π) =

∫ 1

0

∂pf(s0 + λs, p0 + λp, σ0 + λσ, π0 + λπ) dλ,
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g2(s0, p0, σ0, π0; s, p, σ, π) =

∫ 1

0

∂σf(s0 + λs, p0 + λp, σ0 + λσ, π0 + λπ) dλ,

and

G2(s0, p0, σ0, π0; s, p, σ, π) =

∫ 1

0

∂πf(s0 + λs, p0 + λp, σ0 + λσ, π0 + λπ) dλ.

The following result holds, which generalizes the main results in [4] and [10].

Theorem 2.2 Let h ∈ C1(IR) satisfy h′′ ∈ L∞
loc(IR) and hypothesis (8) and let

f : IR× IRN × IR× IRN → IR be a locally Lipschitz-continuous function such that

lim
|s|,|σ|→∞

|g1(s0, p0, σ0, π0; s, p, σ, π)|

log3/2(1 + |s|+ |σ|)
= 0,

lim
|s|,|σ|→∞

|G1(s0, p0, σ0, π0; s, p, σ, π)|

log1/2(1 + |s|+ |σ|)
= 0,

lim
|s|,|σ|→∞

|g2(s0, p0, σ0, π0; s, p, σ, π)|

log2(1 + |s|+ |σ|)
= 0,

lim
|s|,|σ|→∞

|G2(s0, p0, σ0, π0; s, p, σ, π)|

log(1 + |s|+ |σ|)
= 0

(9)

uniformly in (s0, p0, p, σ0, π0, π) ∈ K× IRN × IRN ×K× IRN × IRN , with K ⊂ IR
being compact. Assume, in addition, that for any R > 0 and k∗ > 0, there exists
MR,k∗ > 0 such that

|gi(s0, p0, σ0, π0; s, p, σ, π)| ≤MR,k∗ , i = 1, 2,

|Gi(s0, p0, σ0, π0; s, p, σ, π)| ≤MR,k∗ , i = 1, 2,
(10)

for every s0, σ0 ∈ [−k∗, k∗], s, σ ∈ [−R,R], and p0, p, π0, π ∈ IRN . For an
arbitrary T > 0, let (u∗, φ∗) be a weak solution to (1) in L∞(Q)2 associated
to v∗ ∈ L2(Q) and (u∗0, φ

∗
0) ∈ (W 2−2/s1,s1(Ω) ∩ H1

0 (Ω))
2, with s1 > N/2 + 1.

Then, for any (u0, φ0) ∈ (W 2−2/s1,s1(Ω) ∩ H1
0 (Ω))

2, there exists a control
v ∈ L2(Q) and a state (u, φ) ∈ L∞(Q)2 associated to v and (u0, φ0) such that
u(x, T ) = u∗(x, T ) and φ(x, T ) = φ∗(x, T ) in Ω.

Remark 2.2 Notice that, when f(0, 0, 0, 0) = h(0) = 0, the null controllability
can be read as the exact controllability to the trajectory (u∗, φ∗) ≡ (0, 0)
(associated to v∗ = 0 and (u∗0, φ

∗
0) = (0, 0)). Thus, the hypothesis (9) and (10)

required to prove Theorem 2.2 are, as natural, slightly stronger than those in
Theorem 2.1. On the other hand, assumption (8) on the growth of h, which is
not other that

lim
|σ|→∞

1

log3/2(1 + |σ|)

∫ 1

0

h′(λσ) dλ = 0,

is equivalent to





lim
|σ|→∞

1

log3/2(1 + |σ|)

∣∣∣∣
∫ 1

0

h′(σ0 + λσ) dλ

∣∣∣∣ = 0,

uniformly in σ0 ∈ K for any compact set K ⊂ IR,
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as already observed in [11].

A consequence of Theorem 2.2 is the following approximate controllability
result for system (1).

Theorem 2.3 Let f and h be two functions as in Theorem 2.2. Then, for any
T > 0, u0, φ0 ∈ W 2−2/s1,s1(Ω) ∩ H1

0 (Ω)), with s1 > N/2 + 1, ud, φd ∈ L2(Ω)
and any ε > 0, there exists a control v ∈ L2(Q) and a state (u, φ) in L∞(Q)2

associated to v and (u0, φ0) such that

‖u(·, T )− ud‖L2(Ω) ≤ ε and ‖φ(·, T )− φd‖L2(Ω) ≤ ε. (11)

Our last main result is concerned with a Carleman estimate for the solutions
to the linear (adjoint) system (7).

Theorem 2.4 Let B0 ⊂ ω be a nonempty open set. Then, there exists a
function α0 ∈ C2(Ω) and there exist two constants C, σ̂ > 0 (that only
depend on Ω and B0) such that the solution (ϕ, ψ) to (7) associated to any
(ϕ0, ψ0) ∈ L2(Ω)2 satisfies

s

∫∫

Q

e−2sαt−1(T − t)−1|∇ϕ|2 + s3
∫∫

Q

e−2sαt−3(T − t)−3|ϕ|2

+ s4
∫∫

Q

e−2sαt−4(T − t)−4|∇ψ|2 + s6
∫∫

Q

e−2sαt−6(T − t)−6|ψ|2

≤ Cs7
∫∫

B0×(0,T )

e−2sαt−7(T − t)−7|ψ|2,

(12)

for every s ≥ ŝ = σ̂(Ω,B0)(T + T 2M), where

M = 1+ ‖a+ c‖
1/2
∞ + ‖a‖

1/2
∞ + ‖a‖

2/3
∞ + ‖c‖

2/3
∞ + ‖e‖

1/4
∞ + ‖e‖

1/3
∞

+ ‖B‖∞ + ‖B‖2∞ + ‖F‖
1/4
∞ + ‖F‖

1/3
∞ + ‖F‖

2/5
∞ + ‖F‖

1/2
∞ .

In (12), the function α is given by α(x, t) =
α0(x)

t(T − t)
, x ∈ Ω, t ∈ (0, T ).

Remark 2.3 Theorem 2.4 improves the Carleman estimate established in [4].
To be precise, Ammar Khodja et al. consider the adjoint system (7) with
a ≡ e ≡ 0 and B ≡ F ≡ 0 and, by using a technique completely different
from ours, are able to bound some global terms of ϕ and ψ by

C(Ω, T, ‖c‖∞)

∫∫

B0×(0,T )

e−rsα|ψ|2 dx dt (with r ∈ (0, 2)).

Observe that, owing to the structure of the function α(x, t), the weight function
e−rsα is worse than the weight e−2sαt−7(T − t)−7 in the right-hand side of (12).
Such a Carleman inequality enables the authors to obtain controls in LqN (Q),
together with appropriate estimates, that give the exact controllability to the
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trajectories (thus also controls that give the null controllability) of the linear
system, with qN ∈ (2,∞) if N = 1 or 2, and N/2+ 1 < qN ≤ 2(N +2)/(N − 2)
if 3 ≤ N ≤ 5. It is worthy of remark that their strategy uses the global terms of
|∆ψ|2 and |∂tψ|2 appearing in the left-hand side of the Carleman inequality, thus
it cannot be applied in our case because of the presence of the term −∇ · (Bψ)
in (7).

Remark 2.4 Let us consider a nonempty open set B0 such that B0 ⊂⊂ ω
(ω ⊂ Ω being the control set). By combining Theorem 2.4 with the corresponding
energy estimates, the following observability inequality for the solutions to (7)
is easily derived:

‖ϕ(0)‖2L2(Ω) + ‖ψ(0)‖2L2(Ω) ≤ exp (CH)

∫∫

B0×(0,T )

|ψ|2 dx dt ∀ϕ0, ψ0 ∈ L2(Ω),

where C = C(Ω,B0) > 0 and H = H(T, ‖a‖∞, ‖c‖∞, ‖e‖∞, ‖B‖∞, ‖F‖∞) is
given by

H =M +
1

T
+ T

(
1 + ‖a‖∞ + ‖c‖∞ + ‖e‖∞ + ‖B‖2∞ + ‖F‖2∞

)
,

with M > 0 as in Theorem 2.4. By a standard argument, the previous
observability result enables us to prove the existence of a control v̂ ∈ L2(Q)
supported in B0 × [0, T ] that gives the null controllability of a linear phase field
system such as (16), for initial data in L2(Ω) and potentials in L∞. Moreover,
we can estimate

||v̂||2L2(Q) ≤ exp (CH)
(
||u0||

2
L2(Ω) + ||φ0||

2
L2(Ω)

)
,

with C = C(Ω,B0) > 0 and H > 0 being the constants above.

Remark 2.5 Theorem 2.4 would imply, in particular, the following unique
continuation property for the solutions to the adjoint system (7): “If ϕ0, ψ0 ∈
L2(Ω), (ϕ, ψ) is the associated solution to (7) and ψ = 0 in ω × (0, T ), then
ϕ ≡ ψ ≡ 0 in Q”. Nevertheless, such a unique continuation property cannot
be obtained as a direct consequence of the classical unique continuation property
for the heat equation, owing to the coupling of the PDEs in (7).

3 Some technical results

The strategy developed in this paper to deal with the null controllability of some
linear coupled parabolic systems uses the parabolic regularizing effect. For this
reason, we devote this Section to stating some technical results on parabolic
regularity of a linear phase field system which will be used later. Although
these results are naturally expected, we include them here so as to obtain the
explicit dependence of the constants in the corresponding estimates with respect
to the size of the potentials, which is essential in our analysis.
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We previously introduce the following notation, which is used all along the
paper. For p ∈ [1,∞] and a given Banach space X , ‖ · ‖Lp(X) will denote the
norm in the space Lp(0, T ;X) (for simplicity, ‖ · ‖∞ will stand for the norm in
L∞(Q)). For arbitrary r ∈ [2,∞), δ ∈ [0, T ), and any open set V ⊂ IRN , we
introduce the Banach space

Xr(δ, T ;V) =
{
u : u ∈ Lr(δ, T ;W 2,r(V)), ∂tu ∈ Lr(δ, T ;Lr(V))

}

and its natural norm ‖u‖Xr(δ,T ;V) = ‖u‖Lr(δ,T ;W 2,r(V)) + ‖∂tu‖Lr(δ,T ;Lr(V)). We
denote by Xr the Banach space

Xr = {u : u ∈ Lr(0, T ;W 2,r(Ω) ∩W 1,r
0 (Ω)), ∂tu ∈ Lr(Q)}

and by ‖ · ‖Xr its natural norm ‖u‖Xr = ‖u‖Lr(W 2,r(Ω)) + ‖∂tu‖Lr(Q).

On the other hand, for β ∈ (0, 1) and u ∈ C0(Q), we define the quantity

[u]β,β
2

= sup
Q

x 6=x′

|u(x, t)− u(x′, t)|

|x− x′|β
+ sup

Q

t6=t′

|u(x, t)− u(x, t′)|

|t− t′|
β
2

.

We will consider the space Cβ, β
2 (Q) =

{
u ∈ C0(Q) : [u]β,β

2

<∞
}
, which is a

Banach space with its natural norm |u|β,β
2
;Q = ‖u‖∞ + [u]β,β

2

. We will also

consider the Banach space defined by

C1+β, 1+β
2 (Q) =

{
u ∈ C0(Q) : ∇u ∈ Cβ, β

2 (Q)N , sup
Q

|u(x, t)− u(x, t′)|

|t− t′|
1+β
2

<∞

}
,

with norm denoted by | · |1+β, 1+β
2

;Q. The norm in the space L2(0, T ;H1(Ω)) ∩

C([0, T ];L2(Ω)) will be denoted by ‖ · ‖L2(H1)∩C(L2) and W (0, T ) will stand for
the space

W (0, T ) =
{
y : y ∈ L2(0, T ;H1

0 (Ω)), ∂ty ∈ L2(0, T ;H−1(Ω))
}
.

Finally, throughout the paper C will stand for a generic positive constant
that only depends on the geometric data (Ω, the control set ω, and/or other
open sets which will be considered further) and, eventually, on the dimension N
(and/or a given number r ∈ [2,∞)), whose value may change from one line
to another. We will denote by K another generic positive constant that only
depends on N , whose value may also change from line to line. From now on, we
will only specify the dependence of the constants with respect to the arguments
which will be relevant in our analysis (thus, for instance, the dependence on N
and r will usually be omitted).

We start with a result on existence, uniqueness, and regularity of solution
for linear phase field systems such as




∂tu−∆u+B · ∇u+ au+ F · ∇φ+ eφ = −∆φ+ g1 in Q,

∂tφ−∆φ+D · ∇φ+ cφ = u+ g2 in Q,

u = 0, φ = 0 on Σ, u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω,

(13)
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where a, c, e ∈ L∞(Q), B,D, F ∈ L∞(Q)N , u0, φ0 ∈ L2(Ω), and g1, g2 ∈
L2(0, T ;H−1(Ω)) (at least).

Proposition 3.1 Let a, c, e ∈ L∞(Q) and B,D, F ∈ L∞(Q)N be given. It
holds that:

a) If u0, φ0 ∈ L2(Ω) and g1, g2 ∈ L2(0, T ;H−1(Ω)), there exists a unique
weak solution (u, φ) to (13) satisfying (u, φ) ∈ W (0, T )2 together with the
estimate

‖(u, φ)‖W (0,T )2 ≤ exp(CH1)
(
‖(u0, φ0)‖L2(Ω)2 + ‖(g1, g2)‖L2(H−1(Ω))2

)
,

where C = C(Ω) > 0 and H1 = H1(T, ‖a‖∞, ‖c‖∞, ‖e‖∞, ‖B‖∞, ‖D‖∞, ‖F‖∞)
is given by

H1 = 1 + T
(
1 + ‖a‖∞ + ‖c‖∞ + ‖e‖∞ + ‖B‖2∞ + ‖D‖2∞ + ‖F‖2∞

)
(14)

(here, ‖y‖W (0,T ) = ‖y‖L2(H1
0
(Ω)) + ‖∂tu‖L2(H−1(Ω)), y ∈W (0, T )).

b) If u0, φ0 ∈ W 2−2/r,r(Ω) ∩ H1
0 (Ω) and g1, g2 ∈ Lr(Q), with r ∈ [2,∞)

being arbitrary, the weak solution (u, φ) to (13) lies in Xr ×Xr and there exist
positive constants C = C(Ω, N, r) and K = K(N) such that

‖(u, φ)‖Xr×Xr ≤ exp(CH1)H
K
2

(
‖(u0, φ0)‖W 2−2/r,r(Ω)2 + ‖(g1, g2)‖Lr(Q)2

)
,

with H1 > 0 as above and H2 = H2(‖a‖∞, ‖c‖∞, ‖e‖∞, ‖B‖∞, ‖D‖∞, ‖F‖∞)
given by

H2 = 1 + ‖a‖∞ + ‖c‖∞ + ‖e‖∞ + ‖B‖∞ + ‖D‖∞ + ‖F‖∞. (15)

The proof of this Proposition is sketched in Appendix A.
One can also obtain the following result on local parabolic regularity of the

linear phase field system (13):

Proposition 3.2 For given a, c, e ∈ L∞(Q), B,D, F ∈ L∞(Q)N , g1, g2 ∈
L2(0, T ;H−1(Ω)), and u0, φ0 ∈ L2(Ω), let us consider the weak solution (u, φ) ∈
W (0, T )2 to (13). Let V ⊂ Ω and O ⊂⊂ Ω be two open sets and let r ∈ [2,∞)
be given. The following holds:

a) If g1, g2 ∈ Lr(δ, T ;Lr(Ω)), with δ ∈ [0, T ) being arbitrary, then (u, φ)
lies in Xr(δ′, T ; Ω)2 for any δ′ ∈ (δ, T ) and there exists a positive constant C
independent of T such that

‖(u, φ)‖Xr(δ′,T ;Ω)2 ≤ exp [C(1 + T )]

(
1 +

1

δ′ − δ

)K

HK
2

×
(
‖(g1, g2)‖Lr(δ,T ;Lr(Ω))2 + ‖(u, φ)‖W (0,T )2

)
,

with K = K(N) > 0 and H2 = H2(‖a‖∞, ‖c‖∞, ‖e‖∞, ‖B‖∞, ‖D‖∞, ‖F‖∞) > 0
as in Proposition 3.1.
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b) Suppose, in addition, that u(x, 0) = 0 and φ(x, 0) = 0 in Ω and
g1, g2 ∈ Lr(0, T ;Lr(V)) (resp. g1, g2 ∈ Lr(0, T ;Lr(Ω \ O))). Then, for any
open set V ′ ⊂⊂ V (resp. O′ such that O ⊂⊂ O′ ⊂⊂ Ω), it holds that

(u, φ) ∈ Xr(0, T ;V ′)2 (resp. (u, φ) ∈ Xr(0, T ; Ω \ O′)2).

Moreover, there exists a new positive constant C independent of T such that

‖(u, φ)‖Xr(0,T ;V′)2

≤ exp [C(1 + T )]HK
2

(
‖(g1, g2)‖Lr(Lr(V))2 + ‖(u, φ)‖W (0,T )2

)

(resp.

‖(u, φ)‖Xr(0,T ;Ω\O′)2

≤ exp [C(1 + T )]HK
2

(
‖(g1, g2)‖Lr(Lr(Ω\O))2 + ‖(u, φ)‖W (0,T )2

))
,

with K = K(N) > 0 and H2 = H2(‖a‖∞, ‖c‖∞, ‖e‖∞, ‖B‖∞, ‖D‖∞, ‖F‖∞) > 0
as above.

c) Assume the hypothesis in the previous point together with g2, u ∈
Lr(0, T ;W 1,r(V)), ∇c ∈ Lγ(Q)N , with γ given by (24), and D ≡ 0. Then,
for any open set V ′ ⊂⊂ V, one has

φ ∈ Lr(0, T ;W 3,r(V ′)), ∂tφ ∈ Lr(0, T ;W 1,r(V ′)).

Furthermore, for a new positive constant C independent of T , the following
estimate holds

‖φ‖Lr(W 3,r(V′)) + ‖∂tφ‖Lr(W 1,r(V′)) ≤ exp [C(1 + T )]

(
1 +

1

T

)
HK

2 (1 + ‖c‖∞)

×
(
1 + ‖∇c‖Lγ(Q)

) (
‖g1‖Lr(Lr(V)) + ‖(g2, u)‖Lr(W 1,r(V))2 + ‖φ‖W (0,T )

)
,

with K = K(N) > 0.

The proof of this Proposition combines the local regularity of the heat equation
with an argument of ‘bootstrap’ type and, far from being the aim of this paper,
it will be omitted.

We end this Section by recalling the following result, which is readily
obtained by rewriting Lemma 3.3 in [12] with our notation (also see Lemma 2.2
in [9]):

Lemma 3.1 Let V ⊂ IRN be a bounded open set with ∂V ∈ C2 (N ≥ 1 being
arbitrary) and let r ∈ [1,∞) be given. The following continuous embeddings
hold:

i) If r <
N

2
+1, then Xr(0, T ;V) →֒ Lp(V×(0, T )), where

1

p
=

1

r
−

2

N + 2
.

ii) If r =
N

2
+ 1, then Xr(0, T ;V) →֒ Lq(V × (0, T )) for any q <∞.
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iii) If
N

2
+ 1 < r < N + 2, then Xr(0, T ;V) →֒ Cβ,β

2 (V × [0, T ]), where

β = 2− (N + 2)/r.

iv) If r = N + 2, then Xr(0, T ;V) →֒ Cl, l
2 (V × [0, T ]) for any l ∈ (0, 1).

v) If r > N + 2, then Xr(0, T ;V) →֒ C1+α, 1+α
2 (V × [0, T ]), where

α = 1− (N + 2)/r.
Moreover, the constant in each embedding can be written as C (1 + 1/T ), with
C = C(V , N, r) > 0.

4 Null controllability of a linear phase field

system

The purpose of this Section is to prove the null controllability of the linear phase
field system





∂tu−∆u+B · ∇u+ au+ F · ∇φ+ eφ = −∆φ+ v1ω in Q,

∂tφ−∆φ+ cφ = u in Q,

u = 0, φ = 0 on Σ, u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω,

(16)

where a, c, e ∈ L∞(Q), B,F ∈ L∞(Q)N , u0, φ0 ∈ L2(Ω) (at least), and
v ∈ L2(Q) is a control function to be determined (ω ⊂ Ω is the control open
set). Since the present analysis is directed towards the study of the interesting
nonlinear case when certain superlinear nonlinearities are considered, we are
indeed interested in obtaining a null control v for system (16) so that the
associated solution (u, φ) lies in L∞(Q)2. Furthermore, appropriate estimates
of v and (u, φ) with respect to the size of the data must be obtained. As in
the example described in the introduction to the paper, we proceed in two
steps. First, we introduce a fictitious control in the second PDE in (16)
and give a null controllability result with two controls v̂1 and v̂2 in L2(Q)
(see Theorem 4.1). In Subsection 4.2, we develop the strategy to remove v̂2
and construct a control v ∈ Lr(Q) (r ∈ [2,∞) arbitrary) that gives the null
controllability of system (16), with associated solution (u, φ) in L∞(Q)2. We
again adapt to the present case the technique of construction of regular controls
(from L2-controls) introduced in [8].

4.1 The linear null controllability problem with two con-

trols

Let B0 be a regular nonempty open set such that B0 ⊂⊂ ω. Let us consider the
linear system






∂tu−∆u+B · ∇u+ au+ F · ∇φ+ eφ = −∆φ+ v̂11B0
in Q,

∂tφ−∆φ+ cφ = u+ v̂21B0
in Q,

u = 0, φ = 0 on Σ, u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω,

(17)
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where v̂1, v̂2 ∈ L2(Q) are two control functions to be determined. The following
null controllability result for system (17) can be proved:

Theorem 4.1 Let a, c, e ∈ L∞(Q), B,F ∈ L∞(Q)N , and u0, φ0 ∈ L2(Ω) be
given. Then, there exist two control functions v̂1, v̂2 ∈ L2(Q), with supp v̂1,

supp v̂2 ⊂ B0× [0, T ], such that the corresponding solution (û, φ̂) to (17) satisfies

û(x, T ) = 0, φ̂(x, T ) = 0 in Ω. Moreover, v̂1 and v̂2 can be chosen so that

||v̂1||
2
L2(Q) + ||v̂2||

2
L2(Q) ≤ exp (CH0)

(
||u0||

2
L2(Ω) + ||φ0||

2
L2(Ω)

)
, (18)

with C = C(Ω,B0) > 0 and H0 = H0(T, ‖a‖∞, ‖c‖∞, ‖e‖∞, ‖B‖∞, ‖F‖∞) > 0
given by

H0 = 1 +
1

T
+ ‖a‖2/3∞ + ‖c‖2/3∞ + ‖e‖1/3∞ + ‖B‖2∞ + ‖F‖1/2∞

+ T
(
1 + ||a||∞ + ||c||∞ + ||e||∞ + ||B||2∞ + ||F ||2∞

)
.

(19)

The proof of this Theorem is a standard consequence of the observability
result for the solutions to the adjoint system (7) established in the following
Theorem, and will be omitted.

Theorem 4.2 There exist positive constants C = C(Ω,B0) and

H0 = H0(T, ‖a‖∞, ‖c‖∞, ‖e‖∞, ‖B‖∞, ‖F‖∞)

such that, for every ϕ0, ψ0 ∈ L2(Ω), the corresponding solution (ϕ, ψ) to (7)
satisfies

‖ϕ(0)‖2L2(Ω) + ‖ψ(0)‖2L2(Ω) ≤ exp(CH0)

∫∫

B0×(0,T )

(
|ϕ|2 + |ψ|2

)
dx dt.

To be precise, H0 is given by (19).

The proof of this observability result combines a suitable Carleman estimate
for the solutions to (7) with the corresponding energy estimates for these
solutions. The basic tool used in the proof is a global Carleman inequality
(which we recall in Lemma 4.1) for linear systems such as

{
∂tz −∆z = f̃ in Q,

z = 0 on Σ, z(x, 0) = z0(x) in Ω,
(20)

with z0 ∈ L2(Ω) and f̃ ∈ L2(0, T ;H−1(Ω)).

Lemma 4.1 Let B ⊂⊂ Ω be a nonempty open set. Let us assume that

f̃ = f0+
N∑

i=1

∂fi
∂xi

, with fi ∈ L2(Q), i = 0, 1, . . . , N . Then, there exist a function
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α0 ∈ C2(Ω) and two positive constants C0 and σ0 (that only depend on Ω and B)
such that, for any z0 ∈ L2(Ω), the associated solution z to (20) satisfies

s1+l

∫∫

Q

e−2sαt−1−l(T − t)−1−l|∇z|2 + s3+l

∫∫

Q

e−2sαt−3−l(T − t)−3−l|z|2

≤ C0

(
s3+l

∫∫

B×(0,T )

e−2sαt−3−l(T − t)−3−l|z|2

+sl
∫∫

Q

e−2sαt−l(T − t)−l|f0|
2 + s2+l

N∑

i=1

∫∫

Q

e−2sαt−2−l(T − t)−2−l|fi|
2

)
,

for any s ≥ s0 = σ0(Ω,B) (T + T 2) and l ≥ 0. The function α is given by

α(x, t) =
α0(x)

t(T − t)
, x ∈ Ω, t ∈ (0, T ).

The proof of this Lemma can be found in [13] although the authors do not
precise the way the constant s0 depends on T . This explicit dependence can be
obtained arguing as in [14] (also see [11] and [15]).

The following Carleman estimate for the solutions to (7) is proved:

Proposition 4.1 Let B ⊂⊂ Ω be a nonempty open set. There exist a function
α0 ∈ C2(Ω) and two positive constants C and σ (that only depend on Ω and B)
such that the solution (ϕ, ψ) to (7) associated to any (ϕ0, ψ0) ∈ L2(Ω)2 satisfies

s

∫∫

Q

e−2sαt−1(T − t)−1|∇ϕ|2 + s3
∫∫

Q

e−2sαt−3(T − t)−3|ϕ|2

+ s4
∫∫

Q

e−2sαt−4(T − t)−4|∇ψ|2 + s6
∫∫

Q

e−2sαt−6(T − t)−6|ψ|2

+ ≤ C

∫∫

B×(0,T )

e−2sα
(
s3t−3(T − t)−3|ϕ|2 + s6t−6(T − t)−6|ψ|2

)
(21)

for every s ≥ s, where

s = σ(Ω,B)
(
T + T 2

(
1 + ‖a‖2/3∞ + ‖c‖2/3∞ + ‖e‖1/3∞ + ‖B‖2∞ + ‖F‖1/2∞

))
. (22)

In (21), the function α is given by α(x, t) =
α0(x)

t(T − t)
, x ∈ Ω, t ∈ (0, T ).

Proof. Let (ϕ, ψ) be the solution to (7) associated to (ϕ0, ψ0) ∈ L2(Ω)2 and let
α0 and α be the functions in Lemma 4.1 associated to B.

Firstly, we apply Lemma 4.1 to the function ϕ, with l = 0 and f̃ =
−cϕ − eψ + ∇ · (Fψ − ∇ψ). Secondly, we apply the same Lemma to ψ, by

taking this time l = 3 and f̃ = ϕ − aψ + ∇ · (Bψ). By combining both
Carleman estimates for ϕ and ψ, one infers the existence of two positive
constants C1 = C1(Ω,B) and σ1 = σ1(Ω,B) such that, for any s ≥ s1 =
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σ1(Ω,B)
(
T + T 2

(
1 + ‖a‖

2/3
∞ + ‖c‖

2/3
∞ + ‖B‖2∞

))
, it holds that

s

∫∫

Q

e−2sαt−1(T − t)−1|∇ϕ|2 + s3
∫∫

Q

e−2sαt−3(T − t)−3|ϕ|2

+ s4
∫∫

Q

e−2sαt−4(T − t)−4|∇ψ|2 + s6
∫∫

Q

e−2sαt−6(T − t)−6|ψ|2

≤ C1

(
s3
∫∫

B×(0,T )

e−2sαt−3(T − t)−3|ϕ|2 + ‖e‖2∞

∫∫

Q

e−2sα|ψ|2

+s6
∫∫

B×(0,T )

e−2sαt−6(T − t)−6|ψ|2 + s2‖F‖2∞

∫∫

Q

e−2sαt−2(T − t)−2|ψ|2

)
.

This immediately yields estimate (21) for every s ≥ s, with s given by (22),
which was our claim. �

In the proof of Theorem 4.2, we also use the following Lemma whose proof,
being an easy matter, will be omitted.

Lemma 4.2 Let γ0 ∈ C0(Ω) be such that γ0(x) ≥ m > 0 ∀x ∈ Ω. Let us set

γ(x, t) =
γ0(x)

t(T − t)
for (x, t) ∈ Q, and m0 = min

Ω
γ0. Then,

s6e−2sγt−6(T − t)−6 ≤

(
3

em0

)6

for any s >
3T 2

4m0
and (x, t) ∈ Q.

We end this Subsection by proving Theorem 4.2.

Proof of Theorem 4.2. Let (ϕ, ψ) be the solution to (7) associated to
ϕ0, ψ0 ∈ L2(Ω). The proof uses Proposition 4.1 and the energy estimates for ϕ
and ψ.

For t almost everywhere (a.e.) in (0, T ), it is seen that

−
d

dt

[
‖ϕ(t)‖2L2(Ω) + ‖ψ(t)‖2L2(Ω)

]
≤ H∗

(
‖ϕ(t)‖2L2(Ω) + ‖ψ(t)‖2L2(Ω)

)
,

with H∗ = 1 + 2
(
‖a‖∞ + ‖c‖∞ + ‖e‖∞ + ‖B‖2∞ + ‖F‖2∞

)
> 0, whence

‖ϕ(0)‖2L2(Ω) + ‖ψ(0)‖2L2(Ω) ≤
4

T
exp (H∗T )

∫∫

Ω×(T/2,3T/4)

(
|ϕ|2 + |ψ|2

)
. (23)

The proof will be completed by combining (21) and (23). Let α0 and α
be the functions in Proposition 4.1 associated to B0 and consider an arbitrary
s ≥ s, with s given by (22). Observe that

e−2sαt−3(T − t)−3 ≥ 26T−6 exp
(
−25M0s/(3T

2)
)

∀(x, t) ∈ Ω× (T/2, 3T/4),
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withM0 = max
Ω

α0. On the other hand, since s ≥ CT 2, one has s3t−6(T−t)−6 ≥

Ct−3(T − t)−3 for all t ∈ (0, T ). Then,

∫∫

Ω×(T/2,3T/4)

e−2sα
(
t−3(T − t)−3|ϕ|2 + s3t−6(T − t)−6|ψ|2

)

≥ CT−6 exp

(
−
Cs

T 2

)∫∫

Ω×(T/2,3T/4)

(
|ϕ|2 + |ψ|2

)
dx dt.

Now, by applying Proposition 4.1 (with B = B0) and Lemma 4.2, one can
estimate

∫∫

Ω×(T/2,3T/4)

(
|ϕ|2 + |ψ|2

)
≤ CT 6 exp

(
Cs

T 2

)
×

(∫∫

B0×(0,T )

e−2sαt−3(T − t)−3|ϕ|2 + s3
∫∫

B0×(0,T )

e−2sαt−6(T − t)−6|ψ|2

)

≤ CT 6 exp

(
Cs

T 2

)∫∫

B0×(0,T )

(
|ϕ|2 + |ψ|2

)

for every s ≥ ŝ, where

ŝ = σ̂(Ω,B0)
(
T + T 2

(
1 + ‖a‖2/3∞ + ‖c‖2/3∞ + ‖e‖1/3∞ + ‖B‖2∞ + ‖F‖1/2∞

))
,

with σ̂(Ω,B0) = max{σ(Ω,B0), 3/(4m0)} and m0 = min
Ω
α0. Finally, by setting

s = ŝ in the previous estimate and by recalling (23), we end the proof. �

4.2 The linear null controllability problem with one con-

trol

For a given s1 ∈ [2,∞), we set

Zs1 =

{
Ls1(0, T ;W 1,s1

0 (Ω)) if s1 ∈ [2, N/2 + 1],

Ls1(0, T ;W 1,s1
0 (Ω)) ∩ C0(Q) if s1 > N/2 + 1,

and Xs1 = {φ : φ ∈ Ls1(0, T ;W 2,s1(Ω) ∩ W 1,s1
0 (Ω)), ∂tφ ∈ Ls1(Q)}. In this

Subsection, we prove the following null controllability result for system (16).

Theorem 4.3 Let r, s1 ∈ [2,∞) and T > 0 be given. Assume that u0, φ0 ∈
W 2−2/s1,s1(Ω) ∩ H1

0 (Ω), a, e ∈ L∞(Q), B,F ∈ L∞(Q)N , and c ∈ L∞(Q) ∩
Lγ(0, T ;W 1,γ(Ω)), with γ defined by

γ =

{
max {r,N/2 + 1} if r 6= N/2 + 1,

N/2 + 1 + ε′ (ε′ > 0 arbitrarily small) if r = N/2 + 1.
(24)
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Then, there exists a control function v ∈ Lr(Q) supported in ω × [0, T ] such
that the corresponding solution (u, φ) to (16) lies in Zs1 × Xs1 and satisfies
u(x, T ) = 0 and φ(x, T ) = 0 in Ω. Moreover,

‖u‖Zs1 + ‖φ‖Xs1 ≤ exp (CH0) ‖(u0, φ0)‖W 2−2/s1,s1(Ω)2 (25)

and
‖v‖Lr(Q) ≤ exp (CH0) (1 + ‖∇c‖Lγ(Q))‖(u0, φ0)‖L2(Ω)2 , (26)

with C = C(Ω, ω) > 0 and H0 = H0(T, ‖a‖∞, ‖c‖∞, ‖e‖∞, ‖B‖∞, ‖F‖∞) > 0
given by (19).

Proof. Let B0 be a regular nonempty open set such that B0 ⊂⊂ ω. Let
v̂1, v̂2 ∈ L2(Q) be two controls provided by Theorem 4.1 (associated to B0)

and denote by (û, φ̂) the corresponding solution to (17). We will eliminate the
control v̂2 and construct a new control v as in the statement.

We proceed as follows. First, we consider a function η ∈ C∞([0, T ]) such
that η ≡ 1 in [0, T/3], η ≡ 0 in [2T/3, T ], and 0 ≤ η ≤ 1, |η′(t)| ≤ C/T in [0, T ].
Then, we introduce the change of variables

u = U + ηu, φ = Φ + ηφ, (27)

where (u, φ) is the weak solution to





∂tu−∆u +B · ∇u+ au+ F · ∇φ+ eφ = −∆φ in Q,

∂tφ−∆φ+ cφ = u in Q,

u = 0, φ = 0 on Σ, u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω.

Observe that the proof is reduced to obtaining a control v as in the statement
that solves the null controllability problem






∂tU −∆U +B · ∇U + aU + F · ∇Φ+ eΦ = −∆Φ− η′u+ v1ω in Q,

∂tΦ−∆Φ+ cΦ = U − η′φ in Q,

U = 0, Φ = 0 on Σ,

U(x, 0) = 0, Φ(x, 0) = 0, U(x, T ) = 0, Φ(x, T ) = 0 in Ω.
(28)

We can also write û = Û + ηu and φ̂ = Φ̂ + ηφ, where (Û , Φ̂) solves





∂tÛ −∆Û +B · ∇Û + aÛ + F · ∇Φ̂ + eΦ̂ = −∆Φ̂− η′u+ v̂11B0
in Q,

∂tΦ̂−∆Φ̂ + cΦ̂ = Û − η′φ+ v̂21B0
in Q,

Û = 0, Φ̂ = 0 on Σ,

Û(x, 0) = 0, Φ̂(x, 0) = 0, Û(x, T ) = 0, Φ̂(x, T ) = 0 in Ω.
(29)

We now consider three new regular open sets B1, B2, and B such that

B0 ⊂⊂ B1 ⊂⊂ B2 ⊂⊂ B ⊂⊂ ω,

19



and a function θ ∈ D(B) satisfying θ ≡ 1 in B2. We set

Φ = (1− θ) Φ̂, U = (1− θ) Û + θη′φ+ 2∇θ · ∇Φ̂ + (∆θ)Φ̂, (30)

and

v = θη′u− 2∇θ · ∇Φ̂− (∆θ)Φ̂ + 2∇θ · ∇Û + (∆θ)Û −∇θ · (BÛ)

−∇θ · (F Φ̂) + (∂t −∆+B · ∇+ a)
[
θη′φ+ 2∇θ · ∇Φ̂ + (∆θ)Φ̂

]
.

(31)

The rest of the proof is a consequence of the parabolic regularity results in
Section 3. For clarity, it will be divided into three steps.

Step 1. Let r ∈ [2,∞) be given. First, the above-introduced function v is
supported in B× [0, T ] (by the choice of θ). On the other hand, Proposition 3.2
yields (u, φ) ∈ Xr(δ, T ; Ω)2 for all δ > 0. By observing the right-hand side of
the PDEs in (29), Proposition 3.2 now gives (Û , Φ̂) ∈ Xr(0, T ; Ω \ B1)

2 and (by
the first point of Proposition 3.1 and the properties on η) we have

‖(Û , Φ̂)‖Xr(0,T ;Ω\B1)2

≤ exp[C(1 + T )]MK
2

(
1

T
‖(u, φ)‖Xr(T/3,T ;Ω)2 + ‖(Û , Φ̂)‖W (0,T )2

)

≤ exp(CM1)M
K
2

(
‖(u0, φ0)‖L2(Ω)2 + ‖(v̂1, v̂2)‖L2(Q)2

)
,

(32)

with K = K(N) > 0 and M1,M2 > 0 given by

M1 = 1 +
1

T
+ T

(
1 + ‖a‖∞ + ‖c‖∞ + ‖e‖∞ + ‖B‖2∞ + ‖F‖2∞

)
,

M2 = 1 + ‖a‖∞ + ‖c‖∞ + ‖e‖∞ + ‖B‖∞ + ‖F‖∞.

Since ∇c ∈ Lγ(Q)N , with γ given by (24), the third point of Proposition 3.2
can be applied to Φ̂ inferring that

Φ̂ ∈ Lr(0, T ;W 3,r(B \ B2)), ∂tΦ̂ ∈ Lr(0, T ;W 1,r(B \ B2))

and

‖Φ̂‖Lr(W 3,r(B\B2))
+ ‖∂tΦ̂‖Lr(W 1,r(B\B2))

≤ exp [C(1 + T )]M3

(
1 + ‖∇c‖Lγ(Q)

) (
‖ − η′φ+ v̂21B0

‖Lr(W 1,r(Ω\B1))

+‖Û‖Lr(W 1,r(Ω\B1))
+ ‖Φ̂‖W (0,T )

)

(here, M3 = (1 + 1/T )HK
2 (1 + ‖c‖∞), with K = K(N) > 0) which, combined

with (32) and (18), gives

‖Φ̂‖Lr(W 3,r(B\B2))
+ ‖∂tΦ̂‖Lr(W 1,r(B\B2))

≤ exp(CH0)
(
1 + ‖∇c‖Lγ(Q)

)
‖(u0, φ0)‖L2(Ω)2 .
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Then, the term (∂t −∆)[2∇θ · ∇Φ̂] in (31) lies in Lr(Q), thus v ∈ Lr(Q) and
estimate (26) holds.

Step 2. First, assume that u0, φ0 ∈ L2(Ω). Let us have in mind that (Û , Φ̂) ∈
Xp(0, T ; Ω\B1)

2 for all p ∈ [2,∞) together with estimates (32) and (18). Then,
(U,Φ) defined in (30) lies in Lp(0, T ;W 1,p

0 (Ω))×Xp. By taking any p > N +2,
Lemma 3.1 gives

(Û , Φ̂) ∈ C1+α, 1+α
2 (Ω \ B1 × [0, T ])2 ∀α ∈ (0, 1).

In particular, (U,Φ) ∈ (Lp(0, T ;W 1,p
0 (Ω))∩C0(Q))×Xp for any p ∈ [2,∞) and

‖U‖Lp(W 1,p
0

(Ω))∩C0(Q)+‖Φ‖Xp ≤ exp(CH0)‖(u0, φ0)‖L2(Ω)2 (H0 > 0 as above).

Now, suppose that u0, φ0 ∈ W 2−2/s1,s1(Ω) ∩H1
0 (Ω), for a given s1 ∈ [2,∞).

Proposition 3.1 immediately yields

(u, φ) ∈ Xs1 ×Xs1 , ‖(u, φ)‖Xs1×Xs1 ≤ exp(CH1)M
K
2 ‖(u0, φ0)‖W 2−2/s1,s1(Ω)2 ,

with K = K(N) > 0 and H1 > 0 given by (14) (here, D ≡ 0). Just by recalling
the change of variables (27), we have (u, φ) = (U + ηu,Φ + ηφ) ∈ Zs1 × Xs1

and estimate (25) holds (we again use here Lemma 3.1 and, in particular, the
continuous embedding Xs1 →֒ C0(Q) if s1 > N/2 + 1).

Step 3. Notice that the functions U and Φ introduced in (30) satisfy

U = Φ = 0 on Σ, U(x, 0) = Φ(x, 0) = U(x, T ) = Φ(x, T ) = 0 in Ω.

In particular, we use that supp (∇θ), supp (∆θ) ⊂⊂ Ω, Φ̂ ∈ C([0, T ];H1
0 (Ω)),

Û ∈ C([0, T ];L2(Ω)), and

Û = Φ̂ = 0 on Σ, Û(x, 0) = Φ̂(x, 0) = Û(x, T ) = Φ̂(x, T ) = 0 in Ω.

It is already a simple matter to check that the control function v given by (31)
(together with (U,Φ)) solves (28). Hence, v (together with u = U + ηu and
φ = Φ + ηφ) gives the null controllability of system (16). This completes the
proof of Theorem 4.3. �

Remark 4.1 It is worthy of remark that the regularity of the control v
(resp. estimate (26)) is obtained independently of the regularity of u and φ
(resp. estimate (25)). Indeed, the regularity of v only depends on the local
parabolic regularizing effect (thus on the regularity of the term ∇c), while the
regularity of (u, φ) just depends on the regularity of the initial condition (u0, φ0).

5 Proof of the null controllability of a nonlinear

phase field system

This Section is devoted to proving Theorem 2.1. The proof will be divided into
two steps. Firstly, we will prove the result in the case when gi and Gi (i = 1, 2)
are continuous functions and h ∈ C2(IR), by applying an appropriate fixed-point
argument. A suitable regularizing argument will give us the result in the general
case.
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5.1 The case when the functions gi, Gi (i = 1, 2), and h′′

are continuous

Assume that the hypothesis in the statement hold and that gi, Gi (i = 1, 2),
and h′′ are continuous functions. Let H : IR → IR be the C1-function defined by

H(σ) =





h(σ)

σ
if σ 6= 0,

h′(0) if σ = 0.

Then, for each ε > 0, there exists a positive constant Cε (which only depends
on ε, f , and h) such that

|g1(s, p, σ, π)|2/3 + |G1(s, p, σ, π)|2 + |g2(s, p, σ, π)|1/2 + |G2(s, p, σ, π)|

+ |H(σ)|2/3 ≤ Cε + ε log(1 + |s|+ |σ|),
(33)

for any (s, p, σ, π) ∈ IR× IRN × IR× IRN . Let s1 ∈ (N/2+1,∞) be given and set

q =





2 if N = 1,

q ∈ (2, s1) if N = 2,

N

2
+ 1 if N ≥ 3,

TR(s) =

{
s si |s| ≤ R,

R sgn(s) si |s| > R,
(34)

with R > 0 to be determined later.
For any (z, ζ) in L2(0, T ;H1

0(Ω))×Lq(0, T ;W 1,q
0 (Ω)), we consider the linear

coupled system (for simplicity, we omit the dependence on R):





∂tu−∆u+Bz,ζ · ∇u+ az,ζu+ Fz,ζ · ∇φ+ ez,ζφ = −∆φ+ v1ω in Q,

∂tφ−∆φ+ cζφ = u in Q,

u = 0, φ = 0 on Σ, u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω,
(35)

with potentials given by

az,ζ = g1(TR(z),∇z,TR(ζ),∇ζ), ez,ζ = g2(TR(z),∇z,TR(ζ),∇ζ),

Bz,ζ = G1(TR(z),∇z,TR(ζ),∇ζ), Fz,ζ = G2(TR(z),∇z,TR(ζ),∇ζ),

and cζ = H(TR(ζ)), which satisfy

az,ζ , ez,ζ ∈ L∞(Q), Bz,ζ, Fz,ζ ∈ L∞(Q)N , and cζ ∈ L∞(Q)∩Lq(0, T ;W 1,q
0 (Ω)).

Moreover, for any (z, ζ) ∈ L2(0, T ;H1
0(Ω))×L

q(0, T ;W 1,q
0 (Ω)), one can see that

‖az,ζ‖∞ ≤ α1,R, ‖ez,ζ‖∞ ≤ α2,R, ‖Bz,ζ‖∞ ≤ β1,R,

‖Fz,ζ‖∞ ≤ β2,R, and ‖cζ‖∞ ≤ κR,
(36)

where

αi,R = sup
|s|,|σ|≤R

p,π∈IRN

|gi(s, p, σ, π)|, βi,R = sup
|s|,|σ|≤R

p,π∈IRN

|Gi(s, p, σ, π)|, i = 1, 2, (37)
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and
κR = max

|σ|≤R
|H(σ)|. (38)

In particular, we have used hypothesis i) in the statement and the continuity
ofH ′, together with Stampacchia’s Theorem (see Theorem A.4.2., p. 256 of [16])
and the fact that TR is a globally Lipschitz-continuous function.

Let us now reason as in [3] (also see [11]). Let us associate, to each pair (z, ζ)
in L2(0, T ;H1

0 (Ω))×L
q(0, T ;W 1,q

0 (Ω)), a family of controls that lead system (35)
to zero at time T . The idea is to applying Theorem 4.3 to (35) in an appropriate
time interval (eventually smaller than [0, T ]). To be precise, let us set

TR = min
{
T, α

−1/3
1,R , α

−1/2
2,R , κ

−1/3
R , β−1

2,R

}
.

For any (z, ζ) ∈ L2(0, T ;H1
0(Ω)) × Lq(0, T ;W 1,q

0 (Ω)), one applies Theorem 4.3
in the time interval (0, TR), with s1 > N/2 + 1 and r = 2 (observe that, in
this case, γ given by (24) is equal to q). If u0, φ0 ∈W 2−2/s1,s1(Ω)∩H1

0 (Ω), one
deduces the existence of a control vz,ζ ∈ L2(Ω×(0, TR)) such that the associated
solution, (uz,ζ , φz,ζ), to (35) in the cylinder Ω× (0, TR) satisfies

uz,ζ ∈ Ls1(0, TR;W
1,s1
0 (Ω)) ∩ C0(Ω× [0, TR]), φz,ζ ∈ Xs1(0, TR; Ω),

and
uz,ζ(x, TR) = 0, φz,ζ(x, TR) = 0 in Ω.

Moreover, the following estimates hold

‖uz,ζ‖Ls1(0,TR;W
1,s1
0

(Ω))∩C0(Ω×[0,TR])
+ ‖φz,ζ‖Xs1(0,TR;Ω)

≤ C1(Ω, ω, f, h, TR, z, ζ)‖(u0, φ0)‖W 2−2/s1,s1 (Ω)2 ,
(39)

‖vz,ζ‖L2(Ω×(0,TR)) ≤ C2(Ω, ω, f, h, TR, z, ζ)‖(u0, φ0)‖L2(Ω), (40)

where
C1 ≡ exp[C(Ω, ω)HR,z,ζ ],

C2 ≡ C1(Ω, ω, f, h, TR, z, ζ)(1 + ‖H ′(TR(ζ))∇(TR(ζ))‖Lq(Q)),

and HR,z,ζ > 0 is given by

HR,z,ζ = 1 +
1

TR
+ ‖az,ζ‖

2/3
∞ + ‖cζ‖

2/3
∞ + ‖ez,ζ‖

1/3
∞ + ‖Bz,ζ‖

2
∞ + ‖Fz,ζ‖

1/2
∞

+ TR
(
1 + ‖az,ζ‖∞ + ‖cζ‖∞ + ‖ez,ζ‖∞ + ‖Bz,ζ‖2∞ + ‖Fz,ζ‖2∞

)
.

We now extend the functions vz,ζ , uz,ζ, and φz,ζ by zero to the whole

cylinder Q. Denote such extensions by ṽz,ζ , ũz,ζ , and φ̃z,ζ , respectively. Then,

(ũz,ζ , φ̃z,ζ) lies in Zs1 × Xs1 (here Zs1 = Ls1(0, T ;W 1,s1
0 (Ω)) ∩ C0(Q), since

s1 > N/2 + 1), solves the linearized system (35) in Q with control term
v = ṽz,ζ ∈ L2(Q), and satisfies

ũz,ζ(x, T ) = 0, φ̃z,ζ(x, T ) = 0 in Ω.

23



Furthermore, by recalling the definitions of HR,z,ζ and TR and (36), from
estimates (39) and (40), one infers

‖ũz,ζ‖Zs1 + ‖φ̃z,ζ‖Xs1 ≤ C3(Ω, ω, f, h, T,R)‖(u0, φ0)‖W 2−2/s1,s1(Ω)2 , (41)

‖ṽz,ζ‖L2(Q) ≤ C4(Ω, ω, f, h, T,R, ζ)‖(u0, φ0)‖L2(Ω)2 , (42)

with

C3(Ω, ω, f, h, T,R) = exp
[
C(Ω, ω, T )

(
1 + α

2/3
1,R + α

1/2
2,R + κ

2/3
R + β2

1,R + β2,R

)]
,

C4(Ω, ω, f, h, T,R, ζ) = C3(Ω, ω, f, h, T,R)

(
1 + ‖∇ζ‖Lq(Q) max

|σ|≤R
|H ′(σ)|

)
,

for a new positive constant C which now depends on Ω, ω, and also on T .
For a fixed control v ∈ L2(Q), we now denote by (uv, φv) the solution

to (35) associated to v and the potentials az,ζ , cζ , ez,ζ , Bz,ζ , and Fz,ζ (we
have omitted the dependence on (z, ζ) to simplify the notation). For any
(z, ζ) ∈ L2(0, T ;H1

0 (Ω))× Lq(0, T ;W 1,q
0 (Ω)), one defines the family of controls

AR(z, ζ) = {v ∈ L2(Q) : (uv, φv) ∈ Zs1 ×Xs1 , uv(x, T ) = φv(x, T ) = 0 in Ω,

and v satisfies (42)}.

Thus, one can introduce the multi-valued mapping

ΛR : (z, ζ) ∈ Y := L2(0, T ;H1
0 (Ω))× Lq(0, T ;W 1,q

0 (Ω)) 7−→ ΛR(z, ζ) ⊂ Y,

where ΛR(z, ζ) is the family of functions (uv, φv) in Zs1 × Xs1 such that
v ∈ AR(z, ζ) and (uv, φv) satisfies (41).

It can be seen that, for any R > 0, the Kakutani fixed-point Theorem can
be applied to ΛR, thus ensuring the existence of (at least) one fixed point of ΛR

in Y . First, it is easy to check that ΛR(z, ζ) is a nonempty closed convex subset
of Y , for any (z, ζ) ∈ Y . Moreover, for any (z, ζ) ∈ Y , each (u, φ) ∈ ΛR(z, ζ)
satisfies the uniform estimate (41). Hence, ΛR maps the whole space Y in a
bounded subset of Y . On the other hand, let C ⊂ Y be a bounded set. From
estimate (42), A(C) =

⋃
{A(z, ζ) : (z, ζ) ∈ C} is uniformly bounded in L2(Q).

By using Proposition 3.1 (with r = 2) and estimate (41), ΛR(C) is a bounded
set in X2 ×Xs1 , whence each ΛR(z, ζ) is compact in Y and ΛR(C) is relatively
compact in Y (we use here the compact embeddings X2 ⇉ L2(0, T ;H1

0(Ω))
and Xs1 ⇉ Lq(0, T ;W 1,q

0 (Ω))). Finally, one is able to prove that ΛR is upper
hemicontinuous, that is, for any linear and continuous form µ defined on Y , the
real-valued function

(z, ζ) ∈ Y 7−→ sup
(u,φ)∈ΛR(z,ζ)

〈µ, (u, φ)〉

is upper semicontinuous (see [9] and [11], for instance, for similar proofs). Thus,
the Kakutani fixed-point Theorem can be applied to ΛR and one infers the
existence of (at least) a fixed point (uR, φR) of ΛR in Y .
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To conclude the proof in this case, it is sufficient to find R > 0 such that
TR(uR) = uR and TR(φR) = φR. Let us see that there exists R > 0 (large
enough) such that

‖uR‖∞ ≤ R, ‖φR‖∞ ≤ R. (43)

Indeed, it will be seen that any fixed point of ΛR satisfies (43). Let (u, φ) be a
fixed point of ΛR. From (41), (37), (38) and (33), it is deduced that

‖u‖∞ + ‖φ‖∞ ≤ exp[C (1 + Cε + ε log(1 +R))] ‖(u0, φ0)‖W 2−2/s1,s1 (Ω)2

= exp [C(1 + Cε)] (1 +R)Cε‖(u0, φ0)‖W 2−2/s1,s1 (Ω)2 ,

with C = C(Ω, ω, T ) > 0 (observe that, for s1 > N/2 + 1, Xs1 →֒ L∞(Q), with
continuous embedding). Then, by taking (for instance) ε = (2C)−1, one infers
that

‖u‖∞ + ‖φ‖∞ ≤ C(Ω, ω, T )(1 +R)1/2‖(u0, φ0)‖W 2−2/s1,s1 (Ω)2 ,

whence ‖u‖∞ + ‖φ‖∞ ≤ R, for R > 0 large enough. The proof of Theorem 2.1
is thus complete when gi, Gi (i = 1, 2) are continuous and h ∈ C2(IR).

5.2 The general case

Assume the hypothesis in the statement. We consider two functions ρ ∈
D(IR × IRN × IR × IRN ) and ρ̃ ∈ D(IR) such that ρ ≥ 0 in IR× IRN × IR× IRN ,
ρ̃ ≥ 0 in IR, supp ρ ⊂ B((0, 0, 0, 0); 1), supp ρ̃ ⊂ [−1, 1], and

∫∫∫∫

IR×IRN×IR×IRN

ρ(s, p, σ, π) ds dp dσdπ =

∫

IR

ρ̃(σ) dσ = 1.

For every n ≥ 1, we introduce the following functions

ρn(s, p, σ, π) = n2N+2ρ(ns, np, nσ, nπ) ∀(s, p, σ, π) ∈ IR× IRN × IR× IRN ,

ρ̃n(σ) = nρ̃(nσ) ∀σ ∈ IR,

g1,n = ρn ∗ g1, G1,n = ρn ∗G1, g2,n = ρn ∗ g2, G2,n = ρn ∗G2, Hn = ρ̃n ∗H,

with H defined in page 22. Finally, for any n ≥ 1, we set

fn(s, p, σ, π) = g1,n(s, p, σ, π)s+G1,n(s, p, σ, π) · p

+ g2,n(s, p, σ, π)σ +G2,n(s, p, σ, π) · π

for every (s, p, σ, π) ∈ IR× IRN × IR× IRN and

hn(σ) = Hn(σ)σ ∀σ ∈ IR.

The functions that we have just introduced satisfy the following properties:

i) gi,n ∈ C0(IR× IRN × IR× IRN ), Gi,n ∈ C0(IR× IRN × IR× IRN )N (i = 1, 2),
hn ∈ C2(IR) (indeed, they are C∞-functions), fn(0, 0, 0, 0) = 0, and
hn(0) = 0, for any n ≥ 1.
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ii) fn → f uniformly in the compact sets of IR× IRN × IR× IRN .

iii) Hn → H uniformly in the compact sets of IR.

iv) For anyM > 0, there exists C(M) > 0 such that, for every n ≥ 1, it holds
that

sup
|s|,|σ|≤M

p,π∈IRN

(|gi,n(s, p, σ, π)|+ |Gi,n(s, p, σ, π)|) ≤ C(M), i = 1, 2,

sup
|σ|≤M

(|Hn(σ)|+ |H ′
n(σ)|) ≤ C(M).

v) The functions gi,n, Gi,n (i = 1, 2), and hn satisfy hypothesis ii) in
Theorem 2.1 uniformly in n, that is to say, for every ε > 0 there exists
Mε > 0 such that, whenever |s|, |σ| > Mε, p, π ∈ IRN , and n ≥ 1, one has

|g1,n(s, p, σ, π)|
2/3 + |G1,n(s, p, σ, π)|

2 + |g2,n(s, p, σ, π)|
1/2

+ |G2,n(s, p, σ, π)|+ |Hn(σ)|2/3 ≤ ε log(1 + |s|+ |σ|).

For any n ≥ 1, we consider the linear system






∂tun −∆un + fn(un,∇un, φn,∇φn) = −∆φn + vn1ω in Q,

∂tφn −∆φn +Hn(φn)φn = un in Q,

un = 0, φn = 0 on Σ,

un(x, 0) = u0(x), φn(x, 0) = φ0(x) in Ω,

(44)

where u0, φ0 ∈ W 2−2/s1,s1(Ω) ∩ H1
0 (Ω), with s1 > N/2 + 1. As a consequence

of the properties above, by proceeding as in Subsection 5.1, for any n ≥ 1 there
exists a control vn ∈ L2(Q) such that system (44) admits at least one solution
(un, φn) ∈ Zs1 ×Xs1 satisfying

un(x, T ) = 0, φn(x, T ) = 0 in Ω. (45)

Moreover, {vn}n≥1 (resp. (un, φn)) is uniformly bounded in L2(Q) (resp. in
Zs1 ×Xs1). From Proposition 3.1 and the estimates obtained in Subsection 5.1,
there exist subsequences (still denoted by {vn}n≥1 and {(un, φn)}n≥1) such that
vn ⇀ v weakly in L2(Q) and (un, φn) → (u, φ) strongly in L2(0, T ;H1

0 (Ω)) ×
Lq(0, T ;W 1,q

0 (Ω)), for some v ∈ L2(Q) and (u, φ) ∈ Zs1 ×Xs1 . Finally, one is
able to pass to the limit in (44) and (45) to infer that v (together with (u, φ))
gives the null controllability of system (1), which proves Theorem 2.1.

Remark 5.1 By inspection of the proof of Theorem 2.1, it is observed that
the same result remains valid for more general nonlinear terms such as
f(x, t;u(x, t),∇u(x, t), φ(x, t),∇φ(x, t)) and h(x, t;φ(x, t)), with (x, t) ∈ Q. It is
not difficult to see that the result holds if f and h satisfy the following properties:

1. f(x, t; 0, 0, 0, 0) = 0 and h(x, t; 0) = 0 for (x, t) a.e. in Q.
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2. h(x, t; ·) ∈ C1(IR) and
∂2h

∂σ2
(x, t; ·) ∈ L∞

loc(IR) for (x, t) a.e. in Q.

3. f can be written as

f(·; s, p, σ, π) = g1(·; s, p, σ, π)s+G1(·; s, p, σ, π) · p

+ g2(·; s, p, σ, π)σ +G2(·; s, p, σ, π) · π

for any (s, p, σ, π) in IR× IRN × IR× IRN , with

lim
|s|,|σ|→∞

|g1(x, t; s, p, σ, π)|

log3/2(1 + |s|+ |σ|)
= 0, lim

|s|,|σ|→∞

|G1(x, t; s, p, σ, π)|

log1/2(1 + |s|+ |σ|)
= 0,

lim
|s|,|σ|→∞

|g2(x, t; s, p, σ, π)|

log2(1 + |s|+ |σ|)
= 0, and lim

|s|,|σ|→∞

|G2(x, t; s, p, σ, π)|

log(1 + |s|+ |σ|)
= 0

uniformly in (p, π) ∈ IRN × IRN and in (x, t) a.e. in Q.

4.

lim
|σ|→∞

|h(x, t;σ)|

|σ| log3/2(1 + |σ|)
= 0 uniformly in (x, t) a.e. in Q.

5. For any R > 0, there exists MR > 0 such that

|g1(x, t; s, p, σ, π)| + |G1(x, t; s, p, σ, π)| + |g2(x, t; s, p, σ, π)|

+ |G2(x, t; s, p, σ, π)| +

∣∣∣∣
∂h

∂σ
(x, t;σ)

∣∣∣∣+
∣∣∣∣
∂2h

∂σ2
(x, t;σ)

∣∣∣∣ ≤MR,

for any s, σ ∈ [−R,R], p, π ∈ IRN , and (x, t) a.e. in Q.

6. h(·;σ) = H(·;σ)σ for all σ ∈ IR, where H has the property that for any
R > 0 there exists wR ∈ Lq(Q) (q given in (34)) such that
∣∣∣∣
∂H

∂xi
(x, t;σ)

∣∣∣∣ ≤ wR(x, t), 1 ≤ i ≤ N, ∀σ ∈ [−R,R], (x, t) a.e. in Q.

We will omit the proof in this case.

6 Proof of the exact controllability to the trajec-

tories

In this Section, we prove Theorem 2.2. We proceed as follows. Let us set
w = u − u∗ and q = φ − φ∗, with (u∗, φ∗) as in the statement. Observe that
(u, φ) solves (1) with control term v if and only if (w, q) satisfies





∂tw −∆w + f̃(x, t;w,∇w, q,∇q) = −∆q + ν1ω in Q,

∂tq −∆q + h̃(x, t; q) = w in Q,

w = 0, q = 0 on Σ, w(0) = u0 − u∗0, φ(0) = φ0 − φ∗0 in Ω,

(46)
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where ν = v − v∗ and f̃ , h̃ are given by

f̃(x, t; s, p, σ, π) = f(u∗(x, t) + s,∇u∗(x, t) + p, φ∗(x, t) + σ,∇φ∗(x, t) + π)

− f(u∗(x, t),∇u∗(x, t), φ∗(x, t),∇φ∗(x, t)),

h̃(x, t;σ) = h(φ∗(x, t) + σ)− h(φ∗(x, t)),

for any (x, t) ∈ Q, s, σ ∈ IR, and p, π ∈ IRN . Thus, the proof of Theorem 2.2 is
reduced to proving the existence of a control ν ∈ L2(Q) such that system (46)
possesses a solution (w, q) ∈ L∞(Q)2 satisfying

w(x, T ) = 0, q(x, T ) = 0 in Ω.

So as to ensure the existence of such a control, it suffices to check that f̃ and h̃
satisfy the properties in Remark 5.1. Notice that f̃ can be written as

f̃(x, t; s, p, σ, π) = g1(u
∗(x, t),∇u∗(x, t), φ∗(x, t),∇φ∗(x, t); s, p, σ, π)s

+ G1(u
∗(x, t),∇u∗(x, t), φ∗(x, t),∇φ∗(x, t); s, p, σ, π) · p

+ g2(u
∗(x, t),∇u∗(x, t), φ∗(x, t),∇φ∗(x, t); s, p, σ, π)σ

+ G2(u
∗(x, t),∇u∗(x, t), φ∗(x, t),∇φ∗(x, t); s, p, σ, π) · π

(47)

for any (x, t) ∈ Q, s, σ ∈ IR, and p, π ∈ IRN , with gi and Gi (i = 1, 2) defined in
page 7, and

h̃(x, t;σ) = H̃(x, t;σ)σ for any (x, t) ∈ Q and σ ∈ IR,

where

H̃(x, t;σ) =

∫ 1

0

h′(φ∗(x, t) + λσ) dλ.

Now, by taking into account the regularity of h and (u∗, φ∗), the expressions
above and hypothesis (8), (9), and (10) (also see Remark 2.2), it is an easy

exercise to check that f̃ and h̃ satisfy the conditions in Remark 5.1, which ends
the proof.

7 Proof of the approximate controllability result

The goal of this Section is to prove Theorem 2.3. Let f and h be as in the
statement. Let T > 0 and u0, φ0 ∈W 2−2/s1,s1(Ω)∩H1

0 (Ω) (with s1 > N/2+ 1)
be given. Observe that we only need to prove the result for final data
ud, φd ∈ W 2−2/s1,s1(Ω) ∩H1

0 (Ω), since this space is dense in L2(Ω). The proof
will be divided into some steps.

Firstly, there exists δ0 > 0 (that just depends on Ω, ud, φd, f , and h) such
that the system




∂tw −∆w + f(w,∇w, q,∇q) = −∆q in Ω× (0, δ0),

∂tq −∆q + h(q) = w in Ω× (0, δ0),

w = 0, q = 0 on ∂Ω× (0, δ0), w(x, 0) = ud(x), q(x, 0) = φd(x) in Ω,
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possesses a solution (w, q) ∈ L∞(Ω× (0, δ0))
2 satisfying

w(·, t), q(·, t) ∈W 2−2/s1,s1(Ω) ∩H1
0 (Ω) ∀t ∈ [0, δ0].

For a given ε > 0, one can choose δ1 ∈ (0, δ0] small enough so that

‖w(·, t)− ud‖L2(Ω) ≤ ε, ‖q(·, t)− φd‖L2(Ω) ≤ ε ∀t ∈ [0, δ1]. (48)

Secondly, for a given δ1 for which (48) is satisfied, let us fix m ∈ IN such
that δ := T/m ≤ δ1. In view of Theorem 2.2, there exists v1 ∈ L2(Ω × (0, δ))
such that the system





∂tu−∆u+ f(u,∇u, φ,∇φ) = −∆φ+ v11ω in Ω× (0, δ),

∂tφ−∆φ+ h(φ) = u in Ω× (0, δ),

u = 0, φ = 0 on ∂Ω× (0, δ), u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω,

admits a solution (u1, φ1) ∈ L∞(Ω× (0, δ))2 such that

u1(x, δ) = w(x, δ), φ1(x, δ) = q(x, δ) in Ω.

In the third place, again from Theorem 2.2, there exists a control ṽ ∈
L2(Ω× (0, δ)) such that the system





∂tu−∆u+ f(u,∇u, φ,∇φ) = −∆φ+ ṽ1ω in Ω× (0, δ),

∂tφ−∆φ+ h(φ) = u in Ω× (0, δ),

u = 0, φ = 0 on ∂Ω× (0, δ), u(x, 0) = w(x, δ), φ(x, 0) = q(x, δ) in Ω,

has a solution (ũ, φ̃) ∈ L∞(Ω× (0, δ))2 that satisfies

ũ(x, δ) = w(x, δ), φ̃(x, δ) = q(x, δ) in Ω.

The required control v is now constructed as follows. Let us set Ik =
[(k − 1)δ, kδ], for 1 ≤ k ≤ m. For (x, t) a.e. in Q, we define

v(x, t) =

{
v1(x, t) if (x, t) ∈ Ω× I1,

ṽ(x, t− (k − 1)δ) if (x, t) ∈ Ω× Ik, 2 ≤ k ≤ m.

By the construction above, the control v lies in L2(Q) and the corresponding
system (1) admits a solution (u, φ) ∈ L∞(Q)2 such that

u(x, T ) = w(x, δ), φ(x, T ) = q(x, δ) in Ω.

Finally, by recalling (48) (and that δ ≤ δ1), (11) holds, which was our claim.
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8 Proof of Theorem 2.4

In this Section, we prove the Carleman inequality stated in Theorem 2.4. The
structure of the proof is similar to that of Lemma 1 in [17] (also see [18]). Here,
we adapt the method exhibited in [17] to the lack of regularity in the terms
−∇ · (Bψ) and −∇ · (Fψ) in (7).

For a given B0 as in the statement, let us consider an auxiliary nonempty
open set B1 such that B1 ⊂⊂ B0. Let (ϕ, ψ) be the solution to (7) associated
to an arbitrary (ϕ0, ψ0) ∈ L2(Ω)2. Firstly, by applying Proposition 4.1 (with
B = B1), there exist two positive constants C1 = C1(Ω,B0) and σ1 = σ1(Ω,B0)
such that

s

∫∫

Q

e−2sαt−1(T − t)−1|∇ϕ|2 + s3
∫∫

Q

e−2sαt−3(T − t)−3|ϕ|2

+ s4
∫∫

Q

e−2sαt−4(T − t)−4|∇ψ|2 + s6
∫∫

Q

e−2sαt−6(T − t)−6|ψ|2

≤ C1

(
s3
∫∫

B1×(0,T )

e−2sαt−3(T − t)−3|ϕ|2

+ s6
∫∫

B0×(0,T )

e−2sαt−6(T − t)−6|ψ|2

)
,

(49)

for any s ≥ s1, with

s1 = σ1(Ω,B0)
(
T + T 2

(
1 + ‖a‖2/3∞ + ‖c‖2/3∞ + ‖e‖1/3∞ + ‖B‖2∞ + ‖F‖1/2∞

))
.

In (49), α0 is the function associated to B = B1 provided by Proposition 4.1

and α(x, t) =
α0(x)

t(T − t)
, x ∈ Ω, t ∈ (0, T ).

Let us now consider a function ξ1 ∈ C∞
0 (Ω) satisfying

0 ≤ ξ1 ≤ 1 in Ω, ξ1 ≡ 1 in B1, supp ξ1 ⊂ B0, (50)

∆ξ1/ξ
1/2
1 ∈ L∞(Ω), and ∇ξ1/ξ

1/2
1 ∈ L∞(Ω)N . (51)

This is achieved by setting ξ1 = ζ4, with ζ ∈ C∞
0 (Ω) satisfying (50). Let s ≥ s1

be, with s1 as above. We set u = e−2sαs3t−3(T − t)−3. Multiply by ϕξ1u the
PDE satisfied by ψ and integrate in Q. We get

s3
∫∫

Q

e−2sαt−3(T − t)−3|ϕ|2ξ1 =

∫∫

Q

[−∂tψ −∆ψ −∇ · (Bψ) + aψ]ϕξ1u

=

∫∫

Q

ϕψξ1∂tu+

∫∫

Q

ψξ1u[−∆ϕ+ cϕ+∆ψ −∇ · (Fψ) + eψ]

+

∫∫

Q

(∇ψ · ∇(ξ1u))ϕ+

∫∫

Q

(∇ψ · ∇ϕ)ξ1u+

∫∫

Q

((Bψ) · ∇ϕ)ξ1u

+

∫∫

Q

((Bψ) · ∇(ξ1u))ϕ+

∫∫

Q

aϕψξ1u,

30



whence (just by integrating by parts)

s3
∫∫

Q

e−2sαt−3(T − t)−3|ϕ|2ξ1 =

∫∫

Q

(a+ c)ϕψξ1u+

∫∫

Q

(B · ∇ϕ)ψξ1u

+

∫∫

Q

ϕψ
[
ξ1∂tu−∆(ξ1u) +B · ∇(ξ1u)

]
+ 2

∫∫

Q

(∇ψ · ∇ϕ)ξ1u

−

∫∫

Q

(∇(ξ1u) · ∇ψ)ψ +

∫∫

Q

((Fψ) · ∇ψ)ξ1u+

∫∫

Q

((Fψ) · ∇(ξ1u))ψ

+

∫∫

Q

eξ1u|ψ|
2 −

∫∫

Q

|∇ψ|2ξ1u :=

11∑

k=1

Jk.

(52)

Let us estimate each Jk, 1 ≤ k ≤ 10 (notice that J11 = −

∫∫

Q

|∇ψ|2ξ1u ≤ 0).

By using Hölder and Young inequalities, it holds that

J1 =

∫∫

Q

(a+ c)ϕψξ1u ≤ δ1

∫∫

Q

ξ1u|ϕ|
2 +

1

4δ1
‖a+ c‖2∞

∫∫

Q

ξ1u|ψ|
2,

J2 =

∫∫

Q

(B · ∇ϕ)ψξ1u ≤ γ1s

∫∫

Q

e−2sαt−1(T − t)−1|∇ϕ|2ξ1

+
1

4γ1
‖B‖2∞s

5

∫∫

Q

e−2sαt−5(T − t)−5|ψ|2ξ1,

for any δ1, γ1 > 0 to be determined later. Observe that

|∂tu| ≤ Ts3e−2sαt−5(T − t)−5
(
Cs+ 3T 2/4

)
≤ CTs4e−2sαt−5(T − t)−5,

since s ≥ σ1(Ω,B0)T
2. Thus, we can estimate

J3 =

∫∫

Q

ϕψξ1∂tu ≤ CTs4
∫∫

Q

e−2sαt−5(T − t)−5|ϕ||ψ|ξ1

≤ δ2s
3

∫∫

Q

e−2sαt−3(T − t)−3|ϕ|2ξ1

+
CT 2

δ2
s5
∫∫

Q

e−2sαt−7(T − t)−7|ψ|2ξ1

≤ δ2

∫∫

Q

ξ1u|ϕ|
2 +

C

δ2
s7
∫∫

Q

e−2sαt−7(T − t)−7|ψ|2ξ1

(53)

for any δ2 > 0, since s ≥ σ1(Ω,B0)T .

In order to estimate J4 = −

∫∫

Q

ϕψ∆(ξ1u), notice that

∆(ξ1u) = s3t−3(T − t)−3
(
(∆ξ1)e

−2sα + 2∇ξ1 · ∇(e−2sα) + ξ1∆(e−2sα)
)
,

with

|∇(e−2sα)| = 2se−2sαt−1(T − t)−1|∇α0| ≤ Cse−2sαt−1(T − t)−1, (54)
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|∆(e−2sα)| ≤ 2se−2sαt−2(T − t)−2
(
2s|∇α0|

2 + t(T − t)|∆α0|
)

≤ Cse−2sαt−2(T − t)−2(s+ T 2) ≤ Cs2e−2sαt−2(T − t)−2.

These considerations together with (51) give

J4 ≤ C

(
s3
∫∫

Q

e−2sαt−3(T − t)−3|ϕ||ψ|ξ
1/2
1

+ s4
∫∫

Q

e−2sαt−4(T − t)−4|ϕ||ψ|ξ
1/2
1 + s5

∫∫

Q

e−2sαt−5(T − t)−5|ϕ||ψ|ξ1

)
.

We now use Hölder and Young inequalities and (50) to get

J4 ≤ δ3

∫∫

Q

ξ1u|ϕ|
2 +

C

δ3
s3
∫∫

Q

e−2sαt−3(T − t)−3|ψ|21B0

+
C

δ3
s5
∫∫

Q

e−2sαt−5(T − t)−5|ψ|21B0
+
C

δ3
s7
∫∫

Q

e−2sαt−7(T − t)−7|ψ|21B0
,

with δ3 > 0 to be fixed later. Notice that, for any n,m ∈ IN with n ≥ m, we
have

smt−m(T − t)−m = smt−n(T − t)−n (t(T − t))
n−m

≤ smt−n(T − t)−n

(
T 2

4

)n−m

≤ Csnt−n(T − t)−n,
(55)

since s ≥ σ1(Ω,B0)T
2. Then

J4 ≤ δ3

∫∫

Q

ξ1u|ϕ|
2 +

C

δ3
s7
∫∫

Q

e−2sαt−7(T − t)−7|ψ|21B0
.

In a similar way, we can estimate

J5 =

∫∫

Q

ϕψ (B · ∇(ξ1u))

≤ δ4

∫∫

Q

ξ1u|ϕ|
2 +

C

δ4
‖B‖2∞s

5

∫∫

Q

e−2sαt−5(T − t)−5|ψ|21B0
,

J6 = 2

∫∫

Q

(∇ψ · ∇ϕ)ξ1u

≤ γ2s

∫∫

Q

e−2sαt−1(T − t)−1|∇ϕ|2ξ1 +
1

γ2
s5
∫∫

Q

e−2sαt−5(T − t)−5|∇ψ|2ξ1,

for any δ4, γ2 > 0. On the other hand, we have

J7 = −

∫∫

Q

(∇(ξ1u) · ∇ψ)ψ = −
1

2

∫∫

Q

∇(ξ1u) · ∇|ψ|2 =
1

2

∫∫

Q

∆(ξ1u)|ψ|
2

≤ Cs3
∫∫

Q

e−2sαt−3(T − t)−3|ψ|2ξ
1/2
1

[
1 + s(t(T − t))−1 + s2(t(T − t))−2ξ

1/2
1

]

≤ Cs5
∫∫

Q

e−2sαt−5(T − t)−5|ψ|21B0
.
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Finally, we can bound

J8 =

∫∫

Q

((Fψ) · ∇ψ)ξ1u ≤ δ5s
4

∫∫

Q

e−2sαt−4(T − t)−4|∇ψ|2ξ1

+
1

4δ5
‖F‖2∞s

2

∫∫

Q

e−2sαt−2(T − t)−2|ψ|2ξ1

for any δ5 > 0,

J9 =

∫∫

Q

((Fψ) · ∇(ξ1u))ψ

≤ C‖F‖∞s3
∫∫

Q

e−2sαt−3(T − t)−3|ψ|2ξ
1/2
1 [1 + st−1(T − t)−1ξ

1/2
1 ],

and

J10 =

∫∫

Q

eξ1u|ψ|
2 ≤ ‖e‖∞s

3

∫∫

Q

e−2sαt−3(T − t)−3|ψ|2ξ1.

Let us now deal with the terms in which |∇ψ|2 appears. As it will be seen
later, the constants γ2 and δ5 only depend on Ω and B0. We use this fact to
deduce that, for a new constant C = C(Ω,B0) > 0, it holds that

1

γ2
s5
∫∫

Q

e−2sαt−5(T − t)−5|∇ψ|2ξ1

+δ5s
4

∫∫

Q

e−2sαt−4(T − t)−4|∇ψ|2ξ1 ≤
2

γ2

∫∫

Q

|∇ψ|2ξ1u
(56)

for any s ≥ CT 2, where u = e−2sαs5t−5(T − t)−5. Thus, to estimate J6 and
J8, it suffices to bound the right-hand side of (56). To this end, we multiply by
ψξ1u the PDE satisfied by ψ and integrate in Q, obtaining

∫∫

Q

ϕψξ1u =

∫∫

Q

[−∂tψ −∆ψ −∇ · (Bψ) + aψ]ψξ1u

=
1

2

∫∫

Q

|ψ|2ξ1∂tu+

∫∫

Q

|∇ψ|2ξ1u−
1

2

∫∫

Q

|ψ|2∆(ξ1u)

+

∫∫

Q

a|ψ|2ξ1u+

∫∫

Q

(B · ∇ψ)ψξ1u+

∫∫

Q

(B · ∇(ξ1u))|ψ|
2.

Since

−

∫∫

Q

(B · ∇ψ)ψξ1u ≤
1

2

∫∫

Q

|∇ψ|2ξ1u+
1

2
‖B‖2∞

∫∫

Q

|ψ|2ξ1u,

the term

∫∫

Q

|∇ψ|2ξ1u is bounded as follows:

∫∫

Q

|∇ψ|2ξ1u ≤ 2

∫∫

Q

|ϕ||ψ|ξ1u+

∫∫

Q

|ψ|2ξ1|∂tu|+

∫∫

Q

|ψ|2|∆(ξ1u)|

+2‖B‖∞

∫∫

Q

|ψ|2|∇(ξ1u)|+ (2‖a‖∞ + ‖B‖2∞)

∫∫

Q

|ψ|2ξ1u :=
5∑

i=1

Ai.

(57)
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We now estimate Ai, 1 ≤ i ≤ 4. Firstly,

A1 = 2

∫∫

Q

|ϕ||ψ|ξ1u ≤ δ

∫∫

Q

ξ1u|ϕ|
2 +

1

δ
s7
∫∫

Q

e−2sαt−7(T − t)−7|ψ|21B0

for any δ > 0 (to be chosen further). Observe that

|∂tu| ≤ Ts5e−2sαt−7(T − t)−7
(
Cs+ 5T 2/4

)
≤ CTs6e−2sαt−7(T − t)−7,

since s ≥ σ1(Ω,B0)T
2. Then

A2 =

∫∫

Q

|ψ|2ξ1|∂tu| ≤ Cs7
∫∫

Q

e−2sαt−7(T − t)−7|ψ|21B0
,

since s ≥ σ1(Ω,B0)T . To estimate A3 =

∫∫

Q

|ψ|2|∆(ξ1u)|, notice that

∆(ξ1u) = s5t−5(T − t)−5
(
(∆ξ1)e

−2sα + 2∇ξ1 · ∇(e−2sα) + ξ1∆(e−2sα)
)
,

which (together with (51), (54), and (55)) yields

A3 ≤ Cs7
∫∫

Q

e−2sαt−7(T − t)−7|ψ|21B0
.

In a similar way, we estimate

A4 = 2‖B‖∞

∫∫

Q

|ψ|2|∇(ξ1u)| ≤ C‖B‖∞s
6

∫∫

Q

e−2sαt−6(T − t)−6|ψ|21B0

(here, we use that ∇(ξ1u) = (∇ξ1)u − 2ξ1e
−2sαs6t−6(T − t)−6∇α0, together

with (51) and (55)). By combining the above-obtained estimates for Ai,
1 ≤ i ≤ 4, from (57) we then deduce

∫∫

Q

|∇ψ|2ξ1u ≤ δ

∫∫

Q

ξ1u|ϕ|
2

+

(
1

δ
+ C

)
s7
∫∫

Q

e−2sαt−7(T − t)−7|ψ|21B0

+C‖B‖∞s6
∫∫

Q

e−2sαt−6(T − t)−6|ψ|21B0

+(2‖a‖∞ + ‖B‖2∞)s5
∫∫

Q

e−2sαt−5(T − t)−5|ψ|21B0
,

(58)

which is valid for any s ≥ C(T + T 2) and δ > 0.
We now take the corresponding estimates of Jk (1 ≤ k ≤ 10) to (52). By
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using (56), (58), and (50), we get

∫∫

Q

ξ1u|ϕ|
2 ≤

(
4∑

i=1

δi +
2δ

γ2

)∫∫

Q

ξ1u|ϕ|
2

+(γ1 + γ2)s

∫∫

Q

e−2sαt−1(T − t)−1|∇ϕ|2ξ1

+
1

4δ5
‖F‖2∞s

2

∫∫

Q

e−2sαt−2(T − t)−2|ψ|2ξ1

+

(
1

4δ1
‖a+ c‖2∞ + ‖e‖∞ + C‖F‖∞

)
s3
∫∫

Q

e−2sαt−3(T − t)−3|ψ|21B0

+C‖F‖∞s4
∫∫

Q

e−2sαt−4(T − t)−4|ψ|2ξ1

+

(
C +

4

γ2
‖a‖∞ +

(
1

4γ1
+

2

γ2
+
C

δ4

)
‖B‖2∞

)
s5
∫∫

Q

e−2sαt−5(T − t)−5|ψ|21B0

+
2C

γ2
‖B‖∞s6

∫∫

Q

e−2sαt−6(T − t)−6|ψ|21B0

+

(
C

δ2
+
C

δ3
+

2

γ2δ
+

2C

γ2

)
s7
∫∫

Q

e−2sαt−7(T − t)−7|ψ|21B0
,

for any s ≥ s2 = σ2(Ω,B0)(T + T 2). We now set δi = 1/10 (for 1 ≤ i ≤ 4 and,
for instance, δ = δ5 = 1), γ1 = γ2 = 1/(8C1), with C1 = C1(Ω,B0) as in (49),
and δ = γ2/20. For any s ≥ s2, it holds that

s3
∫∫

Q

e−2sαt−3(T − t)−3|ϕ|2ξ1 ≤
1

2C1
s

∫∫

B0×(0,T )

e−2sαt−1(T − t)−1|∇ϕ|2

+C‖F‖2∞s
2

∫∫

B0×(0,T )

e−2sαt−2(T − t)−2|ψ|2

+C
(
‖a+ c‖2∞ + ‖e‖∞ + ‖F‖∞

)
s3
∫∫

B0×(0,T )

e−2sαt−3(T − t)−3|ψ|2

+C‖F‖∞s4
∫∫

B0×(0,T )

e−2sαt−4(T − t)−4|ψ|2

+C
(
1 + ‖a‖∞ + ‖B‖2∞

)
s5
∫∫

B0×(0,T )

e−2sαt−5(T − t)−5|ψ|2

+C‖B‖∞s6
∫∫

B0×(0,T )

e−2sαt−6(T − t)−6|ψ|2

+Cs7
∫∫

B0×(0,T )

e−2sαt−7(T − t)−7|ψ|2,

whence it is immediately inferred that

s3
∫∫

Q

e−2sαt−3(T − t)−3|ϕ|2ξ1 ≤
1

2C1
s

∫∫

B0×(0,T )

e−2sαt−1(T − t)−1|∇ϕ|2

+Cs7
∫∫

B0×(0,T )

e−2sαt−7(T − t)−7|ψ|2
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for any s ≥ s3 = σ3(Ω,B0)
(
T + T 2M ′

)
, with

M ′ = 1 + ‖a+ c‖1/2∞ + ‖a‖1/2∞ + ‖e‖1/4∞ + ‖B‖∞ + ‖F‖1/4∞ + ‖F‖1/3∞ + ‖F‖2/5∞ .

Finally, by combining the previous estimate with the Carleman inequality (49),
we infer the desired Carleman estimate (12), valid for any s ≥ ŝ = σ̂(T +T 2M),
with σ̂ = σ̂(Ω,B0) and M > 0 as in the statement.

9 Further results and comments

1. The proof of Theorems 2.1 and 2.2 can be adapted to give other controllability
results for system (1):

a) The null controllability property of system (1) remains valid if hypo-
thesis ii) in Theorem 2.1 is replaced by this other slightly weaker one:






lim sup
|s|+|σ|→∞

|g1(s, p, σ, π)|

log3/2(1 + |s|+ |σ|)
≤ l1, lim sup

|s|+|σ|→∞

|G1(s, p, σ, π)|

log1/2(1 + |s|+ |σ|)
≤ l2,

lim sup
|s|+|σ|→∞

|g2(s, p, σ, π)|

log2(1 + |s|+ |σ|)
≤ l3, and lim sup

|s|+|σ|→∞

|G2(s, p, σ, π)|

log(1 + |s|+ |σ|)
≤ l4

uniformly in p, π ∈ IRN ;

lim sup
|σ|→∞

|h(σ)|

|σ| log3/2(1 + |σ|)
≤ l5,

where li, 1 ≤ i ≤ 5, are positive constants small enough that only depend on Ω,
ω, and T .

b) A local null controllability result for system (1) under no restrictions
on the growth of f nor h can also be obtained. More precisely, if f :
IR × IRN × IR × IRN → IR is a locally Lipschitz-continuous function such that
f(0, 0, 0, 0) = 0 and h : IR → IR is a C1-function, with h′′ ∈ L∞

loc(IR) and
h(0) = 0, there exists a positive ρ = ρ(Ω, ω, T, f, h) with the following property:
“ For any initial data (u0, φ0) in (W 2−2/s1,s1(Ω) ∩ H1

0 (Ω))
2 (s1 > N/2 + 1)

satisfying ‖u0‖W 2−2/s1,s1 (Ω) + ‖φ0‖W 2−2/s1,s1 (Ω) ≤ ρ, one is able to find a

control v ∈ L2(Q) such that system (1) admits a unique solution (u, φ) ∈(
Ls1(0, T ;W 1,s1

0 (Ω)) ∩ C0(Q)
)
× Xs1 satisfying u(x, T ) = 0 and φ(x, T ) = 0

in Ω”. This result generalizes the main result in [10], which establishes the
local null controllability, by two control functions, of a nonlinear phase field
system such as (1), when f ≡ 0 and Ω is a bounded domain in IRN , with
1 ≤ N ≤ 3.

c) By adapting the proof of Theorem 2.2, a result on the local exact
controllability to the trajectories for system (1) is immediately deduced.

2. The strategy developed in this paper to deal with the null controllability
of linear coupled parabolic systems by a single control force (by introducing a
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fictitious control) can be applied in the case of cascade systems such as (for
instance):





∂tu− ν1∆u+B · ∇u+ au+ F · ∇φ+ eφ = v1ω in Q,

∂tφ− ν2∆φ+D · ∇φ+ cφ = gu in Q,

u = 0, φ = 0 on Σ, u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω,

when regular potentials are considered and there exist a constant g0 > 0 and
an open set ω0 such that

ω0 ⊂⊂ ω, |g| ≥ g0 > 0 in ω0 × (0, T0) for some T0 > 0.

(in particular, when the system has constant potentials, with g 6= 0). Observe
that different diffusion coefficients ν1, ν2 > 0 can be considered. Indeed, in such
a case, a result similar to Proposition 4.1 can be obtained for the corresponding
adjoint system, with constants C and σ that depend on B, Ω, and νi, i = 1, 2.
This yields the existence of two L2-controls that give the null controllability of
the system, and our technique allows us to get rid of the fictitious control.

We would like to remark that all the known null controllability results for
coupled systems by one control force are proved when cascade systems are
considered (cf. [4], [9], [19], [20],...). The case when the system is not written
in a cascade form, which is a much more complicated situation, cannot be dealt
with our technique and is at present open.

3. The above-mentioned strategy can also be applied to control to zero a
linear heat-wave cascade system such as





∂ty −∆y = vζ in Q,

∂2ttq −∆q = y1O in Q,

y = 0 on Σ, y(x, 0) = y0(x) in Ω,

q = 0 on Σ, q(x, 0) = q0(x), ∂tq(x, 0) = q1(x) in Ω,

(59)

where v is a control function supported in an arbitrarily small open control set
ω ⊂ Ω, O ⊂ Ω is an open set such that ω ∩ O 6= ∅, and ζ ∈ D(ω) is a function
such that ζ ≡ 1 in a nonempty open set B0 ⊂⊂ ω ∩O. More precisely, suppose
that v̂1 and v̂2 are two control functions supported in B0×[0, T ] that give the null
controllability of the heat-wave cascade system (v̂2 being a fictitious distributed
control introduced in the wave equation). Observe that the existence of such
controls v̂1 and v̂2 is guaranteed if certain geometrical condition on Ω ∩ O is
satisfied (see, for instance, [19] and the references therein). By adapting our
strategy to the present situation, one is able to eliminate v̂2 and to construct
a control v ∈ L2(0, T ;D(−∆)′) that drives the cascade system (59) to zero. It
is worthy of mention that the irregularity of this control v is not related to the
technique used to obtain it but to the fact that we are dealing with the wave
equation, as already observed in [20].

4. Our strategy cannot be applied to infer the null controllability of (1)
when nonlinearities h(φ,∇φ) with certain superlinear growth at infinity are
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considered. Indeed, we ought to be able to construct a control v that solves the
linear null controllability problem





∂tU −∆U +B · ∇U + aU + F · ∇Φ + eΦ = −∆Φ− η′u+ v1ω in Q,

∂tΦ−∆Φ+D · ∇Φ + cΦ = U − η′φ in Q,

U = 0, Φ = 0 on Σ,

U(x, 0) = 0, Φ(x, 0) = 0, U(x, T ) = 0, Φ(x, T ) = 0 in Ω,

with associated (U,Φ) in L∞(Q)2. Here, (u, φ) is now the weak solution to





∂tu−∆u+B · ∇u+ au+ F · ∇φ+ eφ = −∆φ in Q,

∂tφ−∆φ+D · ∇φ+ cφ = u in Q,

u = 0, φ = 0 on Σ, u(x, 0) = u0(x), φ(x, 0) = φ0(x) in Ω.

Let B0 ⊂ ω be a nonempty open set. Suppose that we have already obtained
two controls v̂1, v̂2 ∈ L2(Q), with sop v̂1, sop v̂2 ⊂ B0 × [0, T ], that give the null
controllability of the linear coupled system





∂tÛ −∆Û +B · ∇Û + aÛ + F · ∇Φ̂ + eΦ̂ = −∆Φ̂− η′u+ v̂11B0
in Q,

∂tΦ̂−∆Φ̂ +D · ∇Φ̂ + cΦ̂ = Û − η′φ+ v̂21B0
in Q,

Û = 0, Φ̂ = 0 on Σ, Û(x, 0) = 0, Φ̂(x, 0) = 0 in Ω.
(60)

The expression of a new control obtained (from v̂1, v̂2, and the corresponding
solution (Û , Φ̂) to (60)) by means of our strategy would be:

v = θη′u− 2∇θ · ∇Φ̂− (∆θ)Φ̂ + 2∇θ · ∇Û + (∆θ)Û −∇θ · (BÛ)

−∇θ · (F Φ̂) + (∂t −∆+B · ∇+ a)[θη′φ+ 2∇θ · ∇Φ̂ + (∆θ)Φ̂ −∇θ · (DΦ̂)],

where θ ∈ D(ω) satisfies θ ≡ 1 in a neighborhood of B0. Nevertheless, observe
that, if D ∈ L∞(Q)N , some terms in this formula are not regular enough to
make the state (U,Φ) lie in a suitable space to apply an appropriate fixed-point
argument. Thus, our technique cannot be applied in this case.

5. Controllability results for some coupled systems of m parabolic PDEs by
one control force. In [21], the authors are able to control to zero some cascade
systems of m linear parabolic PDEs by a single distributed control. The crucial
point in the referenced work is a Carleman inequality for the solutions (ϕi,
1 ≤ i ≤ m) to the corresponding adjoint system by means of which some global
terms of these solutions are bounded in terms of only one of them “localized” in
a nonempty open subset B0 of the control set ω. The proof of such a Carleman
estimate is a generalization of that of Theorem 2.4. An appropriate fixed-
point argument enables M. González-Burgos and L. de Teresa to show the null
controllability of some cascade systems of m nonlinear parabolic PDEs by one
control force when certain superlinear nonlinearities are considered. Both the
exact controllability to the trajectories and the approximate controllability for
certain superlinear cascade systems can also be obtained.
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6. Other comments. All along this paper, other kind of boundary conditions,
such as Fourier (or Robin) boundary conditions, could have also been considered.
In such a case, one is able to obtain a Carleman estimate analogous to
inequality (21) (with the same weight functions) for the solutions to the
corresponding adjoint system. The existence of two L2-controls that give the
null controllability of the system is then guaranteed. Finally, our strategy, being
local in time and space, enables one to remove the second control.

A null controllability result for system (1) analogous to Theorem 2.1,
as well as the exact controllability to the trajectories and the approximate
controllability under slightly different hypothesis, can also be obtained for an
unbounded domain Ω such that Ω \ ω is bounded (cf. [22]).

In view of known controllability results for a semilinear heat equation, it
would be natural to wonder wether the main results in this paper remain
valid when one considers boundary controls. Nevertheless, there exist negative
results for some 1-d linear coupled parabolic systems (cf. [23]), which reveals
the different nature of the controllability properties for a single heat equation
and for coupled parabolic systems.

A Proof of Proposition 3.1

The proof of the first point of Proposition 3.1 and that of the second one for
r = 2 uses the Galerkin method and the energy estimates of the corresponding
approximate solutions, and being a standard proof, it will be omitted. We sketch
here the proof of the second point for r > 2, which combines Theorem 2.3 in [24]
with an argument of ‘bootstrap’ type. We will restrict our attention to the case
when N > 2, the discussion being similar but more direct when N = 1 or 2.

Firstly, the weak solution (u, φ) to (13) lies in X2 × X2 and satisfies the
estimate

‖(u, φ)‖X2×X2 ≤ exp(CH1)H
K
2

(
‖(∇u0,∇φ0)‖L2(Ω)2 + ‖(g1, g2)‖L2(Q)2

)
,

with H1, H2 > 0 as in the statement (recall that K stands for a generic positive
constant that only depends on N , whose value may also change from one line
to another). Notice that φ solves

{
∂tφ−∆φ = f2 in Q,

φ = 0 on Σ, φ(x, 0) = φ0(x) in Ω,

with f2 = −D · ∇φ− cφ+ u+ g2. From usual Sobolev embeddings, we have

D · ∇φ ∈ L2(0, T ;L2⋆(Ω)) ∩ L∞(0, T ;L2(Ω)),

with
1

2⋆
=

1

2
−

1

N
(recall that N > 2), whence f2 lies in Lr(0, T ;Lp0(Ω)), with

p0 = min {r, 2Nr/(Nr − 4)} , and

‖f2‖Lr(Lp0(Ω)) ≤ C (1 + ‖c‖∞ + ‖D‖∞)
(
‖(u, φ)‖X2×X2 + ‖g2‖Lr(Q)

)
, (61)
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by classical interpolation estimates. Then, in view of Theorem 2.3 in [24], it
holds that

φ ∈ Lr(0, T ;W 2,p0(Ω)), ∂tφ ∈ Lr(0, T ;Lp0(Ω)),

‖φ‖Lr(W 2,p0 (Ω)) + ‖∂tφ‖Lr(Lp0(Ω)) ≤ C
(
‖f2‖Lr(Lp0(Ω)) + ‖φ0‖W 2−2/r,r(Ω)

)
,

where C is a positive constant independent of T . By combining the previous
estimate with (61), we get

‖φ‖Lr(W 2,p0 (Ω)) + ‖∂tφ‖Lr(Lp0(Ω)) ≤ C (1 + ‖c‖∞ + ‖D‖∞)

×
(
‖(u, φ)‖X2×X2 + ‖g2‖Lr(Q) + ‖φ0‖W 2−2/r,r(Ω)

)
.

(62)

On the other hand, u solves
{
∂tu−∆u = f1 in Q,

u = 0 on Σ, u(x, 0) = u0(x) in Ω,

where f1 = −B · ∇u − au − ∆φ − F · ∇φ − eφ + g1. Reasoning as above and
using (62), one deduces that f1 ∈ Lr(0, T ;Lp0(Ω)) and

‖f1‖Lr(Lp0(Ω)) ≤ CH2

(
‖(u, φ)‖X2×X2 + ‖(g1, g2)‖Lr(Q)2 + ‖φ0‖W 2−2/r,r(Ω)

)
,

where H2 = 1+ ‖a‖∞+ ‖c‖∞+ ‖e‖∞+ ‖B‖∞+ ‖D‖∞+ ‖F‖∞. We now apply
the above-mentioned Theorem 2.3 in [24] to the function u, inferring

u ∈ Lr(0, T ;W 2,p0(Ω)), ∂tu ∈ Lr(0, T ;Lp0(Ω)),

‖u‖Lr(W 2,p0 (Ω)) + ‖∂tu‖Lr(Lp0(Ω)) ≤ C
(
‖f1‖Lr(Lp0(Ω)) + ‖u0‖W 2−2/r,r(Ω)

)

for a new positive constant C independent of T , whence

‖u‖Lr(W 2,p0 (Ω)) + ‖∂tu‖Lr(Lp0(Ω))

≤ CH2

(
‖(u, φ)‖X2×X2 + ‖(u0, φ0)‖W 2−2/r,r(Ω)2 + ‖(g1, g2)‖Lr(Q)2

)
,

by using the estimate of ‖f1‖Lr(Lp0(Ω)) obtained above.
Finally, one can apply an argument of “bootstrap” type which yields the

result in a finite number of steps.
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