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Abstract. In this paper we present a local result on the existence of insensitizing controls
for a semilinear heat equation when nonlinear boundary conditions of the form ∂ny + f(y) = 0
are considered. The problem leads to an analysis of a special type of nonlinear null controllability
problem. A sharp study of the linear case and a later application of an appropriate fixed point
argument constitute the scheme of the proof of the main result. The boundary conditions we are
dealing with lead us to seek a fixed point, and thus also control functions, in certain Hölder spaces.
The main strategy in this paper is the construction of controls with Hölderian regularity starting
from L2-controls in the linear case. Sufficient regularity in the data and appropriate assumptions on
the right-hand side term ξ of the equation are required.
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1. Statement of the problem and main result. Let Ω ⊂ R
N be, with N ≥ 1,

a bounded domain with boundary ∂Ω of at least class C2. Let ω and O be nonempty
open subsets of Ω. For T > 0, we denote by Q the cylinder Ω × (0, T ) and by Σ its
lateral boundary ∂Ω× (0, T ). We consider a semilinear heat equation with nonlinear
boundary conditions of Fourier type and partially known initial data:⎧⎪⎨⎪⎩

∂ty − ∆y + F (y) = ξ + v1ω in Q,

∂ny + f(y) = 0 on Σ,

y(x, 0) = y0(x) + τ ŷ0(x) in Ω,

(1.1)

where F and f are given C1 functions defined on R; ξ and y0 are, respectively, a
known heat source and a given initial datum, both regular enough; τ is an unknown
small real number; and ŷ0 is unknown in an appropriate Banach space X ↪→ L2(Ω)
(the embedding being continuous and dense), with ‖ŷ0‖X = 1. Here, v = v(x, t) is
a control function to be determined, 1ω is the characteristic function of the set ω,
∂t denotes the time derivative, and ∂n represents the derivation with respect to the
outward unit normal to ∂Ω.

Let us define

Φ(y) =
1

2

∫∫
O×(0,T )

|y(x, t; τ, v)|2 dx dt,(1.2)

y = y(·, ·; τ, v) being a solution of (1.1) (associated to τ and v) defined in (0, T ), if
one exists. In this paper we analyze the existence of control functions that make
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956 O. BODART, M. GONZÁLEZ-BURGOS, AND R. PÉREZ-GARCÍA

the functional Φ locally insensitive to small perturbations in the initial condition. A
possible physical interpretation of this problem would be the following. The function
y = y(x, t) can be viewed as the relative temperature of a body (with respect to the
exterior surrounding air). The semilinear parabolic equation in (1.1) means that there
is a fixed heat source ξ acting on the body and that we can also act on a small part ω
of the body by means of a heat source v1ω. On the boundary, − ∂y

∂n can be viewed as
the normal heat flux, directed inward, up to a positive coefficient. Thus, the equality

−∂y

∂n
= f(y)

means that this flux is a (nonlinear) function of the temperature. The problem with
insensitizing Φ means that we are seeking a control function acting on ω such that the
energy in O is invariant for small perturbations in the initial data. A natural physical
hypothesis would be to suppose that f is nondecreasing with f(0) = 0. Throughout
this paper, we will assume no special behavior on the increasing of f .

By reasons that will be seen later, in this work we will slightly change the usual
notion of insensitizing controls (see [1], [4], [10], [11]), which is equivalent to the usual
one in the linear case.

Definition 1.1. A control function v is said to insensitize Φ if there exists τ0 > 0
such that system (1.1) admits a weak solution y(·, ·; τ, v) ∈ L2(0, T ;H1(Ω)) ∩ C0(Q)
for |τ | ≤ τ0 and if the following insensitivity condition holds:

∂Φ(y(·, ·; τ, v))
∂τ

∣∣∣∣
τ=0

= 0 ∀ŷ0 ∈ X with ‖ŷ0‖X = 1,(1.3)

where X = C2+β(Ω) ∩H2
0 (Ω).

By a weak solution of (1.1) (associated to τ and v) we will define a function (if
one exists) y = y(·, ·; τ, v) ∈ L2(0, T ;H1(Ω)) ∩ C0(Q), with ∂ty ∈ L2(0, T ;H−1(Ω)),
such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

〈∂ty(t), u〉(H1(Ω))′,H1(Ω) +

∫
Ω

∇y(t) · ∇u dx +

∫
Ω

F (y(t))u dx +

∫
∂Ω

f(y(t))u dσ

=

∫
Ω

(ξ(t) + v(t)1ω)u dx in L2(0, T ) ∀u ∈ H1(Ω),

y(0) = y0 + τ ŷ0.

Insensitivity problems were originally introduced by J.-L. Lions in [10] and were
first studied for semilinear heat equations with globally Lipschitz-continuous non-
linearities F = F (y) and Dirichlet boundary conditions. In [1], the existence of
the so-called ε-insensitizing controls for partially known data in both the initial and
boundary conditions is proved. In [11] it is shown that one cannot expect the existence
of insensitizing controls for every y0 ∈ L2(Ω) when Ω \ ω �= ∅, even if F ≡ 0. In addi-
tion, for y0 = 0 and suitable assumptions on the source term ξ, de Teresa proves the
existence of insensitizing controls (see Theorem 1 in [11]). This last result is extended
in [2] and [3] to nonlinearities with certain superlinear growth at infinity. It is also
generalized in [4] to the case of a heat equation with a nonlinear term involving the
state y and its gradient. In [4], the authors also present an insensitivity result for a
semilinear heat equation with a nonlinear term F (y) and linear boundary conditions
of Fourier type. In the present paper, we prove a local result on the existence of in-
sensitizing controls for system (1.1), which is, to our knowledge, the first insensitivity
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INSENSITIZING CONTROLS FOR PARABOLIC SYSTEMS 957

result in the literature for a semilinear heat equation with nonlinear Fourier boundary
conditions. In the framework of the controllability, both approximate and null con-
trollability of the classical heat equation with nonlinear Fourier boundary conditions
are analyzed in [5].

Before stating the main result in this paper, let us introduce the following nota-
tion. For p ∈ [1,∞] and any Banach space Y , ‖ · ‖Lp(Y ) will denote the norm in the
space Lp(0, T ;Y ). For simplicity, the norm in Lp(Q) will be represented by ‖ · ‖Lp for
p ∈ [1,∞), ‖ · ‖∞ will stand for the norm in L∞(Q), and ‖ · ‖∞;Σ will denote the norm
in L∞(Σ). For r ∈ (2,∞) and any open set V ⊂ R

N , we introduce the Banach space

Xr(0, T ;V) =
{
u ∈ Lr(0, T ;W 2,r(V)) : ∂tu ∈ Lr(0, T ;Lr(V))

}
,

with its natural norm

‖u‖Xr(0,T ;V) = ‖u‖Lr(W 2,r(V)) + ‖∂tu‖Lr(Lr(V)).

On the other hand, for β ∈ (0, 1) and u ∈ C0(Q), we define the quantity

[u]β, β2
= sup

Q

|u(x, t) − u(x′, t)|
|x− x′|β + sup

Q

|u(x, t) − u(x, t′)|
|t− t′| β2

.

We will consider the space Cβ, β2 (Q) = {u ∈ C0(Q) : [u]β, β2
< ∞}, which is a Banach

space with its natural norm |u|β, β2 ;Q = ‖u‖∞ + [u]β, β2
. We will also consider the

Banach spaces defined by

C1+β, 1+β
2 (Q) =

{
u ∈ C0(Q) :

∂u

∂xi
∈ Cβ, β2 (Q) ∀i, sup

Q

|u(x, t) − u(x, t′)|
|t− t′| 1+β

2

< ∞
}
,

C2+β,1+ β
2 (Q) =

{
u ∈ C0(Q) :

∂u

∂xi
∈ C1+β, 1+β

2 (Q) ∀i, ∂tu ∈ Cβ, β2 (Q)

}
,

and

C3+β, 3+β
2 (Q) =

{
u ∈ C0(Q) :

∂u

∂xi
∈ C2+β,1+ β

2 (Q) ∀i, ∂tu ∈ C1+β, 1+β
2 (Q)

}
,

with norms denoted by | · |n+β,n+β
2 ;Q, n = 1, 2, 3. The Banach space formed by the

restrictions to Σ of the functions in Cn+β,n+β
2 (Q) will be represented by Cn+β,n+β

2 (Σ)
and its norm by | · |n+β,n+β

2 ;Σ. Finally, we shall write | · |2+β;Ω to denote the norm in

C2+β(Ω), and the norm in the space L2(0, T ;H1(Ω))∩C([0, T ];L2(Ω)) will be denoted
by ‖ · ‖L2(H1)∩C(L2).

The main goal in this paper is to prove the following local insensitivity result for
system (1.1).

Theorem 1.2. Assume that ∂Ω ∈ C3+β for some β ∈ (0, 1), ω ∩ O �= ∅,
and y0 = 0. Let F, f ∈ C3(R) verify F (0) = f(0) = 0. Then, there exist two
positive constants M and η (depending on Ω, ω, O, T , F , and f) such that, for any

ξ ∈ Cβ, β2 (Q) satisfying

|ξ|β, β2 ;Q +

∥∥∥∥exp

(
M
2t

)
ξ

∥∥∥∥
L2

≤ η,(1.4)
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958 O. BODART, M. GONZÁLEZ-BURGOS, AND R. PÉREZ-GARCÍA

one can find a control function v ∈ Cβ, β2 (Q) that insensitizes the functional Φ defined
by (1.2).

It is of interest to notice that the explicit way the constant M depends on T and
F can be known (see Remark 1).

As usual in insensitivity problems, the insensitivity condition (1.3) leads us to
analyze a nonstandard nonlinear null controllability problem. In the case under con-
sideration, the following holds.

Proposition 1.3. If there exists a control function v insensitizing the functional
Φ given by (1.2), then this control v solves the null controllability problem⎧⎪⎨⎪⎩

∂ty − ∆y + F (y) = ξ + v1ω in Q,

∂ny + f(y) = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(1.5)

⎧⎪⎨⎪⎩
−∂tq − ∆q + F ′(y)q = y1O in Q,

∂nq + f ′(y)q = 0 on Σ,

q(x, T ) = 0 in Ω,

(1.6)

q(x, 0) = 0 in Ω.(1.7)

Furthermore, if a control function v solves (1.5)–(1.7) and there exists τ0 > 0 such
that (1.1) admits a weak solution y(·, ·; τ, v) ∈ L2(0, T ;H1(Ω)) ∩ C0(Q) for |τ | ≤ τ0,
then v is insensitizing the functional Φ.

Proof. We reason as in [10] and [1]. Assume the existence of a control v insen-
sitizing the functional Φ given by (1.2) in the sense of Definition 1.1. Then, system
(1.5) admits a weak solution y(·, ·; τ, v) ∈ L2(0, T ;H1(Ω))∩C0(Q) for all |τ | ≤ τ0, for
some τ0 > 0. The derivative of Φ(y(·, ·; τ, v)) with respect to τ at τ = 0 is given by

∂Φ(y(·, ·; τ, v))
∂τ

∣∣∣∣
τ=0

=

∫∫
Q

y(x, t)1O yτ (x, t) dx dt,

where y = y(·, ·; 0, v) ∈ C0(Q) and yτ = ∂y(·,·;τ,v)
∂τ

∣∣∣
τ=0

is the solution of the linear

system ⎧⎪⎨⎪⎩
∂tyτ − ∆yτ + F ′(y)yτ = 0 in Q,

∂nyτ + f ′(y)yτ = 0 on Σ,

yτ (x, 0) = ŷ0(x) in Ω.

Let q be the solution of (1.6). Replacing y1O with the left-hand side of the PDE
satisfied by q and integrating by parts, one obtains∫∫

Q

y(x, t)1O yτ (x, t) dx dt =

∫
Ω

q(x, 0)ŷ0(x) dx,

regardless of what ŷ0 ∈ L2(Ω) is. Finally, from (1.3) one deduces that

q(0) = 0 in X ′,
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INSENSITIZING CONTROLS FOR PARABOLIC SYSTEMS 959

whence (1.7) follows, in view of the Hahn–Banach theorem. The rest of the proof
follows immediately from Definition 1.1.

Notice that a control function v solving (1.5)–(1.7), if one exists, does not neces-
sarily insensitize the functional Φ (think, for instance, of an initial datum y0+τ ŷ0 not
lying in C0(Ω), for which system (1.1) admits no weak solution in C0(Q)). In other
words, in this case the problem of seeking insensitizing controls cannot be reformu-
lated in an equivalent way as a null controllability problem, as is usual in insensitivity
problems. In order to prove Theorem 1.2, we will thus argue as follows (see section 3).
Under the assumptions in the theorem, we will first prove the existence of a control
v solving (1.5)–(1.7). In a second step, we will see that, for τ ŷ0 regular and small
enough, such a control v can be chosen so that it also insensitizes the functional Φ
defined by (1.2).

The existence of a control function solving (1.5)–(1.7) will be proved by lineariza-
tion and a later application of an appropriate fixed point argument. This technique,
introduced in [12] in the context of the controllability of the semilinear wave equa-
tion, has been used to prove several controllability results (cf., for example, [6], [7]).
Analyzing a linear null controllability problem similar to (1.5)–(1.7) (see (2.1), (2.2),
and (1.7)), we realize that the potentials a, b ∈ L∞(Σ) need to have time derivatives
in L∞(Σ). This requirement comes from applying Lemma 1.2 of [8] to obtain an
adequate observability inequality (see Proposition 2.1) for the solutions of the corre-
sponding adjoint systems (2.5) and (2.6). To solve the nonlinear problem, we would
have to search for a fixed point in a space containing the functions z ∈ L∞(Q) such
that the trace of ∂tz lies in L∞(Σ). As was observed in Remark 15 of [5], we are not
too far from imposing ∂tz ∈ L∞(0, T ;W 1,N+γ(Ω)), with γ > 0. But these spaces are
too small to achieve compactness and good estimates for the fixed point mapping.
We will then seek a fixed point, and thus also control functions, in the Hölder spaces
introduced above. In fact, one of the main points in this paper relies on the construc-
tion, in the linear case, of control functions with Hölderian regularity starting from
L2-controls.

In order to ensure the existence of a solution to system (1.1) in the above-
mentioned Hölder spaces, appropriate regularity assumptions on the data and a com-
patibility condition on the initial datum are required (see Lemma 3.2). This is the
reason why we have introduced the space X = C2+β(Ω) ∩H2

0 (Ω), with β ∈ (0, 1), in
Definition 1.1.

In the next section, we will analyze the corresponding linear null controllability
problem, while section 3 will be devoted to proving our main result.

2. The linear null controllability problem. From now on, we will assume
that ω ∩ O �= ∅ and y0 = 0. This section is devoted to solving a linearized version of
the null controllability problem (1.5)–(1.7). We consider the linear systems⎧⎪⎪⎨⎪⎪⎩

∂ty − ∆y + cy = ξ + v1ω in Q,

∂ny + ay = 0 on Σ,

y(x, 0) = 0 in Ω,

(2.1)

⎧⎪⎪⎨⎪⎪⎩
−∂tq − ∆q + dq = y1O in Q,

∂nq + bq = 0 on Σ,

q(x, T ) = 0 in Ω,

(2.2)D
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960 O. BODART, M. GONZÁLEZ-BURGOS, AND R. PÉREZ-GARCÍA

where a, b ∈ L∞(Σ), c, d ∈ L∞(Q), and ξ ∈ L2(Q) (at least). For each v ∈ L2(Q), the
cascade of linear systems (2.1), (2.2) admits exactly one solution (y, q) satisfying

y, q ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)), ∂ty, ∂tq ∈ L2(0, T ;H−1(Ω)),

with

‖y‖L2(H1)∩C(L2) + ‖∂ty‖L2(H−1) ≤ C (Ω, T, ‖a‖∞;Σ, ‖c‖∞) (‖ξ‖L2 + ‖v‖L2) ,(2.3)

‖q‖L2(H1)∩C(L2) + ‖∂tq‖L2(H−1)

≤ C (Ω, T, ‖a‖∞;Σ, ‖b‖∞;Σ, ‖c‖∞, ‖d‖∞) (‖ξ‖L2 + ‖v‖L2) .
(2.4)

Under additional assumptions on the potentials and on the source term ξ, we will
build a regular control v, acting on a nonempty open subset of ω ∩ O, such that the
corresponding solution (y, q) of (2.1), (2.2) satisfies (1.7).

We proceed as follows. Let us fix a nonempty open set B0 such that B0 ⊂⊂ ω∩O.
In a first step, using an appropriate observability inequality, we obtain an L2-control
supported on B0 × [0, T ]. Then, by means of a construction similar to that made in
[2] and [3] and due to the regularizing properties of the heat equation, we will be able
to furnish a regular control with a slightly larger support.

Let us consider the adjoint systems⎧⎪⎨⎪⎩
∂tϕ− ∆ϕ + dϕ = 0 in Q,

∂nϕ + bϕ = 0 on Σ,

ϕ(x, 0) = ϕ0(x) in Ω,

(2.5)

⎧⎪⎨⎪⎩
−∂tψ − ∆ψ + cψ = ϕ1O in Q,

∂nψ + aψ = 0 on Σ,

ψ(x, T ) = 0 in Ω,

(2.6)

where ϕ0 ∈ L2(Ω). For simplicity, we will denote by at (resp., bt) the time derivative
of a (resp., of b). Let B0 ⊂⊂ ω ∩ O be the open set considered above. In [4], the
following observability inequality for the solutions of (2.5), (2.6) is proved.

Proposition 2.1. Assume that a, b, at, bt ∈ L∞(Σ) and c, d ∈ L∞(Q). Then,
there exist positive constants M and C, depending on Ω, ω, O, T , ‖a‖∞;Σ, ‖b‖∞;Σ,
‖at‖∞;Σ, ‖bt‖∞;Σ, ‖c‖∞, and ‖d‖∞, such that∫∫

Q

exp

(
−M

t

)
|ψ|2 dx dt ≤ C

∫∫
B0×(0,T )

|ψ|2 dx dt,

for every ϕ0 ∈ L2(Ω), where ψ solves (2.6), ϕ being the solution of (2.5).
The proof of this result follows the scheme of demonstration of Proposition 2

in [11] and uses a global Carleman inequality for the classical heat equation with
linear boundary Fourier conditions (see Lemma 1.2 of [8]).

Remark 1. In the previous proposition, and throughout this section, the depen-
dence of the constants with respect to T and the potentials c and d could be stated
precisely. This would allow one to know the precise way the constant M in Theo-
rem 1.2 depends on T and F . Nevertheless, the dependence on the boundary data a
and b is not explicit. This comes from the proof of Lemma 1.2 of [8].
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INSENSITIZING CONTROLS FOR PARABOLIC SYSTEMS 961

Due to a unique continuation property for the solutions of (2.5) and (2.6) inferred
from Proposition 2.1, under suitable assumptions on ξ, one obtains L2-controls as
follows.

Proposition 2.2. Assume that a, b, at, bt ∈ L∞(Σ) and c, d ∈ L∞(Q). Let M
and C be the positive constants (depending on Ω, ω, O, T , ‖a‖∞;Σ, ‖b‖∞;Σ, ‖at‖∞;Σ,
‖bt‖∞;Σ, ‖c‖∞, and ‖d‖∞) provided by Proposition 2.1. Then, for any ξ ∈ L2(Q)
verifying ∫∫

Q

exp

(
M

t

)
|ξ|2 dx dt < ∞,(2.7)

there exists a control function v̂ ∈ L2(Q), with supp v̂ ⊂ B0 × [0, T ], such that the
solution (ŷ, q̂) of (2.1), (2.2) associated to v̂ satisfies (1.7). Moreover, v̂ can be chosen
so that

‖v̂‖L2 ≤
√
C

(∫∫
Q

exp

(
M

t

)
|ξ|2 dx dt

)1/2

.(2.8)

The proof of this proposition is given in [4] and will be omitted here. The main
result in this section is the following.

Proposition 2.3. Assume that ∂Ω ∈ C3+β for some β ∈ (0, 1), a, b, at, bt ∈
L∞(Σ), c ∈ Cβ, β2 (Q), and d ∈ C1+β, 1+β

2 (Q). Let M > 0 be the constant (depending
on Ω, ω, O, T , ‖a‖∞;Σ, ‖b‖∞;Σ, ‖at‖∞;Σ, ‖bt‖∞;Σ, ‖c‖∞, and ‖d‖∞) provided by

Proposition 2.1. Then, for any ξ ∈ Cβ, β2 (Q) satisfying (2.7), one can find a control

v ∈ Cβ, β2 (Q) such that the associated solution (y, q) of (2.1), (2.2) satisfies (1.7).

Moreover, the Cβ, β2 -norm of v can be estimated as follows:

|v|β, β2 ;Q ≤ C

(
|ξ|β, β2 ;Q +

∥∥∥∥exp

(
M

2t

)
ξ

∥∥∥∥
L2

)
,(2.9)

where C is a new positive constant depending on Ω, ω, O, T , ‖a‖∞;Σ, ‖b‖∞;Σ,
‖at‖∞;Σ, ‖bt‖∞;Σ, |c|β, β2 ;Q, and |d|1+β, 1+β

2 ;Q.

The regularity of v and, accordingly, that of (y, q), will enable us to deal with the
nonlinear null controllability problem (1.5)–(1.7).

Before proving Proposition 2.3, for the convenience of the reader we repeat some
relevant material from [3] and [9] without proofs, thus making our exposition self-
contained. We first recall a technical result on local regularity given in [3, Proposi-
tion 2.1 and Remark 4].

Lemma 2.4. Let ã ∈ L∞(Q) and h ∈ L2(Q) be given. Let us consider a solution
u ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) of{

∂tu− ∆u + ãu = h in Q,

u(x, 0) = 0 in Ω,
(2.10)

and let V ⊂ Ω be an arbitrary open set.
(a) If h ∈ Lr(0, T ;Lr(V)), with r ∈ (2,∞), then u ∈ Xr(0, T ;V ′) for any open

set V ′ ⊂⊂ V. Moreover, there exist two positive constants C = C (Ω,V,V ′, T,N, r)
and K = K(N) such that

‖u‖Xr(0,T ;V′) ≤ C (1 + ‖ã‖∞)K
[
‖h‖Lr(Lr(V)) + ‖u‖L2(H1)∩C(L2)

]
.(2.11)
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962 O. BODART, M. GONZÁLEZ-BURGOS, AND R. PÉREZ-GARCÍA

(b) Assume, in addition, that h ∈ Lr(0, T ;W 1,r(V)), r > 2, and ∇ã ∈ Lγ(Q)N ,
with

γ =

⎧⎪⎪⎨⎪⎪⎩
max

{
r,
N

2
+ 1

}
if r �= N

2
+ 1,

N

2
+ 1 + ε if r =

N

2
+ 1,

and ε being an arbitrarily small positive number. Then, for any open set V ′ ⊂⊂ V, one
has u ∈ Lr(0, T ;W 3,r(V ′)), ∂tu ∈ Lr(0, T ;W 1,r(V ′)), and for a new positive constant
C = C(Ω,V,V ′, T,N, r), the following estimate holds:

‖u‖Lr(W 3,r(V′)) + ‖∂tu‖Lr(W 1,r(V′)) ≤ CH
[
‖h‖Lr(W 1,r(V)) + ‖u‖L2(H1)∩C(L2)

]
,

where

H = H(N, ‖ã‖∞, ‖∇ã‖Lγ ) = (1 + ‖ã‖∞)K+1(1 + ‖∇ã‖Lγ ),

K = K(N) being as in (2.11).
We also recall the following result, which is readily obtained by rewriting

Lemma 3.3 of [9, p. 80] with the notation introduced at the beginning of this pa-
per (also see Lemma 2.3 of [3]).

Lemma 2.5. Let V ⊂ R
N , N ≥ 1, be a regular open set. The following continuous

embeddings hold:
1. If r < N

2 + 1, then Xr(0, T ;V) ↪→ Lp(V × (0, T )), where 1
p = 1

r − 2
N+2 .

2. If r = N
2 + 1, then Xr(0, T ;V) ↪→ Lq(V × (0, T )) for all q < ∞.

3. If N
2 + 1 < r < N + 2, then Xr(0, T ;V) ↪→ Cα,α2 (V × [0, T ]), α = 2 − N+2

r .

4. If r = N + 2, then Xr(0, T ;V) ↪→ Cl, l
2 (V × [0, T ]) for all l ∈ (0, 1).

5. If r > N + 2, then Xr(0, T ;V) ↪→ C1+β, 1+β
2 (V × [0, T ]), where β = 1 − N+2

r .
We are now ready to prove Proposition 2.3. From now on, we will specify only the

dependence of the constants on the arguments that will be relevant in our analysis.
Thus, for instance, the dependence on the dimension N , on B0, or on the other open
sets appearing later will be omitted.

Proof of Proposition 2.3. Assume that ∂Ω ∈ C3+β for some β ∈ (0, 1). Let a,
b, c, and d be as in the statement, and let M > 0 be provided by Proposition 2.1.

Given ξ ∈ Cβ, β2 (Q) verifying (2.7), Proposition 2.2 provides a control v̂ ∈ L2(Q)
such that the associated solution (ŷ, q̂) of (2.1), (2.2) satisfies (1.7). Moreover, v̂
verifies estimate (2.8) and supp v̂ ⊂ B0× [0, T ], with B0 being the open set considered
at the beginning of this section. One has ŷ, q̂ ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)),
∂tŷ, ∂tq̂ ∈ L2(0, T ;H−1(Ω)), and estimates such as (2.3) and (2.4) hold.

Let B, B1, and B2 be regular open sets such that B0 ⊂⊂ B1 ⊂⊂ B2 ⊂⊂ B ⊂⊂
ω∩O. As was anticipated above, a construction similar to the one made in [2] and [3]
will allow one to construct a regular control supported on B × [0, T ]. Indeed, we set

q = (1 − θ) q̂,(2.12)

y = (1 − θ) ŷ + 2∇θ · ∇q̂ + (∆θ)q̂,(2.13)

with θ ∈ D(B) satisfying θ ≡ 1 in B2. We will analyze the interior regularity of ŷ

and q̂, inferring that (y, q) solves (2.1), (2.2), and (1.7) with control term v ∈ Cβ, β2 (Q)
given by

v = −θξ + 2∇θ · ∇ŷ + (∆θ)ŷ + (∂t − ∆ + c) [2∇θ · ∇q̂ + (∆θ)q̂] ,(2.14)
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INSENSITIZING CONTROLS FOR PARABOLIC SYSTEMS 963

which is, in fact, supported on B × [0, T ].

First, as c ∈ L∞(Q) and ξ+ v̂1B0 ∈ L2(Q)∩L∞(0, T ;L∞(Ω\B0)), one can apply
Lemma 2.4 with r = (N + 2)/(1 − β), β ∈ (0, 1) given in the statement, to deduce
that ŷ lies in Xr(0, T ; (ω ∩ O) \ B1) (notice that, without loss of generality, we can
assume that ω ∩ O ⊂⊂ Ω and that ω ∩ O is regular enough). Since r > N + 2, this

space is continuously embedded in C1+β, 1+β
2 ((ω ∩ O) \B1 × [0, T ]), by Lemma 2.5.

Thus,

ŷ ∈ C1+β, 1+β
2 ((ω ∩ O) \B1 × [0, T ]),(2.15)

and estimates (2.11) and (2.3) give

|ŷ|
1+β, 1+β

2 ;(ω∩O)\B1×[0,T ]
≤ C (Ω, ω,O, T, ‖a‖∞;Σ, ‖c‖∞) (‖ξ‖∞ + ‖v̂‖L2) .(2.16)

By the choice of θ, the term v1 = 2∇θ · ∇ŷ + (∆θ)ŷ in (2.14) then lies in Cβ, β2 (Q)
and one can estimate

|v1|β, β2 ;Q ≤ C (Ω, ω,O, T, ‖a‖∞;Σ, ‖c‖∞) (‖ξ‖∞ + ‖v̂‖L2) .

According to the interior regularity of ŷ, an argument such as the one above

implies that q̂ ∈ C1+β, 1+β
2 (B \B2 × [0, T ]), and estimates (2.11), (2.16), and (2.4)

give

|q̂|
1+β, 1+β

2 ;B\B2×[0,T ]
≤ C (‖ξ‖∞ + ‖v̂‖L2) ,(2.17)

with C = C (Ω, ω,O, T, ‖a‖∞;Σ, ‖b‖∞;Σ, ‖c‖∞, ‖d‖∞). By the Cβ, β2 -regularity of ξ

and c, it is then clear that v2 = −θξ + c[2∇θ · ∇q̂ + (∆θ)q̂] ∈ Cβ, β2 (Q) and

|v2|β, β2 ;Q ≤ C(Ω, ω,O)
(
|ξ|β, β2 ;Q + |c|β, β2 ;Q|q̂|1+β, 1+β

2 ;B\B2×[0,T ]

)
,

which combined with (2.17), yields

|v2|β, β2 ;Q ≤ C(Ω, ω,O, T, ‖a‖∞;Σ, ‖b‖∞;Σ, |c|β, β2 ;Q, ‖d‖∞)
(
|ξ|β, β2 ;Q + ‖v̂‖L2

)
.

We now analyze the term v3 = (∂t − ∆)[2∇θ · ∇q̂ + (∆θ)q̂]. To this end, we use
the following result on interior Hölderian regularity, whose proof is given at the end
of this section.

Lemma 2.6. Assume that ∂Ω ∈ C3+β for some β ∈ (0, 1). Let us consider a

solution u ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) of (2.10), with ã ∈ C1+β, 1+β
2 (Q) and

h ∈ L2(Q) ∩ C1+β, 1+β
2 (V × [0, T ]), V being a nonempty open subset of Ω. Then, for

any open set V ′ ⊂⊂ V, one has u ∈ C3+β, 3+β
2 (V ′ × [0, T ]) and

|u|3+β, 3+β
2 ;V′×[0,T ] ≤ C

(
|h|1+β, 1+β

2 ;V×[0,T ] + ‖u‖L2(H1)∩C(L2)

)
,(2.18)

where C is a positive constant depending on Ω, V, V ′, T , and |ã|1+β, 1+β
2 ;Q.
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964 O. BODART, M. GONZÁLEZ-BURGOS, AND R. PÉREZ-GARCÍA

On account of (2.15) and the regularity of the potential d, Lemma 2.6 can be
applied to u = q̂, with V = (ω ∩O) \B1, V ′ = B \B2, h = ŷ1O, and ã = d, to deduce

that q̂ lies in C3+β, 3+β
2 (B \B2 × [0, T ]). Moreover, estimates (2.18), (2.16), and (2.4)

give

|q̂|
3+β, 3+β

2 ;B\B2×[0,T ]
≤ C (‖ξ‖∞ + ‖v̂‖L2) ,

with C = C(Ω, ω,O, T, ‖a‖∞;Σ, ‖b‖∞;Σ, ‖c‖∞, |d|1+β, 1+β
2 ;Q). We infer from the choice

of θ that 2∇θ · ∇q̂ + (∆θ)q̂ ∈ C2+β,1+ β
2 (Q), and hence that v3 lies in Cβ, β2 (Q), and

one can estimate

|v3|β, β2 ;Q ≤ C(Ω, ω,O, T, ‖a‖∞;Σ, ‖b‖∞;Σ, ‖c‖∞, |d|1+β, 1+β
2 ;Q) (‖ξ‖∞ + ‖v̂‖L2) .

In view of the previous considerations on each term vi, 1 ≤ i ≤ 3, and using

estimate (2.8), one concludes that v given by (2.14) lies in Cβ, β2 (Q) and that (2.9)
holds. Finally, it is an easy exercise to see that (y, q) defined by (2.13) and (2.12),
together with this control function v, solves (2.1), (2.2), and (1.7). The only deli-
cate point could be to check that y(x, 0) = 0 in Ω. But this follows immediately
from the interior regularity of q̂ (which, in particular, gives q̂ ∈ C([0, T ];H1(B \
B2))), the choice of θ, and the fact that q̂(x, 0) = 0 in Ω. This ends the proof of
Proposition 2.3.

We end this section by giving the proof of Lemma 2.6, which relies on a localization
argument.

Proof of Lemma 2.6. Assume the hypothesis in the statement, with β ∈ (0, 1)
and V being fixed. Given an open set V ′ ⊂⊂ V, we consider a regular open set V1,
with V ′ ⊂⊂ V1 ⊂⊂ V. According to the regularity of h and the potential ã, we can
apply the second point of Lemma 2.4, with r = (N + 2)/(1 − β) (thus γ = r, since
r > N + 2), and deduce that u, ∂u

∂xi
∈ Xr(0, T ;V1), i = 1, . . . , N , together with the

estimate

‖u‖Xr(0,T ;V1) + ‖∇u‖Xr(0,T ;V1)N ≤ C
[
‖h‖Lr(W 1,r(V)) + ‖u‖L2(H1)∩C(L2)

]
,

with C > 0 depending on Ω, V, V ′, T , ‖ã‖∞ and ‖∇ã‖Lr . Since r > N + 2, by
Lemma 2.5 we get

u,
∂u

∂xi
∈ C1+β, 1+β

2 (V1 × [0, T ]), i = 1, . . . , N,(2.19)

with

|u|1+β, 1+β
2 ;V1×[0,T ] + |∇u|1+β, 1+β

2 ;V1×[0,T ]

≤ C (Ω,V,V ′, T, ‖ã‖∞, ‖∇ã‖Lr )
(
‖h‖Lr(W 1,r(V)) + ‖u‖L2(H1)∩C(L2)

)
.

(2.20)

We claim that, indeed, u lies in C3+β, 3+β
2 (V ′× [0, T ]) and satisfies (2.18). To this

end, let ζ ∈ D(V1) be such that ζ ≡ 1 in V ′ and set w = ζu. Then w solves{
∂tw − ∆w = h̃ in Q,

w = 0 on Σ, w(x, 0) = 0 in Ω,
(2.21)

with h̃ = ζh − [ãζu + 2∇ζ · ∇u + (∆ζ)u]. The regularity of h and ã, together with

(2.19), gives h̃ ∈ C1+β, 1+β
2 (Q), and using (2.20), one has

|h̃|1+β, 1+β
2 ;Q ≤ C

(
|h|1+β, 1+β

2 ;V×[0,T ] + ‖u‖L2(H1)∩C(L2)

)
,(2.22)
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INSENSITIZING CONTROLS FOR PARABOLIC SYSTEMS 965

with C = C(Ω,V,V ′, T, |ã|1+β, 1+β
2 ;Q). Since ∂Ω ∈ C3+β and the compatibility condi-

tion of order 1 for system (2.21) is trivially fulfilled, one can apply Theorem 5.2 of [9]

to obtain w ∈ C3+β, 3+β
2 (Q), with

|w|3+β, 3+β
2 ;Q ≤ C(Ω, T )|h̃|1+β, 1+β

2 ;Q.(2.23)

Finally, recalling that u ≡ w in V ′, one infers the desired interior regularity of u, and
estimate (2.18) holds, using (2.23) and (2.22).

3. Proof of Theorem 1.2. We begin this section by recalling the following
result for linear systems of the form⎧⎪⎨⎪⎩

∂tu− ∆u + cu = h in Q,

∂nu + au = 0 on Σ,

u(x, 0) = u0(x) in Ω,

(3.1)

whose proof is given in [9, Theorem 5.3, p. 320].

Lemma 3.1. Assume that ∂Ω ∈ C2+β for some β ∈ (0, 1). Let a ∈ C1+β, 1+β
2 (Σ)

and c ∈ Cβ, β2 (Q) be given. Then, for any h ∈ Cβ, β2 (Q) and u0 ∈ C2+β(Ω) satisfying
the compatibility condition

∂nu0(x) + a(x, 0)u0(x) = 0 on ∂Ω,

system (3.1) admits exactly one solution u ∈ C2+β,1+ β
2 (Q) verifying the estimate

|u|2+β,1+ β
2 ;Q ≤ C

(
Ω, T, |a|1+β, 1+β

2 ;Σ, |c|β, β2 ;Q

)(
|h|β, β2 ;Q + |u0|2+β;Ω

)
.(3.2)

Let us now prove Theorem 1.2. Assume the hypothesis in the statement. From
the considerations in the first section, the proof falls naturally into two steps.

Step 1. Existence of a regular control solving the nonlinear null controllability
problem (1.5)–(1.7): The fixed point argument. Let G and g be the C2 functions
defined by

G(s) =

⎧⎨⎩
F (s)

s
if s �= 0,

F ′(0) if s = 0,
g(s) =

⎧⎨⎩
f(s)

s
if s �= 0,

f ′(0) if s = 0.

Let us set

Z = C1(Q) ∩ C1+β, 1+β
2 (Q).

For fixed z ∈ B(0; 1) ⊂ Z, we consider the linear systems⎧⎪⎨⎪⎩
∂ty − ∆y + G(z)y = ξ + v1ω in Q,

∂ny + g(z)y = 0 on Σ,

y(x, 0) = 0 in Ω,

(3.3)

⎧⎪⎨⎪⎩
−∂tq − ∆q + F ′(z)q = y1O in Q,

∂nq + f ′(z)q = 0 on Σ,

q(x, T ) = 0 in Ω,

(3.4)D
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966 O. BODART, M. GONZÁLEZ-BURGOS, AND R. PÉREZ-GARCÍA

with potentials G(z), F ′(z) ∈ Z and g(z), f ′(z) ∈ Z̃ = C1(Σ)∩C1+β, 1+β
2 (Σ). By abuse

of notation, from now on we will let g(z) (resp., f ′(z)) stand for both the function
g(z) in Z and its restriction to Σ (resp., for both f ′(z) ∈ Z and its restriction to Σ).
Let us set

M(Ω, ω,O, T, F, f) = sup
z∈B(0;1)

Mz,(3.5)

where Mz is, for fixed z ∈ B(0; 1), the positive constant (depending on Ω, ω, O, T ,
‖g(z)‖Z , ‖f ′(z)‖Z , ‖G(z)‖Z , and ‖F ′(z)‖Z) provided by Proposition 2.1. Let ξ in

Cβ, β2 (Q) satisfy (1.4), with η > 0 to be chosen later (hence also verifying (2.7) with

M = Mz for all z ∈ B(0; 1)). From Proposition 2.3, there exists vz ∈ Cβ, β2 (Q) such

that the associated solution (yz, qz) of (3.3), (3.4) lies in C2+β,1+ β
2 (Q)×C2+β,1+ β

2 (Q)
(by Lemma 3.1) and satisfies (1.7). Moreover, one has

|vz|β, β2 ;Q ≤ C(Ω, ω,O, T, z)

(
|ξ|β, β2 ;Q +

∥∥∥∥exp

(
Mz

2t

)
ξ

∥∥∥∥
L2

)
,

with C(Ω, ω,O, T, z) = C(Ω, ω,O, T, ‖g(z)‖Z , ‖f ′(z)‖Z , ‖G(z)‖Z , ‖F ′(z)‖Z), and yz
satisfies an estimate such as (3.2); hence

|yz|2+β,1+ β
2 ;Q ≤ C1(Ω, ω,O, T, z)

(
|ξ|β, β2 ;Q +

∥∥∥∥exp

(
Mz

2t

)
ξ

∥∥∥∥
L2

)
,

with C1(Ω, ω,O, T, z) = C1(Ω, ω,O, T, ‖g(z)‖Z , ‖f ′(z)|Z , ‖G(z)‖Z , ‖F ′(z)‖Z) (and a
similar estimate for qz holds). Then, for any z ∈ B(0; 1) one has

|vz|β, β2 ;Q ≤ C̃(Ω, ω,O, T, F, f)

(
|ξ|β, β2 ;Q +

∥∥∥∥exp

(
M
2t

)
ξ

∥∥∥∥
L2

)
,(3.6)

|yz|2+β,1+ β
2 ;Q ≤ C2(Ω, ω,O, T, F, f)

(
|ξ|β, β2 ;Q +

∥∥∥∥exp

(
M
2t

)
ξ

∥∥∥∥
L2

)
,(3.7)

together with a similar estimate for qz, with

C̃(Ω, ω,O, T, F, f) = sup
z∈B(0;1)

C(Ω, ω,O, T, z),

C2(Ω, ω,O, T, F, f) = sup
z∈B(0;1)

C1(Ω, ω,O, T, z).

For each z ∈ B(0; 1) ⊂ Z, we consider the families

A(z) =
{
v ∈ Cβ, β2 (Q) : (y, q) satisfies (3.3), (3.4), and (1.7), v verifying (3.6)

}
,

Λ(z) = {y : (y, q) solves (3.3), (3.4) with v ∈ A(z)} .

One can then define the set-valued mapping Λ : z ∈ B(0; 1) ⊂ Z �→ Λ(z) ⊂ Z. For

fixed z ∈ B(0; 1), each y ∈ Λ(z) lies in C2+β,1+ β
2 (Q) and satisfies (3.7), and thus

‖y‖Z ≤ C2(Ω, ω,O, T, F, f)

(
|ξ|β, β2 ;Q +

∥∥∥∥exp

(
M
2t

)
ξ

∥∥∥∥
L2

)
.(3.8)

D
ow

nl
oa

de
d 

05
/2

3/
16

 to
 1

50
.2

14
.2

30
.4

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



INSENSITIZING CONTROLS FOR PARABOLIC SYSTEMS 967

We claim that there exists η(Ω, ω,O, T, F, f) > 0 such that if a source term

ξ ∈ Cβ, β2 (Q) satisfies (1.4), with M given by (3.5), then the Kakutani fixed point
theorem can be applied to Λ. First, for fixed z ∈ B(0; 1) ⊂ Z, it is easy to check that
Λ(z) is a nonempty closed convex subset of Z (here we use the linear character of

systems (3.3) and (3.4)). By estimate (3.7), Λ(z) is a bounded set in C2+β,1+ β
2 (Q).

Since this space is compactly embedded into Z, one infers that each Λ(z) is a compact
subset of Z. Furthermore, there exists a fixed compact set K ⊂ Z such that Λ(z) ⊂ K
for all z ∈ B(0; 1).

In the second place, Λ is proved to be an upper hemicontinuous multivalued
mapping, or, equivalently, it is proved that for any bounded linear form µ ∈ Z ′, the
function

z ∈ B(0; 1) ⊂ Z �→ sup
y∈Λ(z)

〈µ, y〉 ∈ R

is upper semicontinuous. To this end, it suffices to show that the set

Bλ,µ =

{
z ∈ B(0; 1) : sup

y∈Λ(z)

〈µ, y〉 ≥ λ

}
is closed in Z for any λ ∈ R and any µ ∈ Z ′. Let us fix λ ∈ R and µ ∈ Z ′, and
consider a sequence {zn}n≥1 ⊂ Bλ,µ such that

zn → z in Z.(3.9)

Our aim is to see that z ∈ Bλ,µ. As stated above, each Λ(zn) is a compact set in Z.
Then for fixed n ≥ 1 one has

sup
y∈Λ(zn)

〈µ, y〉 = 〈µ, yn〉 ≥ λ(3.10)

for some yn ∈ Λ(zn). By the definition of Λ(zn) and A(zn), there exist vn ∈ Cβ, β2 (Q)
satisfying

|vn|β, β2 ;Q ≤ C̃(Ω, ω,O, T, F, f)

(
|ξ|β, β2 ;Q +

∥∥∥∥exp

(
M
2t

)
ξ

∥∥∥∥
L2

)
(3.11)

(C̃(Ω, ω,O, T, F, f) as in (3.6)) and qn ∈ C2+β,1+ β
2 (Q) such that (yn, qn) together

with vn solve ⎧⎪⎨⎪⎩
∂tyn − ∆yn + G(zn)yn = ξ + vn1ω in Q,

∂nyn + g(zn)yn = 0 on Σ,

yn(x, 0) = 0 in Ω,

(3.12)

⎧⎪⎨⎪⎩
−∂tqn − ∆qn + F ′(zn)qn = yn1O in Q,

∂nqn + f ′(zn)qn = 0 on Σ,

qn(x, T ) = 0, qn(x, 0) = 0 in Ω.

(3.13)

From (3.11) and (3.7), {vn} and {(yn, qn)} are uniformly bounded in Cβ, β2 (Q) and

C2+β,1+ β
2 (Q)×C2+β,1+ β

2 (Q), respectively. Taking into account the compact embed-

ding of Cβ, β2 (Q) (resp., C2+β,1+ β
2 (Q)) into C0(Q) (resp., Z), there exist subsequences

(still denoted by {vn} and {(yn, qn)}) such that

vn → ṽ in C0(Q), (yn, qn) → (ỹ, q̃) in Z × Z
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for some ṽ ∈ C0(Q), (ỹ, q̃) ∈ Z × Z. It is easily seen that, in fact, ṽ ∈ Cβ, β2 (Q). On
account of the regularity of F and f , from (3.9) one also has

G(zn) → G(z) and F ′(zn) → F ′(z) in Z,

g(zn) → g(z) and f ′(zn) → f ′(z) in Z̃.

We can then pass to the limit in (3.11)–(3.13) and deduce that (ỹ, q̃) solves (3.3),
(3.4), and (1.7) with control term ṽ ∈ A(z). Thus, ỹ ∈ Λ(z), and taking limits in
(3.10), one infers that

sup
y∈Λ(z)

〈µ, y〉 ≥ 〈µ, ỹ〉 ≥ λ.

We conclude that z ∈ Bλ,µ; hence, Λ is an upper hemicontinuous mapping.
Now let η = η(Ω, ω,O, T, F, f) > 0 be such that η ≤ C2(Ω, ω,O, T, F, f)−1. Then,

for a given source term ξ ∈ Cβ, β2 (Q) satisfying (1.4), with M given by (3.5), we infer
from (3.8) that any y ∈ Λ

(
B(0; 1)

)
verifies ‖y‖Z ≤ 1; that is, Λ maps the nonempty

closed convex set B(0; 1) into itself. We can then apply the Kakutani fixed point
theorem and conclude that there exists y ∈ Z such that y ∈ Λ(y). Hence, there

exists v ∈ Cβ, β2 (Q), solving the nonlinear null controllability problem (1.5)–(1.7) (for
y0 = 0). Moreover, by (3.6) one can estimate

|v|β, β2 ;Q ≤ C̃(Ω, ω,O, T, F, f)η.(3.14)

Step 2. Existence of a control insensitizing the functional Φ. Let us see that there

exists η(Ω, ω,O, T, F, f) > 0 such that for any ξ ∈ Cβ, β2 (Q) satisfying (1.4), with M
given by (3.5), the control v in the previous step can be chosen so that, for τ small

enough, the existence of a solution of (1.1) (with y0 = 0) in C2+β,1+ β
2 (Q) is ensured.

This will conclude the proof of the theorem, since such a control v will then insensitize
the functional Φ given by (1.2), in view of Proposition 1.3.

We use the following result, which can be proved by linearizing and applying an
appropriate fixed point argument.

Lemma 3.2. Assume that ∂Ω ∈ C2+β for some β ∈ (0, 1). Let F ∈ C2(R) and
f ∈ C3(R) be given. Then, there exists δ > 0 (depending on Ω, T , F , and f) with

the property that for any h ∈ Cβ, β2 (Q) and u0 ∈ C2+β(Ω) satisfying

|h− F (0)|β, β2 ;Q + |f(0)| + |u0|2+β;Ω ≤ δ

and the compatibility condition

∂nu0 + f(u0) = 0 on ∂Ω,(3.15)

the nonlinear system ⎧⎪⎨⎪⎩
∂tu− ∆u + F (u) = h in Q,

∂nu + f(u) = 0 on Σ,

u(x, 0) = u0(x) in Ω,

admits a unique solution u ∈ C2+β,1+ β
2 (Q).

Let us consider X = C2+β(Ω) ∩ H2
0 (Ω), with β ∈ (0, 1) as in the statement.

Let δ > 0 be provided by Lemma 3.2 and let M(Ω, ω,O, T, F, f) be given by (3.5).
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INSENSITIZING CONTROLS FOR PARABOLIC SYSTEMS 969

Recalling (3.14), one can choose η = η(Ω, ω,O, T, F, f) > 0 small enough so that for

any ξ ∈ Cβ, β2 (Q) verifying (1.4), ŷ0 ∈ X with ‖ŷ0‖X = 1, and τ ∈ R small enough,
one has

|ξ + v1ω|β, β2 ;Q + |τ ŷ0|2+β;Ω ≤ δ.

Since the initial datum τ ŷ0 satisfies (3.15) (by choice of X), one infers from Lemma 3.2

that system (1.1) possesses a solution y(·, ·; τ, v) ∈ C2+β,1+ β
2 (Q), which ends the proof

of Theorem 1.2.
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pp. 583–616.

[8] A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes
Ser. 34, Seoul National University, Seoul, Korea, 1996.

[9] O. A. Ladyzenskaya, V. A. Solonnikov, and N. N. Uraltzeva, Linear and Quasilinear
Equations of Parabolic Type, Transl. Math. Monogr. 23, AMS, Providence, RI, 1967.

[10] J.-L. Lions, Quelques notions dans l’analyse et le contrôle de systèmes à données in-
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