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Abstract. In this paper we deal with some controllability problems for systems of the Navier—
Stokes and Boussinesq kind with distributed controls supported in small sets. Our main aim is to
control N-dimensional systems (NN + 1 scalar unknowns in the case of the Navier—Stokes equations)
with N — 1 scalar control functions. In a first step, we present some global Carleman estimates
for suitable adjoint problems of linearized Navier—Stokes and Boussinesq systems. In this way, we
obtain null controllability properties for these systems. Then, we deduce results concerning the local
exact controllability to the trajectories. We also present (global) null controllability results for some
(truncated) approximations of the Navier—Stokes equations.
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1. Introduction and examples. Let @ ¢ RY (N = 2 or 3) be a bounded
connected open set whose boundary 95 is regular enough (for instance of class C?).
Let O C Q be a (small) nonempty open subset and let T > 0. We will use the notation
Q=Qx(0,T)and ¥ = 90 x (0,T) and we will denote by n(z) the outward unit
normal to € at the point = € 9.

On the other hand, we will denote by C, C7, Cs, ... various positive constants
(usually depending on Q and O).

We will be concerned with the following controlled Navier—Stokes and Boussinesq
systems:

Yy —Ay+(y-V)y+Vp=vlp, V-y=0 inQ,
(1) y=0 on X,
y(0) =9° in Q

Y —Ay+(y-V)y+Vp=vlp +fey, V-y=0 inQ,

@) 0, —A0+y-VO=hlp in Q,
2

y:(), 9:0 OHE,

y(0) =4°, 6(0)=46° in Q

(in both dimensions N = 2 and N = 3).
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For N = 2, we will also consider the following approximation of the Navier—Stokes
system with boundary conditions of the Navier kind:

y—Ay+(y-V)Tu(y) +Vp=vlp, V-y=0 inQ,
(3) y-n=0, Vxy=0 on X,
y(0) = y° in Q,

where M > 0, Tar(y) = (Tar(y1), Tar(y2)) and Thy is given by

-M ifs<—M,
Ty(s)=< s if —M<s<M,
M if s > M.

In systems (1), (2) and (3), v = v(x,t) and h = h(x,t) stand for the control
functions. They act during the whole time interval (0,T") over the set O. The symbol
1o stands for the characteristic function of @ and ey is the Nth vector of the canonical
basis of RV.

The controllability of Navier—Stokes systems has been the objective of consider-
able work over the last years. Up to our knowledge, the strongest results have been
given in [7], where a strategy based on the methods in [13] and [14] has been followed.
Recently, the techniques in [7] have been adapted in [12] to cover Boussinesq systems
(see also [3], [4], [8] and [10] for other results).

This paper can be viewed as a continuation of [7]. We will present some new
results which show that the N-dimensional systems (1) and (2) can be controlled,
at least under some geometrical assumptions, with only N — 1 scalar controls in
L?(O x (0,T)). In particular, the Boussinesq system (2) in dimension N = 2 can be
controlled by an action performed only on the temperature equation. We will also
prove that the two-dimensional system (3) can be controlled with controls of the form
v1le where v is the curl of a function in L?(0,T; H(O)).

In this paper, we will have to impose some regularity assumptions on the initial
data. To this purpose, we introduce the spaces H, E and V, with

(4) H={we Q)Y :V-w=0inQ, w-n=0on N},
H N =2
| LYQ)BNH iN=3

and
V={weH QY :V-w=0in Q}.

For system (1), we will assume that the control region O is adjacent to the bound-
ary 0 (see assumption (11) below) and we will deal with the local exact controllability
to the trajectories. More precisely, our task will be to prove that, for any bounded
and sufficiently regular solution (7,p) of the uncontrolled Navier—Stokes equations

(5) 7=0 on X,
5(0) =7 in Q,
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there exists § > 0 such that, whenever y° € E and
1y = 7°lle <6,

we can find L? controls v with v; = 0 for at least one k and associated states (y, p)
satisfying

(6) y(T) =5(T) in Q.

Notice that, under these circumstances, after time ¢t = T" we can switch off the
control and let the system follow the “ideal” trajectory (7,D).

For the Boussinesq system (2), we will assume that O is adjacent to 02 near a
point x° such that ny(2°) # 0 for some k& < N. We will also be concerned with the
local exact controllability to the trajectories. Now, a trajectory is a bounded and

sufficiently regular solution (7, D, 6) of

9 —Ay+ (G- V)yg+Vp=0ey, V-y=0 inQ,
0, —AO+75-VO=0 in Q,
" 7=0, 6=0 on X,
7(0) =7°, 8(0)=8" in Q.

The goal will be to prove that there exists § > 0 such that, whenever (y°,0%) €
E x L?(Q) and

0 =0
”(yO’eO) - (y079 )”EXL"’ < 67

we can find L? controls v and h with vy = vy = 0 and associated states (y,p,0)
satisfying

(8) y(T) =5(T) and 6(T) = 6(T) in Q.

In this context, the results established in [12] will be fundamental.

Notice that, in particular, when N = 2, we try to control the whole system (2)
with just one scalar control h.

As far as (3) is concerned, our goal will be to prove the (global) null controllability.
That is to say, for each y° € H, we will try to find controls of the form v1p, where v
belongs to the Hilbert space

©)) W ={V x 2z = (0g2,—012) : z € L*(0,T; H*(0))},
such that the associated solutions (y,p) satisfy
(10) y(T) =0 in Q.
Approximate controllability results have been established for analogous systems
" [Z%bserve that in this system the boundary conditions are of the Navier kind as in

[3] (for their physical meaning, see, for instance, [11]). This and the fact that N = 2
will be essential in the arguments presented below.
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Similarly to the previous situation, an extension by zero of the control after time
t =T will keep (y,p) at rest.

As mentioned above, some hypotheses will be imposed on the control domain and
the trajectories. More precisely, we will frequently assume that

(11) 3% € 99, Je > 0 such that O NIQ D B(z";¢) NN

(B(2%;¢) is the ball centered at z° of radius ¢),

~1 ifN=2
12 7eL®Q)YN. 7 eL20,T:L°(Q)N 7
(12) yeL>™(Q)"™, v, €L (0,T;L7°(2)") o> 6/5 ifN =3

_ _ 1 ifN=2
(13) 0eL>(Q), 0:€L*0,T:L7(Q)) (Ziﬁﬁ ;fN?))'

Let us now present our main results in a precise form. The first one concerns the
local exact controllability to the trajectories of system (1).

THEOREM 1. Assume that O satisfies (11). Then, for any T > 0, (1) is locally
exactly controllable at time T to the trajectories (y,p) satisfying (12) with controls
v e L0 x (0,T))N having one component identically zero.

The second main result concerns the controllability of (2).

THEOREM 2. Assume that O satisfies (11) with ng(2°) # 0 for some k < N.
Then, for any T > 0, (2) is locally exactly controllable at time T to the trajectories
(7,p,0) satisfying (12)-(13) with L? controls v and h such that vy = vxy = 0. In
particular, if N = 2, we have local exact controllability to the trajectories with controls
v=0 and h € L*(O x (0,T)).

The last main result we present in this paper follows in Theorem 3.

THEOREM 3. Let N = 2. Then, for any T > 0 and any M > 0, (3) is null
controllable at time T with controls of the form vlp, where v € W.

For the proofs of these results, following a standard approach, we will first deduce
null controllability results for suitable linearized versions of (1), (2) and (3), namely,

v —Ay+ @G-Vy+ @y -V)g+Vp=f+vlp, V-y=0 inQ,

(14) y=0 on X,
y(0) =4° in Q,
Y —Ay+ @G- V)y+(y - V)y+Vp=f+vlo+fey inQ,
V.y=0 in Q,

(15) 0 —AO+7-VO+y-VO=k+ hlo in Q,
y=0, 0=0 on X,
y(0) =4, 6(0)=6° in Q

w—Ay+(y-V)y+Vp=vlop, V-y=0 inQ,
(16) y-n=0, Vxy=0 on X,
y(0) = ¢° in Q.
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Then, appropriate arguments will be used to deduce the controllability of the
nonlinear systems (1)—(3).

Remark 1. When N = 3, it is very natural to ask whether a result similar to
Theorem 1 holds with controls having two zero components. In general, the answer
is no. In fact, it seems difficult to identify the open sets 2 and O such that one has
null controllability for all 7" > 0 with controls of this kind. This is unknown even for
the classical Stokes equations for which, up to now, the only known results concern
approximate controllability; see [16].

Remark 2. Assume that N = 2. The arguments in [7] implicitly show that,
under hypotheses (12), we can find controls vlp with v € W such that the associated
solutions to (1) satisfy y(T') = §(T). Observe that the assumption (11) on the control
domain is not necessary here.

This paper is organized as follows. We will first establish all the technical results
needed in this work in section 2. Section 3 will deal with null controllability results
for the linear control systems (14)—(16). Finally, the proofs of Theorems 1, 2 and 3
will be given in section 4.

2. Some previous results. In this section we will establish all the technical
results needed in this paper. More precisely, we will present and prove the required
Carleman estimates for the backward systems (19), (20) and (21), given below.

To do this, let us first introduce some weight functions:

/M0 lse _ A(mn° oo +7°(2))

alw,t) = (T — 1) ’
X7l o +n° (2))
s
) A0 mina(es) - S/mI oo _ A1) 70 o
ceq tH(T —t)* ’
) S/ lloe _ Amlln®lloo
e (t):gleaé{oz(x,t): AT 1) ,
~ eAmA+1) 7% exmln®lloo
§(t>zrf€agf(%t>=w7 5*(02516%15(33’0:@7

where m > 4 is a fixed real number. Here, n° is a function verifying
(18) n° € C*(Q), |[Vn°>0inQ\ O n°>0inQ and 7° =0 on IN

with Oy a nonempty open subset of O that will be determined below. For any O, the
existence of such a function 7° is proved in [9]. Note that these weights have already
been used in [7] and [12].

We will be dealing in this section with the adjoint systems to (14) and (15), that
is to say,

—pr—Ap— (D) +Vr=g, V-o=0 inQ,
(19) =0 on X,
p(T) = ¢° in Q
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and
—pr—Ap— (D) +Vr=g+0Vy, V-p=0 inQ,
- =AY —F-Vp=q+onN in Q,
(20)
=0, =0 on i,
o(T) =% P(T) =y° in Q

(where Dy = Vi + V') as well as with the adjoint system of w := V x y (where y
is the solution of (16)), which is

—pt—Dp =V x([F-Vx)Vy) =0, Ay=p inQ,
(21) v=0, p=0 on X,

p(T) = p® in Q.
Here, g € L2(Q)N, g € L?(Q), ¢° € H, ¥° € L%(Q) and p° € H1(Q) (of course, ¢n
stands for the last component of the vector field ).

2.1. New Carleman estimates for system (19). We will establish some new
Carleman estimates for the solutions of (19). We will assume that O and g satisfy
(11)—(12). To fix ideas, we will also assume for the moment that N = 3 and nq(2°) # 0
(x° appears in assumption (11)).

The desired Carleman inequalities will have the form

I(p)<C (// P \ngda:dtJr// p5 (|p2]? + 03]?) dwdt) :
Q Ox(0,T)

where I(p) contains global weighted integrals of |2, |[V|?, etc. and p; and py are
appropriate weights that vanish exponentially as ¢ — 7. This will suffice to prove in
section 3 the null controllability of (14) with controls v1p satisfying v; = 0.

LEMMA 1. Assume that N = 3, nq1(2°) # 0 and O and § verify (11)—(12). Then
there exists a positive constant C' such that, for any g € L*(Q)? and any ¢° € H, the
associated solution to (19) satisfies:

—2a
Q
+// T (T — )74 |Vp|?) da dt
Q
- +// T 0T (T — 1)t (|AQ[ + |gr|?) dadt
Q

—4da+2a
<C (// e @013 — )73 g|? da dt
Q

—16e+lda
+// e DT 41827 _ 17182 (10012 4 g2 dardt | -
Ox(0,T)

Here, @ and a are constants only depending on Q, O, T and § satisfying 0 < a < @
and 8a — Ta > 0.
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Proof. Let us first recall a Carleman inequality for the solutions of (19) which has
been proved in [7] whenever (12) is fulfilled:

33/\4// e 253 p|? da dt + s\? // e 25|V p|? dr dt
Q Q

457t //Q e 2sag—1 (|g0t|2 + |A<p|2) dx dt

(23) .
< Co(l +T2) (515/2)\20 // e~ 4sb+2sa 5\15/2|g‘2 da dt
Q

451620 //O o) 6_85h+650‘*é\16\<p|2 dx dt) )
0 X (0,

Here, s > sgp and A > A\ are arbitrarily large and Cy, sg and Ay are suitable constants
depending on Q, Oy, T and 7 ; see Theorem 1 in [7].

Recall that an inequality like (23) had already been proved in [13] using stronger
properties on § than (12).

It is immediate from (23) that, for some Cy, @ and & depending on 2, Op, T and
Y, we have:

—2a
// e @0 (7T —t) 2P+t HT — )" |Vy|?) dadt
Q

—2a

+//Qet4<Tt)4 T —t)* (|Apl® + |¢e]?) dadt

TR 30 4\—30 | |2

<C et T-0TtTN(T — )7V |g|° dx dt

Q

—8a+6a
+ // e a0 =04 )= o2 dadt | .
O x(0,T)

Indeed, it suffices to choose

a = s <65/4>\om\|n°||oo _ exom\|n°nm> ’

(25)
& = s0 <e5/4)\0m\|710||oo _ er(m+1)Hn°Hoo)

and Cy = Cp(1+ T2)8(1)7)\30617>‘0(m+1)”"0”°°. Notice that 0 < a < @. Moreover, it can
be assumed that 8@ — 7a > 0 (it suffices to notice that \¢ is large enough in (25)).

We will apply (24) for the open set Oy C O defined as follows. We choose k > 0
such that

ni(z) #0 Va € B(x"; k) NOO N N
and we denote this set by I',,. Then, we define
(26) Ov={zecQ:v=w+7e,wely, || <"},
with &, 7% > 0 small enough so that we still have

(27) Oy CO and dy:= dist(Oy, 00 N Q) > 0.
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Observe that, with this choice, each P € Qg verifies that one of the two points
where the straight line {P + Re;} intersects 99 belongs to 0.

Once Oy is defined, we apply inequality (24) in this open set and we try to bound

the term
_Sat6a
/ / AT =BT _ 1)=04 112 d it
O(]X(O,T)

in terms of local integrals of p5 and 3.

To this end, for each (z,t) € Oy x (0,T) we denote by I(z,t) (resp., [(z,t)) the
segment that starts from (x,¢) with direction e; in the positive (resp. negative) sense
and ends at 00y. Then, since ¢ is divergence-free, it is not difficult to see that

p1(x,t) = / (0202 + 033) (Y1, @2, T3, 1) dyy
(z,t)

for each (z,t) € Op x (0,T). For simplicity, let us introduce the notation

—8a+6a

B(t) = eT@-oT =T — )7 vt e (0,7).

Applying at this point Holder’s inequality and Fubini’s formula, we obtain

// (t) |1|? da dt
O()X(O T
<G / / B(t) ( / (102032 + |Bips2) dy1> do dt
O x(0,T) I(x,t)

= C2 // (|82g02|2 + |63§03|2) < ﬂ(t) d$1> dyl dIL'Q diﬂg dt
0o x(0,T) B(y1)

<03 // t)(|0202|* + |05¢03]?) d dt,
O x (0, T)

(28)

where T(iJl) stands for the segment T(yl,mg,mg,t). Then, we introduce a function
¢ € C%*(0) such that

(=1in0y, 0<(¢<L1

and ((x) = 0 at any point = € O satisfying dist(xz, 00 N Q) < dy/2 (dy was defined in
(27)). This and the fact that ¢|s, = 0 imply

// B(t) |0spi|* da dit < // ¢ B(t) |85 |? da dt
Oox(0,T) Ox(0,T)
// Cﬁ |c,01|2 dx dt — // ”gpl ;i dx dt
Ox(0,T) Ox(0,T)

for i = 2,3. Finally, in view of Young’s inequality and regularity estimates for ¢; in
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Q (pi € H*(Q) and ||| = < C||Agi[|2), we also have:

// t) 0504 da dt
O()X OT

—16a+14a
<Cy // e ot =BT )72 512 do dt
Ox(0,T)

et (T Ap;|* dz dt,
e e (T~ 1)* |Agif d

which, combined with (24) and (28), yields (22). o

Let us now present another Carleman inequality for (19) with weight functions
not vanishing at time ¢ = 0.

LEMMA 2. Assume that N = 3, nq1(2°) # 0 and O and § verify (11)~(12). Then
there exist positive constants C, @ and & with 0 < a < @ and 8a — Ta > 0 depending
on Q, O, T and y such that, for any g € L*(Q)® and any ©° € H, the associated
solution to (19) satisfies:

// O (0(1) 12 |ol? + £(8) " [Vl?) da dt

74e+2a
(29) <C (// e T ()30 |g|* dx dt

—l1l6a+1l4a
+// e 0T L) (Jpa? + |psl?) dadt |
Ox(0,T)

where £ is the C function given by
T2
(30) t)y=4 4
t(T—t) forT/2<t<T.

for0<t<T/2,

To prove (29), it suffices to use (22) and the classical parabolic estimates for the
Stokes system satisfied by ¢. The argument has already been used in [9], [13] and [7]
in several similar situations, so we omit it for simplicity.

For completeness, let us state the similar result that can be established when
N = 2. Here, we assume again that ny(z°) # 0.

LEMMA 3. Assume that N =2, nq(2°) # 0 and O and § verify (11)~(12). Then
there exist positive constants C, @ and & with 0 < a@ < &@ and 8& — Ta > 0 depending
on Q, O, T and y such that, for any g € L*(Q)? and any ¢° € H, the associated
solution to (19) satisfies:

// T (£(t)12 [ + £(8)* [V l?) dardt

—4e+2a
(31) <C (// e O ()70 |g|? da dt

—16a+14a
+// e O L) T o P ddt |
Ox(0,T)

where £ is the function given by (30).
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2.2. New Carleman estimates for system (20). We will establish suitable
Carleman inequalities for the solutions of (20). To this end, our approach will be
similar to the one in subsection 2.1.

Thus, we will assume again that N = 3 and n;(z") # 0 and we will prove an
estimate of the form

2 2 2 2 2 2
K(so,w><0<//Qp3<|g| g )d””d”//oXm,T)”4 (Ii2f? + 4] )dwdt>7

where K(p,v%) = I(p) + I(¢) (I(p) has been given in (22)) and p3 and py are ap-
propriate weights. This will be used in section 3 to find controls v1p and hlp with
v1 = vy = 0 leading to the null controllability of (15).

LEMMA 4. Assume that N = 3, ny(2°) # 0 and O and (y,0) satisfy (11)—(13).
Then, there exist positive constants C, @ and & depending on Q, O, T, 5 and § with
0 <a<a and 16a — 15a > 0 such that, for any g € L*(Q)?, ¢ € L?(Q), ¢° € H and
Y0 € L2(Q), the associated solution to (20) satisfies:

I(p) +1(¥) < C ( [ T EF s g dsar
Q

+// e o a 22T — )22 g2 dar it

Q

(32) —l6etlda

_|_// PREIGEDE 257132(T _ t)7132 |902|2 dx dt
Ox(0,T)

—32e+30a
+// e Tt ¢7268(7 )28 |2 dx dt | .
Ox(0,T)

Proof. Let us first recall a Carleman inequality for the solutions of (20) which has
recently been proved in [12] (Proposition 1) whenever (12)—(13) are fulfilled:

xt [ g 4 o) dode
Q
+5)\? //Q e 2 (Vl® + |VY|?) dz dt
(33) o // T2 (e + el + 1Al + |AY[) da dt
Q

< 05(1 +T2) <815/2)\24 /A e—4sh+25a*§15/2(|g|2 + |q|2) dx dt

—|—816>\48 /A o 6785h+63a*é\16(|¢‘2 + W}‘Q) dx dt) )
o X (U,

Here, s > s; and A > A\ are arbitrarily large and C5, s; and \; are suitable constants
depending on Q, Op, T, 7 and 6; see Proposition 1 in [12]. The proof of this inequality
follows the same arguments employed in [7] to prove (23) and can be achieved without
any further regularity on 7 or 6.
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It is clear from (33) that, for some C, @ and & depending on Q, O, T, ¥ and 6,
we have:

//Q T 2T — )12 (o + ) da e
+//Q TN UT — )~ (Vl? + [V ) dedt

(34) +// T DT (T — 1) (|AQ + |AYP + [l + [1n]?) da dt
= <// eI T — )7 ([gf? + |q?) du it

_8ef6a
+// AT 4=B4(T _ ) =54 (|2 4+ |[2) da dt | .
O()X((),T)

Indeed, it suffices to take @ and & as in (25) and

Cs = Cs(1 + T2)s%7/\4i18€17)\1(m-‘rl)”noum.

We thus obtain 0 < a < @ and, noticing that A\ is large enough, 16a — 15a > 0.
We apply (34) for the open set Oy defined in (26). Then we can argue as in
subsection 2.1 and deduce that

—8ea-+6a
// e =047 — )76 | |2 da dt
OQX(O,T)

—l6a+l4a
SC?// e FTTT (12T — 1) 7192 (102 4 |03 2) dv
01 x(0,T)

—2a
+€// TN T — 1) (|Ap2f® + [Aps|?) du dt,
Q

where O is an appropriate nonempty open set verifying
Oy C O C O, dy = diSt((/)71, o0 N Q) >0

This inequality combined with (34) yields:
—2a
// eTIITETIA(T — )7 ([ + ) dar it
Q
—2a
*/ e T-0T T — 1)~ (|V]* + [Vo|*) da dt

/ Tt (T — 1) (|AQ? + | AP + [l + [1n]?) da dt

< Cy (// 0T 1=30(T — )= (|g[2 + |g[?) dar it

—l6a+1l4a
+// e =0T 12T — 1) 7132 (joo|? + [ips]?) dur dit
le(OT)

—8a+6a
+// et T — )5 Y| dxdt | .
Ox(0,T)
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Our last task will be to estimate the integral

e AOIHE 4132 132, |2
T-0% 72T —t) los|” da dt
01 x(0,T)

in terms of £I(p3) and local integrals of ¥ and ¢. To do this, we set

—16e+14a

ﬂl(t) — e ATt ¢~ 132(T t)7132

and we introduce a function ¢, € C2(O) such that
o=1in0;, 0<¢<1

and (p(z) = 0 at any point z € O satisfying dist(z,00 N Q) < dy/2. From the
differential equation satisfied by v (see (20)), we have

// (t) 3| da dt < // t) Co |ps|? dz dt
OIX(OT O><(0T

(36)
// t)Cops(—y — A — 7 - V) — q) da dt.
O x(0, T)

To end the proof, we perform integrations by parts in the last integral and pass all
the derivatives from 9 to 3.
First, we integrate by parts in time taking into account that 51(0) = 51(T") =

// t) Co w3 by da dt
Ox(0,T)

(37) //(’)X(OT)ﬁlt C(JSOS?/Jd:vdt—k//OXOT t) Co g3, dx dt

—32e+4+30a
<cl(pn) + Cole) [ TE T ) g daar
Ox(0,T)

Next, we integrate by parts twice in space. Here, we use the properties of the
cut-off function ¢ and the Dirichlet boundary conditions for 3 and :

-/ 1) Co o3 A i dt
O x(0, T)

(38) / / (—ACo @3 — 2V ¢y - Viog — (o Aps) ¢ da dt
Ox(0 T)

7323+300(
< el(ps) + Crole) / | AT 4-203(T — )28 |2 d dt.
Ox(0 T)

We also integrate by parts in the third term with respect to x and we use the
incompressibility condition on ¥:

// t)Co w3y - Vpda dt
O x(0, T)

O /O oy POT V4 Ty o

—32a+30a
<cl(pn) + (o) [[ T 200 - )20y dvat
Ox(0,T)
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We finally apply Young’s inequality in the last term and we have:

// t)Cp3qdrdt
(’)><(OT)

—32a+30a
<cl(pn) + Cuale) [[ T T2 g dwat
Ox(0,T)

(40)

From (35), (36) and (37)—(40), it is easy to deduce the desired inequality
(32). O

Arguing as in subsection 2.1, that is to say, combining the previous result and the
classical energy estimates satisfied by ¢ and 1, we can deduce the following Carleman
inequality.

LEMMA 5. Assume that N = 3, n1(2°) # 0 and O and (y,0) satisfy (11)~(13).
Then, there exist positive constants C, @ and & depending on Q, O, T, 5 and 0 with
0 < a<a and 16a — 15a > 0 such that, for any g € L*(Q)3, q € L*(Q), ¢©° € H and
0 € L2(Q), the associated solution to (20) satisfies:

ST () o+ )+ ) (Tl + VU)o

<C (// et o) =30 lg|? dx dt

—32a+30@
(41) + / e (O ()72 g dardt
Q
—1l6a+14a
+//o (OT)e 0T ()1 (o] dar dt
x (0,

—32e+30a
+// e t@F )28 |2 dadt |,
Ox(0,T)

where the function £ was defined in (30).

The similar result that can be established when N = 2 follows.

LEMMA 6. Assume that N = 2, n1(2°) # 0 and O and (y,0) satisfy (11)~(13).
Then, there exist positive constants C, @ and & depending on Q, O, T, 5 and § with
0 < a < a and 16a — 15a > 0 such that, for any g € L*(Q)?, ¢ € L*(Q), ¢° € H and
Y0 € L2(Q), the associated solution to (20) satisfies:

/ /Q T (1) 712 (|l + [[2) + £(t)~ (Vf? + [Vf2)) dadt

2a
<C (//e it )30 |g|? dx dt

—32e+430a
+// e T L)% |y dadt | .
Ox(0,T)
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2.3. An observability estimate for system (21). We will prove an observ-
ability estimate for the system

—pt = Ap =V x([7-VX)Vy) =0, Ay=p inQ,
(43) v=0, p=0 on X,
p(T) = p° in Q.

This estimate will be implied by a Carleman inequality of the form

son<c [[ wiPad
Ox(0,T)

where S(V+) contains several global weighted integrals involving V-~ (see (44)).

LEMMA 7. Assume that N = 2 and § € L*>(Q)?. There exist three positive
constants C, 5 and \ depending on Q, O, T and y such that, for any p° € H=1(Q),
the associated solution to (43) satisfies:

S(Vry) := s\ // e 25 ¢4V |? da dt
Q

(44) +5\2 // e 25 €|V p|? da dt + s3X\* // e 253 p|* d dt
Q Q

< Cs°\° // e 25|V |2 du dt,
Ox(0,T)

for any s > 5 and any A\ > X. Recall that o and & were defined in (17).

Proof. For the proof, s; and A; (j > 2) will denote various positive constants that
can eventually depend on Q, O, T and .

Let Oy be a nonempty open set satisfying Qg CC O and let us apply to p a
Carleman inequality for parabolic systems with right-hand sides in L2(0,T; H~1(Q)),
originally proved in [15] (this version can be found in Lemma 2.1 of [6]):

sA\? // e 25 €|V p|? du dt + s A\ // e 25¢3| p|? du dt
Q Q

(15) < (2203 [[ @V xR dod
Q

+53\ //O o e 2593 p|? da dt) ,
0 X (U,

for any s > so and A > Ao.

Observe that, here, the assumption p® € H~1(Q2) may seem too weak to apply
this result. Indeed, (45) can be proved as in [15] whenever p € C1(Q) and, by a
continuity argument, also for the solutions of problem (43) for which the left-hand
side of (45) is finite. This is our case, since one can ensure that p € L?(Q) as soon as
p° € H=1(Q) (for instance, taking into account the definition of p as the solution by
transposition of (43)).

Once (45) has been justified, let us first estimate the last integral in its right-hand
side. Thus, let ¢ € C*(O) be a cut-off function satisfying

(=1in0Qy, 0<(¢<1 and (=0 ond0.
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We have:

s34 // e 25| Ay 2 dr dt < sM* // Ce 23| Ay|? da dt
Oox(0,T) 0x(0, T)

= —s3)\* // e 23 (V( - V) Ay da dt
Ox(0,T)
—353\° / / Ce 259e3(Vn° - V) Ay dx dt
Ox(0,T)
+251\5 / / Ce 250eH(Vn® - V) Ay da dt
Ox(0,T)

—s3)\? / / Ce 2593 (V Ay - V) dx dt.
Ox(0,T)

Now, we apply Young’s inequality several times and we obtain

s34 / / e 2593 | Ay|? da dt
Op x (O,T)

< Cha(e) s°A° // e 2505 V| da dt
0x(0,T)

+e (33)\4 // e 253 Ay |2 du dt 4 sA? // e 25| VAY|? da dt) )
Q Q

for s > s3 and A > A3 and for any small positive constant €. Combining this, the fact
that p = A~, and (45), we get

s)\2// *23a5|vp|2dxdt+s3x4// e~ 25283 p|? da dt

(46) < (swnyﬁ; J[[ e s pasi
Q

+5°A° //O o e 2|V da dt)
x (0,

for any s > s4 and A > \4.

Finally, we are going to estimate the first integral in the right-hand side of (45).
To this end, let us notice that, for j = 1 and 2 and almost every ¢t € (0,7, the
function 9;v(t) satisfies:

A@)(t) = 9;p(t) in €.

Let us apply the main result in [14] to 0;v. This yields the existence of two
numbers 7 > 1 and A > 1 such that

P [ o dos 20 [ RSP0 do
(47) < Cyg (T/Q e*n|0;p|? ()dx+74)\4/oe2m174|8j7|2(t) dx

+ 72N e 10;7(t) ||?{1/2(39)>
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for7>7and \ > . Here, we have introduced the function 7, with
n(z) = A’ (@)

In fact, the inequality one can find in [14] contains local integrals of [9;v|? and
|V(9;7)|? in the right-hand side. But it can be written for a smaller set O’ CcC O.
Using localizing arguments together with the fact that we actually have a global
weighted integral of |A(8;7)|? in the left-hand side, (47) is easily found.
Following the same steps of [7], we set
s

(T — 1)t

5/ o
e v

and we integrate in time over (0,7). This gives

siad / / e 2¢409,7|? do dt + 52N\ / / e 22|V (9;)|? du dt
Q Q

< Ciy s// e 25%¢|0,p|* dx dt + s*\* // e 2¢49,7|? du dt
Q Ox(0,T)

T
+55/2/\2/0 6—2504 (f*)5/2||8j’}/|§[1/2(89)>

0
;e eAmin’lloe.

we multiply (47) by

for s > s5 and A > A. Combining this estimate and (46), we have

st // e 25¢40,7)? do dt + s\? // e 25 ¢|Vp|? du dt
Q Q

T
it /Q e~ 2g3 o2 dodt < Cug (sf’/W / =2 (€520, 20

+5°\6 //O o 6_2‘9“§5|V7|2dﬂcdt>
X (0,

for any s > s¢ and A > A5. On the other hand, the boundary term can readily be
bounded using the continuity of the trace operator:

10;7 (D712 0y < Cro(l057 ()12 + V(27 ()] 72)-

Furthermore, since v|s; = 0, we know that there exists a positive constant Cao such
that

IV(9;7) ()22 < Caol| Av(#)]|z2 ae. in (0,T) for j =1,2.
Consequently,

st // e 25¢40,7)? dx dt + s\? // e 25 €|V p|? du dt
Q Q

45304 //Q e 25¢3 p|? do dt < Oy s°\° //O o e 25| V|2 da dt
x (0,

for s > sg.
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This implies (44) and ends the proof of Lemma 7. a
Remark 3. An almost immediate consequence of the Carleman estimate (44) is
the following observability inequality:

(48) 1(V7)(0)]2: < C / / V2 da dt.
Ox(0,T)

Proof. All comes to prove a dissipation result for the L? norm of V~. Indeed, if
we can prove that

(49) V()72 < ClIVA(t2)IF: VO<t <ty <T,

—2sa

then using the properties of the weight function e and estimate (44), we readily

deduce (48).
Thus, we multiply the equation in (43) by —v and we integrate in Q2. Taking into
account that « and p vanish on 052, this yields:

1d

—f—/ |ny|2dx+/ |A’y|2dx*/(@'V><)V’y)~V><’ydx:0,

from which the dissipation estimate (49) follows. d
In fact, this is what will be used in section 3 to prove the null controllability of
system (16).

3. Null controllability of the linearized systems (14), (15) and (16).
3.1. Null controllability of (14). We are dealing here with the following sys-
tem:
w—Ay+@-Vy+ - -Vy+Vp=f+vlo, V-y=0 i@,
(50) y=0 on X,
y(0) = ¢° in Q,
where O satisfies (11) and 7 satisfies (12). Our goal will be to find a control v such

that y(T') = 0 in Q.
Let us introduce some weight functions:

and

(recall that ¢ was defined in (30)), where @ and & are the constants provided by
Lemma 2 when N = 3 and Lemma 3 when N = 2. Recall that, in particular,
0 <a<aand 8a—T7a > 0.

Of course, we will need some specific conditions on f and 3° to get the null
controllability of (50). We will use the arguments in [7].

Thus, let us set

(51) Ly=y;:—Ay+ 7, V)y+ (¥, V)7
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and let us introduce the spaces
Ey ={(y,p,v) : (y,v) € Eo, £ *Ba(Ly + Vp—vlo) € L*(0,T; H'(2)*)}
when N = 2 and
By = {(y,p.v) : (y:v) € B, 728,y € (0, T: L'*(2)°),

(™" B2(Ly + Vp — vlp) € L*(0, T; W~ 15(Q)%)}
when N = 3, where

Eo={(y,v) : sy, Bavio € L*(Q)N, v1 =0,

0726,/%y € L2(0,T;:V) N L=(0,T; H)}.
It is clear that Ey is a Banach space for the norm || - || g, , where

—2,1/2
1.2 0l = (185 9122 + 181 v103e + 167285 Y132 02,0

10282 o) + 164 a(Ly + Vp = v10) a0
and
1.2 0l = (185 w132 + 181 010032 + 1628 932 0,20
16728, 2y e 0 2, + 167282 Yl 0,102y

1/2
167 Ba(Ly + Vp — 01030z 16)) -

Remark 4. The spaces E; (j = 0,2,3) are natural spaces where solutions of the
null controllability of (50) must be found in order to preserve these properties for the
nonlinear term (y - V)y. More details are provided in subsection 4.1.

PROPOSITION 1. Assume that ny(z°) # 0 and O and § verify (11)~(12). Let
Yy’ € E and let us assume that

(*Baf € {

Then, we can find a control v such that the associated solution (y,p) to (50) satisfies
(y,p,v) € Ex. In particular, v1 =0 and y(T) = 0.

Sketch of the proof. The proof of this proposition is very similar to the one of
Proposition 2 in [7], so we will just give the main ideas. For simplicity, we will only
consider the case N = 3. When N = 2, the proof is even easier.

Following the arguments in [9] and [13], let us introduce the auxiliary optimal
control problem

1
inf = // \ﬂ3y|2dxdt+// |84 v|*dxdt
2\/Jeq 0x(0,T)

subject to v € L2(Q)3, supp v C O x (0,7, v; = 0 and

L0, T; H7Y(Q)?) if N=2,
L2(0,T; W=15(Q)3) if N =3.

(52) Ly+Vp=f+vlo in Q,
V-y=0 in @,
y=0 on X,

y(0)=4°, y(T)=0 Q.
Notice that a solution (7, p,v) to (52) is a good candidate to satisfy (7, p,v) € Es.
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For the moment, let us assume that (52) possesses a solution (7,p,?). Then, by
virtue of Lagrange’s principle, there must exist dual variables z and ¢ such that

J=p"L2+ VY, V 2=0 g,
=0, B=—0"% (i=23) n0Ox(0,7T),
0 on X,

(53)

z
where L* is the adjoint operator of L, i.e.,
L*'z=—z—Az— (D2)7.
At least formally, the couple (Z, q) satisfies
(54) al(2,9), (1, 0)) = (G, (w, ) ¥(w, ) € P,

where P, is the space
Py ={(w,h) € C*(Q)*:V-w=0, w=0onX, / h(z,t)dx =0}
o
and we have used the notation

a((z,9), / B3 (L*2+ Vq) - (L*w + Vh) dr dt

// N 2 (Zywy + Zyws) dx dt
Ox(0,T)

and

(G, (w, b)) = / (), 0(t)) s oy dt -+ / 4 - w(0) d.

Conversely, if we are able to “solve” (54) and then use (53) to define (¥, p,v), we
will probably have found a solution to (52).

Thus, let us consider the linear space Py. It is clear that a(-,-) : Py x Py — Ris a
symmetric, definite positive bilinear form on Fy. We will denote by P the completion
of Py for the norm induced by a(-,-). Then af(-,-) is well-defined, continuous and
again definite positive on P. Furthermore, in view of the Carleman estimate (29),
the linear form (w, h) — (G, (w, h)) is well-defined and continuous on P. Hence, from
Lax-Milgram’s lemma, we deduce that the variational problem

a((%,9); ( h)) = (G, (w, h))
Y(w, h

55
o )eP, (29 €P

possesses exactly one solution (Z, q).
Let y and v be given by (53). Then, it is readily seen that they verify

// B2 |9 dx dt + // 202 dx dt < 400
Q Ox(0,T)

and, also, that ¥ is, together with some pressure p, the weak solution (belonging to
L2(0,T; V)N L>(0,T; H)) of the Stokes system in (52) for v = v.
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In order to prove that (7,p,9) € Fj3, it only remains to check that ¢~2 6;/2 7 is,
together with ¢—2 521/2]3, a weak solution of a Stokes problem of the kind (50) with a
right-hand side in L?(0, T; W ~16(Q)3) that belongs to L*(0, T; L'?(€2)3). To this end,
we define the functions y* = ¢—2 621/2 v, pt =072 621/2]/5 and f* = (72 621/2(f + 01p).
Then (y*,p*) satisfies

Ly +Vp" = [+ (8, )5 V=0 mQ,
(56) y =0 on %,
y*(0) = £72(0)3,"(0)y” in Q.

From the fact that f* € L?(0,7; H=*(Q)?) and y° € H, we have indeed
y* € L*(0,T; V)N L>(0,T; H).

Finally, we deduce that y* € L*(0,T; L'?(Q)3) from Lemma 2 in [7]. This ends the
sketch of the proof of Proposition 1. 0

3.2. Null controllability of system (15). We will establish the null control-
lability of the linear system

Yy —Ay+ @G- Vy+ @y -V)y+Vp=f+vlo+fexy inQ,

V.y=0 in Q,
(57) 0, —AO+75-VO+y-VO=k+hle in Q,
y=0, =0 on X,
y(0)=4° 6(0)=0° in Q,

where O satisfies (11) and 7 and  satisfy (12) and (13), for suitable right-hand sides
f and k.

The arguments we present here are completely analogous to those in [12] and
subsection 3.1 of this paper, so that we will only give a sketch. Thus, we restrict
ourselves again to the three-dimensional case with nq(z?) # 0.

Let us introduce the weight functions

R P YU XORT et VR

) =exo { 152 Loy, ) = e { T ey

and

where the constants @ and a are furnished by Lemma 5 when N = 3 and Lemma 6
when N = 2 (and, in particular, 0 < @ < @ and 16 — 15a > 0).
Let us set

(58) PO =0,— A0 +7-V0
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and let us introduce the spaces
Ey = {(y.p,0v.h) : (4.0,v,h) € Eo,
07405 (Ly + Vp — vlo) € L*(0,T; H(2)*),
(71B35(PO +y - VO — hlp) € L*(0,T; H1(Q))}
when N = 2 and
Es = {(y,p,0,0.h) : (y,0,0,h) € Fo,
072052y € 140, 15 L*()°),
(~435(Ly + Vp — vlo) € L*(0, T; W~H4(Q)%),
(~4B5(PO +1y-V0O — hlp) € L?(0,T; H1(Q))}
when N = 3, where
Eo = {(y.0,v,h) : (Bs)i, B0, (Bsvlo)i, Bohlo € L*(Q) (1 <i < N),
v =wvy =0, 07262y € L2(0,T; V) N L=(0,T; H),
(72820 € L2(0,T; HL () N (0, T; L2(R))}.
It can be readily seen now that Eo, Eg and Eg are Banach spaces for the norms

1y, 00,0l g, = (1Bs ylIZ2 + 157 01172 + [1Bs vl 7
+1189 h”%z + “6_2551/2y||%2(0,1“;v) + ||€_2 51/2y||2Loo(o,T;H)
o 41/2 o 1/2 1/2
+le=23/ 9”3;2(07T;H3) + =28/ GHQLoo(o,T;m)) ’
192,60, 0.1 L, = (1w, 0,0, 1%,
+ 11674 85(Ly + Vp — v10)| 2071
_ 1/
+1485(PO +y - V8 — 110) 2021
and
w.p.0.0.1) 1, = (10,0, B) I, + 1626
s 2y Vs Uy Es s Uy Uy Eo 5 L4(0,T;L12)
+ 16785 (Ly + Vp — v10) 720,00 109
_ 1/2
+455(PO +y - V8 — o) [Eaozm 1)) -
PROPOSITION 2. Assume that ny(2°) # 0 and O and (7,0) satisfy (11)—(13). Let
Y € E, 0°c L?(Q) and let us assume that
480 L2(0,T; H-1(Q)2) x L2(0, T; H Q) if N =2,
_ ) e
' L2(0,T; W=16(Q)3) x L2(0,T; H-(Q)) if N = 3.

Then, we can find controls v and h such that the associated solution to (57) satisfies
(y,p,0,v,h) € Ex. In particular, vi = vy =0 and y(T)=0(T)=0.

We omit the proof of this proposition, since it is essentially the same as the one of
Proposition 2 in [12] and follows the steps of Proposition 1 above. As we have already
indicated, the main ideas come from [13].
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3.3. Null controllability of system (16). We will prove the null controllabil-
ity of the linear system

y—Ay+(y-V)g+Vp=vlp, V-y=0 1inQ,
(59) y-n=0, Vxy=0 on X,
y(0) = 3" in Q,

where N = 2 and 5 € L>(Q)%.
For this purpose, we first rewrite this system using the streamline-vorticity for-
mulation. Thus, setting w =V x y, we have

w—Aw+ VX (Vxy-V)y) =Vx(vlp), AYy=w inQ,
(60) =0, w=0 on X,
w(0) =V xy° in Q.

PROPOSITION 3. Assume that y° € H and § € L>(Q)%. Then, there erists a
constant C(2,0,T) > 0 and controls vip with v € W (W was defined in (9)), such
that

(61) [oll e < Clly°|ler

and the associated solutions of (59) satisfy

(62) e L*(0,T; H(Q)?*) N C(0, T L*(Q)%),  ye € L*(0, T; HH(Q)?),
and y(T) = 0, with

(63) 1Yl L20.7500) + Wllcoo.ry:L2) + el 20,1y < Clly° |-

Proof. We first establish the null controllability property for y. This can be done
in several ways. One of them is the following. We first define for each ¢ > 0 the
functional

1
100 =5 [[ VxR dedtr eVl + (9 % 9)(0),5°)10
Ox(0,T)
v4° € Hy(9),

where v is given by (43) with p° = AyY € H=1(Q).

It is not difficult to see from the observability inequality (48) that this functional
possesses a unique minimizer 72 € HJ () (see Proposition 2.1 in [5]). Now, from the
necessary conditions for J. to reach a minimum, we have

V x 72

0
) X PY L2
T )

//Q((V X Y:)1o) - (V x v) dzdt + ¢(

+((V x79)(0),4°)r2 =0 ¥ € H(Q).

(64)

Thus, setting v. = (V X 7.)1p and putting v° = ~?, we find from (48) and (64) that
(61) holds for v, for some C independent of e:

(65) IV X YellL2(ox0,1))2 = [vell2(0x0,1))2 < C.
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Let us denote by (we,v:) the solution to (60) for v = v.. Then, taking into
account the systems satisfied by (p,7) and (we, %), we deduce that

// V x (velo) ydzdt + (V x A%, (V x ) (T)) 2
Q

~((Vx7)(0),4°)12 =0 v7° € Hy().
Combining this and (64), we obtain

(66) I(V x ¢e) (T2 < e

From (65) and (66) written for each € > 0, we deduce that, at least for a sub-
sequence, v. — v weakly in L2(O x (0,T))?, where the control vl is such that the
corresponding solution (w, ) to (60) satisfies

(VxyY)(T)=y(T)=0 in Q.

Since v € L*(O x (0,7))? and V-v = 0 in O x (0,T), we necessarily have v € W
(from De Rham’s lemma applied to (ve, —v1)).

In order to obtain the desired regularity for y, we will consider again the equations
satisfied by ¥ and w and we will check that

(67) Y € L2(0,T; H*(Q)) N C%([0, T); Hy(Q)) and 1 € L*(Q),

with appropriate estimates.

For simplicity, we will only present the estimates. The rigorous argument relies
on introducing a standard Galerkin approximation of (60) with a “special” basis
of HE(2) (more precisely, the basis formed by the eigenfunctions of the Laplacian-
Dirichlet operator in Q) and deducing for the associated approximate solutions the
estimates below.

Thus, let us multiply the first equation in (60) by ¢ and let us integrate by parts.
We find that

;/ﬂVz/J(t)Qdm—&—/Ot/QAz/J|2dxdT:/Ot/ov~(V><z/J)d:ch

- [ [ <0199 (7 xw)dear + 51T O]

for all t € (0,T). If we integrate by parts in the last integral, we also have
t
- [ [ x0)-9)9) (¥ 0 dodr
0

_ /Ot/ﬂ((v <) - V)V x ¥) - Fdz dr.
Since |y, = 0, we deduce that
(68) ¢ e L*(0,T; H*()) N L=(0,T; Hy (2))
and

(69) ¥l z20,7:m2) + 19l Lo 0,3 12) < Clly° |22



Downloaded 05/20/16 to 150.214.230.47. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

N-DIMENSIONAL NAVIER-STOKES WITH N — 1 CONTROLS 169

Now, let us introduce for each t the function 1*(t) = A=11(t), i.e., the solution
to

—AY*(t) = P(t) inQ
() =0 on 9.

Observe that, whenever 1;(t) € L?(£2), this function satisfies ¥*(¢t) € H?(Q) N
H}(Q) and

(70) 10" )l a2 < Cllwbe ()] 2.

Then, we multiply the first equation of (60) by ¢* and we integrate by parts. This

gives
//|wt|2d:cdt // Ay dx dt — / (V x4) - V)V x o*) - ydxdt

//OX(OT) A(V x %) dz dt.

Using that v € L?(Q)? and we already have (69) and (70), we conclude that 1, €
L?(Q) and

(71) lellzz < Clly® e

From (69) and (71), we immediately obtain (67), (62) and (63).
This ends the proof of Proposition 3. O

4. Proofs of the controllability results for the nonlinear systems. In
this last section, we will give the proofs of Theorems 1, 2 and 3. For the proofs
of Theorems 1 and 2 we employ an inverse mapping theorem, while a fixed point
argument is used for Theorem 3.

4.1. Proof of Theorem 1. We also follow here the steps in [7].
Thus, we set y =7 + z and p = p + x and we use these identities in (1). Taking
into account that (7,p) solves (5), we find:

Lz+(2-V)z+Vx=vlp, V:z=0 in@Q,
(72) z2=0 on X,
2(0) =y° - 7° in

(recall that L was defined in (51)).

This way, we have reduced our problem to a local null controllability result for
the solution (z, x) to the nonlinear problem (72).

We will use the following inverse mapping theorem (see [1]).

THEOREM 4. Let By and By be two Banach spaces and let A : By — Bs satisfy
A € CY(By; By). Assume that by € By, A(by) = do and also that A’ (by) : By +— By is
surjective. Then there exists 6 > 0 such that, for every d € Bs satisfying ||d—do| 5, <
0, there exists a solution of the equation

A(b)=d, be B.
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We will apply this result with B; = Ey,
L2(07465;0,T; H-(Q)2) x H i N =2,
2T { L2(0=46;0, T; W—16(Q)3) x (HNLA(Q)?) if N=3
and
A(z,x,v) = (Lz+ (2-V)z+ Vx —vle,2(0)) V(z,x,v) € EN.

From the facts that ¢£=2 21/2y € L*0,T;L*%(Q)%) and A is bilinear, it is not
difficult to check that A € C*(By; Bz); more details can be found in [13] or [7].
Let bg be the origin in B;. Notice that .A4’(0,0,0) : By — Bs is given by

A'(0,0,0)(z, x,v) = (Lz + Vx — vlo,2(0)) VY(z x,v) € Ey

and is surjective, in view of the null controllability result for (14) given in Proposition
1.

Consequently, we can indeed apply theorem 4 with these data and there exists
6 > 0 such that, if ||z(0)||g < 6, then we find a control v satisfying v1 = 0 such that
the associated solution to (72) verifies z(7') = 0 in .

This concludes the proof of Theorem 1.

4.2. Proof of Theorem 2. Again, we follow here the ideas of [12].
Therefore, we set y =5+ 2, p =P+ x and § = 6+ p, so from (2) and (7), we find:

Lz+(z-V)z+Vx=vlp+pey, V-z=0 1inQ,

(73) Pp+(z2-V)p+2z-V0=hlep in Q,
z=0, p=0 on X,
2(0)=y"—7°, p(0)=6°—6(0) in O

(L and P were respectively defined in (51) and (58)).

We are thus led to prove the local null controllability of (73). To this end, we will
use again Theorem 4, which was presented in subsection 4.1. Using the same notation
as there, we set By = Ey,

By = L*(¢765;0,T; H1(2)%) x H x L*(Q)
if N =2 and
By = L2(07465;0,T; W 1%(Q)3 x H™1(Q)) x (LY(Q)* N H) x L*(Q)

if N = 3.
Let us introduce A, with

A(z, X, p,v, h) = (A1(2, X, p, ), A2 (2, p, ), 2(0), p(0)),
Ai(z,x,p,v) =Lz+ (2-V)z+ Vx —vlp — pen
and
As(z,p,h) = Pp+(2-V)p+2z-V0—hlo

for every (z,x,p,v,h) € En.
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Using the fact that K’Qﬂ;/zz € L*(0,T; L'2(Q)?), it can be checked that A; is
C'. Then, since E_Qﬁ;mp € L%(0,T; HY(Q)) N L>(0,T; L*(R)) and this space is
continuously embedded in L*(0,T; L3(Q)), we deduce that

485(2,V)p =V - (2p) € L*(0,T; W= 112/5(Q)) € L2(0, T; H1(Q))

and, consequently, A is well-defined and satisfies A € C*(By; Bo).
The fact that .A’(0,0,0,0,0) : By — Bs is surjective is an immediate consequence
of the result given in Proposition 2.

As a conclusion, we can apply Theorem 4 and the null controllability for system
(73) holds.

4.3. Proof of Theorem 3. Let us recall the nonlinear system we are dealing
with:

ye—Ay+ (y-V)Tru(y) + Vp=vlp in Q,

V-y=0 in Q,
yn=0 Vxy=0 on X,
y(0) = ¢° in Q.

In this case, we are going to apply Kakutani’s fixed point theorem (see, for in-
stance, [2]).

THEOREM 5. Let Z be a Banach space and let A : Z — Z be a set-valued mapping
satisfying the following assumptions:

o A(z) is a nonempty closed convex set of Z for every z € Z.

e There exists a convex compact set K C Z such that A(K) C K.

o A is upper-hemicontinuous in Z, i.e., for each o € Z' the single-valued mapping

(74) zv sup (0,Y)z/ z
yEA(z)

1S upper-semicontinuous.

Then A possesses a fized point in the set K, i.e., there exists z € K such that
z € A(2).

In order to apply this result, we set Z = L?(Q)? and, for each z € Z, we consider
the following system:

ye— Ay +(y-V)Tu(2) + Vp=vle inQ,

V-y=0 in Q,
(75) y Q
yn=0 Vxy=0 on X,
y(0) = ¢° in .

Then, for each z € Z, we denote by A(z) the set of controls v1p with v € W that
drive system (75) to zero and satisfy (61). Finally, our set-valued mapping is given as
follows: for each z € Z, A(z) is the set of functions y that solve, together with some
p, the linear system (75) corresponding to a control v € A(z).

Let us check that the assumptions of Theorem 5 are satisfied in this setting. The
first one holds easily, so we omit the proof. Next, the estimates (62) and (63) tell us
that the whole space Z is actually mapped into a compact set.
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Let us finally see that A is upper-hemicontinuous in Z. Assume that o € Z’ and
let {z,} be a sequence in Z such that z, — z in Z. We have to prove that

(76) limsup sup (o,y)z.z < sup (0,y)z 2.
n—oo yEA(z") yEA(z)

Let us choose a subsequence {z, } such that

(77) limsup sup (0,y)z.z= lim sup (0,y)z z.
n—00  yeA(zn) 0 ye ()

From the fact that A(z,/) is a compact set of Z, for each n’ we have

sup <U, y>Z’,Z = <U7 yn’>Z’,Z
yEA(2,7)

for some y, € A(z,). Obviously, it can be assumed that

(78) 2o (x,t) — z(z,t) ace. (x,t) € Q
and
(79) v — v weakly in L*(Q)?

with v € A(z). Furthermore, since all the y,, belong to a fixed compact set, we can
also assume that

Yn' — Y in Z

(after extraction of a subsequence). This, together with (77)—(79) implies that y €
A(z), since we have a Stokes system with a right-hand side weakly converging in L?
and a coefficient converging almost everywhere. As a conclusion, (76) holds and the
proof of Theorem 3 is achieved.
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