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SOME CONTROLLABILITY RESULTS FOR THE N-DIMENSIONAL
NAVIER–STOKES AND BOUSSINESQ SYSTEMS WITH N − 1

SCALAR CONTROLS∗

ENRIQUE FERNÁNDEZ-CARA† , SERGIO GUERRERO† , OLEG YU. IMANUVILOV‡ , AND

JEAN-PIERRE PUEL§

Abstract. In this paper we deal with some controllability problems for systems of the Navier–
Stokes and Boussinesq kind with distributed controls supported in small sets. Our main aim is to
control N -dimensional systems (N + 1 scalar unknowns in the case of the Navier–Stokes equations)
with N − 1 scalar control functions. In a first step, we present some global Carleman estimates
for suitable adjoint problems of linearized Navier–Stokes and Boussinesq systems. In this way, we
obtain null controllability properties for these systems. Then, we deduce results concerning the local
exact controllability to the trajectories. We also present (global) null controllability results for some
(truncated) approximations of the Navier–Stokes equations.
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1. Introduction and examples. Let Ω ⊂ RN (N = 2 or 3) be a bounded
connected open set whose boundary ∂Ω is regular enough (for instance of class C2).
Let O ⊂ Ω be a (small) nonempty open subset and let T > 0. We will use the notation
Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ) and we will denote by n(x) the outward unit
normal to Ω at the point x ∈ ∂Ω.

On the other hand, we will denote by C, C1 , C2 , . . . various positive constants
(usually depending on Ω and O).

We will be concerned with the following controlled Navier–Stokes and Boussinesq
systems:

(1)

⎧⎪⎨⎪⎩
yt − Δy + (y · ∇)y + ∇p = v1O, ∇ · y = 0 in Q,

y = 0 on Σ,

y(0) = y0 in Ω

and

(2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yt − Δy + (y · ∇)y + ∇p = v1O + θ eN , ∇ · y = 0 in Q,

θt − Δθ + y · ∇θ = h1O in Q,

y = 0, θ = 0 on Σ,

y(0) = y0, θ(0) = θ0 in Ω

(in both dimensions N = 2 and N = 3).
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N -DIMENSIONAL NAVIER–STOKES WITH N − 1 CONTROLS 147

For N = 2, we will also consider the following approximation of the Navier–Stokes
system with boundary conditions of the Navier kind:

(3)

⎧⎪⎨⎪⎩
yt − Δy + (y · ∇)TM (y) + ∇p = v1O, ∇ · y = 0 in Q,

y · n = 0, ∇× y = 0 on Σ,

y(0) = y0 in Ω,

where M > 0, TM (y) = (TM (y1), TM (y2)) and TM is given by

TM (s) =

⎧⎨⎩
−M if s ≤ −M,
s if −M ≤ s ≤ M,
M if s ≥ M.

In systems (1), (2) and (3), v = v(x, t) and h = h(x, t) stand for the control
functions. They act during the whole time interval (0, T ) over the set O. The symbol
1O stands for the characteristic function of O and eN is the Nth vector of the canonical
basis of RN .

The controllability of Navier–Stokes systems has been the objective of consider-
able work over the last years. Up to our knowledge, the strongest results have been
given in [7], where a strategy based on the methods in [13] and [14] has been followed.
Recently, the techniques in [7] have been adapted in [12] to cover Boussinesq systems
(see also [3], [4], [8] and [10] for other results).

This paper can be viewed as a continuation of [7]. We will present some new
results which show that the N -dimensional systems (1) and (2) can be controlled,
at least under some geometrical assumptions, with only N − 1 scalar controls in
L2(O × (0, T )). In particular, the Boussinesq system (2) in dimension N = 2 can be
controlled by an action performed only on the temperature equation. We will also
prove that the two-dimensional system (3) can be controlled with controls of the form
v1O where v is the curl of a function in L2(0, T ;H1(O)).

In this paper, we will have to impose some regularity assumptions on the initial
data. To this purpose, we introduce the spaces H, E and V , with

(4) H = {w ∈ L2(Ω)N : ∇ · w = 0 in Ω, w · n = 0 on ∂Ω},

E =

{
H if N = 2,

L4(Ω)3 ∩H if N = 3

and

V = {w ∈ H1
0 (Ω)N : ∇ · w = 0 in Ω}.

For system (1), we will assume that the control region O is adjacent to the bound-
ary ∂Ω (see assumption (11) below) and we will deal with the local exact controllability
to the trajectories. More precisely, our task will be to prove that, for any bounded
and sufficiently regular solution (y, p) of the uncontrolled Navier–Stokes equations

(5)

⎧⎪⎨⎪⎩
yt − Δy + (y · ∇)y + ∇p = 0, ∇ · y = 0 in Q,

y = 0 on Σ,

y(0) = y0 in Ω,

D
ow

nl
oa

de
d 

05
/2

0/
16

 to
 1

50
.2

14
.2

30
.4

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



148 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

there exists δ > 0 such that, whenever y0 ∈ E and

‖y0 − y0‖E ≤ δ,

we can find L2 controls v with vk ≡ 0 for at least one k and associated states (y, p)
satisfying

(6) y(T ) = y(T ) in Ω.

Notice that, under these circumstances, after time t = T we can switch off the
control and let the system follow the “ideal” trajectory (y, p).

For the Boussinesq system (2), we will assume that O is adjacent to ∂Ω near a
point x0 such that nk(x

0) 
= 0 for some k < N . We will also be concerned with the
local exact controllability to the trajectories. Now, a trajectory is a bounded and
sufficiently regular solution (y, p, θ) of

(7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yt − Δy + (y · ∇)y + ∇p = θ eN , ∇ · y = 0 in Q,

θt − Δθ + y · ∇θ = 0 in Q,

y = 0, θ = 0 on Σ,

y(0) = y0, θ(0) = θ
0

in Ω.

The goal will be to prove that there exists δ > 0 such that, whenever (y0, θ0) ∈
E × L2(Ω) and

‖(y0, θ0) − (y0, θ
0
)‖E×L2 ≤ δ,

we can find L2 controls v and h with vk ≡ vN ≡ 0 and associated states (y, p, θ)
satisfying

(8) y(T ) = y(T ) and θ(T ) = θ(T ) in Ω.

In this context, the results established in [12] will be fundamental.
Notice that, in particular, when N = 2, we try to control the whole system (2)

with just one scalar control h.
As far as (3) is concerned, our goal will be to prove the (global) null controllability.

That is to say, for each y0 ∈ H, we will try to find controls of the form v1O, where v
belongs to the Hilbert space

(9) W = {∇ × z = (∂2z,−∂1z) : z ∈ L2(0, T ;H1(O))},

such that the associated solutions (y, p) satisfy

(10) y(T ) = 0 in Ω.

Approximate controllability results have been established for analogous systems
in [4].

Observe that in this system the boundary conditions are of the Navier kind as in
[3] (for their physical meaning, see, for instance, [11]). This and the fact that N = 2
will be essential in the arguments presented below.
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N -DIMENSIONAL NAVIER–STOKES WITH N − 1 CONTROLS 149

Similarly to the previous situation, an extension by zero of the control after time
t = T will keep (y, p) at rest.

As mentioned above, some hypotheses will be imposed on the control domain and
the trajectories. More precisely, we will frequently assume that

(11) ∃x0 ∈ ∂Ω, ∃ε > 0 such that O ∩ ∂Ω ⊃ B(x0; ε) ∩ ∂Ω

(B(x0; ε) is the ball centered at x0 of radius ε),

(12) y ∈ L∞(Q)N , yt ∈ L2(0, T ;Lσ(Ω)N )

(
σ > 1 if N = 2

σ > 6/5 if N = 3

)

and

(13) θ ∈ L∞(Q), θt ∈ L2(0, T ;Lσ(Ω))

(
σ > 1 if N = 2

σ > 6/5 if N = 3

)
.

Let us now present our main results in a precise form. The first one concerns the
local exact controllability to the trajectories of system (1).

Theorem 1. Assume that O satisfies (11). Then, for any T > 0, (1) is locally
exactly controllable at time T to the trajectories (y, p) satisfying (12) with controls
v ∈ L2(O × (0, T ))N having one component identically zero.

The second main result concerns the controllability of (2).
Theorem 2. Assume that O satisfies (11) with nk(x

0) 
= 0 for some k < N .
Then, for any T > 0, (2) is locally exactly controllable at time T to the trajectories
(y, p, θ) satisfying (12)–(13) with L2 controls v and h such that vk ≡ vN ≡ 0. In
particular, if N = 2, we have local exact controllability to the trajectories with controls
v ≡ 0 and h ∈ L2(O × (0, T )).

The last main result we present in this paper follows in Theorem 3.
Theorem 3. Let N = 2. Then, for any T > 0 and any M > 0, (3) is null

controllable at time T with controls of the form v1O, where v ∈ W .
For the proofs of these results, following a standard approach, we will first deduce

null controllability results for suitable linearized versions of (1), (2) and (3), namely,

(14)

⎧⎪⎨⎪⎩
yt − Δy + (y · ∇)y + (y · ∇)y + ∇p = f + v1O, ∇ · y = 0 in Q,

y = 0 on Σ,

y(0) = y0 in Ω,

(15)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yt − Δy + (y · ∇)y + (y · ∇)y + ∇p = f + v1O + θ eN in Q,

∇ · y = 0 in Q,

θt − Δθ + y · ∇θ + y · ∇θ = k + h1O in Q,

y = 0, θ = 0 on Σ,

y(0) = y0, θ(0) = θ0 in Ω

and

(16)

⎧⎪⎨⎪⎩
yt − Δy + (y · ∇)y + ∇p = v1O, ∇ · y = 0 in Q,

y · n = 0, ∇× y = 0 on Σ,

y(0) = y0 in Ω.
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150 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

Then, appropriate arguments will be used to deduce the controllability of the
nonlinear systems (1)–(3).

Remark 1. When N = 3, it is very natural to ask whether a result similar to
Theorem 1 holds with controls having two zero components. In general, the answer
is no. In fact, it seems difficult to identify the open sets Ω and O such that one has
null controllability for all T > 0 with controls of this kind. This is unknown even for
the classical Stokes equations for which, up to now, the only known results concern
approximate controllability; see [16].

Remark 2. Assume that N = 2. The arguments in [7] implicitly show that,
under hypotheses (12), we can find controls v1O with v ∈ W such that the associated
solutions to (1) satisfy y(T ) = y(T ). Observe that the assumption (11) on the control
domain is not necessary here.

This paper is organized as follows. We will first establish all the technical results
needed in this work in section 2. Section 3 will deal with null controllability results
for the linear control systems (14)–(16). Finally, the proofs of Theorems 1, 2 and 3
will be given in section 4.

2. Some previous results. In this section we will establish all the technical
results needed in this paper. More precisely, we will present and prove the required
Carleman estimates for the backward systems (19), (20) and (21), given below.

To do this, let us first introduce some weight functions:

(17)

α(x, t) =
e5/4λm‖η0‖∞ − eλ(m‖η0‖∞+η0(x))

t4(T − t)4
,

ξ(x, t) =
eλ(m‖η0‖∞+η0(x))

t4(T − t)4
,

α̂(t) = min
x∈Ω

α(x, t) =
e5/4λm‖η0‖∞ − eλ(m+1) ‖η0‖∞

t4(T − t)4
,

α∗(t) = max
x∈Ω

α(x, t) =
e5/4λm‖η0‖∞ − eλm‖η0‖∞

t4(T − t)4
,

ξ̂(t) = max
x∈Ω

ξ(x, t) =
eλ(m+1)‖η0‖∞

t4(T − t)4
, ξ∗(t) = min

x∈Ω
ξ(x, t) =

eλm‖η0‖∞

t4(T − t)4
,

where m > 4 is a fixed real number. Here, η0 is a function verifying

(18) η0 ∈ C2(Ω), |∇η0| > 0 in Ω \ O0, η0 > 0 in Ω and η0 ≡ 0 on ∂Ω

with O0 a nonempty open subset of O that will be determined below. For any O0, the
existence of such a function η0 is proved in [9]. Note that these weights have already
been used in [7] and [12].

We will be dealing in this section with the adjoint systems to (14) and (15), that
is to say,

(19)

⎧⎪⎪⎨⎪⎪⎩
−ϕt − Δϕ− (Dϕ) y + ∇π = g, ∇ · ϕ = 0 in Q,

ϕ = 0 on Σ,

ϕ(T ) = ϕ0 in Ω
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N -DIMENSIONAL NAVIER–STOKES WITH N − 1 CONTROLS 151

and

(20)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−ϕt − Δϕ− (Dϕ) y + ∇π = g + θ∇ψ, ∇ · ϕ = 0 in Q,

−ψt − Δψ − y · ∇ψ = q + ϕN in Q,

ϕ = 0, ψ = 0 on Σ,

ϕ(T ) = ϕ0, ψ(T ) = ψ0 in Ω

(where Dϕ = ∇ϕ + ∇ϕt) as well as with the adjoint system of ω := ∇× y (where y
is the solution of (16)), which is

(21)

⎧⎪⎪⎨⎪⎪⎩
−ρt − Δρ−∇× ((y · ∇×)∇γ) = 0, Δγ = ρ in Q,

γ = 0, ρ = 0 on Σ,

ρ(T ) = ρ0 in Ω.

Here, g ∈ L2(Q)N , q ∈ L2(Q), ϕ0 ∈ H, ψ0 ∈ L2(Ω) and ρ0 ∈ H−1(Ω) (of course, ϕN

stands for the last component of the vector field ϕ).

2.1. New Carleman estimates for system (19). We will establish some new
Carleman estimates for the solutions of (19). We will assume that O and y satisfy
(11)–(12). To fix ideas, we will also assume for the moment that N = 3 and n1(x

0) 
= 0
(x0 appears in assumption (11)).

The desired Carleman inequalities will have the form

I(ϕ) ≤ C

(∫∫
Q

ρ2
1 |g|2 dx dt +

∫∫
O×(0,T )

ρ2
2

(
|ϕ2|2 + |ϕ3|2

)
dx dt

)
,

where I(ϕ) contains global weighted integrals of |ϕ|2, |∇ϕ|2, etc. and ρ1 and ρ2 are
appropriate weights that vanish exponentially as t → T . This will suffice to prove in
section 3 the null controllability of (14) with controls v1O satisfying v1 ≡ 0.

Lemma 1. Assume that N = 3, n1(x
0) 
= 0 and O and y verify (11)–(12). Then

there exists a positive constant C such that, for any g ∈ L2(Q)3 and any ϕ0 ∈ H, the
associated solution to (19) satisfies:

(22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(ϕ) :=

∫∫
Q

e
−2α

t4(T−t)4 t−12(T − t)−12 |ϕ|2 dx dt

+

∫∫
Q

e
−2α

t4(T−t)4 t−4(T − t)−4 |∇ϕ|2) dx dt

+

∫∫
Q

e
−2α

t4(T−t)4 t4(T − t)4
(
|Δϕ|2 + |ϕt|2

)
dx dt

≤ C

(∫∫
Q

e
−4eα+2α

t4(T−t)4 t−30(T − t)−30 |g|2 dx dt

+

∫∫
O×(0,T )

e
−16eα+14α

t4(T−t)4 t−132(T − t)−132 (|ϕ2|2 + |ϕ3|2) dx dt
)
.

Here, α and α̃ are constants only depending on Ω, O, T and y satisfying 0 < α̃ < α
and 8α̃− 7α > 0.
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152 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

Proof. Let us first recall a Carleman inequality for the solutions of (19) which has
been proved in [7] whenever (12) is fulfilled:

(23)

s3λ4

∫∫
Q

e−2sαξ3|ϕ|2 dx dt + sλ2

∫∫
Q

e−2sαξ|∇ϕ|2 dx dt

+s−1

∫∫
Q

e−2sαξ−1 (|ϕt|2 + |Δϕ|2) dx dt

≤ C0(1 + T 2)

(
s15/2λ20

∫∫
Q

e−4sbα+2sα∗
ξ̂15/2|g|2 dx dt

+s16λ40

∫∫
O0×(0,T )

e−8sbα+6sα∗
ξ̂16|ϕ|2 dx dt

)
.

Here, s ≥ s0 and λ ≥ λ0 are arbitrarily large and C0, s0 and λ0 are suitable constants
depending on Ω, O0, T and y ; see Theorem 1 in [7].

Recall that an inequality like (23) had already been proved in [13] using stronger
properties on y than (12).

It is immediate from (23) that, for some C1, α and α̃ depending on Ω, O0, T and
y, we have:

(24)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∫
Q

e
−2α

t4(T−t)4
(
t−12(T − t)−12 |ϕ|2 + t−4(T − t)−4 |∇ϕ|2

)
dx dt

+

∫∫
Q

e
−2α

t4(T−t)4 t4(T − t)4
(
|Δϕ|2 + |ϕt|2

)
dx dt

≤ C1

(∫∫
Q

e
−4eα+2α

t4(T−t)4 t−30(T − t)−30 |g|2 dx dt

+

∫∫
O0×(0,T )

e
−8eα+6α

t4(T−t)4 t−64(T − t)−64 |ϕ|2 dx dt
)
.

Indeed, it suffices to choose

(25)

⎧⎪⎨⎪⎩
α = s0

(
e5/4λ0m‖η0‖∞ − eλ0m‖η0‖∞

)
,

α̃ = s0

(
e5/4λ0m‖η0‖∞ − eλ0(m+1)‖η0‖∞

)
and C1 = C0(1 +T 2)s17

0 λ40
0 e17λ0(m+1)‖η0‖∞ . Notice that 0 < α̃ < α. Moreover, it can

be assumed that 8α̃− 7α > 0 (it suffices to notice that λ0 is large enough in (25)).
We will apply (24) for the open set O0 ⊂ O defined as follows. We choose κ > 0

such that

n1(x) 
= 0 ∀x ∈ B(x0;κ) ∩ ∂O ∩ ∂Ω

and we denote this set by Γκ. Then, we define

(26) O0 = {x ∈ Ω : x = w + τ e1, w ∈ Γκ, |τ | < τ0},

with κ, τ0 > 0 small enough so that we still have

(27) O0 ⊂ O and d0 := dist(O0, ∂O ∩ Ω) > 0.
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N -DIMENSIONAL NAVIER–STOKES WITH N − 1 CONTROLS 153

Observe that, with this choice, each P ∈ O0 verifies that one of the two points
where the straight line {P + R e1} intersects ∂Ω belongs to ∂O0.

Once O0 is defined, we apply inequality (24) in this open set and we try to bound
the term ∫∫

O0×(0,T )

e
−8eα+6α

t4(T−t)4 t−64(T − t)−64 |ϕ1|2 dx dt

in terms of local integrals of ϕ2 and ϕ3.

To this end, for each (x, t) ∈ O0 × (0, T ) we denote by l(x, t) (resp., l̃(x, t)) the
segment that starts from (x, t) with direction e1 in the positive (resp. negative) sense
and ends at ∂O0. Then, since ϕ is divergence-free, it is not difficult to see that

ϕ1(x, t) =

∫
l(x,t)

(∂2ϕ2 + ∂3ϕ3)(y1, x2, x3, t) dy1

for each (x, t) ∈ O0 × (0, T ). For simplicity, let us introduce the notation

β(t) = e
−8eα+6α

t4(T−t)4 t−64(T − t)−64 ∀t ∈ (0, T ).

Applying at this point Hölder’s inequality and Fubini’s formula, we obtain

(28)

∫∫
O0×(0,T )

β(t) |ϕ1|2 dx dt

≤ C2

∫∫
O0×(0,T )

β(t)

(∫
l(x,t)

(|∂2ϕ2|2 + |∂3ϕ3|2) dy1

)
dx dt

= C2

∫∫
O0×(0,T )

(|∂2ϕ2|2 + |∂3ϕ3|2)
(∫

el(y1)

β(t) dx1

)
dy1 dx2 dx3 dt

≤ C3

∫∫
O0×(0,T )

β(t)(|∂2ϕ2|2 + |∂3ϕ3|2) dx dt,

where l̃(y1) stands for the segment l̃(y1, x2, x3, t). Then, we introduce a function
ζ ∈ C2(O) such that

ζ ≡ 1 in O0, 0 ≤ ζ ≤ 1

and ζ(x) = 0 at any point x ∈ O satisfying dist(x, ∂O∩Ω) ≤ d0/2 (d0 was defined in
(27)). This and the fact that ϕ|Σ ≡ 0 imply∫∫

O0×(0,T )

β(t) |∂iϕi|2 dx dt ≤
∫∫

O×(0,T )

ζ β(t) |∂iϕi|2 dx dt

=
1

2

∫∫
O×(0,T )

∂2
iiζ β(t) |ϕi|2 dx dt−

∫∫
O×(0,T )

ζ β(t) ∂2
iiϕi ϕi dx dt

for i = 2, 3. Finally, in view of Young’s inequality and regularity estimates for ϕi in
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154 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

Ω (ϕi ∈ H2(Ω) and ‖ϕi‖H2 ≤ C‖Δϕi‖L2), we also have:∫∫
O0×(0,T )

β(t) |∂iϕi|2 dx dt

≤ C4

∫∫
O×(0,T )

e
−16eα+14α

t4(T−t)4 t−132(T − t)−132 |ϕi|2 dx dt

+
1

2C1C3

∫∫
Q

e
−2α

t4(T−t)4 t4(T − t)4 |Δϕi|2 dx dt,

which, combined with (24) and (28), yields (22).
Let us now present another Carleman inequality for (19) with weight functions

not vanishing at time t = 0.
Lemma 2. Assume that N = 3, n1(x

0) 
= 0 and O and y verify (11)–(12). Then
there exist positive constants C, α and α̃ with 0 < α̃ < α and 8α̃− 7α > 0 depending
on Ω, O, T and y such that, for any g ∈ L2(Q)3 and any ϕ0 ∈ H, the associated
solution to (19) satisfies:

(29)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∫
Q

e
−2α

�(t)4
(
�(t)−12 |ϕ|2 + �(t)−4 |∇ϕ|2

)
dx dt

≤ C

(∫∫
Q

e
−4eα+2α

�(t)4 �(t)−30 |g|2 dx dt

+

∫∫
O×(0,T )

e
−16eα+14α

�(t)4 �(t)−132 (|ϕ2|2 + |ϕ3|2) dx dt
)
,

where � is the C1 function given by

(30) �(t) =

⎧⎨⎩
T 2

4
for 0 ≤ t ≤ T/2,

t(T − t) for T/2 ≤ t ≤ T.

To prove (29), it suffices to use (22) and the classical parabolic estimates for the
Stokes system satisfied by ϕ. The argument has already been used in [9], [13] and [7]
in several similar situations, so we omit it for simplicity.

For completeness, let us state the similar result that can be established when
N = 2. Here, we assume again that n1(x

0) 
= 0.
Lemma 3. Assume that N = 2, n1(x

0) 
= 0 and O and y verify (11)–(12). Then
there exist positive constants C, α and α̃ with 0 < α̃ < α and 8α̃− 7α > 0 depending
on Ω, O, T and y such that, for any g ∈ L2(Q)2 and any ϕ0 ∈ H, the associated
solution to (19) satisfies:

(31)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∫
Q

e
−2α

�(t)4
(
�(t)−12 |ϕ|2 + �(t)−4 |∇ϕ|2

)
dx dt

≤ C

(∫∫
Q

e
−4eα+2α

�(t)4 �(t)−30 |g|2 dx dt

+

∫∫
O×(0,T )

e
−16eα+14α

�(t)4 �(t)−132 |ϕ2|2 dx dt
)
,

where � is the function given by (30).
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N -DIMENSIONAL NAVIER–STOKES WITH N − 1 CONTROLS 155

2.2. New Carleman estimates for system (20). We will establish suitable
Carleman inequalities for the solutions of (20). To this end, our approach will be
similar to the one in subsection 2.1.

Thus, we will assume again that N = 3 and n1(x
0) 
= 0 and we will prove an

estimate of the form

K(ϕ,ψ) ≤ C

(∫∫
Q

ρ2
3 (|g|2 + |q|2) dx dt +

∫∫
O×(0,T )

ρ2
4

(
|ϕ2|2 + |ψ|2

)
dx dt

)
,

where K(ϕ,ψ) = I(ϕ) + I(ψ) (I(ϕ) has been given in (22)) and ρ3 and ρ4 are ap-
propriate weights. This will be used in section 3 to find controls v1O and h1O with
v1 ≡ v3 ≡ 0 leading to the null controllability of (15).

Lemma 4. Assume that N = 3, n1(x
0) 
= 0 and O and (y, θ) satisfy (11)–(13).

Then, there exist positive constants C, α and α̃ depending on Ω, O, T , y and θ with
0 < α̃ < α and 16α̃− 15α > 0 such that, for any g ∈ L2(Q)3, q ∈ L2(Q), ϕ0 ∈ H and
ψ0 ∈ L2(Ω), the associated solution to (20) satisfies:

(32)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(ϕ) + I(ψ) ≤ C

(∫∫
Q

e
−4eα+2α

t4(T−t)4 t−30(T − t)−30 |g|2 dx dt

+

∫∫
Q

e
−32eα+30α

t4(T−t)4 t−252(T − t)−252 |q|2 dx dt

+

∫∫
O×(0,T )

e
−16eα+14α

t4(T−t)4 t−132(T − t)−132 |ϕ2|2 dx dt

+

∫∫
O×(0,T )

e
−32eα+30α

t4(T−t)4 t−268(T − t)−268 |ψ|2 dx dt
)
.

Proof. Let us first recall a Carleman inequality for the solutions of (20) which has
recently been proved in [12] (Proposition 1) whenever (12)–(13) are fulfilled:

(33)

s3λ4

∫∫
Q

e−2sαξ3(|ϕ|2 + |ψ|2) dx dt

+sλ2

∫∫
Q

e−2sαξ(|∇ϕ|2 + |∇ψ|2) dx dt

+s−1

∫∫
Q

e−2sαξ−1 (|ϕt|2 + |ψt|2 + |Δϕ|2 + |Δψ|2) dx dt

≤ C5(1 + T 2)

(
s15/2λ24

∫∫
Q

e−4sbα+2sα∗
ξ̂15/2(|g|2 + |q|2) dx dt

+s16λ48

∫∫
O0×(0,T )

e−8sbα+6sα∗
ξ̂16(|ϕ|2 + |ψ|2) dx dt

)
.

Here, s ≥ s1 and λ ≥ λ1 are arbitrarily large and C5, s1 and λ1 are suitable constants
depending on Ω, O0, T , y and θ; see Proposition 1 in [12]. The proof of this inequality
follows the same arguments employed in [7] to prove (23) and can be achieved without
any further regularity on y or θ.
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156 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

It is clear from (33) that, for some C6, α and α̃ depending on Ω, O0, T , y and θ,
we have:

(34)

∫∫
Q

e
−2α

t4(T−t)4 t−12(T − t)−12 (|ϕ|2 + |ψ|2) dx dt

+

∫∫
Q

e
−2α

t4(T−t)4 t−4(T − t)−4 (|∇ϕ|2 + |∇ψ|2) dx dt

+

∫∫
Q

e
−2α

t4(T−t)4 t4(T − t)4
(
|Δϕ|2 + |Δψ|2 + |ϕt|2 + |ψt|2

)
dx dt

≤ C6

(∫∫
Q

e
−4eα+2α

t4(T−t)4 t−30(T − t)−30 (|g|2 + |q|2) dx dt

+

∫∫
O0×(0,T )

e
−8eα+6α

t4(T−t)4 t−64(T − t)−64 (|ϕ|2 + |ψ|2) dx dt
)
.

Indeed, it suffices to take α and α̃ as in (25) and

C6 = C5(1 + T 2)s17
1 λ48

1 e17λ1(m+1)‖η0‖∞ .

We thus obtain 0 < α̃ < α and, noticing that λ1 is large enough, 16α̃− 15α > 0.
We apply (34) for the open set O0 defined in (26). Then we can argue as in

subsection 2.1 and deduce that∫∫
O0×(0,T )

e
−8eα+6α

t4(T−t)4 t−64(T − t)−64 |ϕ1|2 dx dt

≤ C7

∫∫
O1×(0,T )

e
−16eα+14α

t4(T−t)4 t−132(T − t)−132 (|ϕ2|2 + |ϕ3|2) dx dt

+ ε

∫∫
Q

e
−2α

t4(T−t)4 t4(T − t)4 (|Δϕ2|2 + |Δϕ3|2) dx dt,

where O1 is an appropriate nonempty open set verifying

O0 ⊂ O1 ⊂ O, d1 := dist(O1, ∂O ∩ Ω) > 0.

This inequality combined with (34) yields:

(35)

∫∫
Q

e
−2α

t4(T−t)4 t−12(T − t)−12 (|ϕ|2 + |ψ|2) dx dt

+

∫∫
Q

e
−2α

t4(T−t)4 t−4(T − t)−4 (|∇ϕ|2 + |∇ψ|2) dx dt

+

∫∫
Q

e
−2α

t4(T−t)4 t4(T − t)4
(
|Δϕ|2 + |Δψ|2 + |ϕt|2 + |ψt|2

)
dx dt

≤ C8

(∫∫
Q

e
−4eα+2α

t4(T−t)4 t−30(T − t)−30 (|g|2 + |q|2) dx dt

+

∫∫
O1×(0,T )

e
−16eα+14α

t4(T−t)4 t−132(T − t)−132 (|ϕ2|2 + |ϕ3|2) dx dt

+

∫∫
O×(0,T )

e
−8eα+6α

t4(T−t)4 t−64(T − t)−64 |ψ|2 dx dt
)
.
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N -DIMENSIONAL NAVIER–STOKES WITH N − 1 CONTROLS 157

Our last task will be to estimate the integral∫∫
O1×(0,T )

e
−16eα+14α

t4(T−t)4 t−132(T − t)−132 |ϕ3|2 dx dt

in terms of εI(ϕ3) and local integrals of ψ and q. To do this, we set

β1(t) = e
−16eα+14α

t4(T−t)4 t−132(T − t)−132

and we introduce a function ζ0 ∈ C2(O) such that

ζ0 ≡ 1 in O1, 0 ≤ ζ ≤ 1

and ζ0(x) = 0 at any point x ∈ O satisfying dist(x, ∂O ∩ Ω) ≤ d1/2. From the
differential equation satisfied by ψ (see (20)), we have

(36)

∫∫
O1×(0,T )

β1(t) |ϕ3|2 dx dt ≤
∫∫

O×(0,T )

β1(t) ζ0 |ϕ3|2 dx dt

=

∫∫
O×(0,T )

β1(t) ζ0 ϕ3(−ψt − Δψ − y · ∇ψ − q) dx dt.

To end the proof, we perform integrations by parts in the last integral and pass all
the derivatives from ψ to ϕ3.

First, we integrate by parts in time taking into account that β1(0) = β1(T ) = 0:

(37)

−
∫∫

O×(0,T )

β1(t) ζ0 ϕ3 ψt dx dt

=

∫∫
O×(0,T )

β1,t(t) ζ0 ϕ3 ψ dx dt +

∫∫
O×(0,T )

β1(t) ζ0 ϕ3,t ψ dx dt

≤ εI(ϕ3) + C9(ε)

∫∫
O×(0,T )

e
−32eα+30α

t4(T−t)4 t−268(T − t)−268 |ψ|2 dx dt.

Next, we integrate by parts twice in space. Here, we use the properties of the
cut-off function ζ and the Dirichlet boundary conditions for ϕ3 and ψ:

(38)

−
∫∫

O×(0,T )

β1(t) ζ0 ϕ3 Δψ dx dt

=

∫∫
O×(0,T )

β1(t) (−Δζ0 ϕ3 − 2∇ζ0 · ∇ϕ3 − ζ0 Δϕ3)ψ dx dt

≤ εI(ϕ3) + C10(ε)

∫∫
O×(0,T )

e
−32eα+30α

t4(T−t)4 t−268(T − t)−268 |ψ|2 dx dt.

We also integrate by parts in the third term with respect to x and we use the
incompressibility condition on y:

(39)

−
∫∫

O×(0,T )

β1(t) ζ0 ϕ3 y · ∇ψ dx dt

=

∫∫
O×(0,T )

β1(t) y · (ϕ3 ∇ζ + ζ∇ϕ3)ψ dx dt

≤ εI(ϕ3) + C11(ε)

∫∫
O×(0,T )

e
−32eα+30α

t4(T−t)4 t−260(T − t)−260 |ψ|2 dx dt.
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158 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

We finally apply Young’s inequality in the last term and we have:

(40)

−
∫∫

O×(0,T )

β1(t) ζ ϕ3 q dx dt

≤ εI(ϕ3) + C12(ε)

∫∫
O×(0,T )

e
−32eα+30α

t4(T−t)4 t−252(T − t)−252 |q|2 dx dt.

From (35), (36) and (37)–(40), it is easy to deduce the desired inequality
(32).

Arguing as in subsection 2.1, that is to say, combining the previous result and the
classical energy estimates satisfied by ϕ and ψ, we can deduce the following Carleman
inequality.

Lemma 5. Assume that N = 3, n1(x
0) 
= 0 and O and (y, θ) satisfy (11)–(13).

Then, there exist positive constants C, α and α̃ depending on Ω, O, T , y and θ with
0 < α̃ < α and 16α̃− 15α > 0 such that, for any g ∈ L2(Q)3, q ∈ L2(Q), ϕ0 ∈ H and
ψ0 ∈ L2(Ω), the associated solution to (20) satisfies:

(41)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∫
Q

e
−2α

�(t)4
(
�(t)−12 (|ϕ|2 + |ψ|2) + �(t)−4 (|∇ϕ|2 + |∇ψ|2)

)
dx dt

≤ C

(∫∫
Q

e
−4eα+2α

�(t)4 �(t)−30 |g|2 dx dt

+

∫∫
Q

e
−32eα+30α

�(t)4 �(t)−252 |q|2 dx dt

+

∫∫
O×(0,T )

e
−16eα+14α

�(t)4 �(t)−132 |ϕ2|2 dx dt

+

∫∫
O×(0,T )

e
−32eα+30α

�(t)4 �(t)−268 |ψ|2 dx dt
)
,

where the function � was defined in (30).
The similar result that can be established when N = 2 follows.
Lemma 6. Assume that N = 2, n1(x

0) 
= 0 and O and (y, θ) satisfy (11)–(13).
Then, there exist positive constants C, α and α̃ depending on Ω, O, T , y and θ with
0 < α̃ < α and 16α̃− 15α > 0 such that, for any g ∈ L2(Q)2, q ∈ L2(Q), ϕ0 ∈ H and
ψ0 ∈ L2(Ω), the associated solution to (20) satisfies:

(42)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∫
Q

e
−2α

�(t)4
(
�(t)−12 (|ϕ|2 + |ψ|2) + �(t)−4 (|∇ϕ|2 + |∇ψ|2)

)
dx dt

≤ C

(∫∫
Q

e
−4eα+2α

�(t)4 �(t)−30 |g|2 dx dt

+

∫∫
Q

e
−32eα+30α

�(t)4 �(t)−252 |q|2 dx dt

+

∫∫
O×(0,T )

e
−32eα+30α

�(t)4 �(t)−268 |ψ|2 dx dt
)
.
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N -DIMENSIONAL NAVIER–STOKES WITH N − 1 CONTROLS 159

2.3. An observability estimate for system (21). We will prove an observ-
ability estimate for the system

(43)

⎧⎪⎪⎨⎪⎪⎩
−ρt − Δρ−∇× ((y · ∇×)∇γ) = 0, Δγ = ρ in Q,

γ = 0, ρ = 0 on Σ,

ρ(T ) = ρ0 in Ω.

This estimate will be implied by a Carleman inequality of the form

S(∇γ) ≤ C

∫∫
O×(0,T )

|∇γ|2 dx dt,

where S(∇γ) contains several global weighted integrals involving ∇γ (see (44)).
Lemma 7. Assume that N = 2 and y ∈ L∞(Q)2. There exist three positive

constants C, s and λ depending on Ω, O, T and y such that, for any ρ0 ∈ H−1(Ω),
the associated solution to (43) satisfies:

(44)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S(∇γ) := s4λ4

∫∫
Q

e−2sα ξ4|∇γ|2 dx dt

+sλ2

∫∫
Q

e−2sα ξ|∇ρ|2 dx dt + s3λ4

∫∫
Q

e−2sαξ3|ρ|2 dx dt

≤ C s5λ6

∫∫
O×(0,T )

e−2sαξ5|∇γ|2 dx dt,

for any s ≥ s and any λ ≥ λ. Recall that α and ξ were defined in (17).
Proof. For the proof, sj and λj (j ≥ 2) will denote various positive constants that

can eventually depend on Ω, O, T and y.
Let O0 be a nonempty open set satisfying O0 ⊂⊂ O and let us apply to ρ a

Carleman inequality for parabolic systems with right-hand sides in L2(0, T ;H−1(Ω)),
originally proved in [15] (this version can be found in Lemma 2.1 of [6]):

(45)

sλ2

∫∫
Q

e−2sα ξ|∇ρ|2 dx dt + s3λ4

∫∫
Q

e−2sαξ3|ρ|2 dx dt

≤ C13

(
s2λ2‖y‖2

∞

∫∫
Q

e−2sαξ2|∇(∇× γ)|2 dx dt

+s3λ4

∫∫
O0×(0,T )

e−2sαξ3|ρ|2 dx dt
)
,

for any s ≥ s2 and λ ≥ λ2.
Observe that, here, the assumption ρ0 ∈ H−1(Ω) may seem too weak to apply

this result. Indeed, (45) can be proved as in [15] whenever ρ ∈ C1(Q) and, by a
continuity argument, also for the solutions of problem (43) for which the left-hand
side of (45) is finite. This is our case, since one can ensure that ρ ∈ L2(Q) as soon as
ρ0 ∈ H−1(Ω) (for instance, taking into account the definition of ρ as the solution by
transposition of (43)).

Once (45) has been justified, let us first estimate the last integral in its right-hand
side. Thus, let ζ ∈ C2(O) be a cut-off function satisfying

ζ ≡ 1 in O0, 0 ≤ ζ ≤ 1 and ζ = 0 on ∂O.
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160 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

We have:

s3λ4

∫∫
O0×(0,T )

e−2sαξ3|Δγ|2 dx dt ≤ s3λ4

∫∫
O×(0,T )

ζ e−2sαξ3|Δγ|2 dx dt

= −s3λ4

∫∫
O×(0,T )

e−2sαξ3(∇ζ · ∇γ)Δγ dx dt

−3s3λ5

∫∫
O×(0,T )

ζ e−2sαξ3(∇η0 · ∇γ)Δγ dx dt

+2s4λ5

∫∫
O×(0,T )

ζ e−2sαξ4(∇η0 · ∇γ)Δγ dx dt

−s3λ4

∫∫
O×(0,T )

ζ e−2sαξ3(∇Δγ · ∇γ) dx dt.

Now, we apply Young’s inequality several times and we obtain

s3λ4

∫∫
O0×(0,T )

e−2sαξ3|Δγ|2 dx dt

≤ C14(ε) s
5λ6

∫∫
O×(0,T )

e−2sαξ5|∇γ|2 dx dt

+ε

(
s3λ4

∫∫
Q

e−2sαξ3|Δγ|2 dx dt + sλ2

∫∫
Q

e−2sαξ|∇Δγ|2 dx dt
)
,

for s ≥ s3 and λ ≥ λ3 and for any small positive constant ε. Combining this, the fact
that ρ = Δγ, and (45), we get

(46)

sλ2

∫∫
Q

e−2sα ξ|∇ρ|2 dx dt + s3λ4

∫∫
Q

e−2sαξ3|ρ|2 dx dt

≤ C15

(
s2λ2‖y‖2

∞

∫∫
Q

e−2sαξ2|∇(∇× γ)|2 dx dt

+s5λ6

∫∫
O×(0,T )

e−2sαξ5|∇γ|2 dx dt
)

for any s ≥ s4 and λ ≥ λ4.
Finally, we are going to estimate the first integral in the right-hand side of (45).

To this end, let us notice that, for j = 1 and 2 and almost every t ∈ (0, T ), the
function ∂jγ(t) satisfies:

Δ(∂jγ)(t) = ∂jρ(t) in Ω.

Let us apply the main result in [14] to ∂jγ. This yields the existence of two

numbers τ̃ > 1 and λ̃ > 1 such that

(47)

τ4λ4

∫
Ω

e2τηη4|∂jγ|2(t) dx + τ2λ2

∫
Ω

e2τηη2|∇(∂jγ)|2(t) dx

≤ C16

(
τ

∫
Ω

e2τηη|∂jρ|2(t) dx + τ4λ4

∫
O
e2τηη4|∂jγ|2(t) dx

+ τ5/2λ2 e2τ‖∂jγ(t)‖2
H1/2(∂Ω)
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N -DIMENSIONAL NAVIER–STOKES WITH N − 1 CONTROLS 161

for τ ≥ τ̃ and λ ≥ λ̃. Here, we have introduced the function η, with

η(x) = eλη
0(x).

In fact, the inequality one can find in [14] contains local integrals of |∂jγ|2 and
|∇(∂jγ)|2 in the right-hand side. But it can be written for a smaller set O′ ⊂⊂ O.
Using localizing arguments together with the fact that we actually have a global
weighted integral of |Δ(∂jγ)|2 in the left-hand side, (47) is easily found.

Following the same steps of [7], we set

τ =
s

t4(T − t)4
eλm‖η0‖∞ ,

we multiply (47) by

exp

{
−2s

e5/4λm‖η0‖∞

t4(T − t)4

}
and we integrate in time over (0, T ). This gives

s4λ4

∫∫
Q

e−2sαξ4|∂jγ|2 dx dt + s2λ2

∫∫
Q

e−2sαξ2|∇(∂jγ)|2 dx dt

≤ C17

(
s

∫∫
Q

e−2sαξ|∂jρ|2 dx dt + s4λ4

∫∫
O×(0,T )

e−2sαξ4|∂jγ|2 dx dt

+s5/2λ2

∫ T

0

e−2sα∗
(ξ∗)5/2‖∂jγ‖2

H1/2(∂Ω)

)
for s ≥ s5 and λ ≥ λ̃. Combining this estimate and (46), we have

s4λ4

∫∫
Q

e−2sαξ4|∂jγ|2 dx dt + sλ2

∫∫
Q

e−2sα ξ|∇ρ|2 dx dt

+s3λ4

∫∫
Q

e−2sαξ3|ρ|2 dx dt ≤ C18

(
s5/2λ2

∫ T

0

e−2sα∗
(ξ∗)5/2‖∂jγ‖2

H1/2(∂Ω)

+s5λ6

∫∫
O×(0,T )

e−2sαξ5|∇γ|2 dx dt
)

for any s ≥ s6 and λ ≥ λ5. On the other hand, the boundary term can readily be
bounded using the continuity of the trace operator:

‖∂jγ(t)‖2
H1/2(∂Ω) ≤ C19(‖∂jγ(t)‖2

L2 + ‖∇(∂jγ)(t)‖2
L2).

Furthermore, since γ|Σ ≡ 0, we know that there exists a positive constant C20 such
that

‖∇(∂jγ)(t)‖L2 ≤ C20‖Δγ(t)‖L2 a.e. in (0, T ) for j = 1, 2.

Consequently,

s4λ4

∫∫
Q

e−2sαξ4|∂jγ|2 dx dt + sλ2

∫∫
Q

e−2sα ξ|∇ρ|2 dx dt

+s3λ4

∫∫
Q

e−2sαξ3|ρ|2 dx dt ≤ C21 s
5λ6

∫∫
O×(0,T )

e−2sαξ5|∇γ|2 dx dt

for s ≥ s6.
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162 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

This implies (44) and ends the proof of Lemma 7.
Remark 3. An almost immediate consequence of the Carleman estimate (44) is

the following observability inequality:

(48) ‖(∇γ)(0)‖2
L2 ≤ C

∫∫
O×(0,T )

|∇γ|2 dx dt.

Proof. All comes to prove a dissipation result for the L2 norm of ∇γ. Indeed, if
we can prove that

(49) ‖∇γ(t1)‖2
L2 ≤ C‖∇γ(t2)‖2

L2 ∀0 ≤ t1 < t2 ≤ T,

then using the properties of the weight function e−2sα and estimate (44), we readily
deduce (48).

Thus, we multiply the equation in (43) by −γ and we integrate in Ω. Taking into
account that γ and ρ vanish on ∂Ω, this yields:

−1

2

d

dt

∫
Ω

|∇γ|2 dx +

∫
Ω

|Δγ|2 dx−
∫

Ω

((y · ∇×)∇γ) · ∇ × γ dx = 0,

from which the dissipation estimate (49) follows.
In fact, this is what will be used in section 3 to prove the null controllability of

system (16).

3. Null controllability of the linearized systems (14), (15) and (16).

3.1. Null controllability of (14). We are dealing here with the following sys-
tem:

(50)

⎧⎪⎨⎪⎩
yt − Δy + (y · ∇)y + (y · ∇)y + ∇p = f + v1O, ∇ · y = 0 in Q,

y = 0 on Σ,

y(0) = y0 in Ω,

where O satisfies (11) and y satisfies (12). Our goal will be to find a control v such
that y(T ) = 0 in Ω.

Let us introduce some weight functions:

β2(t) = exp

{
α

�(t)4

}
�(t)6, β3(t) = exp

{
2α̃− α

�(t)4

}
�(t)15

and

β4(t) = exp

{
8α̃− 7α

�(t)4

}
�(t)66

(recall that � was defined in (30)), where α and α̃ are the constants provided by
Lemma 2 when N = 3 and Lemma 3 when N = 2. Recall that, in particular,
0 < α̃ < α and 8α̃− 7α > 0.

Of course, we will need some specific conditions on f and y0 to get the null
controllability of (50). We will use the arguments in [7].

Thus, let us set

(51) Ly = yt − Δy + (y,∇)y + (y,∇)y
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N -DIMENSIONAL NAVIER–STOKES WITH N − 1 CONTROLS 163

and let us introduce the spaces

E2 = {(y, p, v) : (y, v) ∈ E0, �
−4β2(Ly + ∇p− v1O) ∈ L2(0, T ;H−1(Ω)2)}

when N = 2 and

E3 = {(y, p, v) : (y, v) ∈ E0, �
−2β

1/2
2 y ∈ L4(0, T ;L12(Ω)3),

�−4β2(Ly + ∇p− v1O) ∈ L2(0, T ;W−1,6(Ω)3)}
when N = 3, where

E0 = {(y, v) : β3 y, β4 v1O ∈ L2(Q)N , v1 ≡ 0,

�−2β
1/2
2 y ∈ L2(0, T ;V ) ∩ L∞(0, T ;H)}.

It is clear that EN is a Banach space for the norm ‖ · ‖EN
, where

‖(y, p, v)‖E2
=

(
‖β3 y‖2

L2 + ‖β4 v1O‖2
L2 + ‖�−2β

1/2
2 y‖2

L2(0,T ;V )

+ ‖�−2β
1/2
2 y‖2

L∞(0,T ;H) + ‖�−4β2(Ly + ∇p− v1O)‖2
L2(0,T ;H−1)

)1/2

and

‖(y, p, v)‖E3
=

(
‖β3 y‖2

L2 + ‖β4 v1O‖2
L2 + ‖�−2β

1/2
2 y‖2

L2(0,T ;V )

+ ‖�−2β
1/2
2 y‖2

L∞(0,T ;H) + ‖�−2β
1/2
2 y‖2

L4(0,T ;L12)

+ ‖�−4β2(Ly + ∇p− v1O)‖2
L2(0,T ;W−1,6)

)1/2

.

Remark 4. The spaces Ej (j = 0, 2, 3) are natural spaces where solutions of the
null controllability of (50) must be found in order to preserve these properties for the
nonlinear term (y · ∇)y. More details are provided in subsection 4.1.

Proposition 1. Assume that n1(x
0) 
= 0 and O and y verify (11)–(12). Let

y0 ∈ E and let us assume that

�−4β2f ∈
{

L2(0, T ;H−1(Ω)2) if N = 2,

L2(0, T ;W−1,6(Ω)3) if N = 3.

Then, we can find a control v such that the associated solution (y, p) to (50) satisfies
(y, p, v) ∈ EN . In particular, v1 ≡ 0 and y(T ) = 0.

Sketch of the proof. The proof of this proposition is very similar to the one of
Proposition 2 in [7], so we will just give the main ideas. For simplicity, we will only
consider the case N = 3. When N = 2, the proof is even easier.

Following the arguments in [9] and [13], let us introduce the auxiliary optimal
control problem

(52)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
1

2

(∫∫
Q

|β3 y|2dxdt +

∫∫
O×(0,T )

|β4 v|2dxdt
)

subject to v ∈ L2(Q)3, supp v ⊂ O × (0, T ), v1 ≡ 0 and⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ly + ∇p = f + v1O in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(0) = y0, y(T ) = 0 in Ω.

Notice that a solution (ŷ, p̂, v̂) to (52) is a good candidate to satisfy (ŷ, p̂, v̂) ∈ E3.
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164 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

For the moment, let us assume that (52) possesses a solution (ŷ, p̂, v̂). Then, by
virtue of Lagrange’s principle, there must exist dual variables ẑ and q̂ such that

(53)

⎧⎪⎨⎪⎩
ŷ = β−2

3 (L∗ẑ + ∇q̂), ∇ · ẑ = 0 in Q,

v̂1 ≡ 0, v̂i = −β−2
4 ẑi (i = 2, 3) in O × (0, T ),

ẑ = 0 on Σ,

where L∗ is the adjoint operator of L, i.e.,

L∗z = −zt − Δz − (Dz) y.

At least formally, the couple (ẑ, q̂) satisfies

(54) a((ẑ, q̂), (w, h)) = 〈G, (w, h)〉 ∀(w, h) ∈ P0,

where P0 is the space

P0 = {(w, h) ∈ C2(Q)4 : ∇ · w = 0, w = 0 on Σ,

∫
O
h(x, t) dx = 0}

and we have used the notation

a((ẑ, q̂), (w, h)) =

∫∫
Q

β−2
3 (L∗ẑ + ∇q̂) · (L∗w + ∇h) dx dt

+

∫∫
O×(0,T )

β−2
4 (ẑ2 w2 + ẑ3 w3) dx dt

and

〈G, (w, h)〉 =

∫ T

0

〈f(t), w(t)〉H−1,H1
0
dt +

∫
Ω

y0 · w(0) dx.

Conversely, if we are able to “solve” (54) and then use (53) to define (ŷ, p̂, v̂), we
will probably have found a solution to (52).

Thus, let us consider the linear space P0. It is clear that a(· , ·) : P0×P0 �→ R is a
symmetric, definite positive bilinear form on P0. We will denote by P the completion
of P0 for the norm induced by a(· , ·). Then a(· , ·) is well-defined, continuous and
again definite positive on P . Furthermore, in view of the Carleman estimate (29),
the linear form (w, h) �→ 〈G, (w, h)〉 is well-defined and continuous on P . Hence, from
Lax-Milgram’s lemma, we deduce that the variational problem

(55)

{
a((ẑ, q̂), (w, h)) = 〈G, (w, h)〉

∀(w, h) ∈ P, (ẑ, q̂) ∈ P,

possesses exactly one solution (ẑ, q̂).
Let ŷ and v̂ be given by (53). Then, it is readily seen that they verify∫∫

Q

β2
3 |ŷ|2dx dt +

∫∫
O×(0,T )

β2
4 |v̂|2dx dt < +∞

and, also, that ŷ is, together with some pressure p̂, the weak solution (belonging to
L2(0, T ;V ) ∩ L∞(0, T ;H)) of the Stokes system in (52) for v = v̂.
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N -DIMENSIONAL NAVIER–STOKES WITH N − 1 CONTROLS 165

In order to prove that (ŷ, p̂, v̂) ∈ E3, it only remains to check that �−2 β
1/2
2 ŷ is,

together with �−2 β
1/2
2 p̂, a weak solution of a Stokes problem of the kind (50) with a

right-hand side in L2(0, T ;W−1,6(Ω)3) that belongs to L4(0, T ;L12(Ω)3). To this end,

we define the functions y∗ = �−2 β
1/2
2 ŷ, p∗ = �−2 β

1/2
2 p̂ and f∗ = �−2 β

1/2
2 (f + v̂1O).

Then (y∗, p∗) satisfies

(56)

⎧⎪⎨⎪⎩
Ly∗ + ∇p∗ = f∗ + (�−2β

−1/2
2 )t ŷ, ∇ · y∗ = 0 in Q,

y∗ = 0 on Σ,

y∗(0) = �−2(0)β
1/2
2 (0)y0 in Ω.

From the fact that f∗ ∈ L2(0, T ;H−1(Ω)3) and y0 ∈ H, we have indeed

y∗ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H).

Finally, we deduce that y∗ ∈ L4(0, T ;L12(Ω)3) from Lemma 2 in [7]. This ends the
sketch of the proof of Proposition 1.

3.2. Null controllability of system (15). We will establish the null control-
lability of the linear system

(57)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yt − Δy + (y · ∇)y + (y · ∇)y + ∇p = f + v1O + θ eN in Q,

∇ · y = 0 in Q,

θt − Δθ + y · ∇θ + y · ∇θ = k + h1O in Q,

y = 0, θ = 0 on Σ,

y(0) = y0, θ(0) = θ0 in Ω,

where O satisfies (11) and y and θ satisfy (12) and (13), for suitable right-hand sides
f and k.

The arguments we present here are completely analogous to those in [12] and
subsection 3.1 of this paper, so that we will only give a sketch. Thus, we restrict
ourselves again to the three-dimensional case with n1(x

0) 
= 0.

Let us introduce the weight functions

β5(t) = exp

{
α

�(t)4

}
�(t)6, β6(t) = exp

{
2α̃− α

�(t)4

}
�(t)15,

β7(t) = exp

{
16α̃− 15α

�(t)4

}
�(t)126, β8(t) = exp

{
8α̃− 7α

�(t)4

}
�(t)66

and

β9(t) = exp

{
16α̃− 15α

�(t)4

}
�(t)134,

where the constants α and α̃ are furnished by Lemma 5 when N = 3 and Lemma 6
when N = 2 (and, in particular, 0 < α̃ < α and 16α̃− 15α > 0).

Let us set

(58) Pθ = θt − Δθ + y · ∇θ
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166 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

and let us introduce the spaces

Ẽ2 = {(y, p, θ, v, h) : (y, θ, v, h) ∈ Ẽ0,

�−4β5(Ly + ∇p− v1O) ∈ L2(0, T ;H−1(Ω)2),

�−4β5(Pθ + y · ∇θ − h1O) ∈ L2(0, T ;H−1(Ω))}

when N = 2 and

Ẽ3 = {(y, p, θ, v, h) : (y, θ, v, h) ∈ Ẽ0,

�−2β
1/2
5 y ∈ L4(0, T ;L12(Ω)3),

�−4β5(Ly + ∇p− v1O) ∈ L2(0, T ;W−1,6(Ω)3),

�−4β5(Pθ + y · ∇θ − h1O) ∈ L2(0, T ;H−1(Ω))}

when N = 3, where

Ẽ0 = {(y, θ, v, h) : (β6 y)i, β7 θ, (β8 v1O)i, β9 h1O ∈ L2(Q) (1 ≤ i ≤ N),

v1 ≡ vN ≡ 0, �−2β
1/2
5 y ∈ L2(0, T ;V ) ∩ L∞(0, T ;H),

�−2β
1/2
5 θ ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω))}.

It can be readily seen now that Ẽ0, Ẽ2 and Ẽ3 are Banach spaces for the norms

‖(y, θ, v, h)‖ eE0
=

(
‖β6 y‖2

L2 + ‖β7 θ‖2
L2 + ‖β8 v‖2

L2

+‖β9 h‖2
L2 + ‖�−2β

1/2
5 y‖2

L2(0,T ;V ) + ‖�−2β
1/2
5 y‖2

L∞(0,T ;H)

+‖�−2β
1/2
5 θ‖2

L2(0,T ;H1
0 )

+ ‖�−2β
1/2
5 θ‖2

L∞(0,T ;L2)

)1/2

,

‖(y, p, θ, v, h)‖ eE2
=

(
‖(y, θ, v, h)‖2

eE0

+ ‖�−4β5(Ly + ∇p− v1O)‖2
L2(0,T ;H−1)

+ ‖�−4β5(Pθ + y · ∇θ − h1O)‖2
L2(0,T ;H−1)

)1/2

and

‖(y, p, θ, v, h)‖ eE3
=

(
‖(y, θ, v, h)‖2

eE0
+ ‖�−2β

1/2
5 y‖2

L4(0,T ;L12)

+ ‖�−4β5(Ly + ∇p− v1O)‖2
L2(0,T ;W−1,6)

+ ‖�−4β5(Pθ + y · ∇θ − h1O)‖2
L2(0,T ;H−1)

)1/2

.

Proposition 2. Assume that n1(x
0) 
= 0 and O and (y, θ) satisfy (11)–(13). Let

y0 ∈ E, θ0 ∈ L2(Ω) and let us assume that

�−4β1(f, k) ∈
{

L2(0, T ;H−1(Ω)2) × L2(0, T ;H−1(Ω)) if N = 2,

L2(0, T ;W−1,6(Ω)3) × L2(0, T ;H−1(Ω)) if N = 3.

Then, we can find controls v and h such that the associated solution to (57) satisfies

(y, p, θ, v, h) ∈ ẼN . In particular, v1 ≡ vN ≡ 0 and y(T ) = θ(T ) = 0.
We omit the proof of this proposition, since it is essentially the same as the one of

Proposition 2 in [12] and follows the steps of Proposition 1 above. As we have already
indicated, the main ideas come from [13].
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3.3. Null controllability of system (16). We will prove the null controllabil-
ity of the linear system

(59)

⎧⎪⎨⎪⎩
yt − Δy + (y · ∇)y + ∇p = v1O, ∇ · y = 0 in Q,

y · n = 0, ∇× y = 0 on Σ,

y(0) = y0 in Ω,

where N = 2 and y ∈ L∞(Q)2.
For this purpose, we first rewrite this system using the streamline-vorticity for-

mulation. Thus, setting ω = ∇× y, we have

(60)

⎧⎪⎪⎨⎪⎪⎩
ωt − Δω + ∇× ((∇× ψ · ∇)y) = ∇× (v1O), Δψ = ω in Q,

ψ = 0, ω = 0 on Σ,

ω(0) = ∇× y0 in Ω.

Proposition 3. Assume that y0 ∈ H and y ∈ L∞(Q)2. Then, there exists a
constant C(Ω,O, T ) > 0 and controls v1O with v ∈ W (W was defined in (9)), such
that

(61) ‖v‖L2 ≤ C‖y0‖H

and the associated solutions of (59) satisfy

(62) y ∈ L2(0, T ;H1(Ω)2) ∩ C0([0, T ];L2(Ω)2), yt ∈ L2(0, T ;H−1(Ω)2),

and y(T ) = 0, with

(63) ‖y‖L2(0,T ;H1) + ‖y‖C0([0,T ];L2) + ‖yt‖L2(0,T ;H−1) ≤ C‖y0‖H .

Proof. We first establish the null controllability property for y. This can be done
in several ways. One of them is the following. We first define for each ε > 0 the
functional⎧⎪⎨⎪⎩

Jε(γ
0) =

1

2

∫∫
O×(0,T )

|∇ × γ|2 dx dt + ε‖∇γ0‖L2 + ((∇× γ)(0), y0)L2

∀γ0 ∈ H1
0 (Ω),

where γ is given by (43) with ρ0 = Δγ0 ∈ H−1(Ω).
It is not difficult to see from the observability inequality (48) that this functional

possesses a unique minimizer γ0
ε ∈ H1

0 (Ω) (see Proposition 2.1 in [5]). Now, from the
necessary conditions for Jε to reach a minimum, we have

(64)

∫∫
Q

((∇× γε)1O) · (∇× γ) dx dt + ε(
∇× γ0

ε

‖∇ × γ0
ε‖L2

,∇× γ0)L2

+((∇× γ)(0), y0)L2 = 0 ∀γ0 ∈ H1
0 (Ω).

Thus, setting vε = (∇× γε)1O and putting γ0 = γ0
ε , we find from (48) and (64) that

(61) holds for vε for some C independent of ε:

(65) ‖∇ × γε‖L2(O×(0,T ))2 = ‖vε‖L2(O×(0,T ))2 ≤ C.
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168 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

Let us denote by (ωε, ψε) the solution to (60) for v = vε. Then, taking into
account the systems satisfied by (ρ, γ) and (ωε, ψε), we deduce that∫∫

Q

∇× (vε1O) γ dx dt + (∇× γ0, (∇× ψε)(T ))L2

−((∇× γ)(0), y0)L2 = 0 ∀γ0 ∈ H1
0 (Ω).

Combining this and (64), we obtain

(66) ‖(∇× ψε)(T )‖L2 ≤ ε.

From (65) and (66) written for each ε > 0, we deduce that, at least for a sub-
sequence, vε → v weakly in L2(O × (0, T ))2, where the control v1O is such that the
corresponding solution (ω, ψ) to (60) satisfies

(∇× ψ)(T ) = y(T ) = 0 in Ω.

Since v ∈ L2(O × (0, T ))2 and ∇ · v = 0 in O × (0, T ), we necessarily have v ∈ W
(from De Rham’s lemma applied to (v2,−v1)).

In order to obtain the desired regularity for y, we will consider again the equations
satisfied by ψ and ω and we will check that

(67) ψ ∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1
0 (Ω)) and ψt ∈ L2(Q),

with appropriate estimates.
For simplicity, we will only present the estimates. The rigorous argument relies

on introducing a standard Galerkin approximation of (60) with a “special” basis
of H1

0 (Ω) (more precisely, the basis formed by the eigenfunctions of the Laplacian-
Dirichlet operator in Ω) and deducing for the associated approximate solutions the
estimates below.

Thus, let us multiply the first equation in (60) by ψ and let us integrate by parts.
We find that

1

2

∫
Ω

|∇ψ(t)|2 dx +

∫ t

0

∫
Ω

|Δψ|2 dx dτ =

∫ t

0

∫
O
v · (∇× ψ) dx dτ

−
∫ t

0

∫
Ω

(((∇× ψ),∇) y) · (∇× ψ) dx dτ +
1

2
‖(∇ψ)(0)‖2

L2

for all t ∈ (0, T ). If we integrate by parts in the last integral, we also have

−
∫ t

0

∫
Ω

(((∇× ψ) · ∇) y) · (∇× ψ) dx dτ

=

∫ t

0

∫
Ω

((∇× ψ) · ∇)(∇× ψ) · y dx dτ.

Since ψ|Σ ≡ 0, we deduce that

(68) ψ ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω))

and

(69) ‖ψ‖L2(0,T ;H2) + ‖ψ‖L∞(0,T ;H1
0 ) ≤ C‖y0‖L2 .
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N -DIMENSIONAL NAVIER–STOKES WITH N − 1 CONTROLS 169

Now, let us introduce for each t the function ψ∗(t) = Δ−1ψt(t), i.e., the solution
to {

−Δψ∗(t) = ψt(t) in Ω

ψ∗(t) = 0 on ∂Ω.

Observe that, whenever ψt(t) ∈ L2(Ω), this function satisfies ψ∗(t) ∈ H2(Ω) ∩
H1

0 (Ω) and

(70) ‖ψ∗(t)‖H2 ≤ C‖ψt(t)‖L2 .

Then, we multiply the first equation of (60) by ψ∗ and we integrate by parts. This
gives ∫∫

Q

|ψt|2 dx dt =

∫∫
Q

(Δψ)ψt dx dt−
∫∫

Q

((∇× ψ) · ∇)(∇× ψ∗) · y dx dt

+

∫∫
O×(0,T )

v · (∇× ψ∗) dx dt.

Using that v ∈ L2(Q)2 and we already have (69) and (70), we conclude that ψt ∈
L2(Q) and

(71) ‖ψt‖L2 ≤ C‖y0‖L2 .

From (69) and (71), we immediately obtain (67), (62) and (63).
This ends the proof of Proposition 3.

4. Proofs of the controllability results for the nonlinear systems. In
this last section, we will give the proofs of Theorems 1, 2 and 3. For the proofs
of Theorems 1 and 2 we employ an inverse mapping theorem, while a fixed point
argument is used for Theorem 3.

4.1. Proof of Theorem 1. We also follow here the steps in [7].
Thus, we set y = y + z and p = p + χ and we use these identities in (1). Taking

into account that (y, p) solves (5), we find:

(72)

⎧⎪⎨⎪⎩
Lz + (z · ∇)z + ∇χ = v1O, ∇ · z = 0 in Q,

z = 0 on Σ,

z(0) = y0 − y0 in Ω

(recall that L was defined in (51)).
This way, we have reduced our problem to a local null controllability result for

the solution (z, χ) to the nonlinear problem (72).
We will use the following inverse mapping theorem (see [1]).
Theorem 4. Let B1 and B2 be two Banach spaces and let A : B1 �→ B2 satisfy

A ∈ C1(B1;B2). Assume that b0 ∈ B1, A(b0) = d0 and also that A′(b0) : B1 �→ B2 is
surjective. Then there exists δ > 0 such that, for every d ∈ B2 satisfying ‖d−d0‖B2 <
δ, there exists a solution of the equation

A(b) = d, b ∈ B1.
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170 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

We will apply this result with B1 = EN ,

B2 =

{
L2(�−4β2; 0, T ;H−1(Ω)2) ×H if N = 2,

L2(�−4β2; 0, T ;W−1,6(Ω)3) × (H ∩ L4(Ω)3) if N = 3

and

A(z, χ, v) = (Lz + (z · ∇)z + ∇χ− v1O, z(0)) ∀(z, χ, v) ∈ EN .

From the facts that �−2β
1/2
2 y ∈ L4(0, T ;L12(Ω)3) and A is bilinear, it is not

difficult to check that A ∈ C1(B1;B2); more details can be found in [13] or [7].
Let b0 be the origin in B1. Notice that A′(0, 0, 0) : B1 �→ B2 is given by

A′(0, 0, 0)(z, χ, v) = (Lz + ∇χ− v1O, z(0)) ∀(z, χ, v) ∈ EN

and is surjective, in view of the null controllability result for (14) given in Proposition
1.

Consequently, we can indeed apply theorem 4 with these data and there exists
δ > 0 such that, if ‖z(0)‖E ≤ δ, then we find a control v satisfying v1 ≡ 0 such that
the associated solution to (72) verifies z(T ) = 0 in Ω.

This concludes the proof of Theorem 1.

4.2. Proof of Theorem 2. Again, we follow here the ideas of [12].
Therefore, we set y = y+ z, p = p+χ and θ = θ+ρ, so from (2) and (7), we find:

(73)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Lz + (z · ∇)z + ∇χ = v1O + ρ eN , ∇ · z = 0 in Q,

Pρ + (z · ∇)ρ + z · ∇θ = h1O in Q,

z = 0, ρ = 0 on Σ,

z(0) = y0 − y0, ρ(0) = θ0 − θ(0) in Ω

(L and P were respectively defined in (51) and (58)).
We are thus led to prove the local null controllability of (73). To this end, we will

use again Theorem 4, which was presented in subsection 4.1. Using the same notation
as there, we set B1 = ẼN ,

B2 = L2(�−4β5; 0, T ;H−1(Ω)3) ×H × L2(Ω)

if N = 2 and

B2 = L2(�−4β5; 0, T ;W−1,6(Ω)3 ×H−1(Ω)) × (L4(Ω)3 ∩H) × L2(Ω)

if N = 3.
Let us introduce A, with

A(z, χ, ρ, v, h) = (A1(z, χ, ρ, v),A2(z, ρ, h), z(0), ρ(0)),

A1(z, χ, ρ, v) = Lz + (z · ∇)z + ∇χ− v1O − ρeN

and

A2(z, ρ, h) = Pρ + (z · ∇)ρ + z · ∇θ − h1O

for every (z, χ, ρ, v, h) ∈ ẼN .
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Using the fact that �−2β
1/2
5 z ∈ L4(0, T ;L12(Ω)3), it can be checked that A1 is

C1. Then, since �−2β
1/2
5 ρ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) and this space is

continuously embedded in L4(0, T ;L3(Ω)), we deduce that

�−4β5(z,∇)ρ = ∇ · (z ρ) ∈ L2(0, T ;W−1,12/5(Ω)) ⊂ L2(0, T ;H−1(Ω))

and, consequently, A is well-defined and satisfies A ∈ C1(B1;B2).

The fact that A′(0, 0, 0, 0, 0) : B1 �−→ B2 is surjective is an immediate consequence
of the result given in Proposition 2.

As a conclusion, we can apply Theorem 4 and the null controllability for system
(73) holds.

4.3. Proof of Theorem 3. Let us recall the nonlinear system we are dealing
with: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

yt − Δy + (y · ∇)TM (y) + ∇p = v1O in Q,

∇ · y = 0 in Q,

y · n = 0, ∇× y = 0 on Σ,

y(0) = y0 in Ω.

In this case, we are going to apply Kakutani’s fixed point theorem (see, for in-
stance, [2]).

Theorem 5. Let Z be a Banach space and let Λ : Z �→ Z be a set-valued mapping
satisfying the following assumptions:

• Λ(z) is a nonempty closed convex set of Z for every z ∈ Z.

• There exists a convex compact set K ⊂ Z such that Λ(K) ⊂ K.

• Λ is upper-hemicontinuous in Z, i.e., for each σ ∈ Z ′ the single-valued mapping

(74) z �→ sup
y∈Λ(z)

〈σ, y〉Z′,Z

is upper-semicontinuous.

Then Λ possesses a fixed point in the set K, i.e., there exists z ∈ K such that
z ∈ Λ(z).

In order to apply this result, we set Z = L2(Q)2 and, for each z ∈ Z, we consider
the following system:

(75)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yt − Δy + (y · ∇)TM (z) + ∇p = v1O in Q,

∇ · y = 0 in Q,

y · n = 0, ∇× y = 0 on Σ,

y(0) = y0 in Ω.

Then, for each z ∈ Z, we denote by A(z) the set of controls v1O with v ∈ W that
drive system (75) to zero and satisfy (61). Finally, our set-valued mapping is given as
follows: for each z ∈ Z, Λ(z) is the set of functions y that solve, together with some
p, the linear system (75) corresponding to a control v ∈ A(z).

Let us check that the assumptions of Theorem 5 are satisfied in this setting. The
first one holds easily, so we omit the proof. Next, the estimates (62) and (63) tell us
that the whole space Z is actually mapped into a compact set.
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172 FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV AND PUEL

Let us finally see that Λ is upper-hemicontinuous in Z. Assume that σ ∈ Z ′ and
let {zn} be a sequence in Z such that zn → z in Z. We have to prove that

(76) lim sup
n→∞

sup
y∈Λ(zn)

〈σ, y〉Z′,Z ≤ sup
y∈Λ(z)

〈σ, y〉Z′,Z .

Let us choose a subsequence {zn′} such that

(77) lim sup
n→∞

sup
y∈Λ(zn)

〈σ, y〉Z′,Z = lim
n′→∞

sup
y∈Λ(zn′ )

〈σ, y〉Z′,Z .

From the fact that Λ(zn′) is a compact set of Z, for each n′ we have

sup
y∈Λ(zn′ )

〈σ, y〉Z′,Z = 〈σ, yn′〉Z′,Z

for some yn′ ∈ Λ(zn′). Obviously, it can be assumed that

(78) zn′(x, t) → z(x, t) a.e. (x, t) ∈ Q

and

(79) vn′ ⇀ v weakly in L2(Q)2

with v ∈ A(z). Furthermore, since all the yn′ belong to a fixed compact set, we can
also assume that

yn′ → y in Z

(after extraction of a subsequence). This, together with (77)–(79) implies that y ∈
Λ(z), since we have a Stokes system with a right-hand side weakly converging in L2

and a coefficient converging almost everywhere. As a conclusion, (76) holds and the
proof of Theorem 3 is achieved.
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