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OSCILLATIONS DUE TO THE TRANSPORT
OF MICROSTRUCTURES*

T. CHACON REBOLLO"

Abstract. The aim of this paper is to report some improvements and some numerical tests of a model
for convection of microstructures developed by McLaughlin, Papanicolaou and Pironneau ISLAM J. Appl.
Math., 45 (1985), pp. 780-797]. This model was obtained by homogenization techniques. In particular, this
paper gives a computational indication of the existence of oscillations in a macroscopic flow which evolves
from an initial state with two well-separated length scales. This oscillatory behavior was formally predicted
by McLaughlin et al.

A simplified model including eddy viscosity terms is first obtained: This model is tested for a three-
dimensional Poiseuille flow in which the mean flow is one-dimensional.

Direct simulations and the simulations of the model are compared and good agreement is obtained in
the behavior of both the mean velocity field and the kinetic energy of the microstructure.

Key words, turbulence, separation of scales, homogenization, numerical simulation
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Notation. Let u be a vectorial function from 3 into E3; let R be a tensor from
3 into 3 )< 3; and let A, B be two 3 x 3 matrices. We shall use the following notation:

ORijOuj
(7.R)i A" B mijBij.(VU)ij --OX OXj

We shall use the summation convention over repeated indices.

0. Introduction.
0.1. The necessity of turbulence modeling. In this paper we shall study some aspects

of the analysis of incompressible flows in turbulent regime. This regime is characterized
by very rapid variations, in time and space, of the structures created in the flow. Thus,
a numerical approach to the analysis of turbulence needs the resolution of the Navier-
Stokes equations with very high accuracy. The capacity of today’s computers permits
us to simulate accurately only flows with Reynolds numbers roughly of a few thousands.
Most of the flows which have interesting applications (flow past an aircraft, jets,
atmospheric circulation, etc.) occur at Reynolds numbers much greater than 104 This
leads to the necessity of turbulence modelif:sybwszbsbbzaufsequazubfsswyukys-
bEJXYY(WZwWZZEeffNflhttgt mean quantities of turbulent flows.

0.2. A model for convection of microstructures. In this paper we shall work on a
particular model, developed by McLaughlin, Papanicolaou, and Pironneau [12]. This
model studies a formalized Reynolds closure problem; the rapidly varying structures
created in the turbulent flow are reproduced by introducing highly oscillating initial
conditions in the Navier-Stokes equations. The problem considered in [12] is the
following:

(0.1a) u,, + u.Vu + Vp txeAu =0,
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OSCILLATIONS DUE TO MICROSTRUCTURES 1129

(0.1b) V.u =0,

(0.1c) u(x, 0)= Uo(X)+ Wo(, x),
where e>0 is a small parameter, /x is a number of order one, and a>2. The
decomposition of the initial conditions made in (0.1c) is a special case of the one
made in the classical turbulence modeling (see Launder and Spalding 11], Schumann
[19], Violet [22], for example): Uo(X) is the initial mean velocity field and Wo(X/e, x)
is the initial perturbation of the velocity. This fluctuating field wo(y, x) is supposed to
be a periodic or stationary random function of y, with mean zero. It is a function of
two characteristic spatial scales of ratio e.

A characteristic of the initial conditions (0.1c) is that the initial velocity u(x, O)
has a "spectral gap," for smooth functions Uo(X) and wo(y, x) and small enough e;
visually the graph of the Fourier transform of the initial kinetic energy (1/21u(x, 0)12)
appears "concentrated" around the two characteristic wave numbers.

The problem posed in 12] is the analysis of the behavior of the solution u(x, t)
of (0.1) for > 0 when e is small. From the physical point of view, this problem can
be viewed as the effect of a small-scale turbulence on the mean flow.

There are many realistic turbulent flows for which such a situation occurs. A first
example of interest is flow past an obstacle, particularly if there is a detachment of
the boundary layer. Another interesting example is the large scale atmospheric circula-
tion; in this case the large eddies are two-dimensional, while the small ones are
three-dimensional. This produces a big spectral gap between large and small scales.
A not so wide separation of scales also occurs in jets and other flows (see Pouquet et
al. [18]).

Recently, it has been shown that homogenization techniques are relevant for the
modeling of flows with rapidly varying data (a reference is the book of Bensoussan,
Lions, and Papanicolaou [3]). On some flow problems it is possible to derive rigorously
the mean equations (see Papanicolaou and Pironneau [16], Perrier and Pironneau
[17], Tartar [20]). These techniques are used in [12] to obtain effective equations for
the evolution of u; however, the derivation is formal.

In [12], the pair u , p is expanded in powers of e, as follows:

a(x, t) )(0.2) u(x, t) u(x, t)+ w --, x, + O(e),
E E

a(x, t)
(0.3) p(x, t)=p(x, t)+er --, x, + O(e).

E E

Where w(y, z; x, t) and -rr(y, z; x, t) are periodic or stationary random functions of y
and z for each {x, t}; with zero y-r mean. Then u and p are the mean velocity and
pressure, respectively.

In (0.2), (0.3), a(x, t) is the Lagrangian coordinate associated to the mean flow
u, the solution of

(0.4) a,,+u.Va=O, a(x,O)=x.

Systems of equations for the pairs (u, p) and (w, 7r) are obtained in [12]. In order
to describe them, let us define the following quantities"

(0.5) G=Va,

(0.6) ff Grw, r (GVy) x w, =GTr.
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The pair (u, p) is the solution of an averaged system. This system also involves
the mean kinetic energy k and the mean helicity h of the microstructure. This system
can be written as follows:

(0.7) u,,+u.Vu+V.R+Vp=O, V.u =0,

(0.8) k,, + k.Vu+ R :Vu +V.d =0,

(0.9) h., + h.Vu + S Vu + V.e =0,

where R, S are 3 x 3 symmetric tensors and d, e are vectors defined by

(0.10) Rij (wiwj), Si; (wir; + riwj),

(0.11) d-((1/2]wl2+cr)w), e=2((1/21wl2+zr)r+ww,).
Now the Reynolds closure problem for the system (0.7)-(0.9) is solved if the

tensors R, S, d, and e are computable functions of u, k, and h. In [12], it is solved by
assuming the existence of if(y, z, G, k, h) periodic or stationary random in y-z, the
solution of

.+ .Vy+ GGVyr =0, Vy. =0,
(0.12)

() 0, (G-r.G-) k, (G-T.(GVy) x (G-)) h,

which depends continuously on the parameters G, k, h. Let us remark that the closure
terms R, S, d, and e depend on the velocity u through G Va, the gradient of the
Lagrangian coordinate a, defined in (0.4). System (0.7)-(0.9) resembles formally the
well-known k e model (cf. 11]) with the substitution of the rate of dissipated energy
by the helicity. There is, however, another important difference between these two
models; model [12] does not take into account viscous effects. This can be seen from
(0.7)-(0.9) which implies conservation of total energy

d- lull+ dx-Oo

The mathematical analysis of the development of the model described is a very
difficult task. To prove that system (0.7)-(0.9) describes the behavior of the mean of
u when e 0 seems to be out of reach at present.

Nevertheless, it is possible to study the validity of the model with numerical
computations. In fact, an application of (0.7)-(0.9) for two-dimensional jets was done
in [12]: the numerical results seem to be in qualitative agreement with observations.

0.3. On the possibility of an oscillatory behavior of the transport of microstruc-
tures. We have seen that the Reynolds tensor R of our model is not a dissipative
tensor. This does not agree with the classical theory of turbulence modeling. To study
the character of this tensor we can consider plane Poiseuille flows: the mean velocity
field u is of the form

(0.13) u(x,, X2, X3, t) (b/l(X3, t), O, O) t.

In 12] it is shown, under several assumptions, that (0.7)-(0.9) reduce in this case
to a single nonlinear partial differential equation for the variable

(0.14) v((, t)= u,((, s) ds.
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Let us define the function p and F by

{(1/q)R3(Va) if q > O fo(0.15) p(a)=
0 if q=O

where a u,(, s) ds

d e((0.16) F(, or)= qo()

where 4’ is a primitive of p, that is, 4 ’= p. Then, the two equations (0.7)-(0.8) combine
into a single equation

(0.17) v,,, +[F(s, v,)], =0.

If we linearize this equation at t-0, and we suppose qo(s) =constant qo, we
obtain

(0.18) v,,, qop’(O)v, O.

A numerical computation of the function p has been made in [6]; it seems to
indicate that p’(0)>0. If this is true, (0.18) is a wave equation and tensor R, at least
for Poiseuille flows, yields a hyperbolic term.

0.4. Organization of the paper. The purpose of this work is to continue the
numerical analysis of the model introduced above. In particular, numerical results are
presented which show some relevance of the model, at least for relatively short times.
The paper is organized as follows. In 1, an extension of the model for slightly viscous
flows is developed. It is based upon the Kolmogorov laws (cf. [6]) and applies to flows
with small scale turbulence of small amplitude. Here, it is shown that this model, as
well as the one in [12], includes eddy viscosity terms, according to the standard
turbulence modeling. A reduced model with eddy viscosity is finally introduced. It
involves only the mean velocity and the mean kinetic energy of the microstructure.

Section 2 is devoted to the determination of the closure terms appearing in the
reduced model of 1. This requires the numerical solution of a reduced microstructure
problem, which is a particular case of (0.12).

In 3, numerical experiments for three-dimensional flows between plane plates
(Poiseuille flows) are presented. The reduced model of is tested for flows with
one-dimensional mean and small amplitude perturbations. This test is made by compar-
ing the results of the direct simulation and the ones given by the solution of the reduced
model. The agreement between these two simulations is good when there is a spectral
gap in the energy spectrum. In the cases considered, this gap appears for short times.
Nevertheless, it is expected that this agreement holds for longer times if the initial
perturbation is more rapidly oscillating than the one considered here.

Finally, in 4, the problem of the presence of oscillations in the convection of
microstructures is analyzed. It is done by numerical simulation of the transport of
microstructures by three-dimensional Poiseuille flow. The oscillatory character predic-
ted by McLaughlin et al. in [12] is found in a particular quantity: the rate of decay
of the kinetic energy of the microstructure. Moreover, there is a good agreement
between the predicted period of such oscillations and the period found by the numerical
simulation.

In the experiments presented, only rapid oscillations of small amplitude are
considered, for reasons of numerical stability. It is expected that these results hold
true for rapid oscillations of large amplitude as well; the same model equations are
found for both kinds of rapid oscillations.
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We conclude that the model proposed by McLaughlin et al. may be right in
predicting oscillations in mean quantities associated with the convection of microstruc-
tures. This rather unexpected behavior of the stress tensor is not isolated. A similar
result was found by Frisch et al. [9] for the Kuramoto-Sivashinski equations.

1. A reduced model with eddy viscosity. In this section, we shall apply the
asymptotic analysis described in [12] to incompressible flows with small viscosity. A
simplified model containing eddy viscosity terms also will be obtained and used in the
numerical experiments presented in 3 and 4.

1.1. Viscous effects. In the Kolmogorov theory of turbulence [6], the oscillating
part of a turbulent flow is considered a random process. It is assumed to depend only
on the rate of dissipation e and on the Reynolds number Re, in a frame of reference
moving with the mean flow. We shall use this hypothesis to extend the analysis of 12]
to slightly viscous flows. Let us consider the Navier-Stokes equations with large
Reynolds number for three-dimensional flows"

1
Au+Vp 0, V.u 0.(1.1) u,,+ u.Vu

Re

We assume that the characteristic length of the oscillating part of u is e > 0 and
that the characteristic rate of eddy dissipation e is of order one. Then by dimensional
analysis the corresponding characteristic Reynolds number Re is of order 8

-4/3 and
the characteristic velocity is of order 81/3 Thus, an initial value problem relevant to
turbulence modeling is (1.1) with

(1.2) u(x, 0)=Uo(X)+ 81/3w0(, x), Re=/z8 -4/3 with/z of order one.

Here, Uo and Wo are given functions which play the same role as in [12]; Uo(X) is the
mean velocity field and 81/3 Wo(X/ e, x) is the initial perturbation of the velocity. We
shall suppose that Uo(X) and wo(y, x) are smooth enough to ensure the existence of
solutions of (1.1), (1.2) (see Temam [21]).

Let us remark that the perturbations considered in (1.2) are of small amplitude
(of order 81/3), while the ones considered in 12] are of large amplitude (of order one,
see (0.1c)).

Actually, we would expect an asymptotic expansion of the solution u , p of (1.1),
(1.2) in powers of 81/3 It is reasonable also to expect that oscillations in space of
characteristic size 8 will be accompanied by oscillations in time of the corresponding
characteristic, which is 82/3. Let us then consider the following expansions of u, p"

( a(x, t)
U(X, t)= U(X, t)+ 81/3W , 3" X,

8 8
2/

(1.3)

%’82/3U(1)( a(X’ l)
8 82/3 X, +"

P(X’t):p(x’t)+e2/37r( a(x’t)
,82/3 x, t)

(1.4)
+ epl)( a(x’ t)

8 82/3, X, +"

where a(x, t) are the Lagrangian coordinates of the problem

(1.5) a,,+u.Va=O, a(x,O)=x.
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The functions w(y, r; x, t), u)(y, r; x, t),. ., 7r(y, ’; x, t), pl)(y, .; x, t),. are
assumed to be periodic or stationary random functions in the y-r variable with mean
zero.

Unfortunately, this yields an equation for w with no nonconstant solutions"

where C and ff are defined in (1.9) and (1.10), respectively. We are therefore not able
to analyze viscous effects of order e 4/3 by this method. However, the analysis of [12]
can be extended to flows a little less viscous. Instead of problem (1.1), (1.2), we shall
consider the following one:

(1.6) u.,+u.Vu-txe2Au+Vp=O, V.u =0,

(1.7) u(x, 0)--Uo(X)+ el/3wo(, x),
where we continue to assume that Uo(X) and wo(y, x) are smooth enough to ensure
the existence of solutions of (1.6), (1.7).

Equations (1.6)-(1.7) can be solved approximately by inserting the expansions
(1.3), (1.4) in them. By equating to zero the coefficients of e -/3, e, equations
for the pairs (w, 7r), (u), pl)), are obtained. An equation for the main perturbation
w is obtained first:

(1.8) , -- l.Vy+ CVy"IT O, Vy,. ] 0

where

(1.9) C =GTG, G=Va,

(1.10)

System (1.8) is a generalized Euler equation for incompressible flows. We know three
invariants of this system in the r variable (see Olver [14])"

Mean velocity:

(1.11) (if)=0;

Mean kinetic energy:

(1.12) q 1/2(ff.C-’ff);

Mean helicity:

(1.13) h ((GVy)x (G-ff,).G-rff).

Here, the angular brackets denote integration with respect to y-z over a period cell,
or ensemble average in the random case.

The remaining terms (u(k),p(k)), for k=> 1, of the asymptotic expansions (1.3),
(1.4) are found by solving the linearized Euler equations"

l(k).-[- l.yll(k)-[- ll(k) yl-[- Cyp(k) --(k) y.l(k) g(k)
,’7-(1.14)

where

(1.15) l(k) GTu (k)

and f(), g() depend on u, w, u(), /,/(k-l)andp, zr, p(), p(-). Equations (1.8)
and (1.14) cannot be solved simultaneously unless the pair {f(), g()} satisfy certain
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compatibility conditions. These conditions are associated to the invariants (1.11),
(1.12), and (1.13) of the Euler equations (1.8). In [12], three sets of such conditions
are found:

(1.16)

(1.17)

(1.18)

Here,

(1.19) r (GVy) x w, f(’)=
and the notation (.)y stands for the mean in the variable y only.

By implementing the compatibility conditions (1.16)-(1.18), we obtain the
equations of the model in the case of slightly viscous flows"

(1.20) u, + U.V U + Vp + e2/3V.R O, V.u O,

(1.21) q,, + u.V q + R" V u + tXqtq + E1/BV. Vq =0,

(1.22) h,, / u.V h / S" V u //Ph / el/gV. Vh O,

with the initial conditions

(1.23) u(x,O)=uo(x), q(x,O)=1/2(lwol2), h(x,O)=(Wo.V, XWo).

In (1.20)-(1.22), R, S are 3 x3 symmetric tensors; Vq, Vh are x3 tensors and
Oq, 0h are scalar functions, defined by

Rgj wgw), Sij wit) / riwj),

(1.24) Vq ((1/2[ wl + zr) w), Vh 2((1/21 wl + zr) r),

0q (10V,w[), G 2(GVyw" GVyr).

If we suppose the existence of smooth w(y, z; G, q, h), the solution of (1.8)-(1.13),
which depends continuously on its arguments, the system (1.20)-(1.22) is closed. Note
the differences between the systems (0.7)-(0.9) and (1.20)-(1.22). In the second case,
there is a new scaling in e because the initial perturbation of the velocity is of order

1/3e Also, new terms appear in (1.21) and (1.22) (/Z6q and/z6h, respectively), due to
the inclusion of the viscosity in (1.6). The term /ZOq(respectively, /zcPh) is the mean
rate of viscous dissipation of the kinetic energy (respectively, helicity) of the microstruc-
tures. Moreover, the mean kinetic energy and the mean helicity of the perturbation of
the velocity are not q and h, but eZ/3q and e2/3h, respectively.

There is another important difference between the models which has to be pointed
out. The original model of [12] applies to inviscid flows and involves perturbations of
large amplitude. However, the model developed in this section applies to slightly
viscous flows and involves perturbations of small amplitude.

The solution of the complete problem (1.8)-(1.13) is very difficult. Instead, we
shall study a reduced problem which does not involve the helicity h.

1.2. A reduced model. We shall now consider the numerical aspects of our problem.
We shall assume that w, zr are periodic in the y-z variables in the cell Y[0, 1],
where Y is the unit cube. First we obtain a reduced model by suppressing the equation
for the helicity (1.22). Let us consider an orthogonal transformation Q which leaves
invariant the unit cube Y. If we define

(1.25) (y)= Q(Qy), O= QGQ, (= GrG;
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then is a solution of (1.8) with instead of C. Moreover,

(1.26) (W) Q(),

(1.27) 1/2( .(-’

(1.28) ((OVy) ((-rlYg).O-r/) det Q ((GVy) (G-).G-’r).

Consequentlyz if t= G and det Q= +1, then t7 is a solution of (1.8)-(1.13). If
det Q= -1, then W solves (1.8), (1.11), and (1.12), but ((OVy) ((-rlYg).(-r/) -h.

We shall say that a solution k of (1.8)-(1.12) is Q-invariant if v for every
orthogonal transformation Q which leaves invariant Y and such that ( QGQ. If

is Q-invariant then it is in particular an odd function and consequently

() 0, ((GTy) x (G-v).G-rv) 0.

For Q-invariant fluctuations w, the equation for the helicity (1.22) reduces to

1.29) e l/37" Vh O.

This allows us to neglect (1.22). Let us now suppose, that the initial perturbation
of the velocity Wo is of the form

(1.30) wo(y, x) v/qo(x) W*o(y)

where qo(x)>= O, and W*o(y) is periodic in Y and Q-invariant, has unit mean kinetic
energy and satisfies the stationary Euler equation. Let us also consider the following
stationary problem for the microstructure

ff.Vyff+CVy’=O, Vy. O,

(1.31) 1/2(v.C-’) 1,

v? y-periodic in Y and Q-invariant.

Note that Wo* satisfies (1.31) with C I. We assume that there exist solutions w(y, C)
of (1.31) which depend continuously on C. In this case, we obtain a reduced model,
in which the dependence on q of the closure functions is explicit:

u,t+u.Vu+Vp+e/3V.(qR)=O, V.u =0,

(1.32)
q" + u.Vq + q(R Vu + IxO) =0,

a,+u.Va=O,

u(x, O)= Uo(X), q(x, O)= qo(X), a(x, O)=x.

The new closure functions R and q depend only on G, as follows"

(1.33) R(G) G-r(C)G-’, ij(C) =(;i(C)j(C)),

(1.34) p(G) O(C) C (02i(C) Oj(C) Ckl"
Oy, Oyt /

The existence of solutions of (1.31) which depend continuously on C is an hypothesis
which depends on how this equation is interpreted. We shall test it from a numerical
point of view in 2.

1.3. Eddy viscosity terms. We have seen in the Introduction that the Reynolds
tensor R of our model seems not to be a diffusion tensor. However, the model contains
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eddy diffusion terms. To find them, we must extend the equations to include higher
order terms. A lengthy analysis leads to the following equations (see [7])"

u,, + u.Vu + Vp+ V.(kR) + eV.(x/ A" Vu) =0,

(1.35)

V.u 0,

k,,+u.Vk+k(R’Vu+lxO)+e2/3V.(x/- V’Vk) 0,

a,t+u.Va =0,

u(x, O)= Uo(X), k(x, 0)= e2/3qo(x), a(x, O)= x.

Here A, V are (3 3)2 and 3 x3 tensors, respectively, defined through a canonical
linear microstructure problem. System (1.35) is written in function of the kinetic energy
of the microstructure k e 2/3q.

A tabulation for A was obtained at first when C L The signs show that the extra
terms in (1.35) behave like eddy viscosity

(1.36) A" Vu -(Vu + Vur).
Also, numerical experiments show that a reasonable approximation of the diffusion
term in (1.35c) is

(1.37) V.(x/ V.Vk)’’-A(k3/2),
The model given by (1.35)-(1.37) is the one which shall be considered in the

remaining sections. In particular, it shall be used in the numerical experiments.

2. Computation of the closure functions. To test the model (1.35) numerically, we
need to know the closure terms R and q, as functions of G. Thus, we need to solve
the microstructure problem (1.31) with the matrix C as a parameter: we present in
this section a numerical solution of (1.31) by least squares and its application to the
tabulation of R and 4’.

2.1. Computation of the canonical microstructure fluctuations. The numerical solu-
tion of the microstructure problem (1.31) has to be done very carefully: this problem
involves a generalized stationary Euler equation and a quadratic constraint. As has
been shown in [12], (1.31) does not have a unique solution. It is thus necessary to fix
a solution in some way. Moreover, the fact that we are looking for periodic solutions
excludes the use of methods for transport problems (the method of characteristics, for
example).

We shall solve (1.31) by least squares. This method has been used successfully to
regularize problems of fluid dynamics (see [4]). It seems to be well adapted to our
problem. Nevertheless, this method can give unphysical solutions in some cases. Such
solutions appear, for example, in the computation of transonic flows. In this case, the
approximate solution contains a nonphysical shock if the entropy condition is not
taken into account (see [4]). In our case, additional conditions of physical significance
are not known for the perturbation . Thus, the least squares generation of the
microstructure may fail to produce acceptable solutions from the physical point of
view and should be considered as tentative at present.

For a given nonsingular matrix C, let us consider the equation appearing in (1.31)
(all the derivatives are taken with respect to the variable y):

(2.1) v?.V v? + CV? 0, V.v? 0 in Y, y-periodic in Y and Q-invariant.

For any given trial solution of (2.1), let us define its associated error :() by

(2.2) -A= C-V.(v?(R) ) +V/, (:5 0, y-periodic in Y,
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where (R) is the 3 x 3 tensor of components i2j, and/5 is the associated pressure,
defined by

(2.3) -V.(CV/) V.(v?.V v?); (/) 0, / y-periodic in Y.

If v? is smooth enough (for example, differentiable with continuous derivatives),
then v? solves (2.1) if and only if so(if) 0 (see 1]).

Then, the problem (2.1) is equivalent to

(2.4) min 0,
eV

where V is an appropriate space of periodic Q-invariant vector fields, and II:l[ denotes
any appropriate norm for s. If we consider the existence results for the Navier-Stokes
equations, it seems convenient to take a subspace of L4(y) as space V (see [21]).

We have not taken into account the condition 1/2(.C-16) 1 in the previous
discussion. It can be easily satisfied if we get a nonzero solution of (2.1) since a
is also solution of (2.1) for every a e E.

The discretization of the formulation (2.2)-(2.4) has been implemented by the
finite element method, as follows: let -h be a triangulation of the cube Y by tetrahedra.
Let us define the discrete space for pressures Qa by

(2.5) Qh {q C( )/q[rP,, VT, (q) 0, %-periodic in Y}
where C(I) is the space of continuous functions on I7, and Pl the one of linear
functions. The discrete space for velocities is

(2.6) Va { Q/2]/ is Q-invariant}.

Here, Q/ is the space defined in (2.5), corresponding to a triangulation -h/2 obtained
from -h by subdividing each tetrahedron of -h into eight tetrahedra.

The discrete spaces have been chosen like this in order to verify the Brezzi-Babuska
infsup condition (see Glowinski and Pironneau [10]). This is a necessary condition
for the convergence of the finite element method applied to the Stokes equation. Note
also that Vh [Hi( Y)] [L4( Y)].

For V, let us define its residual associated error gh by

(2.7) fVh’Vffthdy=--fC-’(h@Vh)’Vffhdy+yVfih.ffhdyyY Y
Vlh[Oh/2]3,

h[Oh/2]3.
where the corresponding pressure/h is defined by

f CVfih’VOh dy=--f vh’vvh vOh dy VOh
Y

(2.8)
Qh.

The problems (2.7) and (2.8) are of elliptic type and have unique solutions. A discrete
equivalent of (2.4) which seems to be appropriate is

(2.9) min E (kh) E (h) I ]V ’h dy.
h h __Y

We are thus minimizing the H-I(Y) norm of the right-hand side of (2.2). However,
the formulation (2.7)-(2.9) does not eliminate the solution zero. Since the cost function
E is homogeneous, it is better to replace (2.9) by

Wh(2.10) ,,minf,, J(V?h), J() E
(.),/2
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This is equivalent to solving (2.9) on the unit sphere of L2(y). Problem (2.10)
has been solved by the conjugate gradient method. Note that we have to assume the
existence of isolated solutions of (1.31), belonging to [L4( y)]3, for example.

The triangulation -h is symmetric about the three coordinate planes. It preserves
the Q-invariance of h in the conjugate gradient algorithm. This means that we can
replace by [Q/2] in (2.9) if the initialization of the minimizing process is Q-
invariant.

The problems (2.7) and (2.8) have been solved by using the Fast Fourier Transform
and a fixed point algorithm. This provides a rapid inversion of the elliptic operators
appearing in (2.7), (2.8) (see [6]). The numerical computation has been carried out
on a CRAY computer with a 16 16 16 grid for velocities. It takes approximately
700 s of CPU for 20 iterations of the conjugate gradient. This corresponds to a descent
of the relative cost from 1 to ---10-3.

2.2. Tabulations. We will consider one-dimensional mean flows as follows"

(2.11) u(x, t)=(u(x3, t), O, O) .
These flows will be studied in 3 and 4. In this case,

(2.12) Va 0 1 0 with a u,(, s) ds.
a 0 1

From the Q-invariance of ; the Reynolds tensor R, defined by (1.27), has the following
structure:

R 0 R131(2.13) R=R(a)= 0 R22 0

R3 0 R23

Figure 1 shows the computed R3 as a function of the parameter c. Only
nonnegative values of c are considered because p(-a) -p() from the Q-invariance.
It is a regular function away from 0. Near the origin, it has a very high gradient.

2.0

1.5

1.0

PHI

0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ALPHA
CLOSURE FUNCTION

FIG. 1. Computed closure function p(a). It is a smooth function with a high gradient at o O. Notice that
p’(o) > o.
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3. Numerical experiments. In this section, the reduced model (1.35) is tested by
three-dimensional Poiseuille flows with one-dimensional mean. The test is made by a
comparison between the direct simulation and the simulation of the model. Good
agreement is obtained in the behavior of both the mean velocity field and the kinetic
energy of the microstructure.

Let us consider the Navier-Stokes equations for incompressible flows with
kinematic viscosity

(3.1) u,t+u.Vu+Vp-vAu=O, V.u =0,

in the domain f= x[ x ]0, 2[ for time > 0. We are interested in x-x2 periodic
solutions of the Poiseuille flow. For given a > 0, a2 > 0 it satisfies

(3.2) u xl-k i, x2-kj, x3", u(xl, x2, x3; t) x3c[0,2 Vt0,
1 2

for any integer numbers i, j.

(3.3) u(xl,x2,x3; t)=0 at x3=0 and X3=2 t>0.

Our purpose is to test the model (1.35) with such a flow.
We will compare the solution of (3.1)-(3.3) with an initialization in microstructure,

as (1.30), and the solution of (1.35) with the corresponding initialization. We have
used a spectral method to solve numerically (3.1)-(3.3), developed by Orszag and
Patera [15]. The velocity field is discretized by Fourier series about the xl, x2 variables,
and by Chebyshev’s expansion about the x3 variable, as follows:

U(X, X2, X3; t)= Vnm(X3, t) e i(alnx|+a2mx2)

(3.4)
P

with Vnrn(X3, t) 2 "l)nrnp(t) Zp(x3).
p=O

Here, Tp is the pth Chebyshev polynomial, defined by

rp(cos 0) cos (pO).

This is a robust code, which has been used in the study of the stability of the
Poiseuille flow with very good results. Moreover, it is highly vectorized (see [15]). The
discretization (3.4) allows us to take initializations in microstructure easily. Let us
consider the following initialization of (3.1)-(3.3), for a given integer L_-<min (N, M),

(3.5) u(x, 0)-- Uo(X)+ Re

where Uo(X) is the basic Poiseuille flow

(3.6) Uo(X) 1 1 x3) 2, 0, 0)

and v(x3) is an arbitrary function such that V.u(x, 0) 0. The initialization corresponds
to the following perturbation in microstructure

(3.7) el/3wo(y, x) Re IV(X3) e i(’y,+’2y2)] with e 1/L.

We have taken v(x3) 0 near the boundaries x3 0 and x3 2 because our model
is not concerned with turbulent boundary layers. For such initializations, the corre-
sponding initial conditions of the system (1.35) are

(3.8) Uo(X, 0) (1 (1 x3)2, 0, 0) T k(x, 0) 1V(X3)] 2.
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These conditions depend only upon X3o As the boundary conditions (3.3) are
homogeneous, all quantities appearing in (1.35) will depend only on x3 and t. Then
the Reynolds tensor R has the structure given by (2.13). Consequently, the model
(1.35) reduces to

4u,,,+(kp),e-e(v/- Ul,’), O,
(3.9)

k + k(pu, + 0)-where p R13 and 0 depend only on the parameter 0/ defined in (2.12) and/x ,e

The boundary conditions corresponding to (3.8), (3.9) are

-2

(3.10) Ul(= +/-2) =0, k(= +2) =0.

Problem (3.8)-(3.10) is discretized by a finite difference method. The space dis-
cretization is uniform, with 65 grid points so as to have good resolution near the
boundaries. The direct solution of (3.1)-(3.3) with the initial conditions (3.5) has also
been carried out on a CRAY computer by using a 32 x 32 x 33 grid. This allows us
to have N= M 16 and P= 32 in (3.4). We have taken e =0.1 (i.e., L= 10). This is
a good choice because e is relatively small but the corresponding wave number L is
not too close to the maximum wave number taken into account by the discretization
(N M 16). The values for 0/1 and 0/2 are rather arbitrary. Also, must be of order
6 2. We have taken , 1/4000, 0/1 0/2 1.32.

To test the results, we must compare the functions (ul, k) defined by (3.8)-(3.10)
with the corresponding functions defined from the solution of (3.1)-(3.3), with the
initialization (3.5). It is important to define suitably the equivalent k* of the kinetic
energy of the microstructure k. It has been defined by summing all the kinetic energies
associated to wave numbers n and m greater than five in (3.4)

(3.11) k*((, t) 2 2 Iv,,,,((, t)l 2-

This choice of k* is made for the following reason: in the initialization (3.5), the energy
of the wave number n m L is k(x, O)= k*(x, 0)= 1/2Iv(x3)] 2. Also, the energy corre-
sponding to the other wave numbers greater than 1 is zero. However, when the time
increases, there is a transfer of energy from the wave number n m L to the other
wave numbers. This can be seen in Fig. 2. If we define k* simply as k*(x, t)=
tvL L(x3, t)] z, there is some kinetic energy corresponding to the microstructures which
is not being taken into account. In fact, the wave number n rn 6 represents in (3.11)
the lower limit of the microstructure scales.

Let us note that our comparison is valid only if there is a spectral gap in the
kinetic energy corresponding to the direct simulation (3.1)-(3.3). We can expect that
this happens during a time of order e -2/3. This hypothesis is confirmed by the experi-
ments. For example, in the spectrum of Fig. 2, corresponding to e 0.1, there is a
"gap" for -< 3.

Figures 3 and 4 show the results of both simulations considered, corresponding
to parabolic v in (3.5). The time scales are similar, and the shapes of velocity and
kinetic energy of the microstructure are in good agreement. Several experiments have
been done, by changing the shape of v, and these result in comparable agreement.

Differences between the profiles for kinetic energies can be observed in Figs. 4(a)
and 4(b). These differences are probably due to the fact that the tabulations of the
closure terms appearing in (3.9) are only approximate. Another reason which can
partially justify those differences is that the model equations (3.9) are truncated at the
second order in e.
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FG. 2. Typical energy spectrum. e values represented are

S(k, t)= 2 v (x3, t) dx3.
2+m2

=0.5

t--1.

t=1.5

t=2.5

We may say that, based on our numerical experiments, the model considered
correctly simulates the interactions between large and small structures when there is
a spectral gap and for short times.

It is reasonable to expect that the model is valid for longer times if the initial gap
between the spectra of large and small structures is larger. To simulate this situation,
we need values of e smaller than the one considered here (e 0.1). But this would
require a computer with a much larger memory than the one used (a CRAY l-S).

4. A wave equation for turbulence modeling. In this section we shall test numerically
the reduced equations of model (0.7)-(0.9). Our purpose is to see if the Reynolds
tensor R of our model has a hyperbolic character.

Let us consider plane Poiseuille flow, as in 3. If we neglect all viscous effects,
the model (3.9) reduces to

(4.1) u,,,+(kp),=O, k,,+kpu,,=O.
As is stated in [12], this equation can be written as follows"

(4.2) V,, + [k(, 0) eq’(-v,)p( V,)], =0,

(4.3) q(, t)= q(, 0) e’((’’)),

(4.4) V(:, t)= Ul(:, s) ds, #(a) p() dfi.

The character of (4.2) can be studied by linearization. Symmetries imply p(0)--0. So,
if p’(0) 0, we get

(4.5) V,, kop’(0) V, 0.

From Fig. 1, we see that p’(0)> 0. In this case, (4.5) is a wave equation.
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FIG. 3(a). First component of the mean velocity field. Corresponds to the direct simulation (3.1)-(3.3) and
to parabolic v in (3.7). Times are as in Fig. 2, less 0.5. (b). Function u Corresponds to the reduced model
(3.8)-(3.9). Times are as in Fig. 2, less 0.5.
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FIG. 4(a). Mean kinetic energy of the microstructures k*. Corresponds to the direct simulation (3.1)-(3.3).
It is defined by (3.11). Times are as in Fig. 2, less 0.5. (b). Mean kinetic energy of the microstructures k.
Corresponds to the reduced model (3.8)-(3.9). Times are as in Fig. 2, less 0.5.
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A numerical analysis of this problem has been carried out by direct simulation.
We have solved (3.1)-(3.3) with initializations given by (3.5). An oscillatory behavior
has been seen clearly on a particular function: the rate of exponential decay of the
kinetic energy of the microstructure C(t), defined by

d
(4.6) C(t) =- [log 0re(t)], G(t) IVLL(Sc, t)l 2 dsC.

Here m is the mean kinetic energy of the microstructure. The function C(t) is showed
in Fig. 5 for ’m(0)=0.1, and L= 10. The oscillations are clearly seen here. Moreover,
(4.5) gives an estimate for the period " of those oscillations which is, approximately,

(4.7) e K/x/G(O) with K constant.

This prediction has been substantiated by the direct simulation. The array in Table
1 shows the computed and predicted values of - in several cases, with relatively small

1.0

0.6

0.2

-0.2

-0.6

-1.0
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

DIGITAL ENERGY=.01

FIG. 5. Rate of exponential growth of the mean microstructure kinetic energy C(t) defined by (4.7),
corresponding to ,,, (0) 0.01. The oscillations are well demonstrated, with almost constant periodfor < 1. For
> 1, there is a progressive relaxation of the oscillations due to the "filling" of the energy spectrum (see Fig.

2). This relaxation has been observed in all the cases considered.

TABLE
Comparison between the computed value of the period of the oscillations and the predictions. The case

’m(0) 0.01 has been used to calculate the constant K in (4.7). The value taken for the period in the direct
simulation has been the time between the two first minimum of C ). Notice that the periods are roughly well
predicted, the errors being under 25%.

e(O)

0.2
0.1
0.04
0.01

K 0.03675

measured

0.105
0.1475
0.22
0.3675

predicted

0.082
0.116
0.184

Relative
error %

21.9
18.2
16.4

Absolute
error

0.023
0.031
0.036
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errors. The energy lost by the scale corresponding to the wave number n m L from
0 to - is very small so that the energy corresponding to the other scales is not

relevant in the definition of m.
Let us remark that the computed value of p’(0) for e 0.1, by the direct simulation,

is of the order of 105. It agrees with the high value of p’(0) which has been computed
in the tabulations (see Fig. 1). Note also that (4.1)-(4.5) are deduced from the model
introduced in 1 which applies to rapid oscillations of small amplitude. Nevertheless,
the same equations may be formally derived from the original model of [12] (0.7)-(0.9).
In the numerical experiments presented in this section, only oscillations of small
amplitude are considered to avoid numerical instability.

The results presented above provide a good indication that oscillatory behavior
is an inherent property of the interaction between large and small scale structures,
when dissipative effects are negligible.

Acknowledgments. The author thanks C. Begue and A. Patera for letting him use
their FORTRAN codes, and also P. Ortegom, G. Papanicolaou, and O. Pironneau for
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