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AN EFFICIENT TWO-DIMENSIONAL VORTEX METHOD WITH LONG TIME
ACCURACY*

IBRAHIM BLESS RANERO AND TOM/S CHAC(3N REBOLLO

Abstract. This paper deals with efficient techniques for the numerical solution of two-dimensional free-space
incompressible Euler equations. We develop an algorithm for fast computation of velocity in a vortex method based
upon discretization of vorticity by finite elements. We prove that the method with fast computation of velocity is
numerically stable and convergent with second-order accuracy. Some standard numerical tests show that the algorithm
with Delaunay regridding bears good stability and accuracy properties for long integration times, with a relatively
low computational cost. Moreover, the algorithm is found to be more accurate than high-order vortex-blob methods
with regridding for long enough integration times.
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1. Introduction. This paper deals with the numerical solution of two-dimensional free-
space incompressible Euler equations by means of vortex methods with finite elements.

Lagrangian methods, and in particular vortex methods, have many favorable practical
properties for the numerical simulation of incompressible flows at a high Reynolds number
(cf. Leonard 18], Majda 19] for a detailed bibliography and Anderson 1 for flows in bounded
domains). Vortex methods essentially introduce no numerical viscosity and are quite accurate
and stable, at least for short times (cf. Beale and Majda [5], Perlman [20]). A complete theory
of stability and convergence of vortex methods for free-space two- and three-dimensional
Euler equations has been developed since the late seventies. In Anderson and Greengard [2]
and Beale and Majda [3], [4] an analysis of convergence in/P-norms, with finite p, may be
found. Lately, a theory of convergence in/-norms was developed, mostly by Hou and his
collaborators (cf. Hou and Lowengrub [16], Hou [14], Hou [15]). Those works prove that
vortex methods are essentially stable in p- and/-norms, but stability is conditioned to a
relatively high order of consistence. Such "conditioned stability" appears in all convergence
proofs of vortex methods, as essentially related to the singularity of the Biot-Savart kernel.

In practice, vortex methods compute quite accurate solutions of Euler equations for rela-
tively short integration times. Beale and Majda [5] and Perlman [20] have tested vortex-blob
algorithms with high-order kernels. Those experiments confirm the theoretical predictions
of order of convergence for moderate times; however, at later times the high-order accuracy
progressively deteriorates. This seems to be due to the progressive increase of local grid size
that, in general, takes place as the initial grid is deformed by the flow. This leads to an increas-
ing loss of accuracy in the computation of velocities. As stability is conditioned to enough
accuracy, a progressive loss of stability also occurs.

Beale and Majda conclude that to obtain accurate solutions for long integration times,
regridding techniques are usually needed. Introducing regridding techniques decreases the
local grid size and allows stability and accuracy for longer times. Unfortunately, this introduces
increasing levels of numerical diffusion, counterbalancing the main feature of vortex methods.

Our purpose here is essentially to develop a vortex method in which it is possible to
reduce the local grid size without introducing numerical diffusion at the grid nodes. Our
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work is based upon a vortex method introduced in Chacon and Hou 10]. In this method the
vorticity is discretized by means of piecewise linear finite elements. Also, the mesh points
of the initial triangulation are transported along the streamlines of the discrete flow. Thus,
the vorticity is accurately computed at the mesh points, since the vorticity is conserved along
streamlines. This method shares many nice properties of vortex methods, being in particular
nondissipative. The method is proved to be stable and convergent with second-order accuracy
in the uniform norm. However, the stability is conditioned to an order of accuracy bigger than
one, much as in classical vortex methods.

Numerical experiments show that for short integration times this method is quite accurate,
but that as time increases, the triangulations generally become degenerated. This produces a
fast loss of accuracy in a short time after degeneration. On the other hand, the method uses a
technique of computation of discrete velocities that requires an amount of operations of order
O (N2), N being the number of grid nodes in the support of the vorticity. These two drawbacks
make the method unfeasible in practical cases.

This paper reports some modifications of this method that render it accurate for very
long times, with a relatively low computational cost. At first, we develop a fast technique
to compute the discrete velocity in the Chacon-Hou algorithm. This is an adaptation of the
technique introduced in Greengard and Rokhlin 12] to our context ofdiscretization of vorticity
by finite elements. This reduces the amount of computational work required by the method to

O(N log2 N). We prove an estimate of error, in terms of the uniform norm of the vorticity,
for the computation of discrete velocities by this technique.

Furthermore, we prove that if in the Chacon-Hou algorithm the velocity is computed by
this technique with enough accuracy, the numerical solution is still convergent in the uniform
norm with second-order accuracy. The proof deals essentially with the fact that our algorithm
keeps constant the uniform norm of the discrete vorticity. This allows us to obtain uniform-
in-time estimates for the error in the computation of the velocities with the fast algorithm and
ensure the stability of the algorithm.

We also prove that if Delaunay regridding is introduced, the algorithm with fast computa-
tion of velocity is still convergent with second-order accuracy. Delaunay regridding constructs
the triangulation that maximizes the smallest angle of all possible triangulations supported by
a given cloud of points. Introducing this regridding technique in our method produces the only
effect of redefining the connections between grid points. The values of the discrete vorticity
at the grid points remain unchanged. Thus, the local grid size is reduced, without introducing
numerical diffusion. The algorithm is convergent independent of the actual time-stepping
strategy used to apply Delaunay regridding.

We finally report some numerical experiments dealing with test cases considered by
Beale and Majda. We confirm our theoretical expectations on the number of operations in
the computation of discrete velocities. We also perform some tests of the modified Chacon-
Hou algorithm, introducing Delaunay regridding. These tests show excellent properties of
stability and accuracy, for very long time intervals, in the test cases considered. The errors
are conserved close to the initial values, and the theoretical convergence orders are confirmed
numerically, even for long integration times. We also observe that this algorithm compares
advantageously to a desingularized vortex method of the same order, and also to high-order
vortex-blob methods with regridding for long enough times of integration.

Our paper is organized as follows. In 2, we describe the algorithm reported in Chacon
and Hou 10]. In 3 we develop the technique for fast computation of velocities. Section 4 is
devoted to the analysis of the convergence of the modified Chacon-Hou algorithm. Finally,
in 5 we report our numerical tests.
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2. Description ofthe base algorithm. In this section we shall describe the vortex method
with finite elements introduced in Chacon and Hou 10], as some relevant properties of this
method motivate our work.

We are interested in the numerical solution of free-space Euler equations in two space
dimensions, with a homogeneous condition at infinity. In vorticity (co)-streamfunction (q)
formulation, these equations are

COt -[- (U V)co 0 in Rex]0, T[,

co(x, 0) co0(x) in Re,
(1)

-Aq co inR2,
lim q(x) 0.

Here, u (u l, u2) is the velocity field, defined by the two-dimensional Biot-Savart law,

(2) u(x, t) (K co)(x) [ K(x y) co(y, t) dy,

where K is the Biot-Savart kernel,

(3) g(x)
2zrlxl 2

(-x2, Xl).

Equations (1) are equivalent to the usual formulation of Euler equations (cf. Anderson and
Greengard [2], Kato [1 ]).

The equation for the vorticity in (1) may be integrated exactly on the streamlines X (t; s,
associated to the velocity field u. The curve 6 [0, T] --+ X (t; s, or) 6 R2 describes the
trajectory of a fluid particle whose position at time s is the point ot 6 R2. It satisfies the
following ordinary differential equation:

-d--(t; s, or) u(X(t; s, ), t) in [0, T],
(4)

X(s; t,) =.

Then,

(5) co(X (t; s, or), t) co(or, s) ’ ot R2 and V s, in [0, T].

Chacon and Hou show that if co is approximated by a piecewise polynomial function on
polygons, then the corresponding velocity given by (2) may be computed analytically. This,
together with (5), suggests that we approximate the vorticity by finite elements on a moving
grid whose nodes describe streamlines of the flow. The algorithm of Chacon and Hou is based
upon this idea. Although its description needs rather complex notation, we shall provide it as
needed throughout this paper.

Consider a triangulation Th of R2 with triangles {727}iu and nodes {Olj}j6u. We shall
assume that h denotes the length of the longest side of all triangles of Th.

Denote by Vh the space of continuous piecewise affine finite elements on triangulation
Th, defined by

(6) Vh Vh C0 (RZ) vhl is affine for all triangles r 6 Th }.

A function Vh Vh is uniquely determined by the values Vh (otj) ’i iV.
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Assume that we know an approximation Xj to the point X (tn; 0, otj) for each j 6 N.
Define the approximate function X 6 Vh to the flow map X (t; 0, .), respectively, in such a
way that it verifies

^n ’j 6N.(cs) x
^nThen, 7 {fi (r/) ’4 r/ Th} defines a triangulation ofRe, provided the triangles r

do not overlap. If this is the case, we also define the piecewise affine finite element space Q
on triangulation 7 in the same way that Vh is defined on Th in (6).

We shall denote by/3 (x; {coj }) the canonical interpolation operator on P, defined by

We shall also denote by di)j }jEN the canonical base of Vh Each (Ioj is uniquely defined by

ifj k,
j(Otk)--

0 ifjCk.

We are now ready to state the Chacon-Hou algorithm.

ALGORITHM A. Suppose that coo is of compact support. Denote wj co0(otj).
1. Initialization
(i) Triangulation;

(ii) Vorticity;

(iii) Velocity;

^0X =otj and T=Th.

2. Time iteration
(i) Update Lagrangian mesh points by the second-order Adams-Bashforth method,

^n+l "n At [ ^n(]) ^n-l(ry-1 ]Xj Xj -- - 3 l,t h --l,th

(ii) Construct a piecewise linear approximation to X (t; 0, .),

^n+l jn+l Z Xj
jEN

(iii) Update vorticity;

()+1 (X) /3+1 (X, {O)j }).

(iv) Update velocity;

^n+l +1uh =K*d

Algorithm A may be viewed as a vortex-blob method with a cutoff function varying in space
and time and nonoverlapping smoothing parameter 3 h. Thus, Algorithm A shares with
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vortex methods the property of being nondissipative. Furthermore, it is convergent without
overlapping the smoothing "blobs."

Chacon and Hou prove that Algorithm A is convergent in the uniform norm with second-
order accuracy under some regularity properties of the family of initial triangulations. Accu-
racy of order higher than one appears to be crucial to ensure the stability of the method.

Some numerical tests show that this method is accurate only for relatively short time
intervals, much as are vortex-blob methods (see Perlman [20]). However, at later times
the triangulations become degenerated and accuracy is progressively lost in a short time.
Thus, regridding techniques are needed to increase the interval of accuracy of the method.
Chacon and Hou prove that the method is convergent for longer time intervals if some specific
regridding techniques are introduced. This occurs in particular if the grid nodes are regrouped
to form new triangulations, so that their regularity is conserved.

3. Fast computation of discrete velocities. The method of computation of discrete ve-
locities introduced by Chacon and Hou requires computations of order O(Ne), where N is the
number of grid points in the support of wh."o This makes the algorithm slow even for moder-
ately large grid sizes. In this section we develop an adaptation of the algorithm introduced in
Greengard and Rokhlin [12] (cf. also Greengard [13]) that computes an approximation to the
discrete velocities by means ofTaylor expansions. This reduces the computational complexity
to O (N loge N). We omit most of the proofs of the results presented in this section, as they
are adaptations of the corresponding ones given by Greengard and Rokhlin. Let Th be a trian-
gulation ofRe with nodes {otj }jsN. We assume a certain uniformity in the spatial distribution
of the grid nodes of Th. This is needed to ensure the convergence of the interpolation by finite
elements (cf. Ciarlet 11 ]).

We are given a vorticity oh Vh, where Vh denotes the space ofpiecewise affine elements
on Th defined in (6). Moreover, we assume that h has compact support.

3.1. Truncated expansions. Our first goal is to obtain a truncated Laurent expansion
that approximates the far-field velocity induced by the vorticity supported by a given subset
Q ofR2. This vorticity is given by

(7) &Q (i (I)i.
oti a

Define the set

Qh-- {x R2 / d(x’ Q)-- inf lx- yl <-h }
Then, supp ()Q may include Q, but in any case supp OQ C Qh.

Denote by/Q (b/l, b/2) the velocity induced by &O"

f K(x x’) OQ(X’)IQ(X)
JsuPPffQ

Then, H ul iu2 is a function of complex variables, analytic in C\ supp &a, as the real
and imaginary parts ofH satisfy the Cauchy-Riemann conditions in C \ supp &a. Moreover,

(8) /(Z)
ppffQ Z- Z

Q(xt)dxt’

where

Z Xl "3r" ix2, Z XX -q- lX2, (Xtl X2).
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This allows us to expand//in a Laurent series as follows.
THEOREM 3.1. Assume supp _Oa ( D(zo, r), where D(zo, r) denotes the complex disc of

center zo and radius r > O. Then,

(9) 5/(z)
(Z Z0)k+l

V z C \ D(Zo, r),
k=0

where

(10)
1 fsu (z’ zo)koQ(X’) dx’.ak / PPffQ

Moreover, given p > 1, let us denote by Ltp (z) the p-term truncated expansion (9). Then,
thefollowing error estimate holds:

(11) I(z) -p(z)l _<
Iz zol-r Iz z01 if Iz z0l > r,

where

1 f Ial.(12) A --- PPffa

The coefficients a given by (11) may be computed analytically by means of a complex
version of Green’s theorem. Indeed, as supp (Q is a reunion of triangles r of Th, for each
such triangle there exist br, cr, and dr such that

1_ 1
()QIr (371’ 372) br xl -b cr x2 q- d Pr Z + Pr q- dr, where pr = br + cr.

Thus,

1

rCsupp 5Q
z (z zo)g z dz + - pr (z zo) dz + dr (z zo)k dz

The mentioned complex version of Green’s formula is used to compute the integrals in (3.1).
It is stated as follows.

LEMMA 3.2. Let B be a boundedmeasurable subset ofR2 with Lipschitz boundary 0 B. Let
f and g be twofunctions ofcomplex values defined and analytic in some open set containing
B U 0 B. Then,

f 1 f f(z) g(z) dz.f’z gz dz

Let us now consider a triangle r Th included in supp ()Q. By taking

f(z) z, e,(z) (z zo) z,

we obtain

1 f )(z zo) z dz z (z zo dz.
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Also, by taking

Z2
f(z) g(z) (z Zo)2’

fo2f (z zo) tz z (z zo) clz.

A similar choice allows us to find the last term in (3.1).
Finally, the computation of the coefficients a reduces to that of polynomials on segments

of straight lines, which is obtained analytically.
Our purpose now is to shift the centers of the truncated Laurent expansion obtained above

and to convert these expansions into Taylor expansions. We do this in the next three lemmas.
LEMMA 3.3. Assume supp Oa Q D(zo, r). Let zl C be such that Iz0 zi[ > r. Then,

bk(13) (z) =
(Z- Zl)k+lk=0

where

Y z C \ D(zl, Izl z0l + r),

(14) b Z at(z ZO)k-l.
/=0

Moreover, if we denote by ld the p-term truncated expansion (13), the following error
estimate holds:

A [,Zl-ZOl+r]
p+I

(15) I/d(z) -/d(z)l _<
Iz zl- (]Zl zol + r) Iz Zol

where

The transformation of Laurent expansions into Taylor expansions is made as follows.
LEMMA 3.4. Assume supp &a C D(zo, r). Let z C be such that IZl z0[ > (c + 1)r

(16) (z) = /k(Z- Zl)k /Z D(Zl, r),
k=0

where

(k+l) at
(17) (-1)

(z zo)+ o= (zl zo)l"

Moreover, given an integer number q > 1, define the truncated expansion

p

(18) Upq(Z) /k (Z Zl)k,
k=O

where the coefficients , are defined by

k al
(19) = (-1)

(z- z0)k+l (Zl -zo)l"

A
2rr ppQ

for some c > 1. Then,



1432 IBRAHIM BLESS RANERO AND TOMAS CHACt3N REBOLLO

Then, thefollowing error estimate holds:

(20) [(z) LCpq(Z)]
r c-1 c-1 +1

where

1 fu IQI,A
PPQ

Z G D(Zl, r),

Lemma 3.4 provides an error estimate for a truncated expansion l/[pq that is defined only
with a finite number of data: the p + q coefficients al, a2 ap+q furnished by either
Theorem 3.1 or Lemma 3.3.

The translation of the centers of the truncated Taylor expansions is given as follows.
LEMMA 3.5. Given the complex numbers Zl, Z2; /91,/91 pp, thefollowing holds:

p p

(21) & (z z) /Sk (Z Z2)t,
k=0 l=0

where

(22)
p

/k /gk (Z2 Zl)k-l.
k=l

Observe that as formula (21) is exact, the error bound (20) is still true for the truncated
Taylor expansion with shifted center if z2 6 D(Zl, r) and z D(z2, r ]Zl z21).

Also, assume that the p are the coefficients of the Taylor expansion of/g around z.
Then, in general, the/5l are not the coefficients of b/around z2. This would happen only if the
sum in (22) were infinite.

3.2. Description of the algorithm. To describe to some extent the algorithm for fast
computation of the discrete velocity, we shall need some specific definitions.

We assume that the support of the vorticity ffh is included in a square of sides of length
H,

= 2’2
x

2’2

We refer to this square as the computational domain. We subdivide the computational domain
into a family of boxes of decreasing size which will be linked by a hierarchy relation.

Let N be the number of nodes Oem in supp (Sh, and define the highest level of refinement:

J log4 N.

Given a level of refinement j 0, 1 J, we denote by Q, k 1, 2 4J the squares
/-/ We denote byobtained by splitting each side of into 2j subintervals of length hj 2-7.

/Jk the center of box Q. We assume that each box Q at level j is a Cartesian product of
intervals of the form

Q [a, b[ x [c, d[

Hfor some a < b and c < d in [-7, [" Then, the boxes at level j do not overlap, but their
reunion is the whole computational box
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DEFINITION 3.6. Given d > O, we shall say that two boxes Q and QJr of the same level
j are d-separated if

k --i11 " d hj.

The fact that two boxes are well separated allows us to approximate uniformly on each
one of them the velocity field induced by the vorticity supported by the other one by means
of the truncated Taylor development furnished by Lemmas 3.4 and 3.5. To state this result
we need to give a formal definition of the aspect ratio of a triangulation, as a measure of its
regularity. The aspect ratio of a given triangle is the ratio between the diameter of the smallest
circle that can circumscribe the triangle and that of the larger circle that can be inscribed in the
triangle. The aspect ratio of a triangulation Th is the largest of all aspect ratios of all triangles
of Th.

LEMMA 3.7. Given a box Q oflevel j, denote by co Vh the vorticity supported by QJ
(23)

Otm E Q

Call lt the (p, q)-term Taylor expansion associated to o9 defined by (18). Define

Let c > 1 be given. Then, there exists a constant ) > O.depending only on the a.spect ratio of
triangulation Th such that ifd (c + 1) and box QJ is d-separatedfrom QJ, then

C-+-1
(24) xEQ{max lu uJl _< B hj

(c 1)2 +
c +1 Ilffh

where B is a constant depending only on the aspect ratio of triangulation Th.
Proof. As h is the longest length of all triangles of Th, then

(25) supp coJ C B(flJ, rj) with rj -- hj + h.

Also, as hj , there exist two positive constants v and/z depending only on the aspect
ratio of T, such that

vh<hj<tzh.

Thus,

1 1
rj < ----_ hj +-hs <_. )hj,

/2

As the boxes are d-separated,

1 1
where ) + -’v

d
fl fill> d hj > r.

If we take d ) (c + 1), we have the hypotheses of Lemma 3.4 with

zo fl J
k’ Zl [l r rj.

Estimate (24) follows immediately.
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This result could be used to derive an algorithm for fast computation of the velocity that
would require a number of elementary operations of order O(N) for some a 611, 2[ (cf.
Buttke [8], [9]). However, Greengard and Rokhlin’s algorithm utilizes the hierarchy of boxes
introduced above to compute far-field vorticity effects at the coarsest level possible. This
allows us to reduce the computational complexity to O(N log2 N). To do so in our case, we
still need a certain amount of technical definitions.

DEFINITION 3.8. Given a box Q of level j > 1 and a coarser level n < j, denote by
pn, the only box of level n which includes Q. Given d > O, we say that a box Q/of level

j lies in the interaction zone of box O if O and Q{ are d-separated, but there is no level
n O, 1 j such that Pn and Pln, are d-separated.

We denote by S the set ofindices ofall boxes Q] of level j which lie in the interaction

zone ofbox Q. We call the set SJk the interaction list ofbox Q.
DEFINITION 3.9. Given two boxes Q and Q{ of level j > 1, we say that O] lies in the

close action zone of Q if it does not lie in the interaction zone of QJk, and there is no level
n O, 1 j 1 such that ptn, lies in the interaction zone of P,.

We call close action list aJ ofbox Q the set of indices ofall boxes Q{ oflevel j which

lie in the close action zone of Q.
Our algorithm for fast computation of velocity may now be described as follows.

ALGORITHM B.
Given d > and p, q > 1 integers, compute an approximation fih of fih K ff)h in the

computational domain f2 as follows.
(1) For each level j J, J 1 and each box Q, k 1, 2 4J of level j,

compute a p-term truncated Laurent expansion/2 of the velocity induced by the vorticity co
supported by box Q, whose center is the center fl of Q. This computation is recursively
performed from the finest to the coarsest level, following Greengard and Rokhlin. To do this,
use Theorem 3.1 and Lemma 3.3.

(2) For each level j 0, 1, 2 and each box Q, k 1, 2 4J of level j,

compute the (p, q)-term truncated Taylor expansion b/ ofthe velocity induced by the vorticity

co supported by the computational domain S2, but the close action zone of box Q. This
computation is recursively performed from the coarsest to the finest level, following Greengard
and Rokhlin. To do this, use Lemmas 3.4 and 3.5.

(3) For each box Q[, k 1, 2 4J of the finest level, compute fih on Q[ as follows.
(i) Compute an approximation fiF to the velocity induced by the far-field effects of

vorticity on Q[ by

(26) IF(X (9[L/(()] -[(()]) ateachx 6 QJk
where

( --Xl+ix2.

(ii) Compute exactly the velocity tic induced by vorticity supported by the zone of the
close action of box Q["
(27)

where

tic K , oc,

Oc= Z
maJk OlnaJm
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(iii) Compute finally

(28) fih /C "1-/’F.

In what follows, we use the notation Algorithm B (p,q;d) to specify the dependency of
Algorithm B upon the parameters p, q, and d.

Once the coefficients of truncated Laurent and Taylor expansions are computed (in our
case, by means ofTheorem 3.1 and Lemmas 3.3- 3.5), Algorithm B isjust a slight modification
of Greengard and Rokhlin’s algorithm. The only difference is that we introduce the integer
parameter q to define the number of terms in the truncated Taylor expansions. Because of
that, and because the sides of the boxes at the finest level are of order h, its computational
complexity is of the same order.

LEMMA 3.10. The number ofelementary arithmetic operations required by Algorithm B
to compute (th at the nodes oftriangulation Th that lie inside supp ff)h is oforder

(29) N (p2 + q2).

Lemma 3.4 provides fine error estimates of the true truncated Taylor expansions that are
used in Algorithm B. This will also allow us to find an error estimate for fib, as follows.

THEOREM 3.11. There exists a constant ) > 0 depending only on the aspect ratio of
triangulation Th such thatfor each c > 1, the velocity fih computed by Algorithm B(p,q;d),
with d )(1 + c), verifies

I()p+I

( 2i)q+l1(30) Ilfih fih 11) < K H [[(Shll -t-
c+

where K is a constant that depends only on c and on the aspect ratio of triangulation Th.
The proof of Theorem 3.11 is a technical adaptation of that of Lemma 3.7.

4. Convergence ofthe modified Algorithm A. In this section we state that Algorithm A
is still convergent if Algorithm B is used to compute the discrete velocities with enough
accuracy.

We call Algorithm A’(p,q ;d) the modification of Algorithm A which corresponds to the
use of Algorithm B(p,q;d) to compute the discrete velocities. As in Algorithm A, we denote

^n, ^n and fi the Lagrangian mesh points, the discrete vorticity, and the discrete velocityby Xj coh,
computed by Algorithm At, respectively. Note that Algorithm B only computes the velocities
of points that lie in the necessarily bounded computational domain f2. For that reason, we as-

^nsume that Algorithm A updates a triangulation T of supp coh, instead of a triangulation of the
wholeR2, as does Algorithm A. To give a convergence result for AlgorithmAt, consider a trian-
gulation Th of a polygonal domain Do that approximates supp coo. We use the discrete/-norm

(31) IlYll,h max IYjl
I<j<M

for any sequence Y {Yj}j= defined on the nodes Oel otM of Do. We also use the

sequences Xn and jn, defined by

The following theorem states the convergence of Algorithm At.
THEOREM 4.1. Assume that coo C2(R2) with compact support. Assume also that the

family of initial triangulations o{Th}h>O is regular.
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Given c > 1, cr > 1, h > O, choose two integer numbers Ph and qh in such a way that

()ph+l (2)qh+l(32) + < ha.
c+l

Then, Algorithm A is convergent in the uniform norm with accuracy oforder min(2, or). More
precisely, given T > O, there exist a separation parameter dr and two positive constants hz
and A that depend only on coo, T, c and on the aspect ratio , of the initial triangulations,
such that if 0 < h < hz and 0 < At < Az, then the discrete solution of Euler equations
computed by Algorithm A’(ph,qh;dT) verifies

max Ilco(., tn) (.Oh^n I1 _< C (At2 -k- h2 -k- ha),
O<tn<T

(33) max I[u(’, tn) Uh[în _< C (At2 + h2 -+- ha),
O<tn <T

max IIX(t,; 0, .) "ll,h < C (At2 -k- h2 + her),
O<tn <_T

where the constant C depends only on coo, T, c and on the aspect ratio , of the initial
triangulations.

A sketch of the proof of this result is given in the Appendix. Note that to ensure the
second-order accuracy of Algorithm A’, we must take cr 2. If we assume p

_
q, (32) will

be verified if

2
(34) p ----- 211ogz hi, where)

c+l

In this case, the computational complexity of our algorithm is of order

(35) N (log N)2.

However, if p and q are large enough to have

where e is the precision of the computer actually used, then the computational complexity of
Algorithm B will be of order

(36) N (I log el)z,
just as is that of Greengard and Rokhlin. However, in practical cases h is always much bigger
than e, so that (35) applies. The fact that Algorithm A is still convergent with second-order
accuracy if (32) holds allows us in practice to save an amount of computational work of order
higher than N.

We should remark also that in practice Algorithm A’ must be combined with regridding
techniques to improve its stability and long time accuracy. It is interesting to observe that
Theorem 4.1 is still true if Delaunay regridding is used to construct the triangulations, inde-
pendent of the time-stepping strategy used. This happens because of the special properties of
this kind of regridding; i.e., it gives the triangulation with the largest aspect ratio of all possible
triangulations lying on a given cloud of nodes. Also, it keeps constant the discrete/-norm
defined by (31) and the continuous L-norm of piecewise affine functions. This allows us to
reproduce step by step the proof of Theorem 4.1.
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5. Numerical tests. In this section we report some numerical results that show the nu-
merical performances of Algorithms A’ and B. Specifically, we observe in practical cases
that the use of Algorithm B to compute the discrete velocities effectively takes an amount of
operations of order N log2 N, as stated in Theorem 3.11. We also observe that the numerical
order of convergence of Algorithm A’ agrees with the theoretical order stated in Theorem 4.1,
even for long integration times. Moreover, our experiments show that the use of Delaunay
regridding allows us to keep the errors in Algorithm A at levels very close to the initial ones,
for very long time intervals, without introducing numerical diffusion. Finally, we observe that
Algorithm A compares advantageously for long times with desingularized vortex methods of
the same convergence order and even with high-order vortex-blob methods with regridding.
In our tests we have considered two steady solutions (u, co) of Euler equations (1). These
solutions have been used by Beale and Majda and Perlman, among others, in the numerical
study of the accuracy of vortex-blob methods (cf. Beale and Majda [5]), Perlman [20]). In
both cases, the vorticity is a smooth radially symmetric function, co co(r), with support in
the unit circle. Our test cases now follow.

Test Case 1.

(1 Ix 12)7 if Ix _< 1,
(37) co(x)

0 if Ixl > 1.

Test Case 2.

(1 r)2 (1 2r) (1 + 4r) if Ixl <_ 1,
(38) co(x)

0 if Ixl > 1.

The corresponding velocity field is given by the expression

1 fO(39) u(x) - (-y, x) s co(s) ds.

The streamlines of these rotating flows are circles. In both cases, the angular velocity varies in
the radial direction, so that a large tangential stretching takes place as time goes on. Thus, the
corresponding flow maps produce a large geometrical distortion. Because of these properties,
these flows seem to be appropriate to test the performances ofour algorithm for long integration
times.

In Test Case 1 (TC 1), the vorticity co is of class C6(R2) and has constant sign. The larger
tangential stretching takes place in the interval r 6 [0.3, 0.6], approximately. Particles with
maximum speed, situated approximately on Ix 0.4, complete one rotation at time 4
while those on Ix 1 complete one rotation at time 32 zr. In Test Case 2 TC2, the vorticity
is less smooth and is only of class C Moreover, co changes sign and the velocity profile is not
monotone for r < 1. Thus, this problem is a more severe test than TC1. In our convergence
results, a basic hypothesis is that the angles of the triangles of the triangulations are bounded
from below by a constant independent of the grid size. In our computations we have used
initial triangulations whose angles are always bigger than rr/4. This is done by uniformly
spacing the vertices in the radial and angular directions. Thus, for these triangulations the grid
size h may be defined as h 1/M, where M is the number of radial subdivisions. In Fig.
we have drawn one such initial triangulation corresponding to h 1/10, constructed with the
help of MODULEF finite element library (cf. Bernadou et al. [6]).

5.1. Fast computation of velocity. Our first set of tests focused on the analysis of the
practical performances ofAlgorithm B. To do this, we computed the initial discrete velocity
in TC1 by direct calculation of K &h and also more approximately by means of Algorithm B,
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FIG. 1. Initial triangulationforAlgorithm A with grid size h / 10. Triangulation ofthe unit circle with 469
grid points and 864 triangles.

FIG. 2. Computing time required by direct calculation (line marked by symbols) and by Algorithm B (line
marked by + symbols) to compute the initial discrete velocity. The first one grows quadratically, while the second
one grows almost linearly.

allowing an error of order h in this last calculation. In Fig. 2 we represent a comparison
between the number of operations taken by both calculations. We may observe that the
number of operations taken by Algorithm B grows almost linearly, while the one taken by the
direct calculation is very closely quadratic. Thus, we save a large amount of computational
work for small h.

5.2. Convergence order. Our second set of tests was performed in order to analyze the
agreement between the theoretical and the numerical orders of convergence of Algorithm A’,
including the use of Delaunay regridding. To do this, we set a quality test on triangulation ,;
i.e., if the smallest angle becomes smaller than a preset minimum value, Delaunay regridding
is performed. In Figs. 3 and 4 we represent, respectively, the grids corresponding to h 1/12
at time 6.8 before and after using Delaunay regridding. The minimum angle was set to
be one-tenth of the smallest initial angle. A large improvement of the quality of the grid may
be observed.
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FIG. 3. Triangulation corresp orithm A without regridding.

FIG. 4. Triangulation corresponding to h 1/12 at 6.8 constructed by Algorithm A after applying
Delaunay regridding.

To measure the errors in all test cases we used a discrete l-norm, because our convergence
results are stated in uniform norms. To describe this discrete norm, let us denote by _A_h the
set of nodes otj of the initial triangulation that lies inside the unit circle C. The discrete norm
of an error function E defined on Ah is defined as follows:

(40) E ,h max EjI.
OtjAh

The errors in velocity, eu(t, h), and vorticity, eo)(t, h), have been normalized by the exact
L-norm of u and co, respectively, in C:

u uh cx:,h co (’Oh cx,h
(41) eu(tn, h) eo(tn, h)

The numerical order of convergence in velocity, for instance, was computed by comparing the
errors corresponding to two different values of h as follows:

(42) p.(tn; hl, h2)
log [e.(tn, hl)/e.(tn, h2)]

log(hi
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FIG. 5. Numerical convergence order in velocity ofAlgorithm A’, applied to TC 1, for a short time interval. The
lines marked by and + symbols correspond, respectively, to hi 1/12, h: 1/16 and to hi 1/16, h2 1/20 to

compute the numerical convergence order. The corresponding theoretical convergence order is p 2 (line marked
by 0 symbols).

FIG. 6. Numerical convergence order in velocity ofAlgorithm A’, applied to TC 1, for a short time interval. The
lines marked by and + symbols correspond, respectively, to h / 12, h2 / 16 and to h / 16, h2 1/20 to

compute the numerical convergence order. The corresponding theoretical convergence order is p 1.5 (line marked
by 0 symbols).

In Figs. 5 and 6 we represent the behaviour of the numerical convergence order in velocity for
TC 1 for short times. Figure 5 corresponds to a theoretical convergence order p 2, obtained
by choosing a 2 in Algorithm A’. Figure 6 corresponds to p 1.5, obtained by choosing
cr 1.5. The sharp oscillations observed in these curves occur when Deiaunay regridding
is performed. In both cases there is a good agreement between the computed convergence
order and the theoretical one. Furthermore, the curves corresponding to smaller values of h
are globally closer to the theoretical convergence orders. Note that in all cases the computed
orders oscillate around the theoretical value.

It is interesting to observe that the convergence order ofAlgorithm A’ may be preset to any
value p 6] 1, 2] by simply choosing the parameter cr p at the beginning ofthe run. However,
taking r smaller than 2 would produce a waste of computational work, as the computational
complexity of Algorithm A’ is of order N log2 N for any value of a. In what follows we shall
always take tr 2.



LONG TIME ACCURATE VORTEX METHOD 1441

rrors

FIG. 7. Time evolution of numerical convergence order in vorticity ofAlgorithm Ar, applied to TC2, for the
time interval [0, 15]. The lines marked by +, *, and 0 symbols correspond, respectively, to hi 1/12, h2 1/16;
hi 1/16, h. 1/20; and to hi 1/16, h2 1/20 to compute the convergence order. A good agreement with the
theoretical prediction p 2, which improvesfor smaller values ofh, is observedfor the whole time interval.

3"0

12.5

Errors

FIG. 8. Time evolution of numerical convergence order in velocity ofAlgorithm A, applied to TC2, for the
time interval [0, 15]. The lines marked by +, *, and 0 symbols correspond, respectively, to hi 1/12, h2 1/16;
hi 1/16, h2 1/20; and to hi 1/16, h2 1/20 to compute the convergence order. A goodagreementwith the
theoretical prediction p 2, which improvesfor smaller values ofh, is observedfor the whole time interval.

Figures 7 and 8 show the numerical convergence order in vorticity and velocity for TC2
during a relatively long integration time. The sharp oscillations of the former test are still
observed. However, again the curves corresponding to smaller values of h are closer to the
theoretical order p 2. Note that the numerical orders in velocity are closer to p 2 than
those in vorticity. This is probably due to the higher regularity of the velocity field. Note also
that the agreement holds even for long times.

5.3. Behaviour for long integration times. Our third set ofnumerical experiments deals
with the analysis of the long time behaviour of errors due to Algorithm A’.

At first, we tested the effect of introducing Delaunay regridding in Algorithm A’. In
Fig. 9 we represent the time evolution of the percent relative errors in velocity corresponding
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o

Errors

FIG. 9. Time evolution ofrelative errors in vorticity ofAlgorithm A with and without using Delaunay regridding
(marked by and + symbols, respectively). The second one grows exponentially while thefirst one keeps close to the
initial error.

to Algorithm A without regridding and to Algorithm A’ using Delaunay regridding, applied to
TC with h / 12. We made a run in the time interval [0, 50], which appears as quite a long
time for the test case considered. Indeed, in that interval the fastest points in supp 09 completed
more than three rotations, while the slowest ones did not complete half a rotation. Note that
Algorithm A is still defined when the triangulation TT, becomes degenerated. Indeed, in this

case it is still possible to compute directly the exact velocity T. We may observe that in this
case the error grows exponentially until attempting relative values of more than 50% at

_
50.

When Delaunay regridding is used, there is a fall of error each time it is effectively performed.
This is due to the diminishing of the local grid size that renders the linear interpolations on
each triangle more accurate. After this, there is a slow exponential increase of errors, which
falls again the next time Delaunay regridding is used. Note that regridding is not needed very
often. The error at 50 is approximately only two times the initial one.

Figures 10 and 11 also show the behaviour oferrors in velocity and vorticity corresponding
to TC1 and TC2, respectively, with h 1!12, during the time interval [0, 100]. This is a
very long time interval for both cases, as at time 100 the unit circle has been dramatically
deformed by both flows. The curves present sharp oscillations due not only to the use of
Delaunay regridding, but also to the low smoothness of the discrete/-norm used. However,
we remark at first that in both cases the errors in velocity and vorticity remain almost constant.
Also, in both cases the errors in velocity are substantially smaller than those in vorticity. Again,
this is very probably due to the higher smoothness ofthe velocity fields. Note also that although
in TC2 the vorticity is not smooth enough to ensure the convergence ofAlgorithm A’, in practice
second-order convergence is attempted. A possible reason for this fact is that the singularities
of the vorticity lie on the curve r 1, while we solve Euler equations only inside the unit
circle. Also, the fact that the errors corresponding to TC2 are close to those corresponding to
TC 1 is probably due to the radial distribution of the nodes in the triangulation used.

Figure 12 represents the triangulation for TC1 at time 99, the last time Delaunay
regridding is used. Observe the good quality of the grid, which suggests that our run could
continue for longer times with similar error levels.

Globally, these tests show that Algorithm A’ with the use of Delaunay regridding is stable
and accurate, with second-order accuracy, even for very long integration times.
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Errors
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2.0

Z. 5

FIG. 10. Time evolution oferrors in velocity (line marked by + symbols) and vorticity (line marked by symbols)
for Algorithm A’, applied to TC1 with h 1/12, in the time interval [0, 100]. Both errors remain close to the initial
valuesfor the whole time interval.

Errors

2.5

2.0

0 9 18 27 36 45 54 63 72 81 90 99

FIG. 11. Time evolution oferrors in velocity (line marked by + symbols) and vorticity (line marked by symbols)
forAlgorithm Ar, applied to TC2 with h 1/12, in the time interval [0, 100]. Both errors remain close to the initial
valuesfor the whole time interval.

5.4. Comparison to a desingularized vortex method. Our next experiment is to com-
pare the performances of a vortex method on a fixed uniform grid with those of Algorithm A’
using Delaunay regridding.

As the vortex method we have used the desingularized point vortex method (DPVM)
introduced in Hou [15]. To describe it, let us consider a uniform grid of size h of R2 with
nodes {flj }j EN. Denote coj COO (/j). Then, DPVM computes the discrete velocity at point/3
and time by

(43) h(flk, t) g(k l) (COl (-Ok) COk I g(k y) dy,
/l Esupp wo Jf2h (t)

where ]h (t) is a polygonal approximation of supp co(., t).
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FIG. 12. Triangulation at time 99 corresponding to Algorithm At, applied to TC2 with h 1/12, in the
time interval [0, 100].

This is a stable modification of the point vortex method, uniformly convergent with
second-order accuracy. Because of that, it seems to be a good method to compare with ours.

In our experiments we have run both algorithms for grids of size h 1/12 and h 1/16.
We always take the unit circle to be the set 2h(t). This allows us to compute exactly the
integral expression in (43). Also, we solved the equation of characteristics for the DPVM
with the Adams-Bashforth second-order scheme, just as in Algorithm A’.

In our tests, if no regridding techniques are introduced, the DPVM produces a large
increase of errors in a relative time interval. For instance, for TC the relative errors in velocity
take values of approximately 80% by time 40. As we pointed out in the Introduction, some
convenient regridding technique is needed to obtain accurate solutions for long integration
times.

Beale and Majda introduced in 1985 a simple, but efficient, regridding technique in the
context of a vortex-blob method (VBM). VBMs are based upon the discretization of vorticity
as a sum of smooth functions with small supports, called blobs. Given a smooth cutofffunction
q (i.e., an approximation of the Dirac delta at the origin), the vorticity at a fixed time is
approximated by

(44) co(x, t) coh(X, t) qa(x Xj(t)) COj h2,
J

where

1
%(x)

With a discretization of the kind of (44), it is possible to compute the vorticity at any prescribed
point. The regridding technique of Beale and Majda consists of reinterpolating the vorticity
at the nodes of a uniform grid, whenever the current local grid size is large enough. However,
as reported by Beale and Majda, the grid size of the reinterpolating grid should decrease
progressively to maintain reasonable error levels.

In DPVM the vorticity is discretized as a sum of Dirac masses:

(45) co(x, t) -- cob(X, t) Z 6(X Xj(t)) coj h2.
J
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FIG. 13. Comparison of errors in velocity between the DPVM (line marked by + symbols) and Algorithm A
(line marked by symbols), applied to TC1, in the time interval [0, 100]. A progressive increase is observed in the

first one, while the second remains almost constant.

Consequently, the regridding technique of Beale and Majda cannot be directly applied here.
However, it is possible to use this technique after approximating d by a sum of blobs as in
(44). In practice, we have used a fourth-order cutoff function :

*8(x)=- 2exp -- -This cutoff function was also introduced by Beale and Majda in 1985. For smooth functions
f, the error f a, f is of order 64. We have taken 6 of order h, so this accuracy seems to
be enough, as the DPVM is of order h2.

The regridding strategy that we have used consists of reinterpolating the vorticity when
the smallest angle of the deformed grid is smaller than a preset limit value. Each regridding
has been set to produce an increase in the amount of the grid points of approximately 15%.

Figures 13 and 14 compare the behaviour of errors due to the DPVM and to the finite
element vortex method (FEVM) of Algorithm A’. We represent the errors in velocity and
trajectories corresponding to TC1 during the time interval [0, 100] with initial grid size h
1/16.

Sharp variations of errors corresponding to the DPVM are observed, probably due to
the additional error introduced in the reinterpolation associated to the regridding steps. The
errors corresponding to the DPVM increase faster than those corresponding to the FEVM.
By time 0, the errors corresponding to both methods take very similar values. By time

100, the later errors are nearly 200 times smaller than the former ones in velocity and
nearly 20 times smaller in trajectories. This different growth rate is probably a consequence
of the introduction of numerical diffusion in the regridding steps.

We may conclude that the FEVM solves more accurately our TC1 for long times, without
introducing numerical diffusion. We should point out that the computational work needed by
one time-step with the FEVM is nearly 100 times bigger than the one needed by one time-
step with the DPVM. However, this work remains constant in time for the FEVM, while that
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FIG. 14. Comparison of errors in trajectories of grid points between the DPVM (line marked by + symbols)
and Algorithm A (line marked by symbols), applied to TC1, in the time interval [0, 100].

needed by the DPVM increases each time regridding is performed. Thus, for long enough
time intervals, both computational efforts will be of the same order.

5.5. Comparison to high-order VBMs. We finally compared the FEVM with the VBM
with cutoff functions of orders m 4 and m 6. Specifically, we used those introduced by
Beale and Majda, corresponding to

p:4,

(x)=- 2exp - - exp (- 2@2)]
p--6,

1 r2 1 r2J6)(x) - I exp (----)- exp (--2@2)+ - exp (---)].
To ensure the convergence of the method, we took the blob size to be 6 hq, with

0 < q < 1. Thus, for smooth enough initial vorticity, the convergence order of the method is
p=mq.

In practice, we took q 0.95 in all our experiments, as this value seems to be quasiop-
timal, as reported by Perlman. The streamline equation has been solved with a fourth-order
Runge-Kutta method with very small time-step. We have tested our code for TC1 at 1.
Our estimations of computed convergence orders are given in Table 1. They are in very good
agreement with those reported by Perlman.

We have used the regridding technique described in the preceding subsection, with some
minor modifications. Indeed, many possible criteria which can be used to apply regridding are
equivalent in practice for the rotating steady solutions we are considering. Either regridding
when the smallest angle of the mesh is smaller than a given tolerance, or when the current grid
size is long enough, is equivalent to regridding a certain fixed number of time-steps. In any
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TABLE
Convergence order ofthe VBMfor TC1, estimated at time 1, used to compare to the FEVM.

Values of m and h h 0.2 h 0.1 h 0.05 Theoretical orders
m 4 2.53 3.32 3.60 3.80
m 6 2.78 4.44 5.16 5.70

O,B

0.7

rIME I

FIG. 15. Comparison oferrors in velocity between Algorithm A’ (line marked by 0 symbols) and the VBM with
m 4 (line marked by + symbols) and m 6 (line marked by symbols)for TC1 and h 1/16 in the time interval
[0, 100].

case, the actual tolerance value must be tuned with care to avoid an excessive increase in errors.
If regridding is applied too often, we shall progressively introduce high levels of numerical
diffusion, but if the grid is excessively distorted when regridding, then the accumulated errors
will produce an unrecoverable loss of accuracy.

In Figs. 15 and 16 we represent the relative errors in velocity for the FEVM and for the
VBM withm 4 andm 6, corresponding to TC1 with h 1/16 and TC2 with h 1/12.
We may observe that regridding is applied in all cases an almost constant number oftime-steps.
In all cases errors are kept almost constant for a short time interval whenever regridding is
applied and experience a fast increase when the grid becomes progressively distorted. For
m 6, this increase is very fast, and this is probably the reason why regridding produces a
decrease in errors. For m 4, the errors do not grow as fast, and regridding produces an
increase in them. Also, almost linear growth rates of errors are observed in all cases. These
rates are smaller for m 6 than for m 4. For the FEVM, the growth of errors as the grid
is distorted is the fastest of all cases considered. Thus, the loss of quality of the grid more
dramatically affects the accuracy of the FEVM than that of the VBM. However, applying
Delaunay regridding in the FEVM diminishes the errors to values close to the initial ones,
counterbalancing almost completely the former increase.

In TC 1, which corresponds to a smooth solution, the FEVM presents a better performance
at time 100 than the VBM with m 4, while the VBM with m 6 yields a higher
accuracy than the FEVM. However, in TC2, which corresponds to a less smooth vorticity, the
performance of the FEVM at 100 improves that of the VBM with m 4 and also that of
the VBM with m 6. We should also remark that the growth rates of errors for the BVM are
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FIG. 16. "Comparison oferrors in velocity between Algorithm A’ (line marked by 0 symbols) and the VBM (line
marked by + symbols) with m 4 and m 6 (line marked by symbols)for TC2 and h 1/12 in the time interval
[0, 100].

in all cases larger than those corresponding to the FEVM. Thus, the comparison is very likely
to be even more favourable for the FEVM for later integration times.

Finally, we must say that we may not expect to solve two-dimensional Euler equations
with any initial condition, simply by using Algorithm A’ combined with Delaunay regridding.
It seems clear that, in general, the other regridding rules that we mentioned in 2 are needed
to obtain accurate results. The results presented in this paper must be understood in the sense
that our FEVM, due to its geometrical adaptability, improves the accuracy of classical vortex
methods, without introducing numerical diffusion.

Appendix: Proof of Theorem 4.1.
Proof. Our proof is an adaptation of the convergence proof for Algorithm A given by

Chacon and Hou. The essentials of the proof are as follows. Let us define

T* max t. "0 < tn < T, max IlX 311,h < hI+p wherep [min(2 cr)-l]
0<k<n

We prove that there exists a separation parameter d, depending only on Coo, T, c, and , such
that estimates (33) hold in the time interval [0, T*]. Then, we conclude that there exist two
positive numbers h T- and AT- such that if 0 < h < h T- and 0 < At < AT-, then there must be
T*>T.

The main innovation in our analysis is that we obtain uniform-in-time estimates for the
error in the computation of discrete velocities by Algorithm B. As we shall see, this essentially
happens because our algorithm preserves the uniform norm of the discrete solution.

Indeed, if 0 _< t, _< T*, following Chacon and Hou we state that if h is small enough,
then all triangulations {7}0<_t,<_, are nondegenerated. Moreover, all aspect ratios of these
triangulations are uniformly bounded from above by a constant }/ independent of h. Let us
define the separation parameter

dr )Lr (1 + c),

where iz is the parameter associated to ?’ given by Theorem 3.11. Note that d7 depends
only on coo, T, c, and the aspect ratio of the initial triangulations.
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(46)

and

We prove now that there exist two positive constants r and C such that

supp ^n
o)h C B(0, r), 0 < tn < T*,

(47)

Indeed, assume

^n .n. hr T*.max I[fi--(K.(Oh)]( j)l <Cr 0<tn <
O<j<M

supp tb-I C B(0, rn-1), supp ^n
(-oh C B(O, rn)

for some positive numbers rn-1 < rn.
Let us denote by the Euclidean norm on R2 and by II the uniform norm on R2.

Theorem 3.11 yields

(48) < C1 rn ^n h f ^n%11 -t- Ig(] Y)I Coh(Y)dY _< C2 rn Ilco011
JB(O,r.)

Note that the last inequality here follows because Algorithm A conserves in time the
uniform norm of the discrete vorticity. Consequently,

IXj^n+l IXjl -At 3 [uh^n(Jy)[ _+_ [tn-l(j]-l)[ _< IXjl + C3 At, j--1 M.

Thus,

rn < r ro exp(C3 T), 0 <_ tn < T*.

The remainder of the proof is a technical refinement of that of Chacon and Hou. We shall
omit it here, as it does not introduce any essential innovation. V]
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