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Abstract. We construct a fully discrete numerical scheme for three-dimensional incompress-
ible fluids with mass diffusion (in density-velocity-pressure formulation), also called the Kazhikhov—
Smagulov model. We will prove conditional stability and convergence, by using at most C?-finite
elements, although the density of the limit problem will have HZ?-regularity. The key idea of our
argument is first to obtain pointwise estimates for the discrete density by imposing the constraint
lim s 1y 0 h/k = 0 on the time and space parameters (k, h). Afterwards, under the same constraint
on the parameters, strong estimates for the discrete density in 1°°(H!) and for the discrete Laplacian
of the density in [2(L?) are obtained. From here, the compactness and convergence of the scheme
can be concluded with similar arguments as we used in [Math. Comp., to appear], where a differ-
ent scheme is studied for two-dimensional domains which is unconditionally stable and convergent.
Moreover, we study the asymptotic behavior of the numerical scheme as the diffusion parameter A
goes to zero, obtaining convergence as (k, h, A\) — 0 towards a weak solution of the density-dependent
Navier—Stokes system provided that the constraint lim(y 4 1)—o h/(A%k) = 0 on (h,k, \) is satisfied.
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1. Introduction.

1.1. The model. Let Q C R3 be an open bounded set with boundary I'. We
denote by [0,7] (0 < T < +00) the time interval of observation. We will use the
notation @ = Q2 x (0,T7), ¥ =T x (0,T), and n(x) the outwards unit normal vector
to I' at the point z € T'.

We consider the Navier-Stokes system with mass diffusion (the so-called
Kazhikhov-Smagulov model) in Q:

pf.
0.

(L.1) pu: + ((pu— AVp) - V)u— V- (uVu — A\p(Vu)') + Vp
' V-u=0, pr+u-Vp—AAp

The unknowns for this model are p : Q — R, the density of the fluid, u: Q@ — R3, the
incompressible (averaged) velocity vector field, and p : @ — R, a potential function
(modified pressure).

Model (1.1) can be derived from the compressible Navier—Stokes system, by im-
posing that the compressible velocity v can be decomposed as v = u— AV log p, with
V-u = 0 (it decomposes into an incompressible part u and a potential part —AV log p),
and eliminating A%-terms (see [11]).
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We complete (1.1) with the boundary conditions on X:

Ip
1.2 =0, —| =0
( ) Uy, ’ on .
and the initial conditions in €:
(1.3) pli=o = po, uli—o = up,

where pg : @ — Rt and ug : Q — R? are given functions.
Throughout this work, we assume the hypothesis on the initial density:

(1.4) 0<m<po(x) <M inQ.

1.2. Known results. Concerning the simplified model (1.1), Kazhikhov and
Smagulov [12] proved, via a semi-Galerkin method, the existence of global weak so-
lutions, under the following hypothesis:

(1.5) A< 2u/(M —m),

and the existence of local strong solutions (which is global in the two-dimensional
case). Salvi [14] proved the existence of weak solutions for noncylindrical domains.
On the other hand, Secchi [16] studied the problem for Q = R3, proving the local
existence and uniqueness of strong solutions by using a fixed point argument.

For the complete model (including the A?-terms), Beirao da Veiga [2] and Secchi
[15] established the local existence of strong solutions by using linearization and a
fixed point argument. In [15], global existence and uniqueness are shown for two-
dimensional (2D) domains by imposing that A/ is small enough as well as the
asymptotic behavior as A — 0 towards a weak solution of the density-dependent
Navier—Stokes problem:

plue + (w-V)u] — pAu+ Vp=pf inQ,
(1.6) V-u=0, p+u-Vp=0 inQ,
u=0 on}, Uli—o = Ug, pli=o =po in Q.

In the case of nonnegative initial density and 3D domains, Guillén-Gonzalez [9] proved
the global existence of weak solutions and the behavior, as A — 0, towards the
density-dependent Navier—Stokes system (1.6). Recently, the existence and regularity
of strong solutions have been proved in [10] by means of an iterative method (jointly
with some error estimates).

A time-space numerical scheme has been recently developed by using C-finite
elements for density and velocity in [11] for model (1.1) in 2D domains, which is
unconditionally stable and convergent towards the (unique) weak solution of the con-
tinuous problem. This scheme is of the backward Euler type, where in each time step
the computation of the density and the velocity pressure are decoupled, by means of
linear problems.

Concerning the numerical analysis for the density-dependent Navier—Stokes prob-
lem, a stable and convergent scheme is proposed in [13], by using in particular a
discontinuous Galerkin finite element method to approximate the density transport
equation.
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1.3. Main results of the paper. Our main objective is to design a linear
scheme by using finite elements to approximate all unknowns (density, velocity, and
pressure) of problem (1.1)—(1.3). To this end, we consider for simplicity a uniform
partition of [0, 7], (t, = nk)"={, with k = T/N being the time step, and propose a
backward Euler time scheme, implicit with respect to the diffusion terms and semi-
implicit with respect to the convection terms. The finite element spaces must verify
specific properties which we will describe in section 3.1.

In what follows we consider the notation (-,-) and |- | for the L?(Q)-inner product
and the L?(Q)-norm, respectively. Also, we denote that |[ul| = |Vu|, which is an
equivalent norm to the usual one in H} ().

The scheme is described as follows:

Initialization: Let (u)), p9) € Vj, x W}, be an approximation of (ug, po) as h — 0.

Time step n+ 1: Given (pf, up,pp) € Wi x Vi, X My,

1. find (w},qp) € ,Vvh X Mh such that, for each (wp, @) € /f/; X J,\Zh7

(1) (Vo Van) = (¢, V- wn) = (Vi V), (V- wian) =0
2. find pp*! € W), such that, for each py, € Wy,
pptt — pp:
) (A )+ (u D) + 0 (T V) =0
3. find (uZH,pZH) € Vi, x My, such that, for each (wy,,pn) € Vi X My,

n+1 n n+1 n
u —uy 1/p —-p _ _
<p2h h uh> + = <h h uZ'H, uh) + a(pZ‘H, uZ’H, uh)

k 2 k
- c(pZ“uZ = AV ﬁh) = (Pﬁﬂf i, ﬁh) + (pZ+I7V : ﬁh>7
(1.9)
(1.10) (V : uZ“,ﬁh) =0,
where

i 1 tnt1
g [ A,
tn

M +m
2

alp, u,v) = p(Vu, Vo) + )\/ - p) (Vu)' : Vvdz,

Q

with M > M, 0 < i < m such that /\M;% < p (here (1.5) is imposed), and

c(w, u,v) = % {((w V)u, v) — (('w V)v, u)} .

The following properties of continuity and coercivity hold:

— M —
a(p,u,'u)E%IIUII2 if m<p<M, with %:#*A Qm(>0),

(1.11) a(p, w,v) < Cx [[u ol (if [[pllL= @) < ©),

c('w, u, 'U,) :O7 c(w7 u, ’U) S CHw||L3||uH ||’U||
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Here and in what follows, we denote by C and C' different positive constants
independent of (h, k) and (h, k, X), respectively.

From the computational point of view, scheme (1.7)—(1.10) decouples density p}**
and velocity pressure (UZH, pﬁ“), whereas wy} is an intermediate velocity obtained
as the H' orthogonal projection of ul! onto a discrete free-divergence space. We
will see that scheme (1.7)—(1.10) is conditionally stable and convergent. As in many
practical situations, the diffusion parameter is small; we will prove that, when the
diffusion parameter A and the space and time parameters (h, k) goes to zero, scheme
(1.7)—(1.10) approximates to a weak solution of the density-dependent Navier—Stokes
system (1.6), under a constraint involving the parameters h, k, and A. In fact, to
our knowledge, it is the first convergent scheme to (1.6) based on C%-finite elements
for the discrete density, avoiding to perform directly an algorithm for (1.6) which
presents important difficulties by itself, mainly for the approximation of the density
transport equation. Recall that in [13] a convergent scheme for (1.6) is given based
on a discontinuous Galerkin method for the density.

The corresponding study for the complete model, with A2-terms, will be the
subject of a forthcoming paper.

By defining in [0,7] piecewise constant functions wup g, pnr such that wp g,
ph7k|(tn71,tn] = uy,py, respectively, that we will denote by up k. x, pn,k,x When the
case of diffusion parameter A — 0 is considered, we present the following main results
of this paper.

THEOREM 1.1. Assume hypotheses (HO)—(H5) given in section 3.1. If the con-
straint on the parameters

(S) h/k—0 as(h,k)—0

holds, then there exists a convergent subsequence of (un i, pn.i) (denoted in the same
way) as (h, k) — 0 towards a weak solution (u, p) of problem (1.1)—(1.3) (see Definition
2.1), in the following sense: (up k, pn.r) — (u, p) in L*(0,T; L*(Q))x L*(0,T; H'(Q))-
strong, in L>°(0,T; L*(Q)) x (H'(Q) N L®(Q))-weakx, and in L*(0,T; Hy()) x
LA0,T; W13(Q))-weak. Moreover, m < ppx < M.

THEOREM 1.2. Under the hypotheses of Theorem 1.1 and by extending (H2) by
(H2') (given in section 8.1) and changing (S) by the more restrictive constraint

(s h/(EX?) — 0 as (A h,k) — 0,

then there exists a convergent subsequence of (Up k., pPh k) as (hk,A) — 0 to-
wards a weak solution (u,p) of the density-dependent Navier—Stokes problem (1.6)
(see Definition 8.1) in the following sense: wpp s — w in L*(0,T; L*(Q))-strong,
in L>=(0,T; L*(Q))-weakx, and in L?(0,T; H(Q))-weak, and pppx — p in L2(Q)-
weakx.

The main ideas for the derivation of this scheme can be found in [11], where the
following scheme has been studied:

Time step (n+ 1): Given (p}, uj,py) € Wi, X Vi, x My,

1. find pZ“ € W}, such that, for each p;, € Wy,

pptt —pp !
(1.12) (hkhmh) (Yot V) = = (ui - Vi)
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2. find (uﬁ“,pﬁ“) € Vi x My, such that, for each (wy,,pp) € Vi X My,

un+1 o un 1 n+1 - n
<[ﬂ2hh 2 h’uh) T3 <[ph ]Tk: PHE gy “h>

(L13) 0 (lop e ) +e(pf g — AV R )

—(pZH,V ' ﬁh) = ([pZ“]Tf"H, ﬁh)7

(1.14) (V ~ u’,}“,ﬁh) =0,
where

wp(z;) if wp(x;) € [m, M|,
[wh]T(mi) = m if wh,(mi) <m,
M it wp(x;) > M,

with x; the nodes of the mesh 7, of Q.

By comparing both schemes we can observe the following differences: The discrete
density involved in the mixed variational problem for velocity pressure (1.13)—(1.14),
which requires the property of the maximum principle, are truncated, whereas this
truncation is not necessary for scheme (1.7)—(1.10). Moreover, in (1.12) the convective
term for the density scheme is considered in the explicit form (u}! - Vp}, pr), and it is
now taken in the semi-implicit form (w} - VpZH, Pn), where wj is a projection of uj}
onto a discrete zero-divergence space. This space is chosen to hold (V- w}, pypr) =0
for all py, € W,

Concerning the numerical analysis we remark on the following three main differ-
ences between both schemes:

1. The argument to obtain pointwise estimates for the discrete density under

the constraints (S) done in subsection 3.4 of this paper is completely new.
Moreover, the extension of this argument to the scheme studied in [11] is not
clear even assuming some constraints on the discrete parameters. This justi-
fies the presence of the truncation operator in the discrete momentum system
(1.13). On the other hand, the scheme (1.12)—(1.14) of [11] is unconditionally
stable, and now the scheme (1.7)—(1.10) is stable and convergent under the
constraint (S).

. Strong estimates for the discrete density are obtained in two different ways

in [11] and in the present paper. In [11], we used the discrete version of
the Gagliardo—Nirenberg interpolation inequality |[Vpl|2, < C'||p|l s ||Ap| L2
which does not need pointwise estimates for the discrete density. Since this
interpolation is exclusive for two-dimensional domains, we cannot use it for
three-dimensional domains. Accordingly, we change this Gagliardo—Nirenberg
interpolation by a discrete version of the interpolation inequality || Vp||2, <
Clpll=||Ap|lr2 and make a discrete integration by parts (which mimics the
argument of the exact problem to obtain strong estimates of the density).
Observe that we have to assure a maximum principle or at least pointwise
estimates for the discrete density in order for this other interpolation to work.

. Another difference is the asymptotic behavior with respect to the diffusion

parameter A\ (jointly with the discretization parameters (k,h)). Due to the
fact that the convective term of the discrete density equation is handled in
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different ways, we find that the strong estimates of the discrete density fur-
nished in [11] degenerate when A — 0, and we cannot pass to the limit towards
a weak solution of the density-dependent Navier—Stokes problem (1.6). How-
ever, now the dependence of A is improved, and the scheme (1.14)—(1.10) gives
a numerical approximation for the density-dependent Navier—Stokes problem
(1.6) by means of continuous finite elements.

The rest of the paper can be described as follows. The main ideas for the math-
ematical analysis of problem (1.1)—(1.3) are provided in section 2. In section 3, by
using appropriate auxiliary schemes, we establish conditional stability estimates, en-
ergy estimates for the velocity, and pointwise estimates for the density. In section 4,
strong estimates for the density are obtained, by using the discrete Laplacian of the
density. In sections 5, 6, and 7, weak and strong convergences and the passage to
the limit are shown, respectively, concluding the proof of Theorem 1.1. In section 8,
we study the asymptotic behavior as the diffusion parameter A goes to zero, proving
Theorem 1.2.

2. Analysis of the continuous model. To define the concept of a weak solu-
tion of problem (1.1)—(1.3), we introduce the following function spaces:

H={u:ucL?*Q),V-u=0inQu-n=0onT},
V={u:uc H}Q),V -u=0in Q},

13(9) = {p:p e 19, [ playia— o},
H%(Q) = {peHQ(Q) : %:OOH F,/Qp(m)d:cz/gpo(m)dw}.

In V the [|ul| g1 (o)-norm is equivalent to |Vu| (which will be denoted by ||ul[). H3 ()
is an affine space: H%(Q) = ﬁ Jo po(®)dz+ HE ((Q), and in HY, ,(2) (zero-average
function space) the norm |[|p| g1 (q) is equivalent to |Vp| and the norm ||p||g2(q) is
equivalent to |Ap|. In particular, in H%(f2) the following norms are equivalents:
lp = @1 Jo ol () ~ Vol and [[Vpll ) ~ [l

DEFINITION 2.1. A pair (p, u) is called a weak solution of (1.1)-(1.3) in (0,T") if
it verifies:

(a) we L>(0,T; H)NL(0,T; V), pe L*(0,T; H(Q))NL*(0,T; H%(Q)), with

0<m<p(xt) < M, ae (x,t) €Q.
(b) V¢ € CH([0,T]; V) such that ¢(T) =0,

/O ) {=(wpoe + (pu—Vp) - V0) + (uVu— Ap(Vu)', Vo) | dt

- /OT <pf, (;5) dt + (pom,eﬁ(O))-

(¢) The equation of mass diffusion (1.1). is verified a.e. in Q.

Remark 2.2. As usual, the pressure p can be obtained by using (b) and De
Rham’s lemma [18].

We state the existence of (global in time) weak solutions of problem (1.1)—(1.3)
(see [12, 1]).

THEOREM 2.3. Let ug € H, py € H*(Q) satisfying (1.4), and f € L2(0,T; L%/®
(). Suppose that the constants A, u, m, and M satisfy (1.5). Then there exists at
least a weak solution of (1.1)—(1.3) in (0,T).
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Proof (outline of proof). The proof is divided into four steps:
(a) Pointwise estimates for the density. From the maximum principle applied to
the density equation (1.1). and hypothesis (1.4), one gets

0<m<plz,t)<M in Q.

(b) Weak estimates for the velocity. Adding the momentum system (1.1), by u
to the density equation (1.1). by %u u, one arrives at the following energy equality:

1d

(2.1) % plul*dx+ pl|ul|? = )\/ p(Vu)' : Vudz + (pf, u).
Q Q

The first term on the right-hand side of (2.1) can be rewritten as

)\/p(Vu)t:Vudw:)\/ (p— M—l—m) (Vu)' : Vudz < A
Q )

M—-m, o
where we have used the pointwise inequality | p— (M +m)/2 |< (M —m)/2 (obtained
from m < p < M). By imposing the constraint on the coefficients (1.5), one arrives
at the estimate

T
2 2
< C.
OIgthTIU(t)\ +/O [u(t)||"dt < C

(c) Strong estimates for the density. By multiplying the density equation (1.1).
by —Ap and bounding the convective term (previously integrated by parts) thanks to
the interpolation inequality

(22) IVpllpay < Clipl L7120 < ClAp|?,

as
[uVodp<C [ 1Vul[VoP < €IVl Vol < €IVl 39,
Q Q

the following estimate holds:

T
t)? Ap(t)|2dt < Cy.
s V(0P + [ 18pte)de < €,

(d) Compactness for the velocity. By using a rather technical argument [1], one
can get the following estimate of the “time fractional derivative”:

T—6
/ u(t + 8) — w(t)2 dt < Cx 672 6 € (0,T),
0

which implies [17] compactness for the velocity w in L?(0,T; L*(Q)).
From here, it is rather standard to obtain the existence of weak solutions, by
using, for instance, the semi-Galerkin method [1]. O

3. Weak and pointwise estimates. Since (1.7), (1.8), and (1.9)—(1.10) can be
reduced to three independent algebraic linear systems, it suffices to check the unique-
ness of the solution to guarantee that these problems are well-posed. In particular,
the uniqueness will be a consequence of the weak and pointwise estimates that we will
obtain in this section.
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3.1. Hypotheses. Throughout this work the following hypotheses will be as-
sumed: .
(HO) Hypotheses for the data: Assume (1.5), and let M > M and 0 < m < m such

that )\M;m < p. Let ug € V, po € HY(Q), with 0 < m < py < M in ©, and
fe L2(0,T; LY°(Q)).

(H1) Assume that 2 is an open, bounded set of R® whose boundary is polyhe-
dral and such that the continuous dependence in H2Z-norm of the Poisson—
Neumann problem and in the H? x H'-norm of the Stokes problem holds
(see (4.4) and (3.6), respectively). This is verified, for example, if 2 is convex
8]

(H2) The triangulation of € and the discrete spaces verify

e the inverse inequalities:

IVou| < Ch7pnl,  IVonllLs) < Ch™V2|Vpnl V¥ pn € Wi,
|pnllz=@) < Ch™ 2 |pullmi) ¥ on € W,
e and the interpolation errors:
@ — Jnal i) + @ — Jat@l g < Chlalgz) Yae HX(Q)N Hy(Q),
|p — Knpl + |p — Knpl < Chlplm VpeH (Q)NLEQ),
1P = Inpll L= @nwrs@) < ChY2|plm) Vo e H(Q),
6= Inpl + 1o = Inpllar) < CR2|pluz) Vo€ HA(Q),

where Jp, jh, Ky, IN(h, and I, are interpolation operators from H?(Q)N
H{(Q) into Vi, H*(Q) N H(Q) into Vy,, HY(Q) N LE(Q) into My,

H'(Q) N L(Q) into My, and H?(Q) into W, respectively. Here and
in what follows, we denote by [v|gr) = >, =; [D%v| the standard
seminorm of higher order derivatives.

(H3) Inf-sup conditions. There exist 5 > 0 and § > 0 (independent of h) such

that, Vp, € M}, and Vg, € My,
IPlz3cen < 9 P9 ) g <5 (2.7 m)
Drllrz) < sup  ———,  ||Gnllrz) < sup
T eVl T aeva ol

(H4) Compatibility condition between M, and W),: (W, - Wp)NL3(2) C Mh, ie.,
1 g 1 _ _ ~
Y iy, Ph € Wy D), By — IQ/Q/);l,,(w) pi(x) dz € M,

(H5) Compatibility condition between (Mp, Mh):
My, C ]/\Zh.

For instance, a way of defining the discrete spaces (Wp, Vi, My, /f/;“ Mh) veri-
fying (H2)—(H5) is the following: Let {7x}r>0 be a regular, quasi-uniform family of
triangulations of Q, with h = maxger, hi (hx = diameter of K), and

X} = {xn, € C°(Q) such that 2|k € Py(K) VK € Tj, }.
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Then we define W, = X}. There are several possibilities to define (V},, M}) [8], by
using the Taylor-Hood element (Py x P;) or the minielement (PP; + bubble x Py), for
instance. For the spaces (V;L, M,,) we choose V;, = X3 NHJ(€) and M), = X2NL2(Q).
Note that if V;, = Vh and M, = Mh are chosen, we need not consider the
projection problem (1.7).
Remark 3.1. Hypothesis (H4) implies that (V- wi, pip7) = 0 for all p}, p7 € W),
(this property will play an important role in our analysis). Indeed, we shall write

=1 = =1 =2

n =1 1 =1 = n n
0= (V-wh,pipi—m Qp}mi) = (V-wh,phph m‘/phph V- wp

— (V- w0k},

As a consequence, by taking p, = 1 in (1.8) we have that [, o) = [,p}, for
each n. This property is the discrete version of the continuous one fQ plx, t1) de =
fQ p(x,ta) dz for any t1,t5 € [0,7T], whose physical meaning is the conservation of
mass.

3.2. Auxiliary truncated scheme. To prove a priori estimates for scheme
(1.7)—(1.10), we will introduce an auxiliary scheme in which some of the densities
appearing in the discrete problem of the momentum system are truncated between m
and M as follows:

Initialization: Let u) and pY) be given as in scheme (1.7)-(1.10).

Time step n + 1: Given (ph,uh,ph) € Wy x Vi, x My,

1. find (w},q}) € V,, x M, such that, for each (wp, @) € V, x Mh7
(31> (Vw;LL7 V’l_llh) - (q}?7 V. {Uh) = (VUZ, V'I]Jh)7 (v : wquh) = O,
2. find p"+1 € Wy, such that, for each p;, € Wy,

(3.2) <pzﬂk_pz’ph) + (wh V,O”H,ph) n )\(szﬂavﬁh) _o;

3. find ( "+1,p2+1) € Vi, x My, such that, for each (up,pr) € Vi x My,
wy U=l A P Vo V.
([Ph]Th L ,uh,) + = 2 (h A uh‘Jr ,Uh)
4 CL([ n+1} ,UZ+1,'H}L)

_|_C( netl, )\vanrl n+1 Uh) _ ([pzﬂ] fn+17,ah) n (ph+1 V. uh)
(3.3)
(3.4) (v : uZ+1,qh> —0.

Here the truncation [-]r is defined as follows: Given pp, € Wp, then

pn(@) i pi(a) € [, M,
prlr@ =4 m i pule) <,
M if pp(x) > M.
The idea was to truncate in those density terms which required to hold either
L estimates or positivity in order to obtain weak energy estimates (see the
proof of Theorem 2.3).
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We may again deduce that (3.1), (3.2), and (3.3)—(3.4) are well-posed problems,
obtaining a priori estimates.

3.3. Weak estimates for the truncated scheme.
LEMMA 3.2. The solution of scheme (3.1)—(3.4) verifies the following estimates:

N N-1

(i) max [up| <O, (D)k)_[uf]® <C. (iii) D Jup™! —upf® < C,
=n= n=0 n=0
N-1 N-1

(iv) max [pf| <C, (VMAkY [VorP <0 (i) Y lon™ = o <€,
- n=0 n=0

where C > 0 depends on the data (po, uo, f) but is independent of k, h, and A.
Proof. To obtain a priori estimates for the velocity (uj), we take @, = 2k
and pj, = pi ! as test functions in (3.3)-(3.4), resulting in [11]:

UZH
W e w2 = [ loplrun | + [l (uy ™ = ) [P+ kg2
< Qk([PZH]Tf"Ha UZ“) < 2k|[[op | e @) 1™ pors oy 1l s o
/’le n n+1
< TH’%HHZ + ORI o5 -

Consequently,

Ty ™2 = [y Tl + 1 [op)r (uy ™ — i) 2

(3.5) " 1
n 2 n+1(12
+ Bkl < CRIF o -

By adding (3.5) for n =0,...,r with any » < N, estimates (i), (ii), and (iii) hold.
On the other hand, to obtain weak energy estimates for the density (p}!), we take
pn =2k pi ! in (3.2) and use the fact that (V- wf, (p}T)?) = 0 (see Remark 3.1):
o = 1o+ op = P+ 20KV T = 0.

By adding over n, one deduces estimates (iv), (v), and (vi). 0
COROLLARY 3.3. The following estimates hold:

N
(vii) max |up| <C, (vii kS uf]? < .

n=0

where C' > 0 is independent of k, h, and X.

Proof. By taking @y, = wj in (1.7) and using (H5), (V(w}! — u}), Vw}) = 0,
and hence one has |Vw}| < |[Vu}|. So from (ii) we get (viii). Now we are going
to get estimate (vii) by using a duality technique and the constraint (S). Indeed, let
(2,€) € (VN H?*(Q)) x (LZ(Q) N H'(Q)) be the strong solution of the Stokes problem
(3.6) —Az+VEé=wy —uy, V-z=0in, z=0onl.

By taking w} — ) as a test function in the variational formulation of (3.6), we get

(3.7) [ — wi? = (V2 V(wf — ) + (& V- (wf - ).
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Let (zp,,&) € /‘}Z X ]\/Zh be the discrete approximation of (3.6) defined as
(Vzh,Vﬂ;h) _ (gh,v : @h) - (wg _ ug,mh) Yy, € Vi,
(V : zh,qh) =0 Vg, € M,.

In view of hypothesis (H5), (Kp&, V - (w} — u})) = 0, and hence we write (3.7) as
follows:

|l — | = (Vz—Vzh,V(wz—uz))+(Vzh7V(wz—uz))+(5—Kh§,v-(w;;—u;;)),

where K, is the interpolation operator defined in hypothesis (H2). From (1.7), it
follows that (Vz,, V(w} — u}')) = 0. Thus, we find

wy — up? < [Vz— Vau|[V(wj — )| + [§ = Kng]|V - (w) — )]
< Ch([l=] 2 @) + €]l IV (wh — up)| < Chlwy — u|[V(wj — up)],

where in the second line we have used the approximation property (see [8]) |Vz —
Vz,| < Ch(||2llg> + |llg1), the interpolation error |[§ — Kp&| < Chllé||g1(q) as-
sumed in (H2), and the H? x H' continuous dependency of the Stokes problem (3.6)
|2l 2 ) + €l 71 (0) < C'|lwy — 4| assumed in (H1).

Therefore, we have

(3-8) [wh — up| < CR|V(wh — up)l.

Now, in view of (S), we may get h < Ck for (h,k) small enough. Then, since
kY2 V| < kY2|Vul| < O (thanks to the estimate |Vw}| < |Vu}| and estimate (ii)
of Lemma 3.2), it is easy to see that |wl| < CkY/2 + |u}| < C, and we get estimate
(vii). O

3.4. Discrete maximum principle (of the truncated scheme). In this sub-
section we prove that the discrete density of scheme (3.2) has pointwise estimates by
excess and defect with respect to the upper and lower bounds of the initial density
po, respectively. Namely, we will see that m < pi < M in 2 for all £ and h small
enough satisfying constraint (S).

3.4.1. Study of an auxiliary time discrete scheme. We define a sequence
(p™) associated to (w)) by means of the following time discrete scheme:
Initialization: Let p° = py.
Time step n + 1: Given p", we compute p" 1 € H?(Q), verifying
n+1 _

k

pn apn—H

P + - Vet — A" = 01in Q,

=0onl.

(3.9)
LEMMA 3.4. Let {wi}N_, € H{(Y) such that kzzgzo |wi||? < C. Then there
exists a unique solution p"*t € H%(Q) of (3.9), which also verifies:
O<m<p"ti(z) <M VeeQ, Vn=0,...,N—1,
(3.10) ) Nl mityo
Nk o 1P H ) < €

where C' > 0 is a constant independent of k, h, and X.
Proof. The proof of this lemma can be found in Appendix A. 0
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3.4.2. Error estimates between p™*! and pt"'. Denote by entl = pntt —

P! the difference between the solutions of problems (3.9) and (3.2). Our intention
now is to state the following error estimate:

h? hh hh1/4 h
+ + + .
)\\Ak )\2]{7 A3/2]€3/4 )\\/E

(3.11) lep™ i) < C (

Indeed, by subtracting (3.9) multiplied by pj, € W), and (3.2), one has

en+1 —en
L0 ) + (wh - Vet o) +A(Vep ™ Van) = 0

for each pp € Wj. By decomposing the convective term as
(wh - Vet on) = (wh - V(o™ = Iup™ ), n) + (wih - V(™ = o), n),

taking pp, = 2k (et — p" T 4 I, p" ) = 2k(Ipp" T — ppth), with I, p" ! € Wy, and
using the fact that (V- w}, p7) = 0 for all p, € W), (see Remark 3.1), we get

|e:j"’1|2 — |e’pL|2 + |e:j+1 - eﬁ|2 + 2)\k|VeZ+1|2
< 2(ez+1 —em - Ihpn+1) _ %(w’ﬁ V(- Ihpn+1)7e:)1+l>

k(Y g (0 = g )?) 4 20k (Ve V(o = 1t )

Next, by integrating by parts the second term on the right-hand side and bounding
adequately, we infer that

lep ™ — ep|® + leptt — epf” + 20| Vet ?
< 20ep™ —eplp" = Inp" T 4 Chllwp | llep  larn o) 12" = Tnp™ I 2oy
e whlllp" T = Inp" T Za () + 2M K[ Ve T [V (" — Lp" )]

1
< 5|6:)H—1 o 6:”2 4 C|pn+1 o Ihpn+1|2 +C>\k|V(pn+1 o Ihpn+1)|2

C n n n T n n n n
R lwhl Pl = Inp™ s 4 Rl ™ = Tup™ e+ Aklep ™2 + A Vep T,
and then, by taking into account the interpolation errors

|pn+1 _ Ihpn+1| 4 h|v(pn+1 _ Ihanrl)' < Ch2||,0n+1||H2,

and

ot = T s < O s ™ = ™ s < OO

(the last two are a consequence of the previous one and the 3D interpolation inequali-

ties [|pll s < Clpl"/2llpll: and [|pllzs < Clp/Y/*|lp]l3) and the estimate k|lw}]|* < C

thanks to estimate (vii) of Corollary 3.3, one arrives at
lep T = lepl? + Ak [Vep

h? 5
<C <h4 + R )\khz) 1P %2 + ARlep P
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By adding up for n = 0,...,[ and using the fact that \? kZ;ZO " |32 < C and
by virtue of the generalized discrete Gronwall lemma, we infer that for all (k, A), with
Ak < 1 (for instance, Ak < 1/2), there exists C > 0 independent of A such that

l
ebH P+ AR D |Vert' P < C
n=0

7 e +—+\e|2

h4 h3 h5/2 h2
(AQk Nk A212 )

By taking |e)|* = [p° — pf}|> < C'h?, we deduce the bound

+ =+ -

l
n+1(2 n+12
ep P+ AR D [Veptl P < C or o T omaE Ty

( hi h3 h5/2 h2)
n=0
whence, in particular, (3.11) holds.

3.4.3. Pointwise estimates of the truncated scheme. Here we will prove
the following pointwise estimates [6]:

h? hwh  hhl/4 h
n+1 _ —-1/2
pp - 2m—=Ch <)\3/2k+)\2k+>\2k:3/4+)\\/E

(3.12)

2 1/4
pZ+1§M+Oh—1/2< h bk | BR h )

Nk ek e T vk

To prove (3.12) it suffices to prove that

B2 hWh — hhl/4 h
el _ et -1/2
5 [Loe(@) <Ch <A3/zk o e ok )

For this, from the triangle inequality

+1 +1
loh™ — h

— Iy n+1HL°°(Q) + ||Ihﬂn+1 - PnHHLw(Q)
h1/2
kl/z’

P o=@ < lon
< optt = 1™ @) + C 773
where in the last line we have used the approximation inequality ||p" ! —Ip" | L <

C h2||p"* || 2 and the estimate [|p" || g2 < 575 (see (3.10)). Hence, it suffices
to obtain the inequality

h? hvh — hhM/* h
n+1 n+1
(3.13) ||p —Inp ||H1(Q) <C <)\3/2kj + 2k + \2k3/4 + MWk

and to use the inverse inequality (see [3]) [|pn]lz=() < Ch™Y2|pnl 1) Von € Wh.
Let us prove (3.13). From the triangle inequality,

1op ™ = Inp™ M) < lop ™ = 0" P ) + 107 = 1™ 0

and, by using the error estimate (3.11) and the interpolation error ||w — Iywl| g1 (o) <
hl|lw| fr2(q) for w = p"*! jointly with the estimate h|[p"*!||g2 < C h/AVE (thanks to
(3.10)), one easily deduces (3.13).
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Now, by taking into account hypothesis (S), one has

K2 hvh  hh/4 h
lim | — + i 4 — / — =0,
(hk)—0 \ k k k3/4 Vk

and consequently, for each (h, k) small enough,

h2 hWh  h h h
B1/2 <COp~ V21 — \/7

In particular, thanks to (3.12), by imposing h < hg, k < kg such that

(3.14) C\/E < min{m — m, M — M},

one getsO<ﬁL§pZ+1 §]\7.

3.4.4. Identification between the truncated and nontruncated schemes.

Now it is clear that if pZ“ is the solution of the truncated scheme, then [PZH]T =

pZ“, and consequently the truncated scheme and the nontruncated scheme coincide,

arriving at the following result.

THEOREM 3.5. Assume that h < hg, k < ko satisfying (3.14) and Ak < 1/2;
then scheme (1.7)—(1.10) is well-posed and verifies estimates (1)—(vi) of Lemma 3.2,
(vii)—(viii) of Corollary 3.3, and 0 < m < pi*! < M in Q.

4. Strong estimates for the density. Let —A;, : W, — W), be the linear
operator defined as follows:

(4.1) —(Ahph,ﬁh> - (Vph,Vﬁh) Y pn € Wh.

Then the discrete density equation (1.8) can be rewritten as

(4.2) (W,ph) + (w’g . szJrl’ﬁh) _ )\(Ahp;h%’ ﬁh) -0

THEOREM 4.1. Under the hypotheses of Theorem 3.5, the solution pZ'H of scheme
(1.8) verifies the following estimates, for each h and k small enough:

N
. n|2 < 2 n+1,2 <
(i) A max [Vpi[* <€, (x) A k;IAhph ?<c,
N-1 "
) A V(o =P < C,
n=0
where C > 0 is independent of h, k, and \.
Proof. By taking py, = —2kApp; T in (4.2), we arrive at:
Vo2 = IV PV (03— i) [P+ 20K| Ap ol TP = 2k(wZ'VpZ“»AhpZ“) =1
(4.3)

To bound I, we use an idea given in [11], where a regular function associated to the

discrete Laplacian function —AhpZH is considered. But here, the type of estimates
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used in [11] must be changed, making use of the pointwise estimates of pj™'. We

define p(h) € H?(Q) as the solution of the problem:

. 9p(h)
4.4 —Ap(h) = —Appp™ inQ, L = / :/ 9.
(4.4) p(h) =2 e, TGl =0 [ )= [ o}

From the H?-regularity of the previous problem ||p(h) — ﬁ fp(’)l”HZ(Q) <C \AhpZHL
and hence one has in particular

(4.5) lp(R) |20y < ClARpET.

We write I as I = 2k(w} - Vp(h), Ap(h)) + 2k(w} - V(p™ — p(h)), App}™). By
integrating by parts the first term on the right-hand side, and using (2.2),

Qk(w;; Vp(h), Ap(h)) - f%(wﬂz, Vo(h) Vp(h)) - 2k((w;; V)Vp(h), vp(h))
- —zk(w;;, Vp(h) w(h)) + k(V Wl \vp(h)|2)

< ChllwpllIVo(h) 1 Zs () < Cklwpl o(h) | L= (o) |Ap(h)]
< Ckllwpl lp(h)ll = o1 Anpp

where a ® b denotes the tensorial product matrix of two vectors a = (a;)%1,b =
(b;)2_,, with coefficients (a ® b); ; = a;b;. Accordingly,

(4.6) I< CkHwﬁll(||ﬂ(h)HLoc(m + V(o™ ~ p(h))||L3(Q)) |Anpy .
Now we will prove the inequality:
(4.7) 19002 — o) 22y < C Y2 |o(h)] s
For this, we write
(48) IV = p() s < IV — Lup(B)llzs + IV (Tup(h) = p(R))] 1.
By multiplying (4.4) by pn € W}, and subtracting to (4.1), one gets
(vp;“ . V,o(h),Vﬁh> —0 Vpn e W

By adding and subtracting VI,p(h), and considering p, = p} ™' — Ip(h) € Wy, we

obtain
Vopth = Vinp(h)]? = - (thp(h) — Vp(h), Vot — thp(h))
< |VInp(h) = Vp(h)[ [V o™ = VInp(h),

whence
(4.9) Vot = VInp(h)| < [VInp(h) = Vp(h)| < Chlp(h)| 2@
(4.10) IVoptt = Vp(h)| < Chlp(h)| a2 (0

Thus, by using the inverse inequality [7]

IVt = VInp(h) || sy < Ch™2 Vit = Vinp(h)
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and (4.9), we arrive at

(4.11) IV ot = VInp(h) || sy < C B2 (p(h) 2 (0.

So, from (4.8) and (4.11) one gets (4.7) by taking into account the interpolation error

[V (p(h) — Inp(h))| 3 ) < ChY2|p(h)| 20
By getting back to (4.6) and using (4.7), we bound

(412) 1< Chlwpl (lo(h) = p e + ol + B2l a2 ) |Anpi .

Now we write

n+1

o™ = p(W)llzo= @) < Nl = Inp(R) |l L= () + [Hnp(h) = p(h)| L= ()

By using the interpolation error ||p(h) — I, p(h)|| =) < Ch'/?|p(h)|g2(q), the inverse
inequality in 3D

PP+ = Tnp(h) | ey < CBY2)|p2 = Lup(h) | 1 (e
<O (R = oWl + p(h) = (W) s o)
< RV = p())| + hlp(h) 2o,

where the generalized Poincare 1nequahty has been used in the last line, since f p”Jrl
= [ ) (see Remark 3.1) and [, p)) = [, p(h) (see (4.4)). By using (4.10) and (4.5),

o™ = p(h) || L () < Chl/Q\P(hﬂm(Q) < ChV2|Apppth.
By applying the above estimate in (4.12), we bound
1< Crlwpll(h72Anp7 |+ M) |Anpf |

C A
< Chllawp W21 Anpi P + Kl wh]| + Skl AR

By Corollary 3.3 we infer the bound ||w}| < C/k'/? (with C independent of X, h, k),
and, by choosing h and k£ small enough such that

h
<
Vi<

kllwhll2 + XA

we get

Therefore, from (4.3) we get the inequality
(413) [Vt = [Vop + [V (oh ™ = pi) P+ Akl Anpp P < O ||WZH2-

By adding (4.13) for n = 0,...,r, with r < N, we arrive at

AIW’”*”HZ\V P4 RS (AP < Ok S P + AP
n=0 n=0
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Finally, from estimate (ii) of Lemma 3.2, one gets the desired estimates
(ix)—(xi). O

COROLLARY 4.2. The following inequality holds:
(4.14) IV lLs i) < C Vo Y2 Appp Y2,

Consequently, under the hypotheses of Theorem 4.1, one has the estimate

Ak Z lon sy < C,

where C > 0 is independent of h, k, and .
Proof. Thanks to estimates (ix) for (p}) and (x) for (App}), it suffices to prove
(4.14). For this, by considering p(h) the solution of problem (4.4), we have

IV L3y < IV (Rt = p(h) | Loy + [IVp(R) | 13 (0)-

By using inequality (4.7) and the interpolation inequality

IV p(B)[30) < CIVAR)Y?V (M) 70y < CIV (B2 0(h) 1 0
we arrive at
1965 sy < ChY2p() 120y + C Vo2 0()] 42 .
Next, we bound the term |Vp(h)| by using (4.10) as follows:
V()] < [V (p(h) = o D) + [V T < Chlp(h)lmzce) + Vo -
Therefore, by using (4.5)

1905 | zaey < Ch721p(h) ) + C [V 2 o(h) a1
< Ch1/2|AhpZ+1| +C |VPn+1|1/2|AhPZ+1‘1/2-

On the other hand, by considering p, = —App}™" in (4.1), we get
A < 1V IV AR < SV e,

where we have used the inverse inequality between L? and H'. The last two estimates
imply (4.14). |

5. Weak convergence. To study the convergence of scheme (1.8)—(1.10), we
define the following functions.

DEFINITION 5.1. One defines uy (respectively, Up k, Whk, and ppx) as the
piecewise constant functions taking values UZH on (tn,tnt1] (respectively, uj, wy,
and pZH). Analogously, we define pp . and pp. Moreover, one defines ppi €
C°([0,T); Vi) as the piecewise linear functions such that pp i (tn) = py.

Lemma 3.2, Corollary 3.3, Theorem 3.5, Theorem 4.1, and Corollary 4.2 imply
the following estimates (independent of h and k, but some of them depend on \):

{un s thge {8n gtk {@hitnr in (0,5 L*(2) N L2(0,T; HY(Q)),

(Bt Yk Lok thoks {Phoke ik in L(0,T5 HH(Q)) N L™(Q),
{pnitnr in L*(0,T; WH3(Q)).
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Now let us pass to the limit in both discrete free-divergence equations (1.10) and
(3.1). Consider ¢ € C°([0,T]; C*>(2)) such that [, ¢(x)dz =0, ¢} = Kpq(t,) € Mp,
and g = IN(hq(tn) € M. Define gnk and Gy, as pp, in Definition 5.1. On the other
hand, we know that there exist two limit functions w and u belonging to H{(€2) such
that w,x — w and wyx — w weakly in L2(0,T; Hy(Q)) as (h,k) — 0. Thus, we
write from (1.10)

N T T
osz(v.uz,q;:):/ (v-uh,k,qh7,€)dt—>/ (V-u,q)dt =0
n=1 0 0

for all ¢ € C°([0,T]; C>(9)), with [, ¢(®)dx = 0. A density argument says u € V.
In an analogous way, we can also prove that w e V.

Next, we wish to derive a test function for (1.7), a discrete free-divergence ap-
proximation of a function v € C°(f2), with V- v = 0.

LEMMA 5.2. Let we C (). Then there exists wy, € V,, such that:
w, — w in HY(Q) and (V- wn,qn) = (V- @,q1) Vi € M.

A proof of this result can be found in [11].

By taking into account previous arguments, we can arrive at the following result.

LEMMA 5.3. Under the hypotheses of Theorem 3.5 there exist subsequences of
{wnithpe, {8niethk, {Whiktnk {Prktnrr: {Phktnks and {phitn ik (denoted in the
same way) and limit functions u, p verifying the following weak convergences as
(h,k) — 0:

L*(0,T; H}(Q))-weak,
L>(0,T; L*(Q))-weaks,

Phk — Py Phk — P Phk—p in L™(Q)-weaks,
bk , h,k ) h,k L>=(0,T; Hl(Q))-weak*,

Phi — p in L*(0,T; WH(Q))-weak.

Upp — U, Uy — U, Whp — U N {

Proof. Let us prove only that W, — u in L2(0,T;H(1)(Q)—Weak. Consider
ve CU[0,T); C°(Q2)), with V- v =0 and v} € V), an approximation of v(t,) given
by Lemma 5.2. Define vy, € L*°(0,T; /Vth) as the piecewise constant functions taking
values v}™! on (t,,t,41] which verifies v, — v in L=(0,T; H)(2)). Next, by
testing (1.7) by the test function v}, we have (V(w} — u}), Vi) = 0, since the
pressure term vanishes. By multiplying by the time step k, summing over n, and
passing to limit as (h, k) tend to zero, we infer that

/T(V(w w),Vv) =0 VYoe C%0,T]; C°(R)), with V-v=0.
0

A density argument provides that this equality holds for any v € L?(0,T; V). There-
fore, we can choose v = w — u (since V-u = 0 and V- w = 0); then
w= u. 0

6. Strong convergence. As usual for nonlinear systems, strong convergence in
some suitable space is necessary to identify the limit of the nonlinear terms.
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6.1. Strong convergence for the density in LZ(2).
LEMMA 6.1. Under the hypotheses of Theorem 4.1, one has:

4/3
kZ

< C/\7
where Cy > 0 is independent of h and k (but depends on \).
Proof. We consider P, : L?(2) — W)}, the orthogonal projector, defined as (Ppw —
w,wp,) = 0 for any wy, € Wy,. Let w € L?(Q2). By taking in (1.8) as a test function
wp, = Ppw, we arrive at

n+1 n
(258 ) +i) -0

pZ“ -y

where we have used the definition of P} in the first and last terms. By taking into
account the stability of the projector operator |P,w| < |w]|, we get
ot — ot

| S Mwkllzeoy VR o) + AlAnpy -

By summing up over n and using the estimates of {a@y, 1 }nx in L?(0,T; L°(Q)) (due
to the estimates in L2(0,T; H'(Q))), of {\Aupnrtnk in L2(0,T;L*(Q)), and of
{Vonrtng in L*0,T; L3(Q)) (this last estimate depends on \), we can conclude
the result. 0

Remark 6.2. As a consequence of the previous lemma, the estimate

< C,

H Ph k
L4/3(0,T;L2(Q))

holds. (0,T;H (Q) < C». Then,
thanks to an Aubin-Lions compactness argument, one has py,  — pin L>(0,T; LP(Q))
as (h,k) — 0, with p < 6. From this convergence, we deduce that pj k, phr — p In
L?(0,T; L3(Q)) as (h, k) — 0, since
N-1
180,k = PrllT2 00200y < 1Phk = Prnl 20 7:02(0)) = * Z ot = phlP < Ck.
n=0

6.2. Strong convergence for the velocity.
PROPOSITION 6.3. Under the hypotheses of Theorem 4.1, the following estimate
holds:

T-6 2
(6.1) / ’ ph’k(t + 6)(uh,k(t + (5) — uh,k(t)) dt < Cy sS4 ve: 0<é6< T,
0

where Cy > 0 is independent of h, k, and 6 (but depends on X).

Proof. Throughout the proof we will keep in mind Lemmas 3.2 and 4.1 and
Remark 3.3. As pp, 1, and w1 are piecewise constant functions, it suffices to suppose
that ¢ is proportional to the time step k, i.e., § = rk for any r = 0,..., N. Then, to
obtain (6.1), it suffices to prove that

(6.2) k Z|\/phm+T wtT — w2 < O\ (rk)Y* Vr:0<r<N.
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Let us write the time derivative of the discrete momentum system (1.9) in con-
servative form. By adding at the right- and left-hand sides of (1.9) the term

1 pn+1 o -
2( )

’I‘LJrl n+1 7 4,7
— PR Y,
(ph h h ) a( n-+1 uz+1 'uh) (pz+17v. ruh)

k‘
n+1 n+1 n+1 = _ n+lpent+l - 1 pZ-H p;LL n+l -
+e(pp g — AV dn) = () g (P )
(6.3)
By multiplying (6.3) by & and summing for n =m,...,m — 1+ r, we have

m—1+r m—1+r

(b = g ) + k> o) = Y (b w)

n=m n=m
m—1+r

4 ]’C Z (pz—‘rl )\Vpn+1 TL-I—l ’uh)

m—1+r m—14+r 1 n
—k S (ot w) + k S Ph =P a1 g
= ") Ty T

n=m n=m

By taking @, = u't" — 4/ and making use of the identity

(6.4) o = oty = o (T — )+ (o — i)

we get

NPT T — )P = = (T = it (™ — )

m—1+r

—k Z { ( n+1 n+1 uZL+r_,u’Zz> —l—c(pZ'H )\vpn+1 n+1 ,u’;bn+7" u?};n)}
m— 1+r 1 pn+1 pn

n S () 3 (A - )
n=m

(6.5)

On the other hand, by taking p;, = pZ”T —pp* as a test function in the density scheme

(4.2), multiplying by k, and summing for n =m,...,m — 1 + r, we obtain
m—1+r
ot =P ==k Y (w Vot = XAt ot — pZ”T)
m—1+r
<k Y (lwhllzo@IVoRlzs@ + MAnor ™ lor = o]
Therefore,
m—1+r V2 /14 1/4
lpn' — PZL+T| <C (k Z ||w2||is(9)> (k Z ||VPZ|Z£3(Q)> (rk)1/4
n=m n=m

m—1+r 1/2
(k Z AAnpr 2> (rk)Y/? < Cy (rk)Y* + C(rk)"/?,
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where C\ > 0 is a constant independent of h and k (and depending on A). Then we
have

(6.6) (Dmax o = o < O (k)

By multiplying (6.5) by k& and summing for m = 0,..., N — r, we are going to
get the desired bound (6.2) using (6.6). Indeed, from (6.6), one can obtain (with a
similar argument as in [11])

k3 (o (T ) < Ok

m=0
We analyze only the two terms whose estimates will be different from the ones
done in [11]:

N—rm—1+7r
2 +1 +1 +1 +
=—k E E P — AV T T — )

m=0 n=m

>

o N—rm—1+r n+1 n
Ph n+1 m+r m
< s (T — )) -
m=0 n=m
To estimate J;, we use (1.11) as follows:

N—rm—1+r
TS CR Y > o g = AV sy g gy ™ — |

m=0 n=m
N—rm—1+r
<CRY S (I o Il o) + Vo5 g @) g g+ — i

m=0 n=m
By interchanging the sum order (Fubini’s discrete rule) and using the fact that
o L (@) < C,
N-1 7

5 < Ok Y (gl + ANV oo )l 30 e — i,
n=0 m=n—r+1
where
0 if n<O0,
n=< n if 0<n<N-,

N—r if n>N-—r.

Next, by taking into account that [7 —n — r 4+ 1| < r and Corollary 4.2, we get

N-1
<Ok (Il + Mo oo ) it
n=0
_ 1/2 - 1/2
> Kt - >k
m=n—r+1 m=n—r+1
N1 A2 N 1/2
< C(rk)'/? (kz (el oy + ANV oL o) ) ) <k2 ||u;:+1||2>
n=0 n=0
< C(rk)2.
In the same way, we can bound the term k2 SN 0 ST g (pnl gl gt gy,
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We bound J5 as follows:

N—rm—1+r n+1
J2<Ck22 Z |'Ufh+1||L3 @llup " —

m=0 n=m
N—-1| p+41 n

(Fubini) < 042 3 | P LB a2 2 S —
n=0 m=n—r+1

. _ 1/2
<Ckz P 2O e (S a2 ] k)
m=n—r+1
pZ+1_ph 3/4

4/3 N-1 1/4
) (z« 3 |u;z“||2>
n=0

Remark 6.4. From the weak estimates of the discrete velocity w5 in L>(0,T;
L*(Q))NL2(0,T; Hy(Q)) and the fractional in time estimate of uy, x given in (6.1), we
can apply a compactness result [17] and obtain w, ; — w in L?(0,T; L*(Q))-strong.
Consequently, thanks to estimate (iii), U, x — win L2(0,T; L?(Q))-strong. Finally,
since {up 1} 5.k is bounded in L (0, T; L*(2)) we improve the compactness of {w x }1 &
to the LP(0,T; L*(Q)) space, with p < oc.

< C(rk)'/? (k Z
0

< CA(Tk)l/z.

6.3. Strong convergence for the density in H'(Q). By using the com-
pactness of the discrete density in L?(0,T; L*(Q)) and comparing the equation for
the discrete Laplacian and its limit (see [11]), one can obtain the convergence of the
L2(0,T; L*(Q))-norm of Vpy, x towards the same norm of Vp. Consequently, one has

ok — pllL2o,;m1 () — 0 as (h, k) — 0.
7. Passing to the limit.

7.1. Convergence for the density scheme. Thanks to the previous conver-
gences, we can prove [11] the convergence of the density scheme as (h,k) — 0, ob-
taining

A ap| o
(7.1) pr+u-Vp—AAp=0in Q, %‘270, p(0) = pp in Q.

7.2. Convergence for the momentum scheme. We use the following con-
vergence result, which is similar to Lemma 5.2.
LEMMA 7.1. Let ue C°(2). Then there ezists up € Vi, such that:

w, — w in H(l)(Q) and (V . ﬁh,qh) = (V .U, qh) Vqn € My,

To pass to the limit in the discrete momentum system, we consider v € C*([0,T7;
C° (), with V-v = 0 and v(T") = 0. We define v} as the projection of v(¢") furnished
by Lemma 7.1. We define v, ,, € L*°(0,T'; V},) as the piecewise constant functions tak-
ing values v} ™ on (t,, t,+1] and let vy, € CO([0,T]; V},) be the piecewise linear, glob-
ally continuous functions and such that vy x(t,) = v}. It is known that, as (h, k) — 0,

e — v in L0, T; HY(Q)), Tpp — v in WHe(0,T; Hy(Q)).
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By taking @, = 'vZ"’l as a test function in (6.3), multiplying by k, summing over n,

and using the expression (discrete integration by parts in time)

N-1 N-1

n+1_n+1 n,n ,n+l\ __ N_ N _ N n.n ,n+l n 0

E (Ph Uy, —PpUp,; Uy, ) = ( n Un 7'Uh)— E (ph'u,h,'uh —'Uh)—(/OOhUOh,’Uh)
n=0

n=0

and the fact that v} = 0 (since v(T) = 0), the following “conservative” formulation
holds:

N—-1 ’I)n+1 s
h h 0

—k (pﬁuﬁ, T) - (pOhUOha Uh)

n=0

N-1 N-1

+1 +1 o4l o ntl +1 ntl

+ kY elpp T = AV o) + kY a(uptt opth

n=0 n=0

N-1 N—-1 1 pn+1 o pn
— (PZanH,vZH)JrkZZ( h - h’uz+1‘vz+1>.

n=0 n=0

Next, by taking into account Definition 5.1,

T )
—/ (ﬁh,kuh,k, gvm) - (pommh,v%)
o '

T N-1
+/ C(ph,kuh,k - )\Vph,k,uh,k,vh,k) + E a(ph,huh,ky'vh,k)
0 n=0

T T
/ ( f ) n 1 / 0 -
= v, — —_— Uu, ) .
) Ph,kJks Uhk 2 /s at/’h,ka h,k * Uh,k

This variational formulation of the discrete momentum system allows us to pass
to the limit in a standard way. We pass to the limit only in the last term on the right-
hand side since this term does not appear in the theoretical analysis. We know that
%ﬁh,k — %p weakly in L*/3(0,T; L?(Q)) and w, ; — u strongly in LP(0,T; L*(£2)),
with p < oo, and is bounded in L*(0,T; L*(9)), and hence %ﬁmkuh,k — %pu weakly
in L'(0,T; L%°(Q)). As v — vin L(0,T; H}(Q)), we have

T 0 T 0
/0 (&ﬁh,k7Uh,k . vh,k) — /0 (atpau' U) as (h, k) — 0.

This concludes the proof of Theorem 1.1. ]

Remark 7.2. A variant of the Kazhikhoz—Smagulov model is obtained by replacing
the linear diffusion term —V-(¢Vu) in (1.1) by a nonlinear diffusion term —AV-(pVu)
(i.e., taking u = Ap). It is a model of pollution studied by Bresch, Essoufi, and Sy
in [4, 5], where they prove the existence of a global in time weak solution, without
imposing the restrictive hypothesis (1.5) on the coefficients.

The scheme that we design for this model is obtained by replacing the stabilizing
term of the momentum system

M
—)\/ ;_m(VuZH)t sV, de
Q

by the term 22%(V - u}™', V- ;) and the remainder with the following scheme:
Given (pj, ul,py) € Wy, x Vi, x My,
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1. find (w},qp) € ‘A/;I x M), such that, for each (wp, @) € /V;l X Mh,
(7.2) (szvVﬂ’h> - (qiTLLav ' ’Tﬂh) = (VUZ,V@h)a (V : wZ,th) =0;

2. find p"+1 € Wy, such that, for each p;, € Wy,

n+1

7
(7.3) <phkphvﬁh> + (wh Vp”“ﬁh) + A(VPZ“,Vﬁh) = 0;

3. find (u !, pp ') € Vi, x My, such that, for each (@, pp) € Vi x My,

'U,n+1 _un 1 n+1 n
(Ph h : h’uh)+2(ph - ph,UZ“'”h)

+ C( n+1 )\Vpn+1 n+1 uh)

(7.4)
A(p}?“ u = (V) V) + A (V)
( L ’Tth) i (pZ+17V'ﬁh>,

(7.5) (v- "+1,m) —0.

By following the arguments of this paper, one may establish the same conclusions of
Theorem 1.1 for this scheme.

8. Asymptotic behavior when A — 0. In this section we are interested in
the asymptotic behavior of scheme (1.8)—(1.10) when the diffusion parameter A\ goes
to zero. More precisely, we will see that, by imposing the stability condition
(s h/(kX?) — 0 as (A h,k) — 0
and completing (H2) with the additional approximation property
(H2') 16— Inp| < CB*P||pllwrarey Vo€ WH2(Q),
then scheme (1.8)—(1.10) approximates, as (h,k,A\) — 0, to a weak solution of the
density-dependent Navier—Stokes problem (1.6), which is defined as follows.

DEFINITION 8.1. A pair (p, u) is said to be a weak solution of (1.6) in (0,T") if:

(a) w e L=(0,T; L*(Q)) N L*(0,T; V), p € L=(Q), with 0 < m < p(z,t) < M

a.e. (x,t) € Q;
(b) for all ¢ € C*([0,T]; V), with ¢(T) =

/O {— (o by + (- V)6) + (Y, V) dt = / (o1 ) dt + (poruo, H(0));
(c¢) for all € C([0,T); H*(Q)), with o(T) = 0,

T T
*/ (p,cpt)dt*/ (pu, Vo) dt = (po, »(0)).
0 0

The rest of this section is devoted to the proof of Theorem 1.2.
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8.1. Uniform estimates with respect to (h, k, ). By following arguments
of the previous sections and assuming (S’) and (h, k, \) small enough, we can obtain
the following estimates independent of h, k, and A (now we denote piecewise functions
associated to the scheme also with the parameter A explicitly):

{un e nhokns {8h e {W@hex ey in L0, T3 L (Q)) N L2(0, T; H(Q)),
Pkt nkens 1on kA hkxs APk AR I L(Q),
N2 pn a ngne N2 {Phkatne in L0, T; HY(Q)),
N/ oA thoen in L0, T WH3(Q)),

A3/ {aﬁh,k,)\} in L*3(0,T; L*(Q)).
ot Bk, A

In addition, 0 < m < pp ks Phkns Phoky < M in @,

[1Phx = PrkallLz0.1:L2(9)) < 1Phgex — Phkallzzor;r2(0) < OV,
e x — Tnonl| 22 (0,75 873 (02)) < CVE.

In fact, we have the following result.
LEMMA 8.2. By assuming (S) and (h, k, \) small enough, there exist subsequences

of {tn k. tnkes {8h kA nks {Pn kN hok s {Ph kA K and {Ph g }n i (denoted in the
same way) and limit functions u and p, such that V-u =0 a.e. in Q, and the following
weak convergences hold as (h,k,\) — 0:

L*(0,T; H)(Q))-weak,

Up kX — U /ﬁhk — U ’l/l\]hk — U in
kA ’ oHA ’ kA { L>=(0,T; L*(Q))-weaks,

PhiA = Py PhkA = Py Phir— p in L7(Q)-weak *.

8.2. Compactness.
PRrROPOSITION 8.3. Under the hypotheses of Lemma 8.2, the estimate

T—6 2
(8.1) / ‘ Ph,k7z\<t + (5)(uh7k,>\(t + (5) — uh,kv\(t)) dt < C8§'7% vs:0 <6<T
0

holds, with C' > 0 independent of h, k, 6, and .
In particular, since pp, i, » > m, then

Up oy — U Whiy— U ID L2(0,T; L2(Q)) as (h,k,A) — 0.

Proof. Again, since pp . » and wy k, are piecewise constant functions, (8.1) is
equivalent to

N—r
(8.2) k Z o (T — a2 < C(rk)Y? vr:0<r<N.
m=0

By following the proof of Proposition 6.3, one observes that the terms which are
not necessarily bounded independent of A are

N—rm—1+4r pn+1 . Pn
ey (B - )

m=0 n=m
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and

Ty = —k Z (o7 = ppt upt - (up ™ — ).

Here we are going to bound these terms.
We consider the projection operator on W}, with respect to L?(2)-inner product:

P, : L?(Q) — W, suchthat (Pyv,w)= (v,w) Yw e W,

We take p, = Py (up ™" - (" — u)) € W), in (4.2), arriving at

n+1
— P n m+r m n n n m—+r m
(kh uh+1 (up ™" — )) + (w) 'Vph+laph(uh+l (up™" = i)
(8.3)
- )\(Ahp”H P (g — u’ff)) =0,

where we have used the definition of projection operator in L?(f2) in the first and the
last term. Thus, we decompose T1 = T4 1 + T} 2, where:

N—rm-—1+r

Ty = —k? Z Z wjl -Vt Pu(up - (w T — ),

=0 n=m

N—rm—1+r

Tlg—/\k‘Z Z Z A p7z+1 n+1 ( ZL+T uzn))

m=0 n=m
By writing T4, as follows:

N—rm—1+r
Tya=—k Y > (wp- Vot Pu(u™ - (up " — ) — up ™ (gt — )

m=0 n=m
N—rm—1+r

— k2 Z Z ,w vpn-i-l n+1 ( Zm-i-r uhm)) — 7—111)1_'_7—112)17

m=0 n=m

we bound it as

N—rm—1+r
T <CR Y D lwilloo@lIVoR ™ llos @b lu ™ f[lu ™+ — wi),

m=0 n=m

where we have used the inequalities |p — Ppp| < |p — Inp| < Ch2/3||,6||W1,3/2(Q) and
HuZJrl (UZH_T —up)|[wrszg) < ||uh+1|||| AT _ u}||. Next, by taking (A, h, k) small
enough and such that

(8.4) h2/3 < O N3/AEY2,

using the fact that A\¥/4k/2(|Vp}*! || 13q) < C (with C independent of A, h, k), and

applying the discrete Fubini rule, we arrive at the estimate Tf’l < C(rk)/2.
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The bound T, < C (rk)'/? is obtained easily by integrating by parts and using
the pointwise bound ||p} || (q) < C (where C is independent of \):

N—rm—1+r
TP <KDY Y (V- wplluy ™ (™ — )]+ [wpll e [ Ve ™ [l — ]| s)
m=0 n=m
N—rm—1+r
YT ST sl sV (T — )|
m=0 n=m
N-1 n
<CR Y lwplllw ™ Y0 (et —wm| < Crk)'2
n=0

m=n—r—+1

The bound T} » < C(rk)'/? is obtained using the fact that A% k Zg;ol Appp T2 < C
and Fubini’s rule.

By summing up (8.3) multiplied by k2 for n = m, ..., m+r—1 and then summing
up for m =0,..., N —r, we can write T as:

N—rm-+r—1
To= k3 7 (- Vo, Palul (™ — ) = At (7 — ).

m=0 n=m

These new terms are bounded in an analogous manner (now, without using Fubinis’s
rule), resulting in

Ty < C(rk)Y/2.

Note that the restriction on the parameters (8.4) imposed to get the bound of
T}, is included in the constraint (S’) imposed to obtain a priori estimates. Indeed,

(8.4) is equivalent to ﬁ% < C. But as

i Vﬁ/lh?“ P S
hin—o \ AV & N RE ) T a0 A/ARL2R176 OO

then ﬁ%ﬁ < C%\/%—) 0 (thanks to (S')). O

Remark 8.4. By comparing the fractional in time estimates for the discrete
velocity in the case of A fixed (done in Proposition 6.3) with respect to the case of
A — 0 (done now in Proposition 8.3), one can observe that condition (8.4) on the
parameters h and k imposed now in the proof of Proposition 8.3 is not necessary in
the case of \ fixed; however, in this case only order (rk)/* is obtained. Now, in the
case A — 0, we have to impose constraint (8.4), and the estimate order is improved
from (rk)Y/* to (rk)'/2.

8.3. Passing to the limit.

8.3.1. Density equation. Let n € C([0,T]; C2°(9)) such that n(T) = 0. We
define i} as the interpolation in Wy, of (t,,) and ny, 1 € L*(0,T; W})) as the piecewise
constant function taking values 77! in (t,,t,11] and let 7, € C°([0,T]; W})) be
the piecewise linear, globally continuous function such that 7, x(¢,) = n). One has,
as (h,k) — 0,

Ne,p — 1 in L0, T; Hl(Q)) and 7Tgp—n in W1’°°(07T; HI(Q))
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By using these discrete test functions in the discrete density formulation (1.8), to-
gether with an integration by parts in time, we arrive [11] at the formulation

T

. d . N

(8.5) / (ph,k,w —anh,k) + AV Phkn Vi) + (Whkx - Von e mhk) = (Pons Mh)-
0

Before taking a limit in (8.5), we rewrite the convective term in the following form:

T T
/ (Wh,k,x - VPhkox, Mhk) dE = —/ (V - Wh g APk, Thk) dE,
0 0

T T
—/ (Ph e AW kN, Vi) dE = —/ (PR AW kN> Vi k) dE,
0 0

where we have used Remark 3.1. Therefore, (8.5) remains as

T

. d N

/ (Ph,k,)w —%U}z,k) + MV ohkxs Vi) = (Whoiex Pk, Vo) = (Pon, )
0

By taking into account the weak and strong convergences obtained in previous sub-

sections, it is possible to pass to the limit. Notice that, by arguing as in [9], one can
prove that

T
/\/ (Vp}hk,)\, Vnh,k) dt -0 as (h, k, /\) — 0.
0

8.3.2. Velocity system. Before taking a limit in the discrete momentum system
(1.9), we will write (1.9) in a completely conservative form. For this, summing to both
sides of (1.9) the terms

1 pn-‘rl o pn N _ 1 n n n " _
) < . L Loty ) - §(Ph+1“h — AV LV ()

provides that, for each u, € Vy,

n+1l, n+l N, M
u — u
ph h - Pp U, , ﬁh o ((pz%»lufg o )\sz+1) ® uZJrlv V’Tl/h)
(86) +a pz+1a UZ+1, ﬂh) = (pz+1f n+1, ﬁh) + (pZ+17 & ﬁh)
1
} pZJr —Ph n+l -~ _ 1 ntln o\l n+l -~
+ 5 ’ cup 2(ph upy Vo™ V(u, ™ - a)).

Now we consider @, the projector operator onto W} with respect to the H'-norm:
Qp : H' () — W), such that (Qnv,w)gi) = (v,w)g1Q) Yw € Wy,

where (-, -)H1(Q) denotes the usual H'-inner product.
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By subtracting from the second member of (8.6) the result of taking pj, = $Qp(u) ™"
uy) as a test function in (1.8) and integrating by parts the convective term, one has

n+1 n+1 N 70
p u — pru
( h h 2 h h,ﬁh> - ((pZ 1uZ’—/\VpZ 1)®u2 1,Vﬂh)

+ a(pZ“, u, ﬂh) = (pZ“f"“, ﬂh) + (pZ“,V : ﬂh)

1 pn+1 _pn ~ ~
T3 ( o — QT )

1 n n _ n _
) (phﬂwﬁa v(uh+1 s Up — Qh(“hJr1 : Uh)))

1 T n n n = 1 7 7 n =
~3 (ph’+1(uh —wy), V(uh+1 . uh)) + 5 (V S Wy Ph“, Qh(“h+1 : Uh))
_ i n+1 n+l -~ n+l =

B Py Uy T Up Qh(uh ) ),

where we have used the definition of )5, in the last term on the right-hand side. Note
that the term (V- wf pi! Qpn(u}™ - w,)) = 0 thanks to Remark 3.1.
In a similar way to section 7, we arrive at

T 0
—/ (ﬁh,k,)\uh,k,Aa 5vh,k) - (powomv%)
0 !

T
—/ (Ph,k,)\uh,k — AVPh,k A @ Un kA, Vvh,k) + a(ph,k,/\7 Up kA Uh,k)
0

T 1 (T/o._
= / (Ph,k,,\fk, 'Uh,k) + 5/ <8Ph,ka Up ko - Uhke — Qn(Unkx - vh,k))
0 0 13

1

T
- 5/ (Ph,k,A@h,k,Aa V(unk - Vhke — Qn(Unkx - vh,k)))
0

1

T
- 5/ (Ph,k,/\(ah,k,)\ = Whk), V(Un kA Vnk — QnlUnk,a ”h,k)))
0

A T
- 57‘@’/ (ph,k,A7 Up,k,\ * Uh,k — Qh(uh,k,,\ : 'Uh,k))
0

T
= / (Ph,k,A.fk> Uh,k) + Ry + Ry + Rs3 + Ry,
0

where vy, , and U, ;, are suitable approximations of a test function v C1([0, T]; C2°(9)).
Again, by using the estimates independent of A and arguing as in the continuous
case [9], one can prove that

T
)\/ (Vph,k,)\ @ Up, kA, Vvh,k) —0 as (h, k, )\) — 0,
0

T ~ ~

M

)\/ (Ph,k,A - ;_m> (Vup i)' Vo, — 0 as (hk,A) — 0.
0
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To finish the passage to the limit, we show only that the residual terms R; vanish
as (h,k,\) — 0. For this, we impose that the sequence of test functions vy ) is
bounded in L>(0,T; W"*() N L™=(Q)).

We bound Rj, thanks to estimates (ii) and (vi) of Lemma 3.2, as follows:

N-—1
7 s n e h
Ry <O ot = gl g lwronz~ < O — 0 (thanks to ()

n=0

By integrating by parts Ra,
T
Ry = —/ (ah,k,)\ “VPhk, A Uhkeox * Ve — Qr(Ung,x - Uh,k))
0

T

~ o pl 2

—/ (V S Up k) Phok, s Whok ) - Uk — Qn(Unkox - Uh,k)) = R + R;.
0

By using the (duality) result of the Aubin-Nitsche type [u —Qpu| < C hljul| g1 (q), the
first term of Ry can be estimated as follows:

T
fgﬁ/”%&WW%&NN®WWWHWMMme
0

hoo
< Coara sl e,z @p X R A1V ol e 0,752 )
llwn k2 220,751 ()

h
= C’k1/4/\3/4

h
>‘3/4HVph,k,/\||L4(O,T;L3(Q)) < CW — 0 (thanks to (9)).

The convergence to zero of the other term R3 can be made in a similar way.
The term R3 is handled as follows:

T
Rs < / lon ke M Lo ()| U ke — Wik AV (Uh k- Vhke — Qul(Un ko - Vk))]
T
<Ch [ e = Bnaalllunsallonslwsswnro) < Ch =0
0

where we have used (3.8) and the stability property of @y, in the H'-norm.

Finally, the convergence to zero of Ry is easy to deduce. This concludes the proof
of Theorem 1.2. d

Remark 8.5. The asymptotic behavior as A goes to zero of the scheme (7.2)—(7.5)
(see Remark 7.2), associated to a problem with density-dependent diffusion, remains
as an open problem. In fact, when A — 0, both diffusion coefficients (viscosity and
mass diffusion) vanish. Therefore, we find a viscosity-vanishing problem, which is an
open problem even in the continuous case.

Appendix A: Proof of Lemma 3.4. We consider the following auxiliary semi-
discrete scheme: Find p"*1 € H?(Q) as the solution of the problem:
n aanrl

n+1
P —P n M n+1 ntl _ o ; _
Al _ -VT, — A = Q =
( ) k + wh m P P 0 mn ) 8’"; 50 07

where
Pz, t) if ptt(xt) € [m, M],
it pntl(x,t) <m,

TMp (g t) =< m
M it ptl(x,t) > M.
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LEMMA A.1. Problem (A.1) has a unique solution.

Proof. Let R : H'(Q2) — H(Q) be defined by Rw = v, where v is the weak
solution of the elliptic problem:

v n 1, Ov

(A.2) %—)\Av:—wh-VT%w—l—%p in €, a—nagzﬂ
Notice that TMw is defined a.e. in Q. In addition, as —w} - VIXw + 1p" € H'(Q),
R is well-defined, that is, there exists a unique v € H'(2) such that Rw = v.

By using v as a test function in (A.2) and integrating by parts, we arrive at

1 2 el 1 n
2ol + AV < V- wh T3 wl e @ o] + [wh 1T wl| e o) [ V0] + 210" [0

Since || TN wl| () = M, then |[v]| g1 gy < C, with C > 0 a constant independent of
w. Therefore, by taking any r > C, one has that if ||w|| g1 (o) < r, then |[[Rw||g1q) <
r. To apply Schauder’s fixed point theorem we have to prove that R : H(Q) — H(Q)
is continuous and compact. For this, it suffices to demonstrate that

if w, —w in HY(Q), then Rw; — Rwin H'(Q) as | — oc.

Indeed, from w; — w in H'(Q), it holds by compactness that w; — w in L?(Q).
Therefore, there exists a subsequence, that to simplify notation is denoted in the same
way, such that w; — w a.e. in ). By virtue of dominated convergence theorem, we
have

1 1
(A.3) wy - VT M, + Ep” — - VTMy + %p" in H'(Q) as | — oc.

On the other hand, the mapping h € H*(Q) — z € HY(Q), where z is the
solution

%(z 2) - )\(Vz, VZ) = <h,2>H1(Q),H1(Q) vz e HY(Q),

is linear and continuous (by the Lax—Milgram theorem). Then from (A.3) we have
Rw; — Rw in H'(Q).

In conclusion, R|g(,) : B(0,7) — B(0,r) is continuous and compact. By
Schauder’s fixed point theorem, we have the desired result after a regularity result for
elliptic equations. 1]

THEOREM A.2. The solution of problem (A.1) verifies the mazimum principle;
ie., if m< p® <M, thenm < p"™ < M for each n > 1.

Proof. Let us first see that if p" < M, then p"*! < M. By multiplying (A.1)
by (p"*! — M), and integrating over 2 (we denote f(z), = { g(z) i ;g; 2 8 ), this
gives us

PnH —p" 1 M 1 1
(e a0 )+ (VT - ), )

+ AV L V(" - M) ) = 0.

By using properties of the positive part function and the fact that TM p"+l = M as
(p"*tt — M), # 0, we rewrite it as

() (Z e a0 ) A (VT = 0 (e ) o
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Therefore, we deduce from (A.4) that (p"* — p", (p" ™ — M),) < 0. By adding and
subtracting M, one arrives at ((p"*1 — M) — (p" — M), (p"*' — M),) < 0. Again, by
the properties of the positive part function, we obtain

(" = M), (p"F = M)y ) = (0" = M), (0" = M)1) = [(p"F! — M)+ |2

By the induction hypothesis p® — M < 0, and then (p" — M, (p"** — M),) < 0.
Consequently, |(p"t! — M), |> < (p" — M, (p"*! — M);) < 0, and then p"t! < M
holds.

The proof of the other bound—if p™ > m, then p"*! > m-——can be obtained in
the same way:. O

COROLLARY A.3. Problem (A.1) is equivalent to problem (3.9).

Proof. Since p"*! the solution of problem (A.1) verifies the maximum principle
m < p"t1 < M, then, in particular from the definition of truncating operator T/
one has TM pn+l = pn*1 and problem (A.1) is rewritten as problem (3.9). 0

From the uniqueness of the solution of problem (3.9), we have, in particular, that
problem (3.9) verifies the maximum principle

IN

O<m<p*(x) <M Ve Vn.

Therefore, to finish the proof of Lemma 3.4, it remains to prove strong estimates
(independent of A, h, k) for the p"*1 solution of (3.9). For this, it will be fundamental
to use the pointwise estimates m < p”“‘1 <M in Q.

We define n"t! = prtl — ﬁ Jo p" T, and hence ﬁ Jon™*t = 0. Then the

|7 Y| gi-norm is equivalent to |[Vn"T1|, and the ||[n™*!||z2-norm is equivalent to
|An™*. Since m < ﬁfg p"t < M, the estimates for |||z and ||| g

imply estimates for ||p" || and ||p" 1| g2, respectively.
With this definition of 7! problem (3.9) can be rewritten as:

'r]”+1 _ (pn _ ﬁ fQ pn-‘rl)
k

+ )l - V"t = AAp"T =0 in Q, o =0
on oo

n+1

By multiplying by —2 k An™**, we arrive at

1
Vn+12_‘v(n_/ n+1>
V" ")

<2k (wZ AV T An"Jrl) = Kj.

2
+ V(" = p")P + 20 k| Ap T

By integrating by parts in K7,
Ky = =2k(Vuwp, V"t @ V") + k(V - wp, [V ).

. n n 1/2 n n
By using ||V | () < C [ln" |2 A0 2 < C AR+ 12, we get

n n mn n C n n
Ky < Ckwhll V0" o) < CRllwh || |An™ T < ==k wh]|* + & Ak An™ .

Therefore,

1
vnnJrl 2 ‘v (pn . 7/ pn+1>
v 91 o

2 C
+ Ak Ap" T2 < oy || wit]?.
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By using the fact that V(p™ — \ﬁll [ pth) = Vp" = V", we have

Ml e = Mn™ 17 + M = ™13 + Nkl 7 < Ckllwy]?.

By summing over n and applying k 27]2121 lwi]|? < C, we get the following bounds:

where

[12] A.

[13] C.

[14] R.

[15] P.

[16] P.

[17] J.

[18] R.

N

n|( 2 2 n (|2

)\OglachHp 1) <C, A kz;”/’ 200y < C,
-

C > 0 is independent of A, h, k. This concludes the proof of Lemma 3.4. 0
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