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Abstract

This work is devoted to the superconvergence in space approximation of a fully
discrete scheme for the incompressible time-dependent Navier-Stokes Equations
in three-dimensional domains. We discrete by Inf-Sup-stable Finite Element in
space and by a semi-implicit backward Euler (linear) scheme in time.

Using an extension of the duality argument in negative-norm for elliptic linear
problems (see for instance [1]) to the mixed velocity-pressure formulation of the
Stokes problem, we prove some superconvergence in space results for the velocity
with respect to the energy-norm, and for a weaker norm of L?(0,T;L?*(Q))
type (this latter holds only for the case of Taylor-Hood approximation). On
the other hand, we also obtain optimal error estimates for the pressure without
imposing constraints on the time and spatial discrete parameters, arriving at
superconvergence in the H*(£2)-norm again for Taylor-Hood approximations.
These results are numerically verified by several computational experiments,
where two splitting in time schemes are also considered.
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1 Introduction

Numerous works have been developed to study the behavior of incompressible fluids
through the Navier-Stokes equations (see for instance [14], [11]). In particular,
the Finite Element Method ([1], [2], [3], [4]) is a very common way of spatial
approximation for the Navier-Stokes equations ([7], [9], [8], [10]).

In recent years much attention has been devoted to the formulation of efficient
schemes for the Navier-Stokes equations. In [9] and [8], some time-discrete schemes
are summarized showing their convergence and stability conditions.
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This paper focuses on a linear Euler Semi-Implicit time scheme (where the
convective term is linearized) with stable finite elements in space for solving the
Navier-Stokes equations for incompressible fluids (1) filling a 3D domain €2 during
a time interval (0,7'). We recall the stability of this scheme and we obtain some
superconvergence in space results for the velocity u and the pressure p (solution of
the Navier-Stokes problem (1)).

Let (V,Ws) be conformed finite element spaces in (HE(Q)3, LE(Q))
corresponding to a regular and quasi-uniform triangulation 7}, of the domain €2 with
polyhedric boundary 9f2. We assume that (V},, W},) satisfies the following properties:

e O(h™)-approximation in the energy norm H' x L2

o (Vi, W},) satisfies the so-called Babuska-Brezzi condition (BB), or discrete Inf-
Sup condition: there exists 5 > 0 such that
(qhv V- 'Uh)

BB inf sup —dm V) g
(BB) o2 S TonllaTanll oz

For instance, the following choices of (V},, W},) can be considered:

e for m > 2, the Taylor-Hood P,,, x P,,_; finite element approximation [7, 13],

e form = 1, the (mini-element) P;-bubble/P; [7] or P;-isoPs /P4 [7] or P2 /Py
[5].

More concretely, fixed a regular time partition (¢, = nk)N_, of [0, T] with time
step k = T/N, by denoting e} the discrete error for the velocity at time step n
respectively (using the discrete Stokes Projector defined in (8) as interpolator operator),

we will deduce some superconvergence results in space.

Theorem 1 Assuming the H? x H'-regularity of the Stokes Problem and under the
Jollowing regularity assumptions for the exact solution (u,p) of (1) in (0,T),

(R1)

(u,p) € L (H™" x H™), (uy,pr) € L* (H™" x H™) and wy € L°H ™,

we obtain the error estimates for the velocity:
(e |ise 2z < C(k + R™F1).

Given X a Banach space, the norms

N
n o n 2 ny(12 o n|2
e imny = e and el =52 1T
n=

represent the discrete version of the L°°(0,7; X) and L?(0,7;X) norms for the
constant by time subintervals function associated to the value e™ at (t,—_1,¢n).
For brevity, we denote L>°H™ instead of L°(0,7; H™(2)) and [*°L? instead of
1°°(L*(£2)) and so on.

On the other hand, by denoting e, as the discrete error for the pressure, we
will obtain the following optimal error estimates for the pressure (without imposing
constraints on the discrete time and spatial parameters k and h).
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Theorem 2 Under the assumptions of Theorem 1 and assuming the additional
regularity uy; € L2L?, we obtain the error estimates for the velocity and the pressure:

Iem)lliee mrnzwrs + [[(ep )l < C(k+R™)

Note that using P,,/P,,—1 (with m > 2) approximation, Theorem 2 also gives
superconvergence in space for the pressure. When the pressure discrete space is not
included in H'(Q) (using a discontinuous approximation of the pressure) the [2H!-
norm for the pressure must be changed by 12LS.

Finally, we present another superconvergence result for the velocity, only valid for
O(h™)-approximations with m > 2.

Theorem 3 Under the assumptions of Theorem 2 for m > 2 and assuming the
H3 x H?-regularity of the Stokes Problem, we obtain the error estimates for the
velocity:

ll(em)llizre < Clk + h™F2)

whenever k is small enough (k < ko).

Now, we comment two previous papers where different superconvergence results
are provided.

Wheeler in [16] derived optimal error estimates for some second order semilinear
parabolic partial differential equation with a coercive bilinear form. In particular, some
superconvergence estimates are obtained in the L?(Q2) sense. Now, we are dealing with
a mixed formulation.

On the other hand, in [15], the authors developped a postprocessing technique to
obtain superconvergence results for the Stokes problem. The key point is to project the
finite element solution (uy, pp) € (Vi, W),) related to the mesh mesh 7y, to another
stable finite element space (V,, W) with a different mesh 7, consisting of piecewise
polynomials of higher degree P, y P; respectively (assume h << 7 and the relation
7 = h® with @ € (0,1) between 7 and h). Let Q, and R, be the L? projectors from
L?(Q) onto V. and W, respectively. Then, in [15] the errors u — Q,u;, and p — R, py,
are analyzed, obtaining the following estimates (taking the limits  — oo and | — o0)

o |lu—Qrun|rz + |lp— Repnllrz ~ O(h?) for P1b x P1- approximation.
o |lu—Qrun|rz + |[p— Repnllrz ~ O(h*)  for Py x Py-approximation.

This paper is organized as follows. In Section 2 an abstract functional setting of the
Navier-Stokes problem is given jointly to the existence of weak solutions. Section 3
describes the Euler Semi-Implicit scheme and their stability, meanwhile in Section 4
some superconvergence properties of the Stokes Projector are described. In sections 5,
6 and 7 we detail the proofs of the Theorems 1, 2 and 3, respectively. Furthermore,
in Section 8 some numerical accurate orders are obtained by means of computational
experiments. Finally, in Section 9 we present the final conclusions of the paper.
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2 Navier-Stokes Model

We consider the 3D Navier-Stokes system, associated to the dynamics of viscous and
incompressible fluids filling a bounded domain 2 C R? in a time interval (0, T'):

{ut+(u~V)u—uAu+Vp=f, V-u=0, inQx(0,7T), 0

'LL‘(’—)Q =0 te (O,T), U|t:0 =ug in€.

Unknowns are u :  x (0,7) — R3 the velocity field, and p : Q x (0,7) — R the
pressure. Data are f :  x (0,7) — R? the external forces, and ug : Q — R3? the
initial velocity . We denote by V the gradient operator, and A the Laplace operator.
v > 0 is the viscosity parameter. For simplicity, we fix ¥ = 1 (all estimates in this
paper will be dependent on this viscosity parameter and the constants blow up when
the viscosity vanishes).
Given f € C°([0,T]; H=1(Q)?3), we consider the variational formulation of (1):

Find (u(t), p(t)) € H(2)*x L3(Q)(= {q € L*(2); [, ¢ = 0}) such that u(0) = uq,
and

(ue(t), v) + al(u(t), p(t)), (v.q)) + c(u(t), u(t),v) = (f(t),v) 2
hold a.e. t € (0,T) and for any (v, q) € HE(Q)3 x L3(2), where

a((u,p), (v,q)) = (Vu,Vv) — (p,V-v) = (V- u,q) (symmetric form)

c(u,w,v) = ((u- Viw,v) + %(V~u,w~v) = % ((u-V)w,v) + (u- V)v,w)|.

Hereafter (-, -) denotes the usual L?(£2)-scalar product and (-, -) the H ! x Hg duality
product. Note that c(-, -, -) verifies the skew-symmetric property:

c(u,v,0) =0 Yu,v € Hy(Q) 3)

and the bounds
c(u,w,v) < C |ull gz wll Lo awrs o] g “4)

where the role of u, w, v can be interchanged.
The following theorem [14] gives the existence of weak solutions of (1)
(i.e. solutions of (2)).

Theorem 4 The following Inf-Sup stability condition holds: there exists > 0 such
that -
inf sup (9, V- v) >
q€LE(Q) ve HE(Q)3 ol z@llall 2 @)

Moreover, problem (2) has a weak solution
we L>(0,T; L*(Q)°) N L*(0, T; H(Q)®), pe H'(0,T;L*(Q))

which verifies the following Energy Inequality:

t t
IIU(t)II%er/O IVu(s)l[Z2 < lluolZ- +/O 1f ) vYte0,T]. )
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3 Euler Semi-Implicit finite element scheme. Stability.

We are going to consider the following Euler Semi-Implicit linear scheme in time and
finite element approximation in space to approximate problem (2), where from now
on, we denote §;a" ! = (a"*! — a™)/k a time discrete derivative

We consider the following scheme:

Initialization: Let u) € V}, an adequate approximation of u.
Step n + 1 : Given u} € V},, compute (uZ’H,pZH) € Vi, x W}, solving:

(G ™ wn) + al(u ™ o), (om n)) + (s, ™ vn) = (F (b ), o),
(6)
for any (vp, gn) € Vi x W,
Since problem (6) can be rewritten as a square algebraic linear system, uniqueness
implies existence. Stability of scheme (6) is guaranteed by the following result ([11]),
which in particular implies existence and uniqueness of (6):

Theorem 5 (Unconditionally Stability) Scheme (6) satisfies the following a priori

estimates for velocity (which is a discrete version of (5)): foranyr =1,..., N,
r—1 r—1

lup gz + kY INVap ™ 5e + kD0 IVESGup ™ G2 < lluolla + 11 72(00,.0-1)-
n=0 n=0

@)

Furthermore, the following a priori estimate for pressure in a weighted norm holds:

N 3/4 C
(VEpith),, is bounded in 1*/> L (i.e. (k:ZHpZHHi/QB) < Tz |
n=1

The weighted estimate for pressure derives for the discrete inf-sup condition (BB),
weak estimates (7) (in particular, Vk 5tu2+1 is bounded in [?L?) and the following
estimate for the convective term (valid in 3D domains):

c(upy, up ™ o) < Cllupllcslluy ™ lm [Jonl e Yo € Vi

which implies that c(u}, u' ™, ) is bounded in 14/3(H~1).
Hereafter, C' > 0 denotes a generic constant independent of (k, ) and n.

4 Properties of the Stokes proyector
First of all, defining the total errors as
(e",ep) = (u(tn) — up,p(tn) — pp),

comparing the exact problem (2) at t = ¢,,4-; and the scheme (6), one arrives at

(5ten+17 vh)+a((€n+1a €Z+1)’ (vh7 Qh)) = (gnJrl’ vh)*c(u;; 6n+1; vh)fc(env u(tn-i-l)v vh)
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where

(E™ 0n) = —(un(tnsr) — Grtltasr),vn) — / e (0), ultngr), vn)

n

denotes the consistency (or truncation) error in time.

We consider as interpolation operator (I u, Jpp) := Si(u,p) = (S;(u,p), S}, (u, p))
the Stokes Projector of each (u, p) € H}(Q)3 x L3(£2) onto V}, x Wy, i.e., Sy (u, p) €
Vi x W), such that

a((uap) - Sh(u7p)a (Wz#]h)) =0 V(’Uh,(]h) S Vh X Wh (8)

Then, we split the interpolation error from the discrete error (for the velocity and for
the pressure) as

(env €Z) = (6?7 eg,i) + (627 ez,h)
where
(ef',eps) = (u(ty)—=SH(u(tn), p(tn)), p(tn)—5Sy (u(tn), p(t,))) (interpolation error)
(ehsepn) = (Sp(u(tn), p(tn)) — up, Sp(u(tn), p(tn)) — pp)  (discrete error).

With this choice of interpolator, the interpolation term a((e[*",en)), (vn, qn))
vanish, remaining the following error equations:

(Beep ™t on) +al(ep ™ enih), (vn, an)) = ("7 on) — (8ref ™, on) )
—c(uf, e ) — c(e™, u(tng), vn).
The following approximation of the Stokes projector holds ([7]):
||(U,p) - Sh(U,p)HHl % L2 S C hm||u,p||Hm+1 x Hm (10)

Moreover, the following stability property of the Stokes projector will be used, either

1Sk (w, p)llwrosmr < Cllu, pllazxmr (11

for continuous discrete pressure, or

1Sk (u, p)|[[wrexrs < Cllu,p| g2 mr- (12)

for discontinuous discrete pressure (for instance when the P2 /P approximation is
used). These stability results (11) and (12) can be obtained from (10) imposing the
inverse inequality ||vp, qnllwiexmr < Ch™Y|vn, qnllgi x> (changing the W16 x
H'-norm by W6 x LS-norm in the discontinuous discrete pressure case), and
comparing S, with an average interpolator of Clement or Scott-Zhang type. On the
other hand, a more precise stability estimate like

1Sk (u, p)[lwrsxres < Cllu, pllwrexre

was obtained in [6].

To prove superconvergence, we introduce an extension to mixed problems of the
negative-norm estimates for elliptic problems by means of a Aubin-Nitsche duality
argument (see for instance [1]):
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Theorem 6 Given (f,g) € H ()3 x LE(Q), let A=1(f,g) € HL(Q)3 x L3(Q)
such that

a(A7H(f,9), (v,q)) = (f,0) + (9:9) ¥ (v,q) € Hy(Q)* x L§(€).
Let s > 1 be an integer. Assume the assumptions:
LA L9 esisns < ClFgllieswme  (we denote HO = L?)

2 il AT(ag) — (ona)llsese < CRATN ) lers
(Vh,qn)EVaR X Wh

Then, for any (u,p) € H} ()3 x L3(9),
[(w, p) = S (w, )| (mrs -1y x(menrzy < CR°||(w,p) — Su(u,p)|laixre  (13)

Proof. Let (u,p) € H}(Q)? x L2(Q2) and S, (u, p) be the solution of the discrete
Stokes problem (8). For any functions (f,g) € H*~1(Q) x (H*(Q) N L(Q)), we
consider A=Y(f,g) € (H*T1(Q) N HY(Q))? x (H*(Q) N L3()) as the solution of
the following (adjoint) problem

a((v,9), A7 (f,9) = (v, f) + (¢.9), Y (v,q) € Hy(2)® x L§()
Taking (v, q) = (u,p) — Sh(u,p) and applying (8),
(’LL - S#(uap)7 f) + (p - Sz(uap)ag) = a’((uap) - Sh(uap)vAil(]i g))
= a((uvp) - Sh(u7p)7A71(fa g) - (Uhvwh)) v(Uluu}f7,) € Vh X Wh
Therefore, by using the continuity of a(-,-) in H* x L2,
('LL - S;:(’U,,p),f) + (p - Sﬁ(uﬁp)»g)
< C[(u,p) = Sn(u )| mrscrz |ATH(F, 9) — (onswp)llixrz Y (vh, wr) € Vi x W,
Finally, by using hypotheses 1 and 2,
(U - Sﬁ(%p)’f) + (p - Sﬁ(u,p),g) < Ch? ||(u7p) - Sh(’uﬂp)”Hl><L2 ||A_1(fvg)||H5+1><HS
S Ch? ||(U,p) - Sh(uap)”PIlXL2 ||fag||H5*1><H5

Since this inequality holds for any (f,g) € H*~! x (H* N L2), one arrives at (13).
g

We are going to use Theorem 6 jointly to the O(h™™) approximation in the energy norm
given in (10) in two particular cases:

1. (s = 1) Assuming the H? x H'-regularity of the Stokes Problem, the duality
estimate given in Theorem 6 for s = 1 yields to

lu=S3 (w, p)llz2 < C h|l(u, p) =S (u; Pl xz2 < CH™ | (t, )| prmsa
(14)
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2. (s =2and m > 2) Assuming H? x H?2-regularity of the Stokes Problem and at
least O(h?) approximation in the energy norm, Theorem 6 for s = 2 yields to

1Sk (w, p)—ull -1 < C h?[[Sp(u, p) = (u, p) | 1 xz2 < C R 2| (w, p) | s s rm
1s)

Since at least second order approximation in H' x L? must be considered, (15)

is not valid for P;-bubble/P1, or P-isoP2/P; or P3/Pg approximation.

5 O(k + h™*1) energy-norm estimates (Proof of Theorem 1).

Taking (vp, qn) = 2k (e}, e"ﬁl) in (9) the discrete pressure terms vanish hence
the left hand side remains

llep ™ 17z = llerllZs + llep™ — enllZs + 2k [Ver™ 17,

Then, bounding the terms of the right hand side in the following way, by using (4) to
bound the convective terms and the properties of the Stokes projector (10), (11) (or
(12)) and (14),

n n k: n tn+1
o 2k (£, t) < S+ 0 [ Gl + ful)
1 1 1 frt 1
o 2k ((5t€?+ ’e;zH_ ) < Chm+ / (ut7pt) ”en—i- HL2
t

Hm+lx gm

n

tn41
Ve + C D [ s o

tn
2k C( " utnr) ey ) < Ckllef + epll 2 utns) | enwralley™ [l
< ||V6"+1HL2 + CRRP D u(tn), p(ta) | e s [u(tas ) 72 +
Ck IIU( nt0) |2 len 122
c(ull,ef ™t ety = 0 owing to (3),
2k c(up, ef ey ™) < 2k e(Sp(ultn), p(tn), ef T e T H2k eleq, €] T e ™)

[

< Ckl\S“( (tn), p(tn)) | Lerwwralle] ™ caller ™l +CR llef I Loonmwr e llefl zaller e

e 3 O ), (1) s ) D)1

+0k lu(tns1)s P(Ent)Frz g lleq |32
one arrives at

tnt1
ler ™ 122 — llen 7 + llep ! —erllFe + k[ Ver |72 < CkQ/ (el -2 + lluell72)

n

aminy [T 2
F ORI il

tn

+CR B D ultn ), p(tn) 172 [1(tos1), () [ Foss gy

+C ke [[ultnia), pltns1) 72 g R 1172
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Adding fromn = 0 tor — 1, for each r = 1,..., N, and applying the discrete
Gronwall’s Lemma ([10]), one gets:

r—1

28
ekl + & 3 Ve 12 < eP(IehlE+ OO [ Gl s + el )

n=0

tr
Homy /0 H“typtH%{mH wim +C IR | |Uap||i°°(0,t,.;Hm+1 xH”))

where D > 0 depends on ||u,p\|2Loo(O 4,2 p)- Therefore, under the following
regularity assumptions:

(u,p) € L (H™" x H™), (uy,py) € L* (H™" x H™) and wuy € L*H ™',
(16)
we obtain the error estimates in velocity:

(el p2ruzr < C(k+ ™). (17)

y the interpolator properties, we also obtain the following optimal error estimate in
1°°L? for the total error:

1(u(tn) = up)lli=r2 < Clk +h™FY),

but estimate (17) respect to the H' (€2)-norm can not be conserved, because the
interpolation error has only order O(h™) in the H'-norm. Therefore, we have obtained
superconvergence for the discrete velocity approximation in the /2 H!-norm.

6 Error Estimates for the Pressure (Proof of Theorem 2).

Considering the Stokes Projector Sy, (u, p) and assuming regularity hypothesis (16), we
have already obtained the superconvergence error estimates in energy-norms:

|(ef)lieL2mizar < C(k + ™)

which is valid either for m = 1 and P;-bubble/P; or Pi-isoP5/P; or Py/Pg
approximation or for m > 2 and P,,,/P,,,_1 approximation. But, these energy-norm
estimates are not sufficient to get optimal error estimates for the pressure.

Now, the main idea is to get error estimates for more regular norms. Introducing the
notation ¢(u,v,w) = (C(u,v),w), the error equations (9) can be written as follows:

(rep ™ on) + al(en ™, et ), (vns an)) = (g, vn) (18)

where g = £ 4 5l T + C(ul, e 1) + C(e™, u(ty11)). In particular, from the
stability property (26),

e, ert 2o, gn < Cllglls + C e 13, (19)
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On the other hand, taking v, = 2(5te"+1 (and g, = 0) in (18)

I8eer M 172 + Sellel ™ 17 + - ||6”+1 —epliin < Clglz: (20)

Combining the two previous inequalities as a(19) 4+ (20), with « small enough in order
to absorb the term C a|d;e}"![|2, at the right hand-side, one has

*||5te"“||L2 +0lley ™ i +alley ™, ep i rowm + 7 ||€h —eq i
< Clgliz: < C (1€ 172 + 18ee; 172 + 1O (e, ult n+1))IIL2 +1C(uy, e )172) -
2

We bound the nonlinear terms as follows:

1C(e", ultn i )llm2 < Jle™ 17 u(t n+1)||W1 sAL , ,
< C||€h|| + C R Jultn), p(tn) [ipnss g < C lleq 7 + C R

and
Clup,e"th) = C(Shu(tn), e"™) + Clep, ef ) + Clep, ep ™)

bounding each term as:

IC(Syultn),e™™)7: < Clley™ 7 + C B ™ [ultns1), p(tns 1) Fmss g
< Cllep™ = eqllzn + lepllin) + C h2m

IC(er, e DI Clleplzller ™ ivranp= < Clleqlznllultnrs), pltns) I Fr are

<
< Olleplin

IC (e, en ™7z < ClVep - e [Tz + CIVep™ - epl7e
where

IVep - ey ™72 < Hveh”L3H€+n1+1” o < IVeplloellVer s len™ 1%
<elleplfyre + Cellerlznller ™ i < elleqliye + Celleqlzn

and for the same manner

Ief- Vet 15 < e o + Celley ™ [l
< ellei Bne + Celllen ™ = eflizn +llekln)

where C; = O (1/¢). On the other hand,
IC(eh, en ™Iz < elller ™ Iivns + llerllyre) + CoK (n)lef |7

where
K(n) = lep™ 5 + lleq i len™ 17

Therefore, plugging all these estimates in (21) one has

1
*||5t e e+ oullen ™ I + allen ™ ep i v wan + 7 llen™ = eqln

nt1 ) ) h(m+1) tn1 )
< Ok / (Jurals + aell) + €= [ el

Celllenllzn + lep™ = epllFn) + Ch*™ +ellley ™ s + llellfyr.e) + C-K () ef 7
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We take first € small enough with respect to o and second impose small enough
time steps k£ with respect to C. (that is & < kg), in order to absorb some RHS terms.
Then, multiplying by k, adding from n = 0,--- ,r (r < N), assuming the additional
regularity u;; € L?(L?) and using the discrete Gronwall’s Lemma, one gets:

1eep e + () 2 o + e 2D P yonc sy
< CTu K (|eh 2, + ellef[2ne + k2 + HPM).
At this point, we split the argument into two cases:

1. Estimates assuming i << f(k) (h small enough with respect to k):
By using £, |ler]|%: < C(k* + h20"*+Y) given in Theorem 1 (and in
particular |[e}||%. < C(k + h*™+D /k)), one has

kY K(n)<cC <k+

hence one can bound

h2(m+1)

) (k,Z + hQ(m—i—l))7

kY K(n)<C
under the hypothesis

pA(m+1)
(H1) -

2. Estimates assuming k& << g(h) (k small enough with respect to h):

By using [e}!||2. < C(k? 4+ h2(m*+1) for each n (as consequence of Theorem
1), and the inverse inequality ||ep,|| 71 < C h™t||en||z2, one has

1 m
kZK(TL) S Oﬁ(kz +h2( 4*1))27

hence one can bound

kY K(n)<C
under the hypothesis
k4
(H2) = <C.

Then, combining both arguments, we deduce the following estimates:

1Geen ™)z + 1(en D i girewre + (ep DIl m < C (B +07™)  (22)

without imposing constraints on the discrete parameters (h, k), because for any choice
of (h, k), either (H1) or (H2) holds.
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ote that estimate (22), for P,,/P,,—1 (m > 2) approximation, also gives
superconvergence in space for the pressure in [>H' and optimal estimate for the
velocity in [ H 1 On the other hand, when m = 1 and P;-bubble/P; or P;-isoP5 /P1
is used, we have optimal estimate for the velocity in [°° H! and for the pressure in [2 H*
(changing this last norm by [?L® when Py /P is used)
t is possible to obtain estimate (22) without using the superconvergence results in
space for the velocity given in Theorem 1 (even for m = 1), changing the constraint
(H1) by the following one

(H1)' ™k < C.

Indeed for m = 1 (and, for instance, P1b/P; or P2/P approximation), (H1)’ :
h*/k < Cand (H2) : k*/h? < C are both verified by the choice h = k% with
0 € [1/4, 2], therefore at least one constraint (H1)" or (H2) holds.

7 O(k + h™*2) in [>(L?) for Taylor-Hood (Proof of Theorem 3).

In this section, by using a duality argument and the improved interpolation error (15)
(only valid for the Taylor-Hood approximation), the order accuracy in space respect
the [? L2-norm will be improved.

The idea is to take A, 1€Z+1 = SpA! ”H as test function in (9), where Sj,
is the Stokes projector deﬁned in (8) and A~! is the continuous Stokes resolvent,
ie. AT = (A 1], A;lf) € Hi(92)3 x L3(Q) such that

a(A7'f, (v,q)) = (fiv) V(v,q) € Hy(Q)® x L§(Q).

Therefore, A, 'ept! = (A}, Leptt Ay ;624_1) € Vi x Wy, is the solution of the
discrete Stokes problem:

a(AhleZ“ (Vn,qn)) = (eZ“wh) V (vn, qn) € Vi X Wh.

In particular, since e and e"+1 verify the discrete free-divergence condition, the
following equalities hold:

a(A; e (ep e Zﬁl)) = llen 11z, (23)

1
(et A et = 76t||VAh}J nr, +§kuv5tAhz ent3.. (24)

Moreover, by using the H? x H! regularity of this Stokes Problem and the
approximation property of S}, the following approximation property holds:

1 n+1 —1_n+1 1
1A, e ™ — A7 e P lmixze < Chllep™ e,
hence the following inequality can be easily deduced:

Vg e L*(Q), (9, VA, en™) < Chllglize + Cligllny)lley ™ e 25

N
I
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Using the stability property of the Stokes projector (11) and the H? x H'! regularity
of the Stokes Problem, one has the stability property

1A, Yep o < Cllef ™ e (26)
Thus, taking (vy,, gn) = 2k A}, 'e} ™ in (9), using (23), (24) the left hand side remains
IV A, ep T = VA, teqllTe + VAL e ™ = VA e |72 + 2k [lep ™72

and bounding the right hand side as follows (taking into account the regularity for the
exact solution (16) and bounds (15), (25) and (26)):

. tat d A 1 _n+1
€ ugdt || h, uCh HL2
tn H-1

tnt1
Ll A T

tn

o 2% (aef ™ Apkeptt) < C

<

Wl 7=

o 2kc(e" u(tni1), Apnen™) < CE LA, Len i llepll L2 +Ck llep ™ o2 (h [lef | L2+

He?ll(H1 ),

® e ||L2+* leg 72+ C IV A e 72+ Ch B2 2 u(tn), pta) Fpoes s o

o 2kc(up, et At e ™) = 2k e( S (ultn), p(tn)), e, AL e T 42k c(ef, en L A

hZSZ“)

< CkIIe”“HLz(HAhheZ“HHﬁhIIe”“IILzHIe”“H(Hl D+Ck llep e [ allen ™22

2 || W ORIV A, L en 22 Ok B2 u(ta), Dl 1) | s o

+Ck (k+ ™02 ]ep |3,
Then,

IVAG ey T = IVA Rl + VA e ™ = VA R lTe + Kllep 12

tnt1 n+1 k
< 08 [ Guallyes + el + O [ syl + Skl

tn tn

+CERD 4 C (K + B2k le |3 + Ck |V A, Ler I3

Combining the estimate £ Y", ||e}||%, < C (k? + h2(m+1) given in Theorem 1 with
the generalized discrete Gronwall’s Lemma, one can obtain for k£ small enough (i.e.,
k < ko):

ez < C(k+ n™*2).

he total error estimate can not be improved to O(h™*?) in [?(L?) (but it is possible
to improve it in the [2(H ~!)-norm). That means superconvergence in 1?(L?)-norm
and optimal estimate in [?(H ~!)-norm.

T
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8 Numerical Simulations

We present some computational experiments, where superconvergence is numerically

observed with different numerical schemes. We have considered:
e Domain Q = (0,1) x (0, 1) and time interval (0, 1), thatis 7" = 1.

e Exact Solution:

ul(xv Y, t) = e’t(—cos(va)sin(wa) + S’LTL(27Ty))7 UQ(xa yvt) = U (yv z, t)v

p(x,y,t) = e 2 (sin(2rx) — sin(2my))

Note that V- (u1,u2) = 0and (u1,uz)|aq = 0. Also [, p = 0and Vp-n|sq # 0

where n is the outward normal vector at OS2

e Time step k = 10~%. Structurated triangulations of  with h = L

e We compute the discrete error studied in the previous analytical part of
this paper, comparing each scheme (u},pj) with the Stokes projector

Sn(u(tn); p(tn))-

1

Three numerical schemes have been considered in the numerical simulations:

1. Euler Semi-Implicit scheme studied in this paper (see subsections 8.1, 8.2 and

8.3):

tUy 5 Uh a\\U;, Py y \(Uh, 4h C\Up, Uy, 5 Vh) = n+1),Vh),
5 n+1 + (( n+1 n+1)( ))_~_ ( n , n+l ) <f(t ) >

2. Incremental Pressure scheme (see subsection 8.4):
Substepl: Given (u}, py) € Vi, x Wy, find fLZ“ € V}, solution of

k
Sndly
iy lag =0

Substep2: Given (@)™, p) € Vi, x W, find (uj ™', ptt) € Vi, x W), solution

of

1 N
E(UZH —apth o) + (p = phvn) =0 Yoy

(V-up™ pr) =0 VYpy
u2+1 'n|aQ =0

3. Pressure Segregation scheme (see subsection 8.5).
Substepl: Given (pz_l, up, find pj; € W}, solution of

(kY (o = ph™ "), Van) = (uft, Van)  Van
Substep2: Given u}, pi'~ ", py, find u T € V}, solution of

1 _
z(uﬁ“—uﬁ,vh)—i—c(uﬁ,u’,f*l,vh)—&-(VuZ“,Vvh)—i—(V(pZ—pZ !

1

1

107207 30° 40°
Since only spatial error must be detected, k¥ must be small enough respect to h.

), vn) = (f(tnt1),vn)

1 ~n n ~n ~n ~n n
7(uh+1 — Up, Uh) + C(”h’ uh+17 'Uh) + (vuh+1a VUh) + (vphv Uh) = <f(tn+l); 'Uh> vvh

V’Uh
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The absolute errors and convergence rates obtained will be detailed in the following
subsections. Here we summarize the results of the simulations:

e O(h)-approximation (P1b/P or P5/Pg) and semi-implicit Euler scheme.

The numerical results are agreed with the analysis made in this paper, except that
we are not able to detect the expected O(h) in [?(H')-norm for the pressure in
the P1b/P1-approximation and in [?(H')-norm for the velocity in the Py/Pyg-
approximation.

P4 /P;-approximation.

In this case, we detect the orders predicted by the analysis for the velocity and the
pressure for the Euler Semi-Implicit scheme. But these orders are also obtained
for the splitting schemes. Hence, although for the splitting schemes the analysis
is lacking, we conjecture that the same type of results could be deduced.

On the other hand, the O(h*) (resp. O(h?)) order predicted by the analysis is
obtained for the velocity (resp. pressure) for the /2(H')-norm. But these orders
are also obtained for the [°°(L?)-norm, although in this paper only O(h3) is
proved for the velocity and it is not analyzed here for the pressure.

Note that in the Incremental Pressure scheme and the Pressure Segregation
scheme, the order for the velocity errors in L2-norm, can not be detected for
small A due to the influence of the time error.

8.1 Semi-Implicit Euler with P;b/P;-approximation

ABSOLUTE ERRORS
h 0.0707106 0.0353553 0.0235702 0.0176776
[[Sfu — upl[i2p2 | 0.02054117586 | 0.00533119776 | 0.002381986923 | 0.001341520128
[[Stu — upl[izg1 | 03615287906 | 0.09067109886 | 0.0402638002 0.02262494772
[[Stu — upl[jeop2 | 0.07961372554 | 0.02020235515 | 0.008949038516 | 0.005022097028
[[SPp — pullizp2 | 05332055152 0.169360888 0.08876683239 | 0.05666878235
[[STp — phlljoo 12 5.611337315 1.373105127 0.6056441075 0.3402164278
1St — phlliz gt 15.31265165 10.09500475 8.122052658 7.006125919
CONVERGENCE RATES
[[Sfu — upll2p2 [ 1.9460 [ 1.9870 [ 1.9957
[[Siu — upllzgr | 1.9954 | 2.0021 [ 2.0036
[[S¥u — uplljcop2 | 1.9785 | 2.0082 | 2.0081
[S7p — prllj2re | 1.6546 | 1.5933 | 1.5600
[[S¥p — prlljoo 2 | 2.0309 [ 2.0188 [ 2.0047
[[Syp — prllizg1 | 0.6011 | 0.5363 | 0.5138
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8.2 Semi-Implicit Euler with P /Pj-approximation

ABSOLUTE ERRORS
h 0.0707106 0.0353553 0.0235702 0.0176776
[1SHu — unll2 2 0.160297567 | 0.04282123606 | 0.01938432208 | 0.01099613357
[1SHu — uplly2 o 5.709826325 2.97360214 2.004125509 1.510498993

[1SHu — up|ljoo p,2 0.227696453 | 0.06113359564 | 0.02768846061 | 0.01570631787
HSﬁp —prlli212 0.3563629329 | 0.1542823521 0.09760304432 | 0.07061308769
HSip — phrljoo 1.2 4.692005433 4.589215029 4.306041853 3.95470572

CONVERGENCE RATES

[Siu — upll2r2 | 1.9044 [ 19547 [ 1.9707
15w — w21 | 09412 | 0.9731 | 0.9829
ISEu — uplljcop2 | 1.8971 | 1.9534 | 1.9708
[S7p — pnlli2g2 | 12078 | 1.1293 | 1.1252
1S7p — plljer2 | 00320 | 0.1571 | 0.2959

8.3 Semi-Implicit Euler with P /P -approximation

ABSOLUTE ERRORS

h 0.0707106 0.0353553 0.0235702 0.0176776
[1SHEu — unll2r2 0.00276963026 | 0.000167065119 | 3.34111872e-05 | 1.23497894e-05
[1SEu — unll2 g1 0.180527858 0.0238377003 0.00718182921 0.0030550407
[|S}u — up|ljoo 2 | 0.00423894834 | 0.000261714473 | 5.15274708e-05 | 1.62897169¢-05
Hszp — prlli2r2 0.132668315 0.0337618908 0.0150584711 0.00848211006
HSzp — prlljoo 12 0.199304893 0.0511451618 0.022854719 0.0128857085
||SZp — prlliz gt 0.80348434 0.209014013 0.0940143439 0.053187941

CONVERGENCE RATES

[[Sfu — upl[2p2 [ 40512 [ 3.9695 [ 3.4596
[[Siu —upllzgr | 29209 | 2.9589 [ 2.9712
Stu —up|ljoopz | 40176 | 4.0081 | 4.0030
[S7p — prlliare | 19744 | 1.9913 | 1.9952
[[S¥p — prlljor2 | 1.9623 | 1.9866 [ 1.9919
[[Syp — pullizgr | 1.9427 [ 1.9705 | 1.9800




Superconvergence and 3D Navier-Stokes equations 65
8.4 Incremental Pressure with P /P;-approximation
ABSOLUTE ERRORS
h 0.0707106 0.0353553 0.0235702 0.0176776
[[Stu — upll2p2 | 0.000344565633 | 2.19641684e-05 | 1.02688172¢-05 | 1.24894254e-05
[[SEu — up|lj2 g1 0.021446712 0.00280713911 | 0.000849153393 | 0.000387891231
[[Sfu — up|[joop2 | 0.0013515355 | 0.000100968271 | 3.14616261e-05 [ 2.75331122¢-05
157 — palli2 2 0.132605783 0.033827796 0.0151562988 0.0086033841
[[Shp — phlli 12 0.242004332 0.0600466584 0.0267550839 0.015556087
[[5,p — prlliz gt 0.789317037 0.208065943 0.094618544 0.057193705
CONVERGENCE RATES
[[Sfu — upllizp2z | 3.9716 | 1.8751 [ -0.6805
[[Stu —uplliz1 | 29336 [ 2.9480 [ 2.7235
[[Stu — upl[jop2 | 3.7426 [ 2.8758 [ 0.4636
[[SPp — pullizrz | 1.9709 [ 1.9801 | 1.9684
[[SPp — prlljeop2 | 2.0109 [ 1.9938 | 1.8850
[[Shp — pullizgy | 19236 [ 1.9435 | 1.7499
8.5 Pressure segregation with P, /P, -approximation
ABSOLUTE ERRORS
h 0.0707106 0.0353553 0.0235702 0.0176776
[[Sfu — up|[j2p2 | 0.00034478178 | 2.1004084e-05 | 4.19613214e-06 | 1.53546987¢-06
[[SEu — unllj2 g 0.021451499 0.0028074587 | 0.00084344514 | 0.000358321621
[[Stu — upl[joop2 | 0.00142954958 | 9.32110566e-05 | 2.12197877¢-05 | 8.75226633¢-06
[[STp — phlliz 2 0.132520055 0.0337577981 0.015064571 0.00848449973
1SV — il 12 0.200919704 0.0519509245 0.0231459756 0.0130213259
[[Shp — phlliz gt 0.788873864 0.207688789 0.0937055103 0.0531375901
CONVERGENCE RATES
[[S¥u — upll2p2 [ 40369 [ 3.9721 [ 3.4946
[[Stu — upllzgr | 2.9337 | 2.9658 | 2.9757
[[S¥u — up|[jeop2z | 3.9389 | 3.6500 | 3.0785
[S7p — palli2 2 1.9729 | 1.9900 | 1.9956
[[STp — prlljeopz | 1.9514 [ 1.9940 [ 1.9995
[[Stp — pullizgn | 1.9254 [ 1.9629 [ 1.9719

9 Conclusions

Taking into account the interpolation errors, and considering optimal convergence as
the same order between the interpolation and discrete errors and superconvergence as
extra order in the discrete error with respect to the interpolation one, we can summarize
the analytical results of this paper for each approximation as follows:
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e Taylor-Hood approximation (P, /P,—1 with m > 2):

— Superconvergence in [>(H') and [?(L?)-norms for the velocity, and in
I12(H')-norm for the pressure.

— Optimal convergence in [°°(L?) and [>°(H')-norms for the velocity.

e P;-isoP3/P; and P1b/P; approximations:

— Superconvergence in [?(H')-norm for the velocity.

— Optimal convergence in [°°(L?) and [°°(H")-norms for the velocity, and
in [2(H')-norm for the pressure.

e Py /Pg approximation:

Optimal convergence in [2(H!)-norm for the velocity, and in {?(L%)-norm for
the pressure.
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