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Abstract

This work is devoted to the superconvergence in space approximation of a fully
discrete scheme for the incompressible time-dependent Navier-Stokes Equations
in three-dimensional domains. We discrete by Inf-Sup-stable Finite Element in
space and by a semi-implicit backward Euler (linear) scheme in time.

Using an extension of the duality argument in negative-norm for elliptic linear
problems (see for instance [1]) to the mixed velocity-pressure formulation of the
Stokes problem, we prove some superconvergence in space results for the velocity
with respect to the energy-norm, and for a weaker norm of L2(0, T ;L2(Ω))
type (this latter holds only for the case of Taylor-Hood approximation). On
the other hand, we also obtain optimal error estimates for the pressure without
imposing constraints on the time and spatial discrete parameters, arriving at
superconvergence in the H1(Ω)-norm again for Taylor-Hood approximations.
These results are numerically verified by several computational experiments,
where two splitting in time schemes are also considered.

Key words: Incompressible fluids, finite elements, error estimates, uniform inf-sup
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1 Introduction

Numerous works have been developed to study the behavior of incompressible fluids
through the Navier-Stokes equations (see for instance [14], [11]). In particular,
the Finite Element Method ([1], [2], [3], [4]) is a very common way of spatial
approximation for the Navier-Stokes equations ([7], [9], [8], [10]).

In recent years much attention has been devoted to the formulation of efficient
schemes for the Navier-Stokes equations. In [9] and [8], some time-discrete schemes
are summarized showing their convergence and stability conditions.
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This paper focuses on a linear Euler Semi-Implicit time scheme (where the
convective term is linearized) with stable finite elements in space for solving the
Navier-Stokes equations for incompressible fluids (1) filling a 3D domain Ω during
a time interval (0, T ). We recall the stability of this scheme and we obtain some
superconvergence in space results for the velocity u and the pressure p (solution of
the Navier-Stokes problem (1)).

Let (Vh,Wh) be conformed finite element spaces in (H1
0 (Ω)

3, L2
0(Ω))

corresponding to a regular and quasi-uniform triangulation Th of the domain Ω with
polyhedric boundary ∂Ω. We assume that (Vh,Wh) satisfies the following properties:

• O(hm)-approximation in the energy norm H1 × L2.

• (Vh,Wh) satisfies the so-called Babuska-Brezzi condition (BB), or discrete Inf-
Sup condition: there exists β > 0 such that

(BB) inf
qh∈Wh

sup
vh∈Vh

(qh,∇ · vh)
||vh||H1 ||qh||L2

≥ β.

For instance, the following choices of (Vh,Wh) can be considered:

• for m ≥ 2, the Taylor-Hood Pm × Pm−1 finite element approximation [7, 13],

• form = 1, the (mini-element) P1-bubble/P1 [7] or P1-isoP2/P1 [7] or P2/P0

[5].

More concretely, fixed a regular time partition (tn = nk)Nn=0 of [0, T ] with time
step k = T/N , by denoting enh the discrete error for the velocity at time step n
respectively (using the discrete Stokes Projector defined in (8) as interpolator operator),
we will deduce some superconvergence results in space.

Theorem 1 Assuming the H2 × H1-regularity of the Stokes Problem and under the
following regularity assumptions for the exact solution (u, p) of (1) in (0,T),
(R1)
(u, p) ∈ L∞ (Hm+1 ×Hm

)
, (ut, pt) ∈ L2

(
Hm+1 ×Hm

)
and utt ∈ L2H−1,

we obtain the error estimates for the velocity:

||(enh)||l∞L2∩l2H1 ≤ C(k + hm+1).

Given X a Banach space, the norms

‖(en)‖l∞(X) = max
n=1,...,N

‖en‖2X and ‖(en)‖2l2(X) = k

N∑
n=1

‖en‖2X

represent the discrete version of the L∞(0, T ;X) and L2(0, T ;X) norms for the
constant by time subintervals function associated to the value en at (tn−1, tn).
For brevity, we denote L∞Hm instead of L∞(0, T ;Hm(Ω)) and l∞L2 instead of
l∞(L2(Ω)) and so on.

On the other hand, by denoting enp,h as the discrete error for the pressure, we
will obtain the following optimal error estimates for the pressure (without imposing
constraints on the discrete time and spatial parameters k and h).
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Theorem 2 Under the assumptions of Theorem 1 and assuming the additional
regularity utt ∈ L2L2, we obtain the error estimates for the velocity and the pressure:

‖(enh)‖l∞H1∩l2W 1,6 + ‖(enp,h)‖l2H1 ≤ C(k + hm)

Note that using Pm/Pm−1 (with m ≥ 2) approximation, Theorem 2 also gives
superconvergence in space for the pressure. When the pressure discrete space is not
included in H1(Ω) (using a discontinuous approximation of the pressure) the l2H1-
norm for the pressure must be changed by l2L6.

Finally, we present another superconvergence result for the velocity, only valid for
O(hm)-approximations with m ≥ 2.

Theorem 3 Under the assumptions of Theorem 2 for m ≥ 2 and assuming the
H3 × H2-regularity of the Stokes Problem, we obtain the error estimates for the
velocity:

||(enh)||l2L2 ≤ C(k + hm+2)

whenever k is small enough (k ≤ k0).

Now, we comment two previous papers where different superconvergence results
are provided.

Wheeler in [16] derived optimal error estimates for some second order semilinear
parabolic partial differential equation with a coercive bilinear form. In particular, some
superconvergence estimates are obtained in the L2(Ω) sense. Now, we are dealing with
a mixed formulation.

On the other hand, in [15], the authors developped a postprocessing technique to
obtain superconvergence results for the Stokes problem. The key point is to project the
finite element solution (uh, ph) ∈ (Vh,Wh) related to the mesh mesh Th to another
stable finite element space (Vτ ,Wτ ) with a different mesh Tτ , consisting of piecewise
polynomials of higher degree Pr y Pl respectively (assume h << τ and the relation
τ = hα with α ∈ (0, 1) between τ and h). Let Qτ and Rτ be the L2 projectors from
L2(Ω) onto Vτ and Wτ , respectively. Then, in [15] the errors u−Qτuh and p−Rτph
are analyzed, obtaining the following estimates (taking the limits r → ∞ and l → ∞)

• ‖u−Qτuh‖L2 + ‖p−Rτph‖L2 ∼ O(h2) for P1b× P1- approximation.

• ‖u−Qτuh‖L2 + ‖p−Rτph‖L2 ∼ O(h4) for P2 × P1-approximation.

This paper is organized as follows. In Section 2 an abstract functional setting of the
Navier-Stokes problem is given jointly to the existence of weak solutions. Section 3
describes the Euler Semi-Implicit scheme and their stability, meanwhile in Section 4
some superconvergence properties of the Stokes Projector are described. In sections 5,
6 and 7 we detail the proofs of the Theorems 1, 2 and 3, respectively. Furthermore,
in Section 8 some numerical accurate orders are obtained by means of computational
experiments. Finally, in Section 9 we present the final conclusions of the paper.
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2 Navier-Stokes Model

We consider the 3D Navier-Stokes system, associated to the dynamics of viscous and
incompressible fluids filling a bounded domain Ω ⊂ R3 in a time interval (0, T ):{

ut + (u · ∇)u− ν∆u+∇p = f, ∇ · u = 0, in Ω× (0, T ),

u|∂Ω = 0 t ∈ (0, T ), u|t=0 = u0 in Ω.
(1)

Unknowns are u : Ω × (0, T ) → R3 the velocity field, and p : Ω × (0, T ) → R the
pressure. Data are f : Ω × (0, T ) → R3 the external forces, and u0 : Ω → R3 the
initial velocity . We denote by ∇ the gradient operator, and ∆ the Laplace operator.
ν > 0 is the viscosity parameter. For simplicity, we fix ν = 1 (all estimates in this
paper will be dependent on this viscosity parameter and the constants blow up when
the viscosity vanishes).

Given f ∈ C0([0, T ];H−1(Ω)3), we consider the variational formulation of (1):
Find (u(t), p(t)) ∈ H1

0 (Ω)
3×L2

0(Ω)(= {q ∈ L2(Ω);
∫
Ω
q = 0}) such that u(0) = u0,

and
(ut(t), v) + a((u(t), p(t)), (v, q)) + c(u(t), u(t), v) = 〈f(t), v〉 (2)

hold a.e. t ∈ (0, T ) and for any (v, q) ∈ H1
0 (Ω)

3 × L2
0(Ω), where

a((u, p), (v, q)) = (∇u,∇v)− (p,∇ · v)− (∇ · u, q) (symmetric form)

c(u,w, v) = ((u · ∇)w, v) +
1

2
(∇ · u,w · v) = 1

2

[
((u · ∇)w, v) + ((u · ∇)v, w)

]
.

Hereafter (·, ·) denotes the usual L2(Ω)-scalar product and 〈·, ·〉 the H−1×H1
0 duality

product. Note that c(·, ·, ·) verifies the skew-symmetric property:

c(u, v, v) = 0 ∀u, v ∈ H1
0 (Ω) (3)

and the bounds
c(u,w, v) ≤ C ‖u‖L2‖w‖L∞∩W 1,3‖v‖H1 (4)

where the role of u,w, v can be interchanged.
The following theorem [14] gives the existence of weak solutions of (1)

(i.e. solutions of (2)).

Theorem 4 The following Inf-Sup stability condition holds: there exists β > 0 such
that

inf
q∈L2

0(Ω)
sup

v∈H1
0 (Ω)3

(q,∇ · v)
||v||H1(Ω)||q||L2(Ω)

≥ β.

Moreover, problem (2) has a weak solution

u ∈ L∞(0, T ;L2(Ω)3) ∩ L2(0, T ;H1(Ω)3), p ∈ H−1(0, T ;L2(Ω))

which verifies the following Energy Inequality:

||u(t)||2L2 +

∫ t

0

||∇u(s)||2L2 ≤ ‖u0‖2L2 +

∫ t

0

||f(s)||2H−1 ∀ t ∈ [0, T ]. (5)



Superconvergence and 3D Navier-Stokes equations 53

3 Euler Semi-Implicit finite element scheme. Stability.

We are going to consider the following Euler Semi-Implicit linear scheme in time and
finite element approximation in space to approximate problem (2), where from now
on, we denote δtan+1 = (an+1 − an)/k a time discrete derivative

We consider the following scheme:

Initialization: Let u0h ∈ Vh an adequate approximation of u0.
Step n+ 1 : Given unh ∈ Vh, compute (un+1

h , pn+1
h ) ∈ Vh ×Wh solving:(

δtu
n+1
h , vh

)
+ a((un+1

h , pn+1
h ), (vh, qh)) + c(unh, u

n+1
h , vh) = 〈f(tn+1), vh〉,

(6)
for any (vh, qh) ∈ Vh ×Wh.

Since problem (6) can be rewritten as a square algebraic linear system, uniqueness
implies existence. Stability of scheme (6) is guaranteed by the following result ([11]),
which in particular implies existence and uniqueness of (6):

Theorem 5 (Unconditionally Stability) Scheme (6) satisfies the following a priori
estimates for velocity (which is a discrete version of (5)): for any r = 1, . . . , N ,

‖urh‖2L2 + k
r−1∑
n=0

‖∇un+1
h ‖2L2 + k

r−1∑
n=0

‖
√
k δtu

n+1
h ‖2L2 ≤ ‖u0‖2L2 + ||f ||2L2(0,tr ;H−1).

(7)
Furthermore, the following a priori estimate for pressure in a weighted norm holds:

(
√
k pn+1

h )n is bounded in l4/3L2

(
i.e.

(
k

N∑
n=1

‖pn+1
h ‖4/3L2

)3/4
≤ C

k1/2

)
.

The weighted estimate for pressure derives for the discrete inf-sup condition (BB),
weak estimates (7) (in particular,

√
k δtu

n+1
h is bounded in l2L2) and the following

estimate for the convective term (valid in 3D domains):

c(unh, u
n+1
h , vh) ≤ C ||unh||L3 ||un+1

h ||H1 ||vh||H1 ∀ vh ∈ Vh

which implies that c(unh, u
n+1
h , ·) is bounded in l4/3(H−1).

Hereafter, C > 0 denotes a generic constant independent of (k, h) and n.

4 Properties of the Stokes proyector

First of all, defining the total errors as

(en, enp ) = (u(tn)− unh, p(tn)− pnh),

comparing the exact problem (2) at t = tn+1 and the scheme (6), one arrives at

(δte
n+1, vh)+a((e

n+1, en+1
p ), (vh, qh)) = (En+1, vh)−c(unh, en+1, vh)−c(en, u(tn+1), vh)
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where

(En+1, vh) = −(ut(tn+1)− δtu(tn+1), vh)− c(

∫ tn+1

tn

ut(t), u(tn+1), vh)

denotes the consistency (or truncation) error in time.
We consider as interpolation operator (Ihu, Jhp) := Sh(u, p) = (Su

h(u, p), S
p
h(u, p))

the Stokes Projector of each (u, p) ∈ H1
0 (Ω)

3 ×L2
0(Ω) onto Vh ×Wh, i.e., Sh(u, p) ∈

Vh ×Wh such that

a((u, p)− Sh(u, p), (vh, qh)) = 0 ∀ (vh, qh) ∈ Vh ×Wh (8)

Then, we split the interpolation error from the discrete error (for the velocity and for
the pressure) as

(en, enp ) = (eni , e
n
p,i) + (enh, e

n
p,h)

where

(eni , e
n
p,i) = (u(tn)−Su

h(u(tn), p(tn)), p(tn)−S
p
h(u(tn), p(tn))) (interpolation error)

(enh, e
n
p,h) = (Su

h(u(tn), p(tn))− unh, S
p
h(u(tn), p(tn))− pnh) (discrete error).

With this choice of interpolator, the interpolation term a((en+1
i , en+1

p,i )), (vh, qh))
vanish, remaining the following error equations:{

(δte
n+1
h , vh) + a((en+1

h , en+1
p,h ), (vh, qh)) = (En+1, vh)− (δte

n+1
i , vh)

−c(unh, en+1, vh)− c(en, u(tn+1), vh).
(9)

The following approximation of the Stokes projector holds ([7]):

‖(u, p)− Sh(u, p)‖H1×L2 ≤ C hm‖u, p‖Hm+1×Hm (10)

Moreover, the following stability property of the Stokes projector will be used, either

‖Sh(u, p)‖W 1,6×H1 ≤ C‖u, p‖H2×H1 . (11)

for continuous discrete pressure, or

‖Sh(u, p)‖W 1,6×L6 ≤ C‖u, p‖H2×H1 . (12)

for discontinuous discrete pressure (for instance when the P2/P0 approximation is
used). These stability results (11) and (12) can be obtained from (10) imposing the
inverse inequality ‖vh, qh‖W 1,6×H1 ≤ C h−1‖vh, qh‖H1×L2 (changing the W 1,6 ×
H1-norm by W 1,6 × L6-norm in the discontinuous discrete pressure case), and
comparing Sh with an average interpolator of Clement or Scott-Zhang type. On the
other hand, a more precise stability estimate like

‖Sh(u, p)‖W 1,6×L6 ≤ C‖u, p‖W 1,6×L6

was obtained in [6].
To prove superconvergence, we introduce an extension to mixed problems of the

negative-norm estimates for elliptic problems by means of a Aubin-Nitsche duality
argument (see for instance [1]):
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Theorem 6 Given (f, g) ∈ H−1(Ω)3 × L2
0(Ω), let A−1(f, g) ∈ H1

0 (Ω)
3 × L2

0(Ω)
such that

a(A−1(f, g), (v, q)) = 〈f, v〉+ (g, q) ∀ (v, q) ∈ H1
0 (Ω)

3 × L2
0(Ω).

Let s ≥ 1 be an integer. Assume the assumptions:

1. ||A−1(f, g)||Hs+1×Hs ≤ C ||f, g||Hs−1×Hs (we denote H0 = L2)

2. inf
(vh,qh)∈Vh×Wh

||A−1(f, g)− (vh, qh)||H1×L2 ≤ C hs||A−1(f, g)||Hs+1×Hs

Then, for any (u, p) ∈ H1
0 (Ω)

3 × L2
0(Ω),

||(u, p)− Sh(u, p)||(Hs−1)′×(Hs∩L2
0)

′ ≤ C hs||(u, p)− Sh(u, p)||H1×L2 (13)

Proof. Let (u, p) ∈ H1
0 (Ω)

3 × L2
0(Ω) and Sh(u, p) be the solution of the discrete

Stokes problem (8). For any functions (f, g) ∈ Hs−1(Ω) × (Hs(Ω) ∩ L2
0(Ω)), we

consider A−1(f, g) ∈ (Hs+1(Ω) ∩ H1
0 (Ω))

3 × (Hs(Ω) ∩ L2
0(Ω)) as the solution of

the following (adjoint) problem

a((v, q), A−1(f, g)) = (v, f) + (q, g), ∀ (v, q) ∈ H1
0 (Ω)

3 × L2
0(Ω)

Taking (v, q) = (u, p)− Sh(u, p) and applying (8),

(u− Su
h(u, p), f) + (p− Sp

h(u, p), g) = a((u, p)− Sh(u, p), A
−1(f, g))

= a((u, p)− Sh(u, p), A
−1(f, g)− (vh, wh)) ∀ (vh, wh) ∈ Vh ×Wh

Therefore, by using the continuity of a(·, ·) in H1 × L2,

(u− Su
h(u, p), f) + (p− Sp

h(u, p), g)

≤ C ‖(u, p)− Sh(u, p)‖H1×L2 ‖A−1(f, g)− (vh, wh)‖H1×L2 ∀ (vh, wh) ∈ Vh ×Wh

Finally, by using hypotheses 1 and 2,

(u− Su
h(u, p), f) + (p− Sp

h(u, p), g) ≤ C hs ‖(u, p)− Sh(u, p)‖H1×L2 ‖A−1(f, g)‖Hs+1×Hs

≤ C hs ‖(u, p)− Sh(u, p)‖H1×L2 ‖f, g‖Hs−1×Hs

Since this inequality holds for any (f, g) ∈ Hs−1 × (Hs ∩ L2
0), one arrives at (13).

�
We are going to use Theorem 6 jointly to theO(hm) approximation in the energy norm
given in (10) in two particular cases:

1. (s = 1) Assuming the H2 × H1-regularity of the Stokes Problem, the duality
estimate given in Theorem 6 for s = 1 yields to

‖u−Su
h(u, p)‖L2 ≤ C h ‖(u, p)−Sh(u, p)‖H1×L2 ≤ C hm+1‖(u, p)‖Hm+1×Hm

(14)
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2. (s = 2 and m ≥ 2) Assuming H3 ×H2-regularity of the Stokes Problem and at
least O(h2) approximation in the energy norm, Theorem 6 for s = 2 yields to

‖Su
h(u, p)−u‖H−1 ≤ C h2‖Sh(u, p)−(u, p)‖H1×L2 ≤ C hm+2‖(u, p)‖Hm+1×Hm

(15)
Since at least second order approximation in H1 × L2 must be considered, (15)
is not valid for P1-bubble/P1, or P1-isoP2/P1 or P2/P0 approximation.

5 O(k + hm+1) energy-norm estimates (Proof of Theorem 1).

Taking (vh, qh) = 2 k (en+1
h ,−en+1

p,h ) in (9) the discrete pressure terms vanish hence
the left hand side remains

‖en+1
h ‖2L2 − ‖enh‖2L2 + ‖en+1

h − enh‖2L2 + 2 k ‖∇en+1
h ‖2L2

Then, bounding the terms of the right hand side in the following way, by using (4) to
bound the convective terms and the properties of the Stokes projector (10), (11) (or
(12)) and (14),

• 2k
(
En+1, en+1

h

)
≤ k

4
‖∇en+1

h ‖2L2 + C k2
∫ tn+1

tn

(‖utt‖2H−1 + ‖ut‖2L2)

• 2k
(
δte

n+1
i , en+1

h

)
≤ C hm+1

∥∥∥∥∫ tn+1

tn

(ut, pt)

∥∥∥∥
Hm+1×Hm

‖en+1
h ‖L2

≤ k

4
‖∇en+1

h ‖2L2 + C h2(m+1)

∫ tn+1

tn

‖ut, pt‖2Hm+1×Hm

• 2k c(en, u(tn+1), e
n+1
h ) ≤ Ck ‖eni + enh‖L2‖u(tn+1)‖L∞∩W 1,3‖en+1

h ‖H1

≤ k

4
‖∇en+1

h ‖2L2 + Ck h2(m+1) ‖u(tn), p(tn)‖2Hm+1×Hm‖u(tn+1)‖2H2 +

Ck ‖u(tn+1)‖2H2‖enh‖2L2

• c(unh, e
n+1
h , en+1

h ) = 0 owing to (3),

• 2k c(unh, e
n+1
i , en+1

h ) ≤ 2k c(Su
h(u(tn), p(tn)), e

n+1
i , en+1

h )+2k c(enh, e
n+1
i , en+1

h )

≤ Ck ‖Su
h(u(tn), p(tn))‖L∞∩W 1,3‖en+1

i ‖L2‖en+1
h ‖H1+Ck ‖en+1

i ‖L∞∩W 1,3‖enh‖L2‖en+1
h ‖H1

≤ k

4
‖∇en+1

h ‖2L2+Ck h2(m+1)‖u(tn), p(tn)‖2H2×H1‖u(tn+1), p(tn+1)‖2Hm+1×Hm

+Ck ‖u(tn+1), p(tn+1)‖2H2×H1‖enh‖2L2 ,

one arrives at

‖en+1
h ‖2L2 − ‖enh‖2L2 + ‖en+1

h − enh‖2L2 + k‖∇en+1
h ‖2L2 ≤ C k2

∫ tn+1

tn

(‖utt‖2H−1 + ‖ut‖2L2)

+C h2(m+1)

∫ tn+1

tn

||ut, pt||2Hm+1×Hm

+Ck h2(m+1)‖u(tn), p(tn)‖2H2×H1‖u(tn+1), p(tn+1)‖2Hm+1×Hm

+C k ‖u(tn+1), p(tn+1)‖2H2×H1‖enh‖2L2
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Adding from n = 0 to r − 1, for each r = 1, . . . , N , and applying the discrete
Gronwall’s Lemma ([10]), one gets:

‖erh‖2L2 + k

r−1∑
n=0

||∇en+1
h ||2L2 ≤ eD

(
‖e0h‖2L2 + C k2

∫ tr

0

(||utt||2H−1 + ||ut||2L2)

+C h2(m+1)

∫ tr

0

||ut, pt||2Hm+1×Hm + C h2(m+1)||u, p||2L∞(0,tr;Hm+1×Hm)

)
where D > 0 depends on ||u, p||2L∞(0,tr ;H2×H1). Therefore, under the following
regularity assumptions:

(u, p) ∈ L∞ (Hm+1 ×Hm
)
, (ut, pt) ∈ L2

(
Hm+1 ×Hm

)
and utt ∈ L2H−1,

(16)
we obtain the error estimates in velocity:

||(enh)||l∞L2∩l2H1 ≤ C(k + hm+1). (17)

y the interpolator properties, we also obtain the following optimal error estimate in
l∞L2 for the total error:

||(u(tn)− unh)||l∞L2 ≤ C(k + hm+1),

but estimate (17) respect to the H1(Ω)-norm can not be conserved, because the
interpolation error has only orderO(hm) in theH1-norm. Therefore, we have obtained
superconvergence for the discrete velocity approximation in the l2H1-norm.

6 Error Estimates for the Pressure (Proof of Theorem 2).

Considering the Stokes Projector Sh(u, p) and assuming regularity hypothesis (16), we
have already obtained the superconvergence error estimates in energy-norms:

||(enh)||l∞L2∩l2H1 ≤ C(k + hm+1)

which is valid either for m = 1 and P1-bubble/P1 or P1-isoP2/P1 or P2/P0

approximation or for m ≥ 2 and Pm/Pm−1 approximation. But, these energy-norm
estimates are not sufficient to get optimal error estimates for the pressure.

Now, the main idea is to get error estimates for more regular norms. Introducing the
notation c(u, v, w) = (C(u, v), w), the error equations (9) can be written as follows:

(δte
n+1
h , vh) + a((en+1

h , en+1
p,h ), (vh, qh)) = (g, vh) (18)

where g = En+1 + δte
n+1
i + C(unh, e

n+1) + C(en, u(tn+1)). In particular, from the
stability property (26),

‖en+1
h , en+1

p,h ‖2W 1,6×H1 ≤ C ‖g‖2L2 + C ‖δten+1
h ‖2L2 . (19)

B
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On the other hand, taking vh = 2δte
n+1
h (and qh = 0) in (18)

‖δten+1
h ‖2L2 + δt‖en+1

h ‖2H1 +
1

k
‖en+1

h − enh‖2H1 ≤ C ‖g‖2L2 (20)

Combining the two previous inequalities as α(19)+ (20), with α small enough in order
to absorb the term C α‖δten+1

h ‖2L2 at the right hand-side, one has

1

2
‖δten+1

h ‖2L2 + δt‖en+1
h ‖2H1 + α ‖en+1

h , en+1
p,h ‖2W 1,6×H1 +

1

k
‖en+1

h − enh‖2H1

≤ C ‖g‖2L2 ≤ C
(
‖En+1‖2L2 + ‖δten+1

i ‖2L2 + ‖C(en, u(tn+1))‖2L2 + ‖C(unh, en+1)‖2L2

)
.

(21)
We bound the nonlinear terms as follows:

‖C(en, u(tn+1))‖2L2 ≤ ‖en‖2H1‖u(tn+1)‖2W 1,3∩L∞

≤ C ‖enh‖2H1 + C h2m‖u(tn), p(tn)‖2Hm+1×Hm ≤ C ‖enh‖2H1 + C h2m

and
C(unh, e

n+1) = C(Su
hu(tn), e

n+1) + C(enh, e
n+1
i ) + C(enh, e

n+1
h )

bounding each term as:

‖C(Su
hu(tn), e

n+1)‖2L2 ≤ C‖en+1
h ‖2H1 + C h2m‖u(tn+1), p(tn+1)‖2Hm+1×Hm

≤ C(‖en+1
h − enh‖2H1 + ‖enh‖2H1) + C h2m

‖C(enh, e
n+1
i )‖2L2 ≤ C‖enh‖2H1‖en+1

i ‖2W 1,3∩L∞ ≤ C ‖enh‖2H1‖u(tn+1), p(tn+1)‖2H2×H1

≤ C ‖enh‖2H1

‖C(enh, en+1
h )‖2L2 ≤ C‖∇enh · en+1

h ‖2L2 + C‖∇en+1
h · enh‖2L2

where

‖∇enh · en+1
h ‖2L2 ≤ ‖∇enh‖2L3‖en+1

h ‖2L6 ≤ ‖∇enh‖L6‖∇enh‖L2‖en+1
h ‖2H1

≤ ε‖enh‖2W 1,6 + Cε‖enh‖2H1‖en+1
h ‖4H1 ≤ ε‖enh‖2W 1,6 + Cε‖enh‖2H1

and for the same manner

‖enh · ∇en+1
h ‖2L2 ≤ ε‖en+1

h ‖2W 1,6 + Cε‖en+1
h ‖2H1‖enh‖4H1

≤ ε‖en+1
h ‖2W 1,6 + Cε(‖en+1

h − enh‖2H1 + ‖enh‖2H1)

where Cε = O (1/ε). On the other hand,

‖C(enh, en+1
h )‖2L2 ≤ ε(‖en+1

h ‖2W 1,6 + ‖enh‖2W 1,6) + CεK(n)‖enh‖2H1

where
K(n) = ‖en+1

h ‖4H1 + ‖enh‖2H1‖en+1
h ‖2H1 .

Therefore, plugging all these estimates in (21) one has

1

2
‖δten+1

h ‖2L2 + δt‖en+1
h ‖2H1 + α ‖en+1

h , en+1
p,h ‖2W 1,6×H1 +

1

k
‖en+1

h − enh‖2H1

≤ Ck

∫ tn+1

tn

(‖utt‖2L2 + ‖ut‖2H1) + C
h2(m+1)

k

∫ tn+1

tn

‖ut, pt‖2Hm+1×Hm

+Cε(‖enh‖2H1 + ‖en+1
h − enh‖2H1) + C h2m + ε(‖en+1

h ‖2W 1,6 + ‖enh‖2W 1,6) + CεK(n)‖enh‖2H1
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We take first ε small enough with respect to α and second impose small enough
time steps k with respect to Cε (that is k ≤ k0), in order to absorb some RHS terms.
Then, multiplying by k, adding from n = 0, · · · , r (r < N ), assuming the additional
regularity utt ∈ L2(L2) and using the discrete Gronwall’s Lemma, one gets:

‖(δten+1
h )‖2l2L2 + ‖(en+1

h )‖2l∞H1 + ‖(en+1
h , en+1

p,h )‖2l2(W 1,6×H1)

≤ C ek
∑

n K(n)
(
‖e0h‖2H1 + ε‖e0h‖2W 1,6 + k2 + h2m

)
.

At this point, we split the argument into two cases:

1. Estimates assuming h << f(k) (h small enough with respect to k):
By using k

∑
n ‖enh‖2H1 ≤ C(k2 + h2(m+1)) given in Theorem 1 (and in

particular ‖enh‖2H1 ≤ C(k + h2(m+1)/k)), one has

k
∑
n

K(n) ≤ C

(
k +

h2(m+1)

k

)
(k2 + h2(m+1)),

hence one can bound
k
∑
n

K(n) ≤ C

under the hypothesis

(H1)
h4(m+1)

k
≤ C.

2. Estimates assuming k << g(h) (k small enough with respect to h):
By using ‖enh‖2L2 ≤ C(k2 + h2(m+1)) for each n (as consequence of Theorem
1), and the inverse inequality ‖eh‖H1 ≤ C h−1‖eh‖L2 , one has

k
∑
n

K(n) ≤ C
1

h2
(k2 + h2(m+1))2,

hence one can bound
k
∑
n

K(n) ≤ C

under the hypothesis

(H2)
k4

h2
≤ C.

Then, combining both arguments, we deduce the following estimates:

‖(δten+1
h )‖2l2L2 + ‖(en+1

h )‖2l∞H1∩l2W 1,6 + ‖(en+1
p,h )‖2l2H1 ≤ C (k2 + h2m) (22)

without imposing constraints on the discrete parameters (h, k), because for any choice
of (h, k), either (H1) or (H2) holds.
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ote that estimate (22), for Pm/Pm−1 (m ≥ 2) approximation, also gives
superconvergence in space for the pressure in l2H1 and optimal estimate for the
velocity in l∞H1. On the other hand, whenm = 1 and P1-bubble/P1 or P1-isoP2/P1

is used, we have optimal estimate for the velocity in l∞H1 and for the pressure in l2H1

(changing this last norm by l2L6 when P2/P0 is used)
t is possible to obtain estimate (22) without using the superconvergence results in

space for the velocity given in Theorem 1 (even for m = 1), changing the constraint
(H1) by the following one

(H1)′ h4m/k ≤ C.

Indeed for m = 1 (and, for instance, P1b/P1 or P2/P0 approximation), (H1)′ :
h4/k ≤ C and (H2) : k4/h2 ≤ C are both verified by the choice h = kδ with
δ ∈ [1/4, 2], therefore at least one constraint (H1)′ or (H2) holds.

7 O(k + hm+2) in l2(L2) for Taylor-Hood (Proof of Theorem 3).

In this section, by using a duality argument and the improved interpolation error (15)
(only valid for the Taylor-Hood approximation), the order accuracy in space respect
the l2L2-norm will be improved.

The idea is to take A−1
h en+1

h := ShA
−1en+1

h as test function in (9), where Sh

is the Stokes projector defined in (8) and A−1 is the continuous Stokes resolvent,
i.e. A−1f = (A−1

u f,A−1
p f) ∈ H1

0 (Ω)
3 × L2

0(Ω) such that

a(A−1f, (v, q)) = (f, v) ∀ (v, q) ∈ H1
0 (Ω)

3 × L2
0(Ω).

Therefore, A−1
h en+1

h = (A−1
h,ue

n+1
h , A−1

h,pe
n+1
h ) ∈ Vh × Wh is the solution of the

discrete Stokes problem:

a(A−1
h en+1

h , (vh, qh)) = (en+1
h , vh) ∀ (vh, qh) ∈ Vh ×Wh.

In particular, since enh and en+1
h verify the discrete free-divergence condition, the

following equalities hold:

a(A−1
h en+1

h , (en+1
h , en+1

p,h )) = ‖en+1
h ‖2L2 , (23)

(δte
n+1
h , A−1

h,ue
n+1
h ) =

1

2
δt||∇A−1

h,ue
n+1
h ||2L2 +

1

2
k‖∇δtA−1

h,ue
n+1
h ‖2L2 . (24)

Moreover, by using the H2 × H1 regularity of this Stokes Problem and the
approximation property of Sh, the following approximation property holds:

‖A−1
h en+1

h −A−1en+1
h ‖H1×L2 ≤ C h ‖en+1

h ‖L2 ,

hence the following inequality can be easily deduced:

∀ g ∈ L2(Ω), (g,∇A−1
h,ue

n+1
h ) ≤ C(h‖g‖L2 + C‖g‖(H1)′)‖en+1

h ‖L2 (25)

N
I
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Using the stability property of the Stokes projector (11) and theH2×H1 regularity
of the Stokes Problem, one has the stability property

‖A−1
h en+1

h ‖W 1,6×H1 ≤ C ‖en+1
h ‖L2 . (26)

Thus, taking (vh, qh) = 2k A−1
h en+1

h in (9), using (23), (24) the left hand side remains

‖∇A−1
h en+1

h ‖2L2 − ‖∇A−1
h enh‖2L2 + ‖∇A−1

h en+1
h −∇A−1

h enh‖2L2 + 2 k ‖en+1
h ‖2L2

and bounding the right hand side as follows (taking into account the regularity for the
exact solution (16) and bounds (15), (25) and (26)):

• 2k
(
δte

n+1
i , A−1

h,ue
n+1
h

)
≤ C

∥∥∥∥ei(∫ tn+1

tn

utdt

)∥∥∥∥
H−1

‖A−1
h,ue

n+1
h ‖L2

≤ k

3
‖en+1

h ‖2L2 + C h2(m+2)

∫ tn+1

tn

‖ut, pt‖2Hm+1×Hm

• 2k c(en, u(tn+1), A
−1
h,ue

n+1
h ) ≤ Ck ‖A−1

h,ue
n+1
h ‖H1‖enh‖L2+Ck ‖en+1

h ‖L2(h ‖eni ‖L2+
‖eni ‖(H1)′),

≤ k

2
‖enh‖2L2+

k

3
‖en+1

h ‖2L2+Ck ‖∇A−1
h,ue

n+1
h ‖2L2+Ck h2(m+2)‖u(tn), p(tn)‖2Hm+1×Hm

• 2k c(unh, e
n+1, A−1

h,ue
n+1
h ) = 2k c(Su

h(u(tn), p(tn)), e
n+1, A−1

h,ue
n+1
h )+2k c(enh, e

n+1, A−1
h,ue

n+1
h )

≤ Ck ‖en+1
h ‖L2(‖A−1

h,ue
n+1
h ‖H1+h ‖en+1

i ‖L2+‖en+1
i ‖(H1)′)+Ck ‖enh‖H1‖en+1‖L2‖en+1

h ‖L2

≤ k

3
‖en+1

h ‖2L2+Ck ‖∇A−1
h,ue

n+1
h ‖2L2+Ck h2(m+2)‖u(tn+1), p(tn+1)‖2Hm+1×Hm

+Ck (k + hm+1)2‖enh‖2H1

Then,

‖∇A−1
h en+1

h ‖2L2 − ‖∇A−1
h enh‖2L2 + ‖∇A−1

h en+1
h −∇A−1

h enh‖2L2 + k‖en+1
h ‖2L2

≤ C k2
∫ tn+1

tn

(‖utt‖2H−1 + ‖ut‖2L2) + C h2(m+2)

∫ tn+1

tn

||ut, pt||2Hm+1×Hm +
k

2
‖enh‖2L2

+C k h2(m+2) + C (k2 + h2(m+1))k‖enh‖2H1 + Ck ‖∇A−1
h,ue

n+1
h ‖2L2

Combining the estimate k
∑

n ‖enh‖2H1 ≤ C (k2 + h2(m+1)) given in Theorem 1 with
the generalized discrete Gronwall’s Lemma, one can obtain for k small enough (i.e.,
k ≤ k0):

‖(enh)‖l2(L2) ≤ C (k + hm+2).

he total error estimate can not be improved toO(hm+2) in l2(L2) (but it is possible
to improve it in the l2(H−1)-norm). That means superconvergence in l2(L2)-norm
and optimal estimate in l2(H−1)-norm.

T
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8 Numerical Simulations

We present some computational experiments, where superconvergence is numerically
observed with different numerical schemes. We have considered:

• Domain Ω = (0, 1)× (0, 1) and time interval (0, 1), that is T = 1.

• Exact Solution:

u1(x, y, t) = e−t(−cos(2πx)sin(2πy) + sin(2πy)), u2(x, y, t) = −u1(y, x, t),

p(x, y, t) = e−t2π(sin(2πx)− sin(2πy))

Note that ∇·(u1, u2) = 0 and (u1, u2)|∂Ω = 0. Also
∫
Ω
p = 0 and ∇p·n|∂Ω 6= 0

where n is the outward normal vector at ∂Ω

• Time step k = 10−4. Structurated triangulations of Ω with h = 1
10 ,

1
20 ,

1
30 ,

1
40 .

Since only spatial error must be detected, k must be small enough respect to h.

• We compute the discrete error studied in the previous analytical part of
this paper, comparing each scheme (unh, p

n
h) with the Stokes projector

Sh(u(tn), p(tn)).

Three numerical schemes have been considered in the numerical simulations:

1. Euler Semi-Implicit scheme studied in this paper (see subsections 8.1, 8.2 and
8.3):(
δtu

n+1
h , vh

)
+ a((un+1

h , pn+1
h ), (vh, qh)) + c(unh, u

n+1
h , vh) = 〈f(tn+1), vh〉,

2. Incremental Pressure scheme (see subsection 8.4):
Substep1: Given (unh, p

n
h) ∈ Vh ×Wh, find ũn+1

h ∈ Vh solution of
1

k
(ũn+1

h − unh, vh) + c(ũnh, ũ
n+1
h , vh) + (∇ũn+1

h ,∇vh) + (∇pnh, vh) = 〈f(tn+1), vh〉 ∀ vh

ũn+1
h |∂Ω = 0

Substep2: Given (ũn+1
h , pnh) ∈ Vh×Wh, find (un+1

h , pn+1
h ) ∈ Vh×Wh solution

of 
1

k
(un+1

h − ũn+1
h , vh) + (pn+1

h − pnh, vh) = 0 ∀ vh

(∇ · un+1
h , ph) = 0 ∀ ph

un+1
h · n|∂Ω = 0

3. Pressure Segregation scheme (see subsection 8.5).
Substep1: Given (pn−1

h , unh , find pnh ∈Wh solution of

(k∇(pnh − pn−1
h ),∇qh) = (unh,∇qh) ∀ qh

Substep2: Given unh, p
n−1
h , pnh , find un+1

h ∈ Vh solution of

1

k
(un+1

h −unh, vh)+c(unh, un+1
h , vh)+(∇un+1

h ,∇vh)+(∇(pnh−pn−1
h ), vh) = 〈f(tn+1), vh〉 ∀ vh



Superconvergence and 3D Navier-Stokes equations 63

The absolute errors and convergence rates obtained will be detailed in the following
subsections. Here we summarize the results of the simulations:

• O(h)-approximation (P1b/P1 or P2/P0) and semi-implicit Euler scheme.
The numerical results are agreed with the analysis made in this paper, except that
we are not able to detect the expected O(h) in l2(H1)-norm for the pressure in
the P1b/P1-approximation and in l2(H1)-norm for the velocity in the P2/P0-
approximation.

• P2/P1-approximation.
In this case, we detect the orders predicted by the analysis for the velocity and the
pressure for the Euler Semi-Implicit scheme. But these orders are also obtained
for the splitting schemes. Hence, although for the splitting schemes the analysis
is lacking, we conjecture that the same type of results could be deduced.

On the other hand, the O(h4) (resp. O(h2)) order predicted by the analysis is
obtained for the velocity (resp. pressure) for the l2(H1)-norm. But these orders
are also obtained for the l∞(L2)-norm, although in this paper only O(h3) is
proved for the velocity and it is not analyzed here for the pressure.

Note that in the Incremental Pressure scheme and the Pressure Segregation
scheme, the order for the velocity errors in L2-norm, can not be detected for
small h due to the influence of the time error.

8.1 Semi-Implicit Euler with P1b/P1-approximation

ABSOLUTE ERRORS
h 0.0707106 0.0353553 0.0235702 0.0176776

||Su
hu− uh||l2L2 0.02054117586 0.00533119776 0.002381986923 0.001341520128

||Su
hu− uh||l2H1 0.3615287906 0.09067109886 0.0402638002 0.02262494772

||Su
hu− uh||l∞L2 0.07961372554 0.02020235515 0.008949038516 0.005022097028

||Sp
hp− ph||l2L2 0.5332055152 0.169360888 0.08876683239 0.05666878235

||Sp
hp− ph||l∞L2 5.611337315 1.373105127 0.6056441075 0.3402164278

||Sp
hp− ph||l2H1 15.31265165 10.09500475 8.122052658 7.006125919

CONVERGENCE RATES
||Su

hu− uh||l2L2 1.9460 1.9870 1.9957
||Su

hu− uh||l2H1 1.9954 2.0021 2.0036
||Su

hu− uh||l∞L2 1.9785 2.0082 2.0081
||Sp

hp− ph||l2L2 1.6546 1.5933 1.5600
||Sp

hp− ph||l∞L2 2.0309 2.0188 2.0047
||Sp

hp− ph||l2H1 0.6011 0.5363 0.5138
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8.2 Semi-Implicit Euler with P2/P0-approximation

ABSOLUTE ERRORS
h 0.0707106 0.0353553 0.0235702 0.0176776

||Su
hu− uh||l2L2 0.160297567 0.04282123606 0.01938432208 0.01099613357

||Su
hu− uh||l2H1 5.709826325 2.97360214 2.004125509 1.510498993

||Su
hu− uh||l∞L2 0.227696453 0.06113359564 0.02768846061 0.01570631787

||Sp
hp− ph||l2L2 0.3563629329 0.1542823521 0.09760304432 0.07061308769

||Sp
hp− ph||l∞L2 4.692005433 4.589215029 4.306041853 3.95470572

CONVERGENCE RATES
||Su

hu− uh||l2L2 1.9044 1.9547 1.9707
||Su

hu− uh||l2H1 0.9412 0.9731 0.9829
||Su

hu− uh||l∞L2 1.8971 1.9534 1.9708
||Sp

hp− ph||l2L2 1.2078 1.1293 1.1252
||Sp

hp− ph||l∞L2 0.0320 0.1571 0.2959

8.3 Semi-Implicit Euler with P2/P1-approximation

ABSOLUTE ERRORS
h 0.0707106 0.0353553 0.0235702 0.0176776

||Su
hu− uh||l2L2 0.00276963026 0.000167065119 3.34111872e-05 1.23497894e-05

||Su
hu− uh||l2H1 0.180527858 0.0238377003 0.00718182921 0.0030550407

||Su
hu− uh||l∞L2 0.00423894834 0.000261714473 5.15274708e-05 1.62897169e-05

||Sp
hp− ph||l2L2 0.132668315 0.0337618908 0.0150584711 0.00848211006

||Sp
hp− ph||l∞L2 0.199304893 0.0511451618 0.022854719 0.0128857085

||Sp
hp− ph||l2H1 0.80348434 0.209014013 0.0940143439 0.053187941

CONVERGENCE RATES
||Su

hu− uh||l2L2 4.0512 3.9695 3.4596
||Su

hu− uh||l2H1 2.9209 2.9589 2.9712
||Su

hu− uh||l∞L2 4.0176 4.0081 4.0030
||Sp

hp− ph||l2L2 1.9744 1.9913 1.9952
||Sp

hp− ph||l∞L2 1.9623 1.9866 1.9919
||Sp

hp− ph||l2H1 1.9427 1.9705 1.9800
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8.4 Incremental Pressure with P2/P1-approximation

ABSOLUTE ERRORS
h 0.0707106 0.0353553 0.0235702 0.0176776

||Su
hu− uh||l2L2 0.000344565633 2.19641684e-05 1.02688172e-05 1.24894254e-05

||Su
hu− uh||l2H1 0.021446712 0.00280713911 0.000849153393 0.000387891231

||Su
hu− uh||l∞L2 0.0013515355 0.000100968271 3.14616261e-05 2.75331122e-05

||Sp
hp− ph||l2L2 0.132605783 0.033827796 0.0151562988 0.0086033841

||Sp
hp− ph||l∞L2 0.242004332 0.0600466584 0.0267550839 0.015556087

||Sp
hp− ph||l2H1 0.789317037 0.208065943 0.094618544 0.057193705

CONVERGENCE RATES
||Su

hu− uh||l2L2 3.9716 1.8751 -0.6805
||Su

hu− uh||l2H1 2.9336 2.9489 2.7235
||Su

hu− uh||l∞L2 3.7426 2.8758 0.4636
||Sp

hp− ph||l2L2 1.9709 1.9801 1.9684
||Sp

hp− ph||l∞L2 2.0109 1.9938 1.8850
||Sp

hp− ph||l2H1 1.9236 1.9435 1.7499

8.5 Pressure segregation with P2/P1-approximation

ABSOLUTE ERRORS
h 0.0707106 0.0353553 0.0235702 0.0176776

||Su
hu− uh||l2L2 0.00034478178 2.1004084e-05 4.19613214e-06 1.53546987e-06

||Su
hu− uh||l2H1 0.021451499 0.0028074587 0.00084344514 0.000358321621

||Su
hu− uh||l∞L2 0.00142954958 9.32110566e-05 2.12197877e-05 8.75226633e-06

||Sp
hp− ph||l2L2 0.132520055 0.0337577981 0.015064571 0.00848449973

||Sp
hp− ph||l∞L2 0.200919704 0.0519509245 0.0231459756 0.0130213259

||Sp
hp− ph||l2H1 0.788873864 0.207688789 0.0937055103 0.0531375901

CONVERGENCE RATES
||Su

hu− uh||l2L2 4.0369 3.9721 3.4946
||Su

hu− uh||l2H1 2.9337 2.9658 2.9757
||Su

hu− uh||l∞L2 3.9389 3.6500 3.0785
||Sp

hp− ph||l2L2 1.9729 1.9900 1.9956
||Sp

hp− ph||l∞L2 1.9514 1.9940 1.9995
||Sp

hp− ph||l2H1 1.9254 1.9629 1.9719

9 Conclusions

Taking into account the interpolation errors, and considering optimal convergence as
the same order between the interpolation and discrete errors and superconvergence as
extra order in the discrete error with respect to the interpolation one, we can summarize
the analytical results of this paper for each approximation as follows:
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• Taylor-Hood approximation (Pm/Pm−1 with m ≥ 2):

– Superconvergence in l2(H1) and l2(L2)-norms for the velocity, and in
l2(H1)-norm for the pressure.

– Optimal convergence in l∞(L2) and l∞(H1)-norms for the velocity.

• P1-isoP2/P1 and P1b/P1 approximations:

– Superconvergence in l2(H1)-norm for the velocity.

– Optimal convergence in l∞(L2) and l∞(H1)-norms for the velocity, and
in l2(H1)-norm for the pressure.

• P2/P0 approximation:
Optimal convergence in l2(H1)-norm for the velocity, and in l2(L6)-norm for
the pressure.
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