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Abstract. In this note we solve the twisted conjugacy problem for braid
groups, i.e. we propose an algorithm which, given two braids u, v ∈ Bn and
an automorphism ϕ ∈ Aut(Bn), decides whether v = (ϕ(x))−1ux for some
x ∈ Bn. As a corollary, we deduce that each group of the form Bn o H, a
semidirect product of the braid group Bn by a torsion-free hyperbolic group
H, has solvable conjugacy problem.

1. Introduction

Let G be a group, and ϕ ∈ Aut(G) an automorphism (which we shall write on the
left of the argument, g 7→ ϕ(g)). We say that two elements u, v ∈ G are ϕ-twisted
conjugated, denoted u ∼ϕ v, if there exists x ∈ G such that v = (ϕ(x))−1ux. It is
straightforward to see that ∼ϕ is an equivalence relation on G, which coincides
with standard conjugation in the case ϕ = Id (we shall use the symbol ∼ instead
of ∼Id). Reidemeister was the first author considering this concept (see [14]),
which has an important role in modern Nielsen fixed point theory.

As one might expect, in general, twisted conjugacy classes are much more compli-
cated to understand than standard conjugacy classes in a group G. For instance,
algorithmic recognition of them already presents big differences. The twisted con-
jugacy problem for a group G consists on finding an algorithm which, given an
automorphism ϕ ∈ Aut(G) and two elements u, v ∈ G, decides whether u ∼ϕ v
or not. While the conjugacy problem (i.e. the Id-twisted conjugacy problem)
is very easy for free groups, both conceptually and computationally, the twisted
conjugacy problem is solvable but much harder in both senses, see Theorem 1.5
in [3].

Of course, a positive solution to the twisted conjugacy problem automatically
gives a solution to the (standard) conjugacy problem, which in turn provides a
solution to the word problem. The existence of a finitely presented group G with
solvable word problem but unsolvable conjugacy problem is well known (see [13]).
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In the same direction, there exists a finitely presented group with solvable con-
jugacy problem, but unsolvable twisted conjugacy problem (see Corollary 4.9
in [2]).

A subgroup A 6 Aut(G) is said to be orbit decidable if there is an algorithm
which, given two elements u, v ∈ G as input, decides whether one can be mapped
to the other up to conjugacy, by some automorphism in A, i.e. whether v ∼ α(u)
for some α ∈ A (see [2] for more details). For example, the conjugacy problem in
G coincides precisely with the orbit decidability of the trivial subgroup {Id} 6
Aut(G).

Let

1 −→ F
α−→ G

β−→ H −→ 1.

be a short exact sequence of groups. Since α(F ) is normal in G, for every g ∈ G,
the right conjugation γg of G induces an automorphism of F , x 7→ g−1xg, which
will be denoted ϕg ∈ Aut(F ) (note that, in general, ϕg does not belong to
Inn(F )). It is clear that the set of all such automorphisms,

AG = {ϕg | g ∈ G},
forms a subgroup of Aut(F ) containing Inn(F ). We shall refer to it as the action
subgroup of the given short exact sequence.

Such a sequence is said to be algorithmic provided it is given along with al-
gorithms: (i) to compute in the groups F , G and H (i.e. multiply and invert
elements), and compute images under α and β; (ii) to compute one pre-image in
G of any given element in H; and (iii) to compute pre-images in F of elements
in G mapping to the trivial element in H. The typical example (though not the
unique one) of an algorithmic short exact sequence occurs when groups are given
by finite presentations and maps are given by images of generators. In fact, (i)
is immediate, we can use the positive part of the membership problem for β(G)
in H to compute pre-images in G of elements in H, and use the positive part of
the membership problem for α(F ) in G to compute pre-images in F of elements
in G mapping to 1H (see Section 2 in [2]).

Assuming certain conditions on the groups F and H, the main result in [2] estab-
lishes the following characterization of the solvability of the conjugacy problem
for G, in terms of the orbit decidability for the corresponding action subgroup.

Theorem 1.1 (Bogopolski, Martino, Ventura [2]). Let

1 −→ F
α−→ G

β−→ H −→ 1

be an algorithmic short exact sequence of groups such that

(i) F has solvable twisted conjugacy problem,
(ii) H has solvable conjugacy problem, and
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(iii) for every 1 6= h ∈ H, the subgroup 〈h〉 has finite index in its centralizer
CH(h), and there is an algorithm which computes a finite set of coset
representatives, zh,1, . . . , zh,th ∈ H,

CH(h) = 〈h〉zh,1 t · · · t 〈h〉zh,th .

Then, the conjugacy problem for G is solvable if and only if the action subgroup
AG 6 Aut(F ) is orbit decidable.

Many groups satisfy conditions (ii) and (iii); for example, they are easily verified
for a finitely generated free group, and with a bit more work, they can also be
proven for torsion-free hyperbolic groups, see Proposition 4.11 in [2].

On the other hand, solvability of the twisted conjugacy problem is a stronger
condition on F . In this sense, the introduction of [2] contains the following
comment: “In light of Theorem 1.1, it becomes interesting, first, to collect groups
F where the twisted conjugacy problem can be solved. And then, for every such
group F , to study the property of orbit decidability for subgroups of Aut(F ): every
orbit decidable (undecidable) subgroup of Aut(F ) will correspond to extensions of
F having solvable (unsolvable) conjugacy problem”.

The goal of the present paper is to contribute a new result into this direction,
taking as a base group the braid group, F = Bn.

Consider the braid group on n strands, given by the classical presentation

(1) Bn =

〈
σ1, σ2, . . . , σn−1

∣∣∣∣∣ σiσj = σjσi |i− j| > 1

σiσjσi = σjσiσj |i− j| = 1

〉

It is well known that the conjugacy problem is solvable in Bn. The first, non-
efficient solution was given by Garside [8]. It was subsequently improved in [6, 7,
1, 9, 10], in such a way that the current solution is very efficient in most cases.

Theorem 1.2 (Garside [8]). The conjugacy problem is solvable in Bn.

Also, the automorphism group of Bn is quite well understood. Among other
results, the following one will be crucial for our argumentation.

Theorem 1.3 (Dyer, Grossman [5]). Let Bn be the braid group on n strands.
Then |Out(Bn)| = 2. More precisely, Aut(Bn) = Inn(Bn) t Inn(Bn) · ε, where
ε : Bn → Bn is the automorphism which inverts each generator, σi 7→ σ−1

i .

Using the above two results, we will solve the twisted conjugacy problem in Bn,
and the orbit decidability problem for every subgroup A 6 Aut(Bn). As a con-
sequence, we deduce that the conjugacy problem is solvable in certain extensions
of Bn.
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Theorem 4.9. The twisted conjugacy problem is solvable in the braid group Bn.

Theorem 5.1. Every finitely generated subgroup A 6 Aut(Bn) is orbit decidable.

Theorem 5.2. Let G = Bn o H be an extension of the braid group Bn by a
finitely generated group H satisfying conditions (ii) and (iii) above (for instance,
take H torsion-free hyperbolic). Then, G has solvable conjugacy problem.

The structure of the paper is as follows. In Section 2 we review some known
facts about normal forms for braids that will be used later. In Section 3 we
determine a well defined finite subset of each ε-twisted conjugacy class in Bn.
And in Section 4 we give an algorithm to construct such set from a given element
in the class, solving the twisted conjugacy problem in Bn. Finally, in Section 5
we solve the orbit decidability problem for subgroups of Aut(Bn) and conclude
Theorem 5.2.

2. Normal forms of braids

In this section we will recall the notion of normal form for braids, as explained
in [15, Chapter 9] and [6], and we shall also provide some technical lemmas that
will be used to prove our main results.

In the braid group Bn, an element is called positive if it can be written as
a product of non-negative powers of the generators σ1, . . . , σn−1. It turns out
that if we regard the standard presentation of the braid group (1) as a monoid
presentation, it yields a monoid B+

n which embeds in Bn, and is precisely the
submonoid of positive braids [8]. This means that two positive words represent
the same braid if and only if one can be obtained from the other by a finite
sequence of the following operations: Either replacing a subword σiσj by σjσi for
|i− j| > 1, or replacing a subword σiσjσi by σjσiσj for |i− j| = 1.

There is a partial order 4 on the elements of Bn, called the prefix order, defined
by a 4 b if and only if a−1b is positive. If a and b are positive this means that b
can be written as a positive word in which a appears as a prefix. There is also
a suffix order, <, defined by a < b if and only if ab−1 is positive. These orders
are known to be lattice orders, meaning that for every a, b ∈ Bn there is a unique
greatest common divisor a∧ b (resp. a∧R b) and a unique least common multiple
a ∨ b (resp. a ∨R b) with respect to 4 (resp. <).

The order 4 is, by definition, invariant under left-multiplication. That is, a 4
b ⇔ ca 4 cb for all a, b, c ∈ Bn. This implies that cx ∧ cy = c(x ∧ y) and
cx ∨ cy = c(x ∨ y) for all c, x, y ∈ Bn. Similarly, < is invariant under right-
multiplication, and one has xc∧R yc = (x∧R y)c and xc∨R yc = (x∨R y)c for all
c, x, y ∈ Bn.
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The braid group Bn has a special element called Garside element or half twist,

∆ = σ1(σ2σ1)(σ3σ2σ1) · · · (σn−1 · · ·σ1).

Conjugation by ∆ preserves 4 and <. We denote by τ the inner automorphism
of Bn defined by ∆, that is, τ(x) = ∆−1x∆ for all x ∈ Bn. We recall that the
center of Bn is infinite cyclic, generated by ∆2. Hence τ preserves 4 and < (thus
it preserves ∧, ∨, ∧R and ∨R), and τ 2 = id.

The set of positive prefixes of ∆, denoted [1,∆] = {s ∈ Bn; 1 4 s 4 ∆}, is called
the set of simple elements of Bn. This set is finite, namely it has n! elements.
Simple elements are the building blocks that conform the usual normal forms of
braids. A simple element will be said to be proper if it is neither 1 nor ∆.

The right complement ∂(s) of a simple element s is a simple element t such
that st = ∆, that is, ∂(s) = s−1∆. The map ∂ is a bijection of the set of
simple elements. Moreover, ∂2 = τ . The left complement of a simple element
is precisely ∂−1(s) = ∆s−1. If a positive element is written as a product of
two simple elements s1s2, we say that such a decomposition is left weighted if
s1 is the maximal simple prefix of s1s2, that is s1s2 ∧ ∆ = s1, or alternatively
(multiplying from the left by s−1

1 ), if s2∧∂(s1) = 1. We say that the decomposition
s1s2 is right weighted if s2 is the maximal simple suffix of s1s2, that is s1s2 ∧R
∆ = s2, or alternatively (multiplying from the right by s−1

2 ), if s1∧R ∂−1(s2) = 1.

Given an element x ∈ Bn, we say that a decomposition x = ∆px1 · · ·xr is the left
normal form of x if p is the maximal integer such that ∆−px is positive, each xi
is a proper simple element, and xixi+1 is left weighted for i = 1, . . . , r−1. We say
that a decomposition x = x′1 · · ·x′r∆p is the right normal form of x if p is the
maximal integer such that x∆−p is positive, each x′i is a proper simple element,
and x′ix

′
i+1 is right weighted for i = 1, . . . , r− 1. The left and right normal forms

are unique decompositions, and the numbers p and r are determined by x and
do not depend on the normal form (left or right) which is used to define them.
In this way, one defines the infimum, supremum and canonical length of x
as, respectively, inf(x) = p, sup(x) = p+ r and `(x) = r.

It will be convenient for our purposes to use the following notation. When we deal
with a positive element x, and we say that its left normal form is x = x1 · · ·xr,
(with no power of ∆ on the left), we are allowing some of the initial factors to be
equal to ∆. That is, if inf(x) = p > 0, this will mean that x1 = · · · = xp = ∆, so
the actual normal form of x would be ∆pxp+1 · · ·xr.

There is still another normal form that we shall use. It is well known [15, 4]
that, for every x ∈ Bn there exist unique positive elements u and v, with
u ∧ v = 1, such that x = u−1v. If the left normal forms of u and v are, re-
spectively, u = u1 · · ·ur and v = v1 · · · vs, the mixed normal form of x is
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defined to be x = u−1
r · · ·u−1

1 v1 · · · vs. We recall from [15] that, if x can be writ-
ten as x = u−1v with u and v positive elements with left normal forms u1 · · ·ur
and v1 · · · vs, then u−1

r · · ·u−1
1 v1 · · · vs is the mixed normal form of x if and only

if u1 ∧ v1 = 1.

We remark [15] that if x = u−1
r · · ·u−1

1 v1 · · · vs is in mixed normal form as above,
the left normal form of u−1 is ∆−ru′r · · ·u′1 (where u′i = ∂−2i−1(ui)), and the
left normal form of x is equal to x = ∆−ru′r · · ·u′1v1 · · · vs. Therefore, from the
mixed normal form one can already obtain inf(x) = −r, `(x) = r + s and hence
sup(x) = s.

The following technical results will be used later.

Lemma 2.1. Let a and b be positive braids whose left normal forms are a =
a1 · · · ar, b = b1 · · · bs, and whose right normal forms are a = a′1 · · · a′r, b =
b′1 · · · b′s. Consider x = a−1b. If `(x) ≤ r + s − 2k + 1 for some integer k > 0,
then either a′1 · · · a′k 4 b1 · · · bk or b′1 · · · b′k 4 a1 · · · ak.

Proof. Let d = a∧b, and write a = dα and b = dβ. Then x = a−1b = α−1β, where
α and β are positive elements such that α∧β = 1. Hence sup(α)+sup(β)+2k−1 =
`(x)+2k−1 ≤ r+s = sup(a)+sup(b). This implies that either sup(α)+k ≤ sup(a)
or sup(β) + k ≤ sup(b).

Suppose that sup(α) + k ≤ sup(a) = r. This means that α can be written as
a product of at most r − k simple elements. But dα = a = a′1 · · · a′r, where the
latter decomposition is in right normal form. It follows that α must be a suffix of
a′k+1 · · · a′r, and then a′1 · · · a′k 4 d. Hence a′1 · · · a′k 4 dβ = b = b1 · · · bs. Since the
latter decomposition is in left normal form, one finally obtains a′1 · · · a′k 4 b1 · · · bk.
In the case sup(β) + k ≤ sup(b) = s, one can apply the above reasoning to β and
b, to obtain b′1 · · · b′k 4 a1 · · · ak. �

Let us denote by ε the automorphism of Bn that sends σi to σ−1
i for

i = 1, . . . , n − 1. Also, let rev : Bn → Bn be the anti-automorphism that
sends each σi to itself, that is, it sends a braid represented by a word w, to the
braid represented by the same word written backwards. We will write, for every
x ∈ Bn, rev(x) = ←−x . Let us also denote inv: Bn → Bn the anti-automorphism
inv(x) = x−1. Notice that the composition of any two of the maps in {ε, rev, inv},
in any order, yields the third one.

Lemma 2.2. Let x be a positive braid with sup(x) = r + k, where r ≥ k ≥ 1. If
`(ε(x)x) ≤ 2r+ 1 then there exist positive braids a and b such that x =←−a ba and
sup(b) ≤ r.

Proof. Let x1 · · ·xr+k be the left normal form of x and let y1 · · · yr+k be its right
normal form. Hence ←−−xr+k · · ·←−x1 is the right normal form of ←−x and ←−−yr+k · · ·←−y1
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is its left normal form. Notice that ε(x)x = (←−x )−1x. Hence, if `(ε(x)x) =
`((←−x )−1x) ≤ 2r + 1, Lemma 2.1 tells us that either ←−−xr+k · · ·←−−xr+1 4 x1 · · ·xk or
y1 · · · yk 4←−−yr+k · · ·←−−yr+1.

Suppose that ←−−xr+k · · ·←−−xr+1 4 x1 · · ·xk, and write x1 · · ·xk = ←−−xr+k · · ·←−−xr+1α for
some positive α. Since r ≥ k, one can then write

x = (←−−xr+k · · ·←−−xr+1)αxk+1 · · ·xr(xr+1 · · ·xr+k),

so the result follows in this case taking a = xr+1 · · ·xr+k and b = αxk+1 · · ·xr (if
k = r then b = α). Notice that sup(b) ≤ r as b is a suffix of x1 · · ·xr.

Now suppose that y1 · · · yk 4 ←−−yr+k · · ·←−−yr+1, and write ←−−yr+k · · ·←−−yr+1 = y1 · · · ykβ
for some positive β, which is equivalent to yr+1 · · · yr+k =

←−
β←−yk · · ·←−y1 . Then

x = (y1 · · · yk)yk+1 · · · yr
←−
β (←−yk · · ·←−y1). Taking a =←−yk · · ·←−y1 and b = yk+1 · · · yr

←−
β ,

which is a prefix of yk+1 · · · yk+r, the result follows also in this case. �

We define a palindromic-free braid as a positive braid x that cannot be decom-
posed as x = ←−a ba for positive braids a and b, where a is nontrivial (see the
equivalent definition 3.1). Palindromic-free braids will be crucial to show our
main results. The above Lemma implies the following.

Corollary 2.3. Let u be a positive braid with `(x) = m. Then `(ε(x)x) ≤ 2m.
If moreover u is palindromic-free and m > 1, then `(ε(x)x) = 2m.

Proof. Recall that ε(x) = (←−x )−1. Since the canonical length of a braid is pre-
served under reversing (by symmetry of the relations in Bn) and also under taking
inverses (by [6]), it follows that `(ε(x)) = m. Multiplying two braids of canonical
length m yields a braid of canonical length at most 2m, hence `(ε(x)x) ≤ 2m.

If u is palindromic-free and m > 1 we have the equality, as if we had `(ε(x)x) <
2m, then by setting r = m − 1 and k = 1, we would have `(ε(x)x) ≤ 2r + 1,
which by Lemma 2.2 implies that x is not palindromic-free. �

3. ε-twisted conjugacy and palindromic-free braids

Due to Theorem 1.3, the twisted conjugacy problem in Bn will easily reduce
to the ε-twisted conjugacy problem, namely given two braids u, v ∈ Bn decide
whether there exists another one w ∈ Bn such that

v = (ε(w))−1uw.

This problem has a very particular nature because (ε(w))−1 = ←−w , i.e. ε-twisted
conjugating u by w amounts to multiply u on the right by w and on the left by
←−w , v =←−wuw. Let us concentrate on this case, where the twisting is given by ε.
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Note that the ε-twisted conjugation of a positive braid by a positive braid yields a
positive braid. Also, note that, for any braid x ∈ Bn and any generator σi, x and
σixσi are ε-twisted conjugated. Imposing positivity, this yields to the following
definition:

Definition 3.1. A positive braid x is said to be palindromic-free if σ−1
i xσ−1

i

is not positive, for every i = 1, . . . , n− 1.

In other words, if x is a positive, palindromic-free braid and σi 4 x, that is,
x = σiy for some positive y, then y 6< σi. However, notice that even if x is
palindromic-free, one may have simultaneously σi 4 x and x < σi for some i. For
instance if x = σi, or if x = σiσj with |i− j| > 2.

Proposition 3.2. Every braid x ∈ Bn is ε-twisted conjugated to some positive,
palindromic-free braid y.

Proof. It is well known that for every braid x ∈ Bn, the braid x∆p is positive

for p big enough. Since
←−
∆ is positive (actually

←−
∆ = ∆), it follows that

←−
∆px∆p

is positive for some p big enough. Hence x is ε-twisted conjugated to a positive
braid z.

If z is not palindromic-free, there will exist a letter σi such that z = σiz
′σi

for some positive braid z′ whose word length is smaller than that of z. And,
since ←−σi = σi, z is ε-twisted conjugated to z′. Repeating this process, as the
word length of the resulting braid decreases at each step, one finally obtains a
palindromic-free positive braid ε-twisted conjugated to z, thus to x. �

By the above argument, every positive braid x has the form x = ←−c yc for some
positive, palindromic-free braid y. We remark that the element y is not unique.
For instance, if x = σ2σ1σ2 = σ1σ2σ1, then y could be equal to either σ1 or σ2.
Another example is x = σ3σ2σ1σ2σ3 = σ3σ1σ2σ1σ3 = σ1σ2σ3σ2σ1, so y could be
equal, in this case, to either σ1 or σ2 or σ3.

Recall that we are trying to find an algorithm to solve the ε-twisted conjugacy
problem in Bn. After the above discussion, one may think that a possible solu-
tion could be to compute the set of positive, palindromic-free braids, ε-twisted
conjugated to a given one. Clearly, two braids u and v are ε-twisted conjugated
if and only if their corresponding sets coincide. Unfortunately, this attempt does
not work because the mentioned set is not always finite, as one can see in the
following example.

Example 3.3. The set {σn3σ2σ3σ4σ5σ1σ2σ3σ4σ
n
1 ; n ≥ 0} ⊂ B6 is an infinite

family of positive, palindromic-free braids, which are pairwise ε-twisted conju-
gated.
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Proof. We will show that for every n ≥ 0 one has:

σn5 (σn3σ2σ3σ4σ5σ1σ2σ3σ4σ
n
1 )σn5 = (σ1σ3)

nσ2σ3σ4σ5σ1σ2σ3σ4(σ3σ1)
n.

So all braids in the above family are ε-twisted conjugated to σ2σ3σ4σ5σ1σ2σ3σ4,
and so to each other. To see this, first notice that

σ5 (σ2σ3σ4σ5σ1σ2σ3σ4) = (σ2σ3)σ5 (σ4σ5σ1σ2σ3σ4)

= (σ2σ3σ4σ5)σ4 (σ1σ2σ3σ4)

= (σ2σ3σ4σ5σ1σ2)σ4 (σ3σ4)

= (σ2σ3σ4σ5σ1σ2σ3σ4)σ3.

On the other hand, by commutativity relations,

σ2σ3σ4σ5σ1σ2σ3σ4 = σ2σ1σ3σ2σ4σ3σ5σ4,

hence

σ1 (σ2σ3σ4σ5σ1σ2σ3σ4) = σ1 (σ2σ1σ3σ2σ4σ3σ5σ4)

= (σ2σ1)σ2 (σ3σ2σ4σ3σ5σ4)

= (σ2σ1σ3σ2)σ3 (σ4σ3σ5σ4)

= (σ2σ1σ3σ2σ4σ3)σ4 (σ5σ4)

= (σ2σ1σ3σ2σ4σ3σ5σ4)σ5

= (σ2σ3σ4σ5σ1σ2σ3σ4)σ5.

Therefore, as σ1, σ3 and σ5 commute, one has

σn5σ
n
3 (σ2σ3σ4σ5σ1σ2σ3σ4)σ

n
1σ

n
5 = σn3 (σ2σ3σ4σ5σ1σ2σ3σ4)σ

n
3σ

n
1σ

n
5

= σn1σ
n
3 (σ2σ3σ4σ5σ1σ2σ3σ4)σ

n
3σ

n
1 ,

and the claim follows.

It just remains to show that every element in the above family is palindromic-
free. This could be easily done by using the standard topological representation
of braids as collections of strands in R3, but we will show it algebraically.

If n = 0, we have the braid α0 = σ2σ3σ4σ5σ1σ2σ3σ4. We recall that the monoid
B+

6 of positive braids embeds in B6, so we just need to use positive relations
from the standard presentation (1) to determine which generators are prefixes or
suffixes of α0. But notice that in the above word, no matter how many commu-
tativity relations we apply, we can never obtain a subword of the form σiσjσi,
because between two appearances of the letter σi one always has both σi−1 and
σi+1. Hence, only commutativity relations can be applied, and it follows that this
braid can only start with σ2, and can only end with σ4, thus it is palindromic-free.
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For n > 0, the braid we are considering is αn = σn3 (σ2σ3σ4σ5σ1σ2σ3σ4)σ
n
1 . Notice

that:

σ3 (σ2σ3σ4σ5σ1σ2σ3σ4) = (σ2σ3)σ2 (σ4σ5σ1σ2σ3σ4)

= (σ2σ3σ4σ5)σ2 (σ1σ2σ3σ4)

= (σ2σ3σ4σ5σ1σ2)σ1 (σ3σ4)

= (σ2σ3σ4σ5σ1σ2σ3σ4)σ1.

Hence αn = σ2n
3 (σ2σ3σ4σ5σ1σ2σ3σ4), and also αn = (σ2σ3σ4σ5σ1σ2σ3σ4)σ

2n
1 .

On one hand, the above two expressions of αn show that it can start with σ3

and also with σ2. Suppose that it can also start with σ1. As σ2n
3 4 αn and

we are assuming that σ1 4 αn, it follows that σ2n
3 ∨ σ1 4 αn, that is σ2n

3 σ1 4
αn. Multiplying by σ−2n

3 from the left we obtain σ1 4 σ2σ3σ4σ5σ1σ2σ3σ4. But
this is not possible as the latter braid can only start with σ2. Hence σ1 64 αn.
Analogously, as σ2n

3 ∨ σ4 = σ2n
3 σ4σ3, and also σ2n

3 ∨ σ5 = σ2n
3 σ5, it follows that

σ4 64 αn and σ5 64 αn. Therefore αn can only start with either σ2 or σ3.

The symmetric argument shows that αn can only end with either σ1 or σ4. There-
fore αn is palindromic-free, as we wanted to show. �

Hence, the attempt to compute the set of all positive, palindromic-free braids,
ε-twisted conjugated to a given one does not work. However, we shall save the
idea by imposing a further condition which will assure the required finiteness of
the set: we shall consider only elements with minimal canonical length. The set
we will compute is then the following.

Definition 3.4. Given a braid x ∈ Bn, we define MPF (x) to be the set of
positive, palindromic-free braids, ε-twisted conjugated to x, of minimal canonical
length.

Notice that if a positive braid x is palindromic-free, then inf(x) = 0, so sup(x) =
`(x). This gives us finiteness of MPF (x):

Proposition 3.5. For every x ∈ Bn, the set MPF (x) is nonempty and finite,
and it is an invariant of its ε-twisted conjugacy class.

Proof. MPF (x) is an invariant of the ε-twisted conjugacy class of x by definition.
It is nonempty by Proposition 3.2, and it is finite since the set of elements of
infimum zero, and given canonical length, is finite. �
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4. The twisted conjugacy problem for Bn.

In order to find a solution to the ε-twisted conjugacy problem in braid groups,
we need a method to compute MPF (x), given x ∈ Bn. For that purpose, we
shall need the following technical results.

Lemma 4.1. Let u be a positive, palindromic-free braid. Let c be a positive
braid with inf(c) = 0, whose left normal form is c = c1 · · · cs. Denote ki =
inf(←−ci · · ·←−c1 u c1 · · · ci). Then ki+1 ≤ ki + 1 for i = 0, . . . , s − 1. In particular,
inf(←−ci · · ·←−c1 u c1 · · · ci) ≤ i for i = 0, . . . , s.

Proof. Recall that, since u is palindromic-free, inf(u) = 0. As the infimum of an
element can increase by at most one when multiplied by a simple element, one
has either inf(uc1) = 0 or inf(uc1) = 1.

Suppose that inf(uc1) = 0, that is, ∆ is not a prefix of uc1. It is well known that,
as c1 · · · cs is in left normal form, then inf(uc1 · · · cs) = 0. Since the infimum of
an element can increase by at most one when it is multiplied by a simple ele-
ment, one has inf(←−ci · · ·←−c1 u c1 · · · cs) ≤ i, moreover inf(←−ci · · ·←−c1 u c1 · · · cs) ≤
inf(←−−ci−1 · · ·←−c1 u c1 · · · cs) + 1 for i = 1, . . . , s. It suffices then to show that
ki = inf(←−ci · · ·←−c1 u c1 · · · cs) for i = 0, . . . , s. But since we already showed that
inf(←−ci · · ·←−c1 u c1 · · · cs) ≤ i, and c1 · · · cs is in left normal form, then ∆p is a
prefix of ←−ci · · ·←−c1 u c1 · · · cs (necessarily p ≤ i) if and only if it is a prefix of
←−ci · · ·←−c1 u c1 · · · ci. Hence inf(←−ci · · ·←−c1 u c1 · · · cs) = inf(←−ci · · ·←−c1 u c1 · · · ci) = ki
for i = 0, . . . , s, as we wanted to show.

Now suppose that inf(uc1) = 1, that is, uc1 = v∆ for some positive v, pre-
fix of u. This means that u = v∂−1(c1). Since u is palindromic-free, one

has
←−−−−
∂−1(c1) ∧ v = 1. But it is easy to see that

←−−−−
∂−1(c1) = ∂(←−c1 ), so one has

∂(←−c1 ) ∧ v = 1, that is, the decomposition ←−c1v is left-weighted as written. This
in particular implies that inf(←−c1v) = 0 and, since ←−cs · · ·←−c1 is in right normal
form, that inf(←−cs · · ·←−c1v) = 0. Hence inf(←−cs · · ·←−c1uc1) = inf(←−cs · · ·←−c1v∆) = 1 =
k1 = k0 + 1. As the infimum can increase by at most one when an element is
multiplied by a simple one, then one has inf(←−cs · · ·←−c1uc1 · · · ci) ≤ i, moreover
inf(←−cs · · ·←−c1uc1 · · · ci) ≤ inf(←−cs · · ·←−c1uc1 · · · ci−1) + 1 for i = 1, . . . , s. Repeat-
ing the argument of the previous case, one has ki = inf(←−cs · · ·←−c1 u c1 · · · ci) for
i = 0, . . . , s, and the result is shown. �

Corollary 4.2. Let u be a positive, palindromic-free braid. Let c be a posi-
tive braid with inf(c) = 0, and whose left normal form is c = c1 · · · cs. If
inf(←−cs · · ·←−c1 u c1 · · · cs) = s, then inf(←−ci · · ·←−c1 u c1 · · · ci) = i for i = 0, . . . , s.

Proof. Let ki = inf(←−ci · · ·←−c1 uc1 · · · ci) for i = 0, . . . , s. We know that k0 = 0 since
u is palindromic-free, and that ki+1 ≤ ki + 1 by the previous result. By induction
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on s, it follows that ks ≤ s and the equality holds if and only if ki+1 = ki + 1 for
i = 0, . . . , s− 1. But we have ks = s by hypothesis, hence ki = i for i = 0, . . . , s,
as we wanted to show. �

Corollary 4.3. Let u, v ∈ Bn be positive, palindromic-free braids. Let a and b
be nontrivial positive braids such that a ∧R b = 1 (hence inf(a) = inf(b) = 0).

Suppose that ←−a ua =
←−
b vb. Then `(a) = `(b).

Proof. Denote `(a) = p and `(b) = q, and write a = a1 · · · ap and b = b1 · · · bq
in right normal forms. Consider b∗ = b−1∆q. Then b∗ is a positive braid with
inf(b∗) = 0. Namely, its right normal form is b∗ = ∂(bq)∂

3(bq−1) · · · ∂2q−1(b1).
Then consider the product

ab∗ = a1 · · · ap∂(bq)∂
3(bq−1) · · · ∂2q−1(b1).

We claim that the above decomposition is the right normal form of ab∗. We
just need to show that ap∂(bq) is right-weighted as written. But a ∧R b = 1, so
1 = ap ∧R bq = ap ∧R ∂−1(∂(bq)), which precisely means that ap∂(bq) is right-
weighted, showing the claim. This implies in particular that inf(ab∗) = 0 and
`(ab∗) = p+ q.

Notice that
←−
b∗←−a uab∗ =

←−
b∗
←−
b vbb∗ = ∆qv∆q. Since inf(v) = 0 as v is palindromic

free, one has inf(
←−
b∗←−a uab∗) = inf(∆qv∆q) = 2q. On the other hand, inf(ab∗) = 0

and `(ab∗) = p+ q, so Lemma 4.1 implies that inf(
←−
b∗←−a uab∗) ≤ p+ q. Therefore

2q ≤ p + q, that is, q ≤ p. By symmetry, one also has p ≤ q, so the equality
holds. �

Recall that we want to find a method to compute, for any given braid x ∈ Bn, the
set MPF (x) i.e. the (finite) set of positive, palindromic-free, ε-twisted conjugates
of x of minimal canonical length. Notice that if two elements u and v are ε-
twisted conjugated, that is, if ←−c uc = v for some braid c, then we can multiply
on both sides by a suitable power of ∆ such that c∆p is positive, in such a way

that ∆p←−c uc∆p = ∆pv∆p, so we have written
←−
AuA =

←−
BvB with A and B

positive. Moreover, if d = A ∧R B is the maximal common suffix of A and B,
then multiplying the above equality from the right by d−1 and from the left by

(
←−
d )−1, we finally get←−a ua =

←−
b vb, with a and b positive and such that a∧Rb = 1,

as in the hypothesis of the above result. We will be specially interested in the
case in which a and b are simple elements.

Definition 4.4. We will say that two elements u, v ∈ Bn are simply ε-twisted
conjugated, or that they are related by a simple ε-twisted conjugation, if

there exist simple elements a and b such that ←−a ua =
←−
b vb.
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The main result of this section is analogous, with respect to ε-twisted conjugacy,
to the following famous result by El-Rifai and Morton with respect to conjugacy.

Theorem 4.5. [6] Let u, v ∈ Bn be conjugated braids such that `(u) ≤ r and
`(v) ≤ r for some r. Then there is a chain u = u0, u1, . . . , uk = v, with `(ui) ≤ r
for all i, such that ui−1 is conjugated to ui by a simple element, for i = 1, . . . , k.
Namely, if c is a positive element such that c−1uc = v, and c = c1 · · · ck is its left
normal form, then one can take ui = c−1

i · · · c−1
1 uc1 · · · ci.

In our case, dealing with ε-twisted conjugacy, we will restrict to positive, palin-
dromic-free braids.

Theorem 4.6. Let u, v ∈ Bn be positive, palindromic-free, ε-twisted conjugated
braids such that `(u) ≤ r and `(v) ≤ r for some r. Then there is a chain
u = u0, u1, . . . , uk = v of positive, palindromic-free braids, with `(ui) ≤ r for all
i, such that ui−1 is simply ε-twisted conjugated to ui, for i = 1, . . . , k.

Proof. As we saw above, there are positive elements a and b, with a ∧R b = 1,

such that←−a ua =
←−
b vb. Since u and v are palindromic free, a is trivial if and only

if so is b. If a and b are nontrivial, the hypotheses of Corollary 4.3 are satisfied,
thus `(a) = `(b) = p in any case. We will show the result by induction on p. If
p = 0 the result is trivially true, so we will assume that p > 0 and that the result
is true for all values between 0 and p− 1.

The strategy of the proof will be to find some palindromic-free braid w with

`(w) ≤ r, such that ←−s us =
←−
t wt for some simple braids s and t (this is a chain

of length 1 from u to w), and also ←−y wy = ←−z vz for some positive elements y, z
such that y ∧R z = 1 and `(y) = `(z) ≤ p− 1. The induction hypothesis provides
a chain from w to v, so the result will follow by concatenating both chains.

We start as in the proof of Corollary 4.3, defining b∗ = b−1∆p, and noticing

that inf(ab∗) = 0, `(ab∗) = 2p and
←−
b∗←−a uab∗ = ∆pv∆p. Denote c = ab∗, and

let c = c1 · · · c2p be its left normal form. Then ←−c uc = ∆pv∆p. Since v is
palindromic-free, thus inf(v) = 0, one has inf(←−c uc) = 2p. By Corollary 4.2 one
has inf(←−ci · · ·←−c1uc1 · · · ci) = i for i = 1, . . . , 2p. In particular inf(←−c2←−c1uc1c2) = 2,
hence ←−c2←−c1uc1c2 = ∆w′∆ for some positive braid w′.

Multiplying the above equality on the right by c−1
2 and on the left by its reverse,

we obtain ←−c1uc1 =
←−−−−
∂−1(c2)w

′∂−1(c2). Hence u and w′ are simply ε-twisted con-
jugated. But w′ is not necessarily palindromic-free, and one does not necessarily
have `(w′) ≤ r. Let us see that we can replace w′ by some w that satisfies the
required hypothesis.

Recall that ←−c2←−c1uc1c2 = ∆w′∆. Since the left hand side is a product of at most
r+4 simple elements, it follows that sup(w′) ≤ r+2. Moreover, multiplying each
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side of the equality, from the left, by its image under ε, one has

(ε(←−c2←−c1uc1c2)) (←−c2←−c1uc1c2) = (ε(∆w′∆)) (∆w′∆) .

Hence: (
c−1
2 c−1

1 ε(u)ε(c1)ε(c2)
)

(←−c2←−c1uc1c2) =
(
∆−1ε(w′)∆−1

)
(∆w′∆) .

Since ε(ci) = (←−ci )−1, one obtains:

c−1
2 c−1

1 (ε(u)u)c1c2 = τ(ε(w′)w′).

In the same way, from the equality

(←−c2p · · ·←−c1 )u (c1 · · · c2p) = ∆pv∆p,

one gets: (
c−1
2p · · · c−1

1

)
ε(u)u (c1 · · · c2p) = τ p(ε(v)v).

Recall that `(u) ≤ r and `(v) ≤ r, so by Corollary 2.3 one has `(ε(u)u) ≤
2r and `(ε(v)v) ≤ 2r, thus `(τ p(ε(v)v)) ≤ 2r. Therefore, by Theorem 4.5,
`(τ(ε(w′)w′)) = `(c−1

2 c−1
1 ε(u)uc1c2) ≤ 2r. Hence `(ε(w′)w′) ≤ 2r.

We claim that there are positive braids x and w, such that w′ = ←−x wx and
sup(w) ≤ r. First, if sup(w′) ≤ r one can take x = 1 and w = w′. Second, if
sup(w′) = r + 1, notice that r ≥ 1 and `(ε(w′)w′) ≤ 2r, so the claim follows
from Lemma 2.2, taking k = 1. We must then show the claim in the case
sup(w′) = r + 2.

Suppose that sup(w′) = r+ 2, and recall that `(ε(w′)w′) ≤ 2r = 2 sup(w′)− 4. If
sup(w′) ≥ 4, the claim follows from Lemma 2.2, taking k = 2. Therefore the only
remaining case is sup(w′) = 3, r = 1 and `(ε(w′)w′) ≤ 2. Let d = w′∧rev(w′) and
write w′ = dα and rev(w′) = dβ. Notice that ε(w′)w′ = rev(w′)−1w′ = β−1d−1dα,
hence the mixed normal form of ε(w′)w′ is precisely β−1α. Moreover, since the
word length of w′ and rev(w′) coincide, one has α = 1 if and only if β = 1.
Hence, since sup(α) + sup(β) = `(ε(w′)w′) ≤ 2, one must necessarily have either
sup(α) = sup(β) = 0 or sup(α) = sup(β) = 1, that is, α and β are (possibly
trivial) simple elements.

Write w′ = a1a2a3 in left normal form. The right normal form of rev(w′) is then
←−a3
←−a2
←−a1 . Since rev(w′) = dβ and β is simple, it follows that ←−a3

←−a2 4 d, hence
←−a3
←−a2 4 dα = w′ = a1a2a3. Since the latter decomposition is in left normal form,

one has ←−a3
←−a2 4 a1a2, and also ←−a3 4 a1. Write then w′ = ←−a3(ca2)a3 for some

positive c. Now if ca2 is simple we are done, as one can take x = a3 and w = ca2.
Otherwise, write ca2 = b1b2 in left normal form, and recall that ←−a3

←−a2 4 a1a2, so
←−a2 4 ca2 = b1b2. Then←−a2 4 b1. On the other hand, since ca2 = b1b2 and the latter

decomposition is left weighted, one has a2 < b2 and then
←−
b2 4

←−a2 . Concatenating

the last two inequalities, one finally obtains
←−
b2 4

←−a2 4 b1. Therefore one can
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write b1 =
←−
b2w for some simple element w, and one has w′ = (←−a3

←−
b2 )w(b2a3).

Taking x = b2a3, the claim is shown.

Notice that if w is not palindromic-free, we can still decompose w = ←−y w′′y
where y is positive and w′′ is palindromic-free. Moreover, sup(w′′) ≤ sup(w) ≤ r.
Therefore, replacing x by yx and w by w′′ if necessary, we can assume that
w′ =←−x wx, where x is positive and w is palindromic-free with sup(w) ≤ r.

Now recall that ←−c1uc1 =
←−−−−
∂−1(c2)w

′∂−1(c2) for simple elements c1 and c2. By

the above claim, ←−c1uc1 =
(←−−−−
∂−1(c2)

←−x
)
w (x∂−1(c2)). Multiplying this equality

from the right by (c1 ∧R (x∂−1(c2)))
−1

and from the left by its reverse, we obtain
←−s us =

←−
t wt for positive braids s and t such that s ∧R t = 1. Now s is simple

as it is a prefix of c1, hence t is simple by Corollary 4.3. Therefore u and w are
simply ε-twisted conjugated, positive, palindromic-free braids, whose canonical
length is at most r. This is the first step of our required chain.

Now notice that

←−c2p · · ·←−c3 ∆w′∆c3 · · · c2p =←−c2p · · ·←−c3←−c2
←−−−−
∂−1(c2)w

′∂−1(c2)c2c3 · · · c2p
=←−c2p · · ·←−c2←−c1uc1c2 · · · c2p
= ∆pv∆p.

Hence

τ−1(←−c2p · · ·←−c3 ) w′ τ−1(c3 · · · c2p) = ∆p−1v∆p−1.

For simplicity, we will denote di = τ−1(ci+2) for i = 1, . . . , 2p−2. Hence we have:(←−−−
d2p−2 · · ·

←−
d1

)
w′ (d1 · · · d2p−2) = ∆p−1v∆p−1.

Recalling that w′ =←−x wx, and multiplying the above equality from the right by
(dp · · · d2p−2)

−1 and from the left by its reverse, we finally obtain:(←−−
dp−1 · · ·

←−
d1
←−x
)
w (xd1 · · · dp−1) = (←−−ep−1 · · ·←−e1 ) v (e1 · · · ep−1) ,

where e1, . . . , ep−1 are simple elements and e1 · · · ep−1 = ∆p−1 (dp · · · d2p−2)
−1.

Reducing the above equality, if necessary, by the biggest common suffix of
(xd1 · · · dp−1) and (e1 · · · ep−1), it follows that there exist positive braids y and
z such that y ∧R z = 1, and ←−y wy =←−z vz. Recall that w and v are palindromic-
free and, by Corollary 4.3 and as z is a prefix of e1 · · · ep−1, `(y) = `(z) ≤ p− 1.
Therefore the induction hypothesis provides the remaining part of the required
chain, and the result is shown. �

Corollary 4.7. Let u, v ∈ Bn be positive, palindromic-free, ε-twisted conjugated
braids of minimal canonical length in their ε-twisted conjugacy class, say r =
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`(u) = `(v). Then there is a chain u = u0, u1, . . . , uk = v of positive, palindromic-
free braids, with canonical length `(ui) = r for all i, such that ui−1 is simply
ε-twisted conjugated to ui, for i = 1, . . . , k.

Corollary 4.8. There exists an algorithm to compute MPF (x) for any given
braid x ∈ Bn.

Proof. If x = 1 then MPF (x) = {1}. So, let us assume x 6= 1.

First of all, compute a positive, palindromic-free, ε-twisted conjugate of x, say y,
as it is explained in Proposition 3.2. Let r = `(y) > 1, and let S = {y} ⊂ Bn.

Now, consider the following operation, which will have to be subsequently applied
until all elements in S have been processed:

Choose z ∈ S which has not been processed, compute all positive palindromic-free
elements which are simply ε-twisted conjugated to z and have canonical length
less than or equal to r (this is clearly a finite, computable set), and then do the
following: 1) if one of them, say z′, has length less than r, kill the whole process,
reset y = z′, S = {z′}, r = `(z′) and start the algorithm again; 2) otherwise, add
to S all the computed elements (which have canonical length exactly equal to r),
and mark z as processed.

At each application of such operation, either the set S gets restarted and r strictly
decreased, or the set S gets increased by the addition of the new elements com-
puted (some of which could already be present in the former S). But r > 1 can
only decrease a finite number of times, and |S| can only increase a finite number
of times, since the number of braids with infimum zero and given canonical length
is finite (recall that palindromic-free elements have infimum zero).

Hence, after a finite number of applications of the previous operation (running
over all elements z ∈ S), we shall get a set S 6= ∅ closed under this operation, i.e.
such that when applying that operation to any z ∈ S the set neither gets restarted
nor gets increased (that is, all the elements computed are already present in S).
At this time, Theorem 4.6 implies that the canonical length of the elements in
S (which is constant) is the smallest possible among all positive palindromic-free
braids which are ε-twisted conjugated to x. That is, S ⊆MPF (x).

Now, let u ∈ MPF (x). Choosing an arbitrary v ∈ S, Corollary 4.7 tells us that
u and v are connected by a chain of positive, palindromic-free braids of minimal
canonical length, each simply ε-twisted conjugated to the following one. Hence,
by construction of S, we have u ∈ S. Therefore, S = MPF (x). �

Theorem 4.9. The twisted conjugacy problem is solvable in the braid group Bn.
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Proof. Suppose we are given an automorphism ϕ : Bn → Bn (by the images of the
generators), and two braids u, v ∈ Bn. We have to decide whether there exists
x ∈ Bn such that v = (ϕ(x))−1ux, and in the positive case compute such an x.

By Theorem 1.3, either ϕ is a conjugation (ϕ = γw for some w ∈ Bn), or it is ε
followed by a conjugation (ϕ = γwε for some w ∈ Bn). We can clearly make this
decision effective, and compute such a w. Indeed, in order to check whether ϕ =
γw, we need to find some braid w such that w−1σiw = ϕ(σi) for i = 1, . . . , n− 1.
This is an instance of the so-called multiple simultaneous conjugacy problem in
Bn, and algorithms to solve it (and to find such w) can be found in [12, 11].
On the other hand, checking whether ϕ = γwε and finding such w reduces to
solving another instance of the multiple simultaneous conjugacy problem in Bn:
namely, it amounts to find w such that w−1σ−1

i w = ϕ(σi) for i = 1, . . . , n − 1.
(Alternatively, in our specific situation, we can make the following conceptually
much easier brute force algorithm: knowing, by Theorem 1.3, that there exists
w ∈ Bn such that either w−1σiw = ϕ(σi) for i = 1, . . . , n−1, or w−1σ−1

i w = ϕ(σi)
for i = 1, . . . , n−1, one can always enumerate all words w ∈ Bn and keep checking
both conditions until finding the good one with the correct w.) We can therefore
assume that w is known, and that ϕ is equal either to γw or to γwε.

In the first case ϕ(x) = w−1xw, and the equation v = (ϕ(x))−1ux is equivalent
to wv = x−1(wu)x. Deciding the existence of such an x and finding it, is just an
instance of the standard conjugacy problem in Bn (applied to wv and wu), which
is well-known to be solvable, see Theorem 1.2.

In the second case, ϕ(x) = w−1ε(x)w, and the equation v = (ϕ(x))−1ux is equiv-
alent to wv = (ε(x))−1(wu)x =←−x (wu)x. Deciding the existence of such an x and
finding it, is an instance of the ε-twisted conjugacy problem in Bn (applied to wv
and wu), which can be solved by computing the sets MPF (wu) and MPF (wv)
(see Corollary 4.8) and checking whether they coincide or not (meaning that wu
and wv are or are not ε-twisted conjugated, respectively). Notice that, during
the computations of MPF (wu) and MPF (wv), we can keep track of a ε-twisted
conjugating element at each step, so that we can explicitly find a value for x in
the case it exists.

We remark that the full computation of the sets MPF (wu) and MPF (wv) will
usually not be necessary. We can start the construction of both sets simulta-
neously, and kill the whole process giving a positive answer, as soon as we find
an element z in common in both sets (since, in this case, both wu and wv are
ε-twisted conjugated to z, an so to each other). �

5. The conjugacy problem for some extensions of Bn.

Theorem 5.1. Every finitely generated subgroup A 6 Aut(Bn) is orbit decidable.
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Proof. Let ϕ1, . . . , ϕm ∈ Aut(Bn) be given, and consider A = 〈ϕ1, . . . , ϕm〉 6
Aut(Bn). For every i = 1, . . . ,m, compute wi ∈ Bn and εi = 0, 1 such that
ϕi = γwi

εεii (see the first part of the proof of Theorem 4.9).

Given two braids u, v ∈ Bn we have to decide whether or not v is conjugated
to α(u) for some α ∈ A. If εi = 0 for every i, then A 6 Inn(Bn) and so, the
set {α(u) | α ∈ A} is a certain collection of conjugates of u. In this case, our
problem just consists on deciding whether or not v is conjugated to u. This is
doable by Theorem 1.2.

Otherwise, the set {α(u) | α ∈ A} is a certain collection of conjugates of u and
of ε(u). In this case, our problem just consists on deciding whether or not v
is conjugated to either u or ε(u). This is again doable by two applications of
Theorem 1.2. �

The following theorem (and the interesting particular case expressed in the corol-
lary below) are immediate consequences of Theorems 1.1, 4.9, and 5.1.

Theorem 5.2. Let G = Bn o H be an extension of the braid group Bn by a
finitely generated group H satisfying conditions (ii) and (iii) above (for instance,
take H torsion-free hyperbolic). Then, G has solvable conjugacy problem. �

Corollary 5.3. For any ϕ1, . . . , ϕm ∈ Aut(Bn), the group

〈Bn, t1, . . . , tm | t−1
i σti = ϕi(σ) (σ ∈ Bn)〉

has solvable conjugacy problem. �
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