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Abstract

This paper describes some applications of Computer Algebra to
Algebraic Analysis also known as D-module theory, i.e. the algebraic
study of the systems of linear partial differential equations. Gröbner
bases for rings of linear differential operators are the main tools in the
field. We start by giving a short review of the problem of solving systems
of polynomial equations by symbolic methods. These problems motivate
some of the later developed subjects.
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Introduction

The nature of this article is somehow mixed. It contains for example some
elementary and very well known results on commutative polynomial rings but
on the other hand it also contains non trivial results about systems of linear
partial differential equations. Nevertheless, anyone with a basic knowledge of
ring and module theory could, at least, have a grasp on the referred matter.
The interested reader will find in the text precises references for the proofs of
the announced results.

Computer Algebra, Symbolic Computation (CA/SC in what follows) or
Computational Algebra is a relatively new discipline. This new field of research is
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called Calcul Formel in French and Cálculo Simbólico or Álgebra Computacional
in Spanish. The item Álgebra Computacional appears in the Spanish Plan
Nacional de Investigación Cient́ıfica, Desarrollo e Innovación Tecnológica 2004-
2007, Programa Nacional de Matemáticas1, as subsection 3.5.

In the Mathematics Subject Classification 2000 (MSC2000) used
by Mathematical Reviews and Zentralblatt MATH, CA/SC appears
as 68W30 Symbolic computation and algebraic computation [See also

11Yxx, 12Y05, 13Pxx, 14Qxx, 16Z05, 17-08, 33F10], and it provides
methods and tools for many Mathematical areas as for example

Commutative Algebra Algebraic Geometry
Number Theory Algebraic Analysis or D–modules
Differential Geometry Associative Algebras
Group Theory Algebraic Groups and Lie Algebras
Algebraic and Differential Topology Combinatorics
Graph Theory Computational Geometry
Coding Theory and Cryptography Statistic and Probability

Recent CA/SC developments deeply interact with Numerical Analysis.
Moreover, the study and analysis of the algorithms arising in CA/SC are
also useful in other disciplines especially in Robotics (see e.g. [82, 37]),
Computer Vision (see e.g. [27]), Computer Aided Geometric Design (see
e.g. [38]), Artificial Intelligence (see e.g. [3]), Chemistry, Physics and
Engineering (see e.g. [23] and [1]), Biology (see e.g. [28]), and Statistics
and Economics (see e.g. [63] and [77, Chaps. 6,8]). Finally the Journal of
Symbolic Computation and Applicable Algebra in Engineering, Communication
and Computing are international journals mainly directed to researchers who are
interested in symbolic computation and a new section of the Journal of Algebra
is titled and devoted to Computational Algebra. Journals as Mathematics
of Computation, Journal of Complexity, Computational Complexity, SIAM
Journal of Computing, ACM Communications in Computer Algebra publish
regularly CA/SC papers.

The algorithms described in this paper have been implemented in several
Computer Algebra Systems most of them freely available. The following
are widely used: Macaulay 2 [35], CoCoA [22], Singular-Plural [36],
Risa-Asir [62], kan [62], Bergman [6], Gap [32]. Mathematicar

MAGMAr MuPADr and Mapler are some commercial Computer
Algebra Systems of general purpose containing implementations of some of the
algorithms treated in this article.

The article is intended to provide a short introduction to the use of some
Computer Algebra methods in the algebraic study of linear partial differential
systems. Our main tool will be Gröbner bases for linear partial differential
operators. Some of the algebraic methods developed in this article have been

1National Plan for Scientific Research and Technological Development 2004-2007, National
Mathematics Program
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treated by different authors elsewhere. A list of such works should include Ch.
Riquier [66] and M. Janet [45] both inspired by the works of E. Cartan. This
article does not deal with the general theory of Differential Algebra (see e.g.
[67], [48]).

The article does not contain proofs but for any of them a reference is given.
The structure of the article is as follows: Section 1 is devoted to the

description of some problems on systems of polynomial equations and their
solutions by using Gröbner bases for polynomial rings. In Section 2 we recall
the notion of Gröbner basis for rings of differential operators and its application
to the algebraic study of systems of linear differential equations. We focus on
the calculation of the characteristic variety of a linear partial differential system
and on the computation of a free resolution of the module associated with the
considered system. In Section 3 we sketch some applications of Gröbner bases
to the computational study of the irregularity of differential systems and to
logarithmic D–modules.

1 Getting started

1.1 Polynomial rings and polynomial systems

On peut dire que l’origine historique et un des buts essentiels
de l’Algèbre, depuis les Babyloniens, les Hindous et Diophante
jusqu’à nos jours, est l’étude des solutions des systèmes d’équations
polynomiales.2

In this subsection we will describe some problems related to the study of
systems of polynomial equations in several variables.

Let us denote by R[x1, . . . , xn] the set of polynomials in the variables
x1, . . . , xn and with coefficients in the field of real numbers R. We also
write R[x] = R[x1, . . . , xn] if no confusion arises. The letters f, g, h, . . .
or the expressions f(x), g(x), h(x), . . . (sometimes with subindexes) stand for
polynomials. A polynomial in R[x] can be written as a finite sum

∑

α=(α1,...,αn)∈Nn

cαx
α1

1 · · ·xαn

n

where the coefficients cα are real numbers. To simplify we write xα =
xα1

1 · · ·xαn
n . The degree of f , denoted by deg(f), is the maximum of the integer

numbers |α| := α1 + · · · + αn for cα 6= 0.
The set R[x] is a commutative ring with respect to the addition and the

product of polynomials.
Let us consider a finite system

S ≡ {f1(x) = f2(x) = · · · = fm(x) = 0} (1)

2Extracted from the Introduction of the book: Grothendieck, A. and Dieudonné, J.A.
Éléments de géométrie algébrique I, Springer-Verlag, Berlin, (1971), ISBN:0387051139.
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of polynomial equations. We denote

VR(S) = {w = (w1, . . . , wn) ∈ Rn such that fi(w) = 0, i = 1, . . . ,m}

the set of real solutions of the system S. We also write VR(S) = VR(f1, . . . , fm).
The subsets of Rn of type VR(S) for some system S, are called real affine
algebraic sets or simply algebraic sets if no confusion is possible. For example,
the graph in R2 of any polynomial f(x1) in one variable x1 is an algebraic set
in R2 as this graph is the set VR(x2 − f(x1)) = {(a1, a2) ∈ R2 | a2 = f(a1)}.

If
f(x1, x2) = a00 + a10x1 + a01x2 + a11x1x2 + a20x

2
1 + a02x

2
2

is a degree 2 polynomial in two variables x1, x2 then the set VR(f(x1, x2)) is
nothing but a real affine conic which could be degenerate.

If each equation in the system S is linear –i.e. if each polynomial fi(x) has
degree 1, then the solution set VR(S) is simply a linear affine variety in Rn and
Linear Algebra is devoted to the study of such objects.

The first objective of Algebraic Geometry is the study of the properties
of algebraic sets V(S) when S is a general system of polynomial equations.
Let us remark that if w = (w1, . . . , wn) is a real solution of System (1) then
w is also a solution of any equation f(x) = 0 deduced from the fi(x) = 0
by a linear combination with polynomial coefficients, i.e. f(w) = 0 for
f(x) =

∑m
i=1 qi(x)fi(x) for any choice of qi(x) in R[x]. The set of such linear

combinations is denoted by 〈f1(x), . . . , fm(x)〉 and it’s called an ideal of the ring
R[x] (an ideal in a commutative ring R is an additive subgroup of R closed by
products with elements in R).

Formally, we can also consider non necessarily finite systems of polynomial
equations but the Hilbert’s Basissatz (see, e.g. [5, Th. 7.5.]) assures that each
system is equivalent to a finite one. More precisely, let us consider a system

{f(x) = 0}f(x)∈T

of polynomial equations where T is an arbitrary subset of R[x]. Its solution
set is denoted by VR(T ). By Hilbert’s Basissatz there is a finite subset
{g1(x), . . . , gr(x)} in T such that

VR(T ) = VR(g1, . . . , gr). (2)

Moreover, if we denote by 〈T 〉 the ideal generated by T , i.e. the set of all
linear combinations of elements in T with polynomial coefficients, the Hilbert’s
Basissatz states precisely that there is a finite subset {g1(x), . . . , gr(x)} in T
such that

〈g1(x), . . . , gr(x)〉 = 〈T 〉 (3)

and the equality (3) implies the equality (2). A commutative ring in which any
ideal is finitely generated is called a Noetherian ring.

In what we have done before the field R can be replaced by any other field K.
Then we can consider the polynomial ring K[x] = K[x1, . . . , xn] on the variables
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xi and with coefficients in K. In many practical applications K will be one of
the fields Q, R or C while finite fields are widely used for example in Coding
Theory and Cryptography.

So, let us consider a general system of polynomial equations

S ≡ {f1(x) = f2(x) = · · · = fm(x) = 0} (4)

with coefficients if the field K and let us denote its solution set in the affine
space Kn by VK(S) = V(f1, . . . , fm) = {w = (w1, . . . , wn) ∈ Kn | f1(w) = · · · =
fm(w) = 0}.

A subset Y of the affine space Kn is said to be an affine algebraic set or
simply an algebraic set if there exists T ⊂ K[x] such that Y = VK(T ). The
empty set and Kn are algebraic sets. The union of two algebraic sets is an
algebraic set. The intersection of an arbitrary family of algebraic sets is also an
algebraic set (see e.g. [41]). These last properties of algebraic sets show that
they are the closed sets of a topology on Kn which is called the Zariski topology.

Taking the system S as input we are concerned with the following problems
or questions that can be considered as effective problems in polynomial rings.

(P1) Describe an algorithm to decide whether the set VK(S) is empty.

(P2) If VK(S) is not empty, describe an algorithm to decide whether VK(S) is
finite and to compute its cardinal.

(P3) If VK(S) is finite, describe an algorithm to compute the elements of VK(S)
i.e. to solve the system S.

(P4) If VK(S) is not finite, can we describe its elements using parameters?

There are no known algorithms for solving Problems P1-P4 with the above
generality. For example, if f(x, y) ∈ Q[x, y] is a cubic (i.e. if deg(f) = 3) then
there is no currently known algorithm to decide if VQ(f) is empty; see e.g. [74].

Nevertheless a weaker form of these problems will be solved in Subsection
1.2 by using Gröbner bases techniques. In these weaker forms, which will be
denoted (P1’), (P2’), (P3’) and (P4’), we will assume that even if the coefficients
of S belong to the given field K, the solutions of the system VL(S) are to be
searched over an algebraically closed3 field L containing K (for example L could
be the algebraic closure K of K).

One of the fundamental problems on effectiveness in polynomial rings is the
so called membership problem as defined for example by G. Hermann [42] in
1926. It can be stated as follows:

(P0) Given a finite set of polynomials f1(x), . . . , fm(x) in K[x] describe an
algorithm deciding if a given polynomial f(x) belongs to the ideal
〈f1(x), . . . , fm(x)〉.

3A field K is algebraically closed if the roots of every polynomial in one variable f(t) ∈ K[t]
are in K.
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To solve this problem G. Hermann gave an upper bound for the degree of
the polynomials qi(x) appearing in an expression f(x) =

∑
i qi(x)fi(x) if they

exist, and then she used Linear Algebra to algorithmically solve problem P0.
The upper bound found by G. Hermann is of type deg(f) + (md)2

n

where d is
the maximum of the degrees of the fi. Moreover, as shown in [57], this upper
bound is sharp. Hermann’s upper bound is in fact related to the degree of a
Gröbner basis of the ideal generated by the fi, as we will see in the next section.

1.2 Gröbner bases for polynomial rings

If f(x1) is a nonzero polynomial in K[x1] then the set VK(f) is nothing but the
set of roots of f(x1) = 0 in K and its cardinal is bounded by the degree deg(f).

Moreover, deg(f) equals the dimension of the quotient K–vector space K[x1]
〈f(x1)〉

.

For a general system S as (4) we have

Proposition 1 (see e.g. [26, Chap. 2, Th. 2.10] or [54, Chap. 2 Prop. 1.4])
Let S be the system f1(x) = f2(x) = · · · = fm(x) = 0 and let us denote by 〈S〉
the ideal in K[x] generated by the fi. If dimK

K[x]
〈S〉 is finite then

#VK(S) ≤ dimK

K[x]

〈S〉 .

Here #Z denotes the cardinal of a set Z and K[x]
〈S〉 is considered as the quotient

vector space of K[x] by the ideal 〈S〉 and dimK( ) denotes the vector space

dimension. The quotient K[x]
〈S〉 also has a natural structure of commutative ring

with unit with respect to the addition and the multiplication of classes modulo
〈S〉.

The reciprocal of Proposition 1 is false in general. Consider f(x1, x2) =

x2
1 + x2

2. We have VR(f) = {(0, 0)} ⊂ R2 but dimR(R[x1,x2]
〈f〉 ) = +∞. Moreover,

in Theorem 3 we will see a more precise result.
The computation of the dimension of the vector space K[x]/〈S〉, even when

it is finite, is more complicated than in the one variable case. It is not enough
to consider only the degrees deg(fi). To deal with we will start by introducing
the notion of monomial order. A total ordering ≺ on Nn is a monomial order if
0 = (0, . . . , 0) ≺ α for all α ∈ Nn and ≺ is compatible with the sum (i.e. α ≺ β
implies α + γ ≺ β + γ for all γ ∈ Nn). The lexicographical order (denoted by
<lex) on Nn is defined as follows: (α1, . . . , αn) <lex (β1, . . . , βn) if and only if
the first nonzero component of (α1 − β1, . . . , αn − βn) is negative. The total
order <lex is a monomial order. The only monomial order in N is the natural
order. We can translate any order ≺ in Nn to the set of monomial {xα |α ∈ Nn}
just by writing xα ≺ xβ if and only if α ≺ β.

Once a monomial order has been fixed on Nn, we can associate to each
nonzero polynomial f = f(x) =

∑
α cαx

α ∈ K[x] its privileged exponent
exp≺(f) with respect to ≺, defined as the maximum with respect to ≺ of the
set {α ∈ Nn | cα 6= 0}. We write simply exp(f) is no confusion is possible. One
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has exp(fg) = exp(f)+exp(g) for all nonzero f, g ∈ K[x]. If 0 6= f = f(xi) only
involves one variable xi, then exp(f) = deg(f)ǫi where ǫi is the i-th element in
the canonical basis of Nn.

For each non empty subset A of K[x] let us denote by E≺(A) (or simply
E(A)) the set

E≺(A) = ∪f∈A(exp≺(f) + Nn).

It is easy to prove the equality E(A) + Nn = E(A). There exists a finite subset
A′ ⊂ A such that E(A) = E(A′) (this is a consequence of Dickson’s Lemma; see
e.g. [26, p. 12]). We say that E(A) is generated by the set {exp(f) | f ∈ A′}.
So, if A = I is an ideal of K[x] there exists a finite subset G ⊂ I such that
E(I) = E(G) is generated by {exp(g) | g ∈ G}.

Definition 1 Let I ⊂ K[x] be a nonzero ideal. A finite subset G ⊂ I is
said to be a Gröbner basis of I with respect to the fixed monomial order ≺
if E≺(I) = E≺(G).

Example 1 a) If the ideal I = 〈f〉 is principal and generated by a polynomial f
then E(I) is the (hyper)-quadrant generated by exp(f), i.e. E(I) = exp(f)+Nn

and then {f} is a Gröbner basis of I.
b) Let us consider f1 = x1 − x2, f2 = x1 + x2 and I ⊂ R[x1, x2] the ideal
generated by f1, f2. With respect to the lexicographical order <lex on N2 we
have exp(f1) = exp(f2) = (1, 0) since x2 <lex x1. It is easy to prove that E(I)
is the union of the quadrants (1, 0) + N2 and (0, 1) + N2. So, {f1, f2} is not
a Gröbner basis of I with respect to <lex. Nevertheless, {f1, x2} is a Gröbner
basis of I, with respect to <lex.

If E ⊂ Nn we denote by c(E) = Nn \E its complement and by K[x]c(E) the
vector space of polynomials of type

∑
β∈c(E) cβx

β . For the sake of simplicity we

denote c≺(I) instead of c(E≺(I)) (or simply c(I) if no confusion is possible).
Let us consider a vector (f1, . . . , fm) of nonzero polynomials in K[x]. The

Division Theorem in K[x] is stated as follows:

Theorem 2 (e.g. [26, p. 9] or [2, Th. 1.5.9]) For each f ∈ K[x] there exists a
polynomial r ∈ K[x]c(f1,...,fm) such that f − r =

∑
i qifi for some polynomials

qi. Here c(f1, . . . , fm) = c(∪mi=1(exp(fi) + Nn)).

The qi and r can be chosen to be unique if they satisfy certain combinatorial
conditions about their supports. The support of a polynomial f =

∑
α cαx

α is
the set {α ∈ Nn | cα 6= 0}. There exists an algorithm computing the remainder
r and the quotients qi starting from f and the fi (see e.g. [2, Algorithm 1.5.1
]).

If n = 1 the Division Theorem 2 is nothing but the classical Euclidean
Division Theorem. As a corollary of Theorem 2 one can prove that any Gröbner
basis of an ideal I ⊂ K[x] generates I.

A famous algorithm, due to B. Buchberger [12], takes as input a monomial
order ≺ on Nn and a finite set F = {f1(x), . . . , fm(x)} of polynomials, and
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computes a Gröbner basis –with respect to ≺, of the ideal I of K[x] generated
by F . As a consequence one can also compute a finite system of generators of
the set E(I).

The worst-case complexity of the computation of a Gröbner basis is doubly
exponential on the degrees of the fi as proved in [57]. Nevertheless, despite
this theoretical bad behavior lots of invariants can be effectively computed in
Algebraic Geometry using Gröbner basis theory (see e.g.[7]).

The proof of the following Theorem uses some properties of Gröbner bases.
Recall the notation c(I) = Nn \ E(I) for any ideal I ⊂ K[x] and that #Z is
the cardinal of the set Z. The radical

√
I of an ideal I ⊂ K[x] is the ideal of

polynomials f ∈ K[x] such that fe ∈ I for some integer e (which depends on
f).

Theorem 3 [26, pp. 37-42] Let K be a field and {f1 = f2 = · · · = fm = 0} a
polynomial system. Let I ⊂ K[x] be the ideal generated by the fi. Then

#c(I) = dimK(
K[x]

I
).

Moreover, if K is algebraically closed then

1) #VK(I) < +∞ if and only if dimK(K[x]
I ) < +∞

2) #VK(I) ≤ dimK(K[x]
I ) and equality holds if and only if I is a radical ideal

(i.e. if and only if
√
I = I).

If the ideal I ⊂ K[x] satisfies dimK(K[x]/I) < +∞ we will say that I is zero
dimensional.4

Let us give a solution to problems P0, P1’, P2’, P3’ and P4’ described in
Subsection 1.1.

Solution to P0.- Although G. Hermann gave a solution to this problem, we can
give a new one by using Gröbner basis. We first compute –using Buchberger’s
algorithm, a Gröbner basis {g1, . . . , gr} of the ideal I generated by the fi
and then we compute the remainder r of the division of the polynomial f by
{g1, . . . , gr} (see Theorem 2). Then f ∈ I if and only if r = 0.

Solution to P1’ and P2’.- By Buchberger’s algorithm a finite system of

generators of E(I) and dimK
K[x]
I can be computed. By Hilbert’s Nullstellensatz

(e.g. [50, p. 16]), the set VK(I) is empty if and only if I = K[x] and so, if and
only if any Gröbner basis of I contains a nonzero constant polynomial. Here
K is an algebraic closure of K. This result gives the answer to P1’. Moreover,
by Theorem 3 we can test the finiteness of VK(I) since dimK(K[x]/K[x]I) =
dimK(K[x]/I). To compute the exact number of solutions VK(I) we can apply

Theorem 3 again and the fact that
√
I can be computed (i.e. a finite system

4The Krull dimension (see e.g. [10, Chap. 8]) of the quotient ring K[x]/I is zero in this
case. See Solution to P4’ in Subsection 1.2.
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of generators of the radical ideal
√
I can be computed in an effective way,5 see

e.g. [26, Chap. 2, Prop. 2.7]). This solves problem P2’. As suggested by one
referee this can be seen as a generalization of the one variable case. Let I be
the principal ideal I = 〈t3〉 ⊂ C[t] then VC(I) = {0} has only one element but
the dimension of the quotient vector space C[t]/I is 3. In this case

√
I = 〈t〉

and the dimension of C[t]/
√
I is 1.

Solution to P3’.- For any field K, if the solution set V := VK(f1, . . . , fm) is
finite then there is an algorithm based in the elimination principle (see [80])
to compute V in a finite field extension of the base field K. To have a grasp
of how it works, we can show that if we calculate a Gröbner basis of the ideal
〈f1, . . . , fm〉 with respect to an ordering for which xi > xn for i = 1, . . . , n − 1
—this is a special case of what are called elimination orderings— we obtain
a nonzero polynomial g(xn) in the Gröbner basis. Once the roots of this
polynomial g(xn) are known (maybe in a finite extension K′ of the field K)
we can substitute them in the original system to obtain (a finite number of)
systems in x1, . . . , xn−1 with coefficients in K′. This strategy is a generalization
of Gaussian elimination in the linear case. It should be said that an elimination
order leads to computations which are very often untractable. To avoid this
bottleneck, the so-called FGLM (from J.C. Faugère, P. Gianni, D. Lazard and
T. Mora) method can be applied in this case [29].

In practical situations a numerical approximation of a real or complex
solution of a system is useful and very often even necessary if the results are
accurate enough. So, in general, symbolic and numerical methods are combined
to solve real or complex polynomial systems. Nevertheless, the elimination-
extension methods can produce errors accumulation which are difficult to
manage (see e.g. [26, p. 28-34]). To overcome these problems several strategies
are used as for example the one based on the computation of the eigenvalues of
some matrices attached to our starting system (cf. [26, Chap. 2, Sec. 4]).

Solution to P4’.- If V = VK(f1, . . . , fm) is infinite the previous method
using elimination strategy fails. The key idea in this case is to consider
some of the variables as “parameters” and to solve the system giving a finite
number of solutions as function of these parameters. This is a generalization
of what is done when the system has only finitely many solutions. This
“parametric” method can be done in a systematic way applying for example
Noether’s Normalization Lemma (e.g. [5]) to find an integer r, 1 ≤ r ≤ n
and new coordinates y1, . . . , yn such that for each point (a1, . . . , ar) ∈ Kr the
system defined by {g1(a1, . . . , ar, yr+1, . . . , yn), . . . , gm(a1, . . . , ar, yr+1, . . . , yn)}
has finitely many solutions and we can apply the previous case to solve it.
Here the polynomials gi(y) come from the fj(x) by the variable change. This
procedure is also algorithmic and the integer r is called the (Krull) dimension
(see e.g. [10, Chap. 8]) of the algebraic set V . (See e.g. [54]).

Let us finish this subsection by quoting that the Division Theorem and

5In our case, since dimK(K[x]/I) < +∞, the computation of
√

I is much easier than for
general ideals.
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Gröbner bases techniques can be generalized for submodules of a free module
K[x]r (see e.g. [31] or [2, Chap. 3]).

2 Rings of differential operators and systems of linear partial
differential equations

For simplicity we are going to consider either the complex numbers C or the
real numbers R as the base field. Nevertheless, in what follows many algebraic
results also hold for any base field K of characteristic zero.

Let us recall that a linear differential operator (LDO) in n variables, with
polynomial coefficients is a finite sum of the form

P (x, ∂) =
∑

β∈Nn

pβ(x)∂
β

where each pβ(x) is a polynomial in K[x], ∂ = (∂1, . . . , ∂n) with ∂i = ∂
∂xi

and

∂β = ∂β1

1 · · · ∂βn
n .

The set of such LDOs is denoted by An(K) (or simply An if no confusion is
possible) and it is called the Weyl algebra of order n with coefficients in the field
K. The expressions P (x, ∂), Q(x, ∂), R(x, ∂), . . . and P,Q,R, . . . (sometimes
with subindexes) will denote LDOs.

The elements in An can be added and multiplied in a natural way. Leibniz’s

rule holds for the multiplication in the ring An : ∂ia(x) = a(x)∂i+
∂a(x)
∂xi

for any
a(x) ∈ K[x]. So An is an associative non commutative ring with unit (the unit
being the ’constant’ operator 1 = x0

1 · · ·x0
n∂

0
1 · · · ∂0

n).

The order of a nonzero operator P =
∑
β∈Nn pβ(x)∂

β , denoted by ord(P ),
is the maximum of the integer numbers |β| = β1 + · · · + βn for pβ(x) 6= 0 and
the principal symbol of P is the polynomial

σ(P ) =
∑

|β|=ord(P )

pβ(x)ξ
β1

1 · · · ξβn

n .

Here ξ = (ξ1, . . . , ξn) are new variables and so σ(P ) ∈ K[x, ξ] is a polynomial
in 2n variables. Sometimes we will write σ(P )(x, ξ) to emphasize this fact.
Notice that σ(P ) is homogeneous in ξ of degree ord(P ). One has the equality
σ(PQ) = σ(P )σ(Q) for P,Q ∈ An and by definition σ(0) = 0.

Remark 1 One can also consider LDOs with coefficients in other rings as
the ring OCn(U) (resp. ORn(U)) of holomorphic (resp. analytic) functions
in some open set U ⊂ Cn (resp. U ⊂ Rn) or the ring of convergent power series
C{x} = C{x1, . . . , xn} (or R{x} = R{x1, . . . , xn}). If R is any of these rings
we will denote by Diff(R) the corresponding ring of LDOs.

One of the goals of the theory of Differential Equations is to study the
existence, uniqueness and the properties of the solutions of linear partial
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differential systems (LPDS)

P11(u1) + · · ·+ P1m(um) = v1
...

...
...

...
Pℓ1(u1) + · · ·+ Pℓm(um) = vℓ

(5)

where Pij are LDOs, uj are unknown and vi are given data. Both uj and vj
could be functions, distributions, hyperfunctions, . . . .

Assume System (5) is homogeneous (i.e. v1 = · · · = vℓ = 0). If
u = (u1, . . . , um) is a solution of the system then u is also a solution6 of any
equation P1(u1) + · · · + Pm(um) = 0 with

(P1, . . . , Pm) =
ℓ∑

i=1

Qi(Pi1, . . . , Pim) (6)

for any Qi in An (or more generally Qi ∈ Diff(R) if we are considering any
of the rings of Remark 1. For simplicity in what follows, we will assume
Diff(R) = An = An(C)). The set of such linear combinations (see Equation (6))
with coefficients in An is a (left) sub-module of the free module Amn denoted by
An(P 1, . . . , P ℓ) where P i is the vector (Pi1, . . . , Pim).

Here Amn is nothing but the set of all vectors (P1, . . . , Pm) of differential
operators Pi ∈ An and plays a crucial role in the whole theory of D–modules.
This role is somehow analogous to the one played by vector spaces Km in Linear
Algebra. It is also important to mention here that the module An(P 1, . . . , P ℓ)
plays the role of a vector sub-space of Km. We have used here the algebraic
structure module (see e.g. [68]) (over the non commutative ring An) which
generalizes the vector space notion to a context where the scalars are no longer
in a field but in a ring (in our case this ring is An).

When m = 1 (i.e. when the system has only one unknown u = u1) then
System (5) reduces to (writing P11 = P1, . . . , Pℓ1 = Pℓ)

P1(u) = v1
...

...
Pℓ(u) = vℓ

(7)

and the set of linear combinations
∑
iQiPi with coefficients Qi ∈ An is a (left)

ideal in An, denoted by An(P1, . . . , Pℓ).
B. Malgrange [55], D. Quillen [64] and the Japanese school of M. Sato (e.g.

[72]) have been probably the first to associate to each system as (5) the (left)
quotient An–module7

Amn
An(P 1, . . . , P ℓ)

6We do not need to precise here the space of the wanted solutions. The result is true for
any such space.

7All the modules and ideals considered here will be left modules and left ideals unless
otherwise stated.



82 F.J. Castro-Jiménez

and this quotient is also called a differential system.
As An is left-Noetherian (see Subsection 2.2) any finitely generated left An-

module is isomorphic to a quotient of type

Amn
An(P 1, . . . , P ℓ)

.

As in the polynomial case, see Subsection 1.1, the attached quotient module
encodes important information about the system.

Different systems could have the same associated module, i.e. the
corresponding quotient modules could be isomorphic. For example, we have
the isomorphism

A2

A2(∂2
1 + ∂2

2)
≃ A3

2

N

where N ⊂ A3
2 is the submodule generated by the family (∂1,−1, 0), (∂2, 0,−1),

(0, ∂1, ∂2). This isomorphism encodes the fact that the systems

(∂2
1 + ∂2

2)(u) = 0 (8)

and 



∂1(u1) − u2 = 0
∂2(u1) − u3 = 0
∂1(u2) + ∂2(u3) = 0

(9)

are equivalent in the sense that the computation of their solutions (wherever
they lie) are equivalent problems since they can be reduced to each other. More
precisely, a suitable function u = u(x1, x2) is a solution of Equation (8) if and
only if the vector (u1 = u, u2 = ∂1(u1), u3 = ∂2(u1)) is a solution of System (9).

The study of such An–modules is the object of the so-called Algebraic
Analysis8 or D–module theory.9

In the next three Subsections we are going to recall the classical definition
of characteristic vector of a linear partial differential equation (Subsection 2.1),
then we will recall the definition and basic properties of Gröbner bases for LDOs
and we will show how they can be used to compute the characteristic variety of
a LPDS (Subsections 2.2 and 2.3).

2.1 Classical characteristic vectors

If we have just one linear partial differential equation (LPDE)

P (x, ∂)(u) =



∑

β

pβ(x)∂
β


 (u) = v

8Introduced by M. Sato. See http://en.wikipedia.org/wiki/Mikio Sato
9Mathematics Subject Classification 2000 (MSC2000): 32C38 Sheaves of

differential operators and their modules, D-modules [See also 14F10, 16S32,

35A27, 58J15].
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with analytic coefficients pβ(x) in some open subset U ⊂ Rn, a vector ξ0 ∈ Rn

is called characteristic for P at x0 ∈ U if σ(P )(x0, ξ0) = 0 and the set of all
such ξ0 is called the characteristic variety of the operator P (or of the equation
P (u) = v) at x0 ∈ U and is denoted by Charx0

(P ). Notice that here, in contrast
to some textbooks, the zero vector could be characteristic. More generally, the
characteristic variety of the operator P is by definition the set

Char(P ) = {(x0, ξ0) ∈ U × Rn |σ(P )(x0, ξ0) = 0}.

Assume ord(P ) ≥ 1, then P is said to be elliptic at x0 if P has no nonzero
characteristic vectors at x0 (i.e. Charx0

(P ) ⊂ {0}) and it is said to be elliptic
on U if Char(P ) ⊂ U × {0}.

The Laplace operator
∑n
i=1 ∂

2
i is elliptic on Rn. The characteristic variety

of the wave operator P = ∂2
1 −
∑n
i=2 ∂

2
i is nothing but the hyperquadric defined

in Rn × Rn by the equation ξ21 −∑n
i=2 ξ

2
i = 0.

Characteristic vectors are important in the study of singularities of solutions
as can be seen in any classical book on Differential Equations.

To define the principal symbol and the characteristic vectors for a system
(5) of linear differential equations in many variables is more involved and in
general the naive approach of simply considering the principal symbols of the
equations turns out to be unsatisfactory (see Example 2). We will use graded
ideals and Gröbner bases for LDOs (see Subsections 2.2 and 2.3) to define and
to compute the characteristic variety of a general LPDS.

2.2 Gröbner bases for rings of differential operators

The definition and construction of Gröbner bases for polynomial rings can be
adapted to the case of rings of linear differential operators [11, 15], see also [70].

Let P = P (x, ∂) =
∑
β∈Nn pβ(x)∂

β be a differential operator in An. The
operator P can be rewritten as

P =
∑

αβ

pαβx
α∂β

just by considering the polynomial pβ as pβ(x) =
∑
α pαβx

α, with pαβ ∈ C.
Let us fix a monomial order ≺ on N2n. We call privileged exponent with

respect to ≺ of a nonzero operator P –and we denote it by exp≺(P )– the
maximum (α, β) ∈ N2n such that pαβ 6= 0. We will write simply exp(P ) if no
confusion is possible. The equality exp(PQ) = exp(P ) + exp(Q) is satisfied for
all nonzero P,Q ∈ An.

If I is a nonzero ideal in An, we denote (as in the polynomial case) by E≺(I)
(or simply E(I)) the set of privileged exponents of the nonzero elements in I.
Since E(I) + N2n = E(I) there exists a finite subset G ⊂ I such that E(I) is
generated by {exp(P ) |P ∈ G} (see Subsection 1.2).

Definition 2 Let I ⊂ An be a nonzero ideal. A finite subset G =
{P1, . . . , Pr} ⊂ I such that E(I) is generated by {exp(Pi) | i = 1, . . . ,m}, is
called a Gröbner basis of I with respect to the fixed monomial order ≺.
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A Division Theorem (analogous to Theorem 2) can be proved for elements in
An (see [11, 15]) and as a consequence, each Gröbner basis of I is a generating
system of I and in particular the ring An is left-Noetherian.

If the ideal I is principal and generated by an operador P then E(I) is the
hyper-quadrant generated by exp(P ) in N2n: one has E(I) = exp(P ) + N2n.

The Buchberger’s algorithm for polynomials can be adapted to the ring of
differential operators [11, 15], see also [70]. Considering as input a monomial
order ≺ in N2n and a finite set F = {P1, . . . , Pm} of differential operators,
one can compute a Gröbner basis, with respect to ≺, of the ideal I ⊂ An
generated by F . So, one can also compute a finite set of generators of the
subset E(I) ⊂ N2n (see Subsection 1.2).

The Division Theorem and the theory of Gröbner basis can be extended for
submodules of free modules Amn for any m or more generally for submodules
of Dm

n [15]. Here Dn denotes the ring Diff(C{x}) of LDOs with coefficients
in the convergent power series ring. Moreover, Division Theorem and Gröbner
basis can be also considered, in a straightforward way, for right ideals (or more
generally for right submodules of a free module Amn or Dm

n ). In particular, An
(resp. Dn) is a right-Noetherian ring and so actually a Noetherian ring.

2.3 Graded ideal, characteristic variety and dimension.

Assume I ⊂ An is a ideal (e.g. the ideal generated by operators P1, . . . , Pm in
the system (7)). The graded ideal gr(I) associated with I is defined as the ideal
in C[x, ξ] generated by the set of principal symbols {σ(P ) |P ∈ I}. Notice that
gr(I) is a homogeneous polynomial ideal with respect to the (ξ)-degree.

If I = AnP is the principal ideal generated by P then gr(I) is also principal
in C[x, ξ] and it is generated by σ(P ).

Definition 3 The characteristic variety of the quotient An–module An/I (or
of the system defined by I) –denoted by Char(An/I), is by definition the affine
algebraic variety defined in C2n by the ideal gr(I) ⊂ C[x, ξ].

If I = AnP is a principal ideal then the characteristic variety of An/I
coincides with the classical characteristic variety of P (see Subsection 2.1). We
will omit here, because it is more involved, the definition of the characteristic
variety Char(M) of any finitely generated An–module M (see e.g. [24]) which
is an affine algebraic subvariety of C2n.

Definition 4 The singular locus of a finitely generated An–module M is
the Zariski closure of the image of Char(M) \ Cn × {0} under the projection
π : Cn × Cn → Cn, π(a, b) = a.

In general, if I is generated by a family P1, . . . , Pm, the ideal gr(I) could
be strictly bigger than the ideal generated by σ(P1), . . . , σ(Pm)10. This is
analogous to a common situation in Algebraic Geometry. Let Z = VC(J) ⊂ Cn

10See Example 2.
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be the algebraic set defined by a polynomial ideal J ⊂ C[x] and assume J is
generated by polynomials f1, . . . , fm. Assume 0 ∈ VC(J). The tangent cone
to Z at 0 is by definition the algebraic set C = VC(in(J)) where in(J) ⊂ C[x]
is the ideal generated by the family {in(f) | f ∈ J}. Here the initial form
in(f) of a polynomial f is the homogeneous component of lowest degree in f
(i.e. the sum of the monomials of minimal degree in f). In general the ideal
〈in(f1), . . . , in(fm)〉 is strictly contained in in(J).

Gröbner basis theory in An can be used to calculate gr(I)11. Namely, if
P1, . . . , Pℓ is a Gröbner basis of I12 then σ(P1), . . . , σ(Pℓ) generate gr(I) and so
these principal symbols define the characteristic variety of An/I; see [11], [15],
[70].

Example 2 If I = A2(P1, P2) with P1 = x1∂1+x2∂2 and P2 = x1∂2+x2
2∂1 then

gr(I) = 〈ξ1, ξ2〉 that is strictly bigger than 〈σ(P1), σ(P2)〉 = 〈x1ξ1 +x2ξ2, x1ξ2 +
x2

2ξ1〉.
The following Macaulay 2 script can be used to compute generators of

the graded ideal gr(I). The corresponding Macaulay 2 command is called
charIdeal. We need D-modules.m2 package to this end (see [35]). Input lines
in Macaulay are denoted by i1, i2, . . . while the corresponding output lines
are o1, o2, . . .

The command R=QQ[x,y] defines the ring R to be the polynomial ring in
the variables x, y and with rational coefficients. The command W=makeWA R

defines the ring W to be the Weyl algebra of order 2 with coefficients in R.

Macaulay 2, version 0.9.2 --Copyright 1993-2001, D. R. Grayson and

M. E. Stillman --Singular-Factory 1.3b, copyright 1993-2001, G.-M.

Greuel, et al. --Singular-Libfac 0.3.2, copyright 1996-2001, M.

Messollen

i1 : R=QQ[x,y]

i2 : load "D-modules.m2"

i3 : W=makeWA R

i4 : P1=x*dx+y*dy,P2=x*dy+y^2*dx

o4 = (x*dx + y*dy, y^2*dx + x*dy)

i5 : I=ideal(P1,P2)

o5 = ideal (x*dx + y*dy, y^2*dx + x*dy)

i6 : charIdeal I

o6 = ideal (dy, dx)

11Analogous to the commutative case: we use a (special) Gröbner basis of the polynomial
ideal J to compute in(J), see e.g. [49, Cor. 6.2.25].

12With respect to a monomial ordering compatible with the (ξ)-degree.
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o6 : Ideal of QQ [x, y, dx, dy]

i7 : J=ideal(dx,dy)

o7 = ideal (dx, dy)

o7 : Ideal of W

i8 : J==I

o8 = true

Input line i4 defines the operators P1, P2 generating the ideal I (the
corresponding definition in Macaulay is the input line i5.

The computation of the input line i6: charIdeal I gives the ideal o6:
ideal (dy, dx). Notice that as remarked by Macaulay output o6 : Ideal

of QQ [x, y, dx, dy] the ideal given by o6: ideal (dy, dx) is in fact an
ideal of the ring QQ [x, y, dx, dy] which is considered to be a commutative
polynomial ring while W is the Weyl algebra of order 2.

In fact, the last part of the script (from i7 to o8) proves that the ideal I
equals the ideal A2(∂1, ∂2). We are using here x = x1, y = x2.

In the Weyl algebra W the expressions dx, dy stand for ∂1 and ∂2 while in
QQ [x, y, dx, dy] they stand for ξ1 and ξ2 respectively.

The previous computation can be also made by hand although they are not
completely obvious.

If I = A2(P1, P2) as in Example 2 we have proven that gr(I) = 〈ξ1, ξ2〉 and
then the equality Char(A2/I) = C2 × {(0, 0)}.

Let’s see another example using Macaulay 2.

Example 3 The following Macaulay 2 script computes gr(J) for J =
A2(Q1, Q2) and Q1 = ∂2

1 − ∂2, Q2 = x1∂1 + 2x2∂2.

i2 : R=QQ[x,y]

i3 : W2=makeWA R

i4 : Q1=dx^2-dy,Q2=x*dx+2*y*dy

o4 = (dx^2 - dy, x*dx + 2y*dy)

o4 : Sequence

i5 : J = ideal (Q1,Q2)

o5 = ideal (dx^2 - dy, x*dx + 2y*dy)

o5 : Ideal of W2

i6 : charIdeal J

o6 = ideal (dx^2 , x*dx + 2y*dy)

o6 : Ideal of QQ [x, y, dx, dy]
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The input J = ideal(Q1, Q2) defines the ideal J of the Weyl algebra W

generated by the linear differential operators Q1, Q2. Then the input i6 :

charIdeal J computes the graded ideal gr(J). Then gr(J) is generated by the
polynomials ξ21 , x1ξ1 + 2x2ξ2 and the characteristic variety Char(A2/I) is the
union of the two planes ξ1 = x2 = 0 and ξ1 = ξ2 = 0 in C4.

By definition the dimension of a finitely generated nonzero An–module
M , denoted by dim(M), is the dimension13 of its characteristic variety
dim(vchar(M)) viewed as an algebraic variety in C2n. The modules A2/I and
A2/J of Examples 2 and 3 have both dimension 2 since their characteristic
varieties are, in the first case, the plane C2 × 0 in C4 and the union of the
planes ξ1 = x2 = 0 and ξ1 = ξ2 = 0 (again in C4) in the second case.

A fundamental result due to I.N. Bernstein [8] says that if M 6= 0 then
dim(M) ≥ n.

If M = An/I (and more generally if M is a quotient of a free An–module)
the dimension of M can be computed using Gröbner basis in An. To this end
we first notice that dim(An/I) = dim Char(An/I) if the Krull dimension of the
quotient ring C[x, ξ]/gr(I) (see e.g. [10, Chap. 8]). We first compute a system
of generators of gr(I) –assuming that a system of generators of I is given– and
then, applying again Gröbner basis computation, this time in the polynomial
ring C[x, ξ], we compute the Krull dimension of C[x, ξ]/gr(I)14.

Definition 5 A finitely generated An–module M is said to be holonomic (or a
holonomic system) if either M = (0) or M is nonzero and dim(M) = n.

Holonomic systems generalize the classical notion of maximally overdeter-
mined systems (see [46]). The previous examples A2/I and A2/J are holonomic.

Remark 2 If K = AnP is the principal ideal generated by P ∈ An and the
quotient M = An/K is non zero then M is holonomic if and only if n = 1.
In fact gr(K) is just generated by the principal symbol σ(P ) ∈ C[x, ξ] and the
characteristic variety Char(M) is the hypersurface defined by the polynomial
σ(P )(x, ξ) in C2n. So dim(M) = 2n− 1 and dim(M) = n if and only if n = 1.

Let I ⊂ An be an ideal. We define, following [70], the holonomic rank of the
ideal I as

rank(I) = dimC(x)
C(x)[ξ]

C(x)[ξ]gr(I)

where C(x) is the field of rational functions and gr(I) ⊂ C[x, ξ] is the graded
ideal associated with I.

It is easy to see that if An/I is holonomic then rank(I) < +∞ and that the
converse is not true (see e.g. [70, Prop. 1.4.9]).

13We are considering here the Krull dimension (see e.g. [10, Chap. 8]).
14Actually only a single Gröbner basis of I is needed if the monomial ordering if suitably

chosen.
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2.4 Solutions of a system. Homological algebra over An

We start by recalling some basics of homological algebra.
A (cochain) complex (V•, d•) of C–vector spaces is a collection of C–vector

spaces Vi, i ∈ Z, and C–linear maps di : Vi → Vi+1 such that di+1 ◦di = 0 for all
i (or equivalently if im(di−1) ⊂ ker(di) for all i). We make analogous definition
for complexes of An–modules and morphisms of An–modules.

Given a complex (V•, d•) its cohomology in degree i (or its i-th cohomology
group) is the quotient ker(di)/im(di−1).

Definition 6 A complex (V•, d•) is exact in degree i if im(di−1) = ker(di) and
the complex is said to be exact (or an exact sequence) if it is exact in degree i
for all i.

Let us consider a LPDE

P (u) = P (x, ∂)(u) = 0

and suppose we want to compute its solutions in some function space F where
An acts naturally. The space F should be then an An–module. Typical
examples of such spaces are function spaces (continuos functions, real analytic or
holomorphic functions, polynomial functions ...), spaces of multivalued functions
and spaces of distributions.

A central question in the theory of Differential Equations is to compute the
solution set

Sol(P ;F) = {u ∈ F such that P (u) = 0}.
Actually, this solution vector space is nothing but the kernel of the morphism
P ( ) : F → F defined by the action of P on F . So one has Sol(P ;F) = ker(P ( )).
Notice that as An is non commutative P ( ) is only a C–linear map.

Let us denote M = An/AnP . We will see that Sol(P,F) is isomorphic, as
vector space, to HomAn

(M,F) the space of An-morphisms from M to F15.
Each solution u ∈ Sol(P ;F) determines the morphism (of An–modules)

φu : M → F

defined by φu(Q) = Q(u) for Q ∈ An, where Q stands for the class of Q modulo
the ideal AnP . On the other hand, each An–module morphism

φ : M → F

(i.e. each φ ∈ HomAn
(M,F)) determines the solution

uφ = φ(1)

15Someway, an analogous situation happens when solving a system S of complex polynomial
equations with only finitely many solutions (that is the set VC(S) is finite). There exists a
natural bijection from VC(S) to HomC(C[x]/〈S〉, C) defined by attaching to each solution

a ∈ VC(S) the corresponding evaluation homomorphism (g(x) 7→ g(a))
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since P (φ(1)) = φ(P ·1) = φ(0) = 0. So the solution space Sol(P ;F) is naturally
isomorphic to the vector space HomAn

(M,F).
Similarly we can prove that if I ⊂ An is an ideal then the solution space

Sol(I;F) = {u ∈ F |P (u) = 0, ∀P ∈ I}

is naturally isomorphic, as a vector space, to HomAn
(An/I,F).

Let us return to the case of the complete equation P (u) = v where v is
in F . The obstruction to solve this equation is given by the vector space
F/P (F) = coker(P ( )) that is the cokernel of the map P ( ) : F → F . That
is, for a fixed v ∈ F , the equation P (u) = v has a solution u in F if and only
if v ∈ P (F) or equivalently if and only if the class of v in the quotient space
F/P (F) is zero.

More concretely, the complete equation has a solution u for each v if and
only if F = P (F) (or equivalently if and only if F/P (F) = coker(P ( )) = (0)).
This situation can be interpreted by using a little bit of homological algebra.
This homological algebra interpretation can be also considered for more general
LPDS.

We will see that coker(P ( )) is naturally isomorphic, as vector space, to
Ext1An

(M,F) the first extension group (in this case it is a vector space) of M
by F (see e.g. [68]).

First of all, let us consider the natural exact sequence of modules and
morphisms

0 → An
φP−→ An

π−→M =
An
AnP

→ 0. (10)

where the morphism φP is defined by φP (Q) = QP for Q ∈ An and π is
the natural projection. Then by truncating the previous one we consider the
complex (of An-modules)

0 → An
φP−→ An → 0. (11)

We then apply to this complex the functor HomAn
(−,F) and we get the complex

of vector spaces

0 → HomAn
(An,F)

(φP )∗−→ HomAn
(An,F) → 0 (12)

where (φP )∗(η) = η ◦ φP for η ∈ HomAn
(An,F).

The vector space HomAn
(An,F) has a natural structure ofAn–module which

is in fact isomorphic to F . This is a general fact in ring theory: to each
morphism η ∈ HomAn

(An,F) we associate η(1) ∈ F and this correspondence is
in fact an isomorphism. Under this isomorphism the last complex can be read
as

0 → F P ( )−→ F → 0

Homological algebra tells us that we have natural isomorphisms of
vector spaces ker(P ( )) ≃ HomAn

(M,F) = Ext0An
(M,F) and F/P (F) =

coker(P ( )) ≃ Ext1An
(M,F).
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Then the vector spaces ExtiAn
(M,F) for i = 0, 1 are called the solutions

spaces of the equation P (u) = 0 (or more precisely of the An–module M =
An/AnP ) in F .

In order to generalize this notion of solutions spaces for general systems as
(5) we have to consider the corresponding An-module M = Amn /im(P) where
im(P) is the submodule of Amn generated by the rows of the matrix (Pij)ij
(appearing in System (5)). By definition the solutions spaces of M in F are
the vector spaces ExtiAn

(M,F) for i = 0, . . . , n defined using the right derived
functors (see e.g. [68]) of the functor HomAn

(−,F).
By definition ExtiAn

(M,F) is the i-th cohomology group of the complex
HomAn

(L•,F) where L• is a free resolution (see Subsection 2.5) of M .
For general systems as (5) and general function spaces F there is no

algorithm to compute the solution spaces ExtiAn
(M,F). Nevertheless, if

M = An/I is holonomic (see Definition 5) and F = C[x] there are algorithms
computing a basis of ExtiAn

(M,F) for all i, ([61], [81]).
As a consequence of Cauchy Theorem (see e.g. [70, Th. 1.4.19]) we have

dimC Sol(I;OCn(U)) = rank(I)

where the system An/I is holonomic and OCn(U) stands for the space of
holomorphic functions on an open set U ⊂ Cn \ Z where Z is the singular
locus of An/I (see Definition 4). This result could be compared with Theorem
3.

2.5 Free resolutions

The exact sequence (10) is an example of free resolution of the An–module
An/AnP .

A free resolution of a finitely generated An–module M is an exact sequence

0→L−r
φ−r−→ L−r+1

φ−r+1−→ · · · φ−2−→ L−1
φ−1−→ L0

φ0−→M→0

where each Li is a free An–module of finite rank.
As an application of Gröbner basis theory over the ring An one can compute

(see e.g. [15], [70]), starting from a system of generators {P1, . . . , Pℓ} of an ideal
I ⊂ An, a system of generators of the first syzygy module of {P1, . . . , Pℓ} which
is by definition the module

Syz(P1, . . . , Pℓ) := {(Q1, . . . , Qℓ) ∈ Aℓn |
∑

i

QiPi = 0}.

In fact one can also compute Syz(P 1, . . . , P ℓ) for any finite set of vectors P i
in Amn , for any m.

Given M = Amn /〈P 1, . . . , P ℓ〉 one can consider the exact sequence

Aℓn
φ−→ Amn −→M −→ 0

where φ is the map defined by the matrix whose rows are the vectors P i and
we have, by definition of syzygy, ker(φ) = Syz(P1, . . . , Pℓ) ⊂ Aℓn.
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One can compute, using Gröbner bases, a system of generators {S1, . . . , Sk}
of ker(φ). This leads to a new exact sequence

Akn
ψ−→ Aℓn

φ−→ Amn −→M −→ 0

where ψ(ei) = Si, ei being the i-th canonical vector in Akn.
Let us rename r0 = m, r1 = ℓ, r2 = k, φ1 = φ, φ2 = ψ. Restarting with the

matrix φ2 one can compute, for each i ≥ 0 and by applying the same process,
a finite sequence of modules and morphisms

Arp

n

φp−→ · · · −→ Ar2n
φ2−→ Ar1n

φ1−→ Ar0n −→M → 0

which is exact (see Definition 6).
One can apply the same argument as in the Syzygies Hilbert Theorem (see

e.g. [26, Chap. 6], [15]) to assure that there is an integer p such that ker(φp) = 0.
This process gives up a finite free resolution of the given An–module M .

Finite free resolutions are useful to study finitely generated An–modules.
As we have seen before, given a system as (5) we consider the associated
module M = Amn /〈P 1, . . . , P ℓ〉 where P i = (Pi1, . . . , Pim). The polynomial
solutions (u1, . . . , um) of System (5) can be simply viewed as the vector space
HomAn

(M,C[x]).
If we apply the functor HomAn

(−,C[x]) to the complex

0 −→ Arp

n

φp−→ · · · −→ Ar2n
φ2−→ Ar1n

φ1−→ Ar0n −→ 0

and then we compute the cohomology of the resulting complex we get the vector
spaces ExtiAn

(M,C[x]) for i = 1, . . . , n which are considered as the higher order
polynomial solutions of System (5).

As we have said before, if M is holonomic (see Definition 5) one can
effectively compute, using Gröbner bases, a generating system for the vector
spaces ExtiAn

(M,C[x]) for any i (see [61], [81]). Since these algorithms uses
Gröbner bases computation in the Weyl algebra An they have a high complexity.

Syzygies and finite free resolutions are fundamental tools in Computational
Algebraic Analysis. They are intensively used in the computation of the
four operations –localization, local cohomology, restriction and integration, on
differential systems [60] (see also [70]) and in the computation of truncated
holomorphic solutions of holonomic systems as shown in [78].

3 More applications of Gröbner bases for LDOs

Gröbner basis theory is also used in many other situations related to An–
modules. Let’s just quote its use in the computational study of projective16

An–modules. In [30] there is an algorithm to compute a basis of a projective

16A module M is projective provided there is a module N such that the direct sum M ⊕N
is a free module.
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module over An, if it has one (see [76] for a proof that every projective An-
module with rank greater than 1 is free). These results are also related to [53]
and [43].

In Subsections 3.1 and 3.2 we will sketch two more areas of D-modules where
the use of computational methods give significant insights into the theory.

3.1 Regular singular points. Regular D–modules and slopes

Let us consider a single equation

P (t,
d

dt
)(u) =

(
p0(t) + p1(t)

d

dt
+ · · · + pm(t)

dm

dtm

)
(u) = 0 (13)

of order m ≥ 1 defined on an open disc ∆ ⊂ C centered at the origin and where
each coefficient pi(t) is a holomorphic function on ∆.

A point t0 ∈ ∆ is said to be singular for P (u) = 0 if pm(t0) = 017. Assume
the origin 0 ∈ ∆ is the only singular point of P (u) = 0 on ∆. In particular the
characteristic variety of this linear differential equation is

Char(P ) = {0} × C ∪ ∆ × {0}.

By a classical result of Ordinary Linear Differential Equations (cf. [34, 410-
411]) each multivalued holomorphic solution ϕ of P (u) = 0 on ∆∗ = ∆ \ {0},
can be written as

ϕ =

ℓ∑

i=1

ci(t)t
αi logνi t

where αi ∈ C, νi ∈ N and ci(t) is an uniform analytic function on ∆∗.

The equation P (u) = 0 has a regular singular point at 0 if for all solutions ϕ
multivalued on ∆∗ the corresponding analytic functions ci(t) are meromorphic
for all i. If some of the ci(t) has an essential singularity at 0 then the origin is
said to be an irregular singular point for P (u) = 0.

The Maple command DEtools[formal sol] gives the formal series solutions
–up to any order, of a given ordinary differential equation at a fixed point. This
is the Maple script for the Euler equation which has an irregular singular point
at 0.

> Eu:=t^2*Dt+1;

2

Eu := t Dt + 1

> sol:=formal_sol(Eu,[Dt,t],S,’terms’=12,t=0);

12

sol := [[exp(1/S) (1 + O(S )), S = t]]

17This notion agrees with the one of singular locus given in Definition 4.
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The classical Gauss hypergeometric equation
(
t(1 − t)

d2

dt2
+ (γ − t(α+ β + 1))

d

dt
− αβ

)
(u) = 0

where α, β, γ ∈ C, has two regular singular points in the complex line C, namely
the points 0, 1 ∈ C.

The following Maple script gives the two linearly independent formal
solutions –up to order 4, of the given Gauss hypergeometric equation for
α = β = 1 and γ = i ∈ C

> with(DEtools):

> L:=t*(1-t)*Dt^2+(I-3*t)*Dt-1;

2

L := t (1 - t) Dt + (I - 3 t) Dt - 1

> sol:=formal_sol(L,[Dt,t],T,’terms’=4,t=0);

2 3 4

sol := [[1 - I T + (-1 - I) T + (-9/5 - 3/5 I) T + O(T ), T = t],

(1 - I) 2 3 4

[T (1 + (2 - I) T + (5/2 - 5/2 I) T + (5/2 - 25/6 I) T + O(T )), T = t]]

From the very definition it is difficult to see whether a given point is regular
singular. The fundamental theorem of Fuchs (cf. [44, 15.3]) states that the
origin is a regular singular point for Equation (13) if and only if the order of the
pole at 0 of the meromorphic function pi(t)/pm(t) is less or equal than m − i,
i = 0, . . . ,m. This theorem can be restated in terms of the so-called Newton or
Newton-Puiseux polygon of the equation P (u) = 0 (see e.g. [51]).

The notion of regular singular point for a differential system as (5) in higher
dimension –dated only on the last 70’s, is due to several authors, especially to
Z. Mebkhout, M. Kashiwara and T. Kawai. This definition of regular singular
point of a differential system in dimension n is highly abstract and uses derived
categories and functors.

To this end Z. Mebkhout introduced the irregularity sheaves of a holonomic
module along hypersurfaces [58].

In [51] the notion of slope of a differential system at a point in Cn is
introduced. In [52] the authors gave an equivalent definition of regular singular
point (or more precisely of regular system) that can be effectively computed
starting with a system of differential equations and using again Gröbner basis
theory, provides the system is holonomic. The key point is the computation of
the slopes of a holonomic An–module. A holonomic module M is said to be
regular at a point in Cn if M has no slopes at that point. The computation of
the slopes can be done by the so-called ACG algorithm [4]. This algorithm uses
Gröbner bases as a fundamental tool. The works [17], [39, 40], [73] are related
to the computation of the slopes for hypergeometric systems18.

18For the theory of hypergeometric systems see [33]. The book [70] deals with the
computational treatment of this kind of differential systems.
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3.2 Bernstein-Sato polynomial

Let f ∈ C[x] = C[x1, . . . , xn] nonconstant and let s be a new variable.
Consider the Weyl algebra An(C(s)) over the field C(s) of rational functions

in s and the An(C(s))–module N = C(s)[x1, . . . , xn, f
−1] · fs, where fs is

considered as a formal symbol and the An(C(s))-action on N is defined by

∂j(f
s) = sf−1 ∂f

∂xj
fs

the product rule and the formal differentiation of rational functions.
Let M = An(C(s))fs be the submodule of N generated by fs. We can see

in [8] that both modules are holonomic (see Definition 5) over An(C(s)), and
that M has finite length. This means that there exists Q(s) ∈ An(C(s)) such
that fs = Q(s)(fs+1). If b(s) is the common multiple of the denominators of
the coefficients of Q(s) and P (s) = b(s)Q(s) we have

P (s)(fs+1) = b(s)fs (14)

where P (s) ∈ An[s] and b(s) are not uniquely defined by the functional equation
(14).

The set of all b(s) satisfying Equation (14) for some P (s) is a nonzero ideal
in C[s] whose (monic) generator bf (s) is called the Bernstein-Sato polynomial
of f or the b-function of f . It was introduced by I.N. Bernstein [8] and by M.
Sato [71].

As an example of Bernstein-Sato polynomial, taking f =
∑n
i=1 x

2
i one has

the identity
n∑

i=1

(
∂2

∂x2
i

)
(fs+1) = 4b(s)fs,

where b(s) = (s + 1)(s + n
2 ). It is not difficult to prove that in this case

b(s) = bf (s).
The Bernstein-Sato polynomial bf (s) is always multiple of (s + 1) and

equality holds if f is smooth. M. Kashiwara proved that its roots are always
rational and negative [47]. B. Malgrange pointed out the connection between
the singularity structure of f−1(0) and the roots of bf (s) [56].

Until [59] there were not an algorithm for the computation of bf (s). We can
use Risa-Asir [62] for example, to compute the b-function of a polynomial.

Another interesting information included in bf (s) is related to the module
structure of the localization of the ring C[x] by f , noted by C[x]f , that is, the
ring of rational functions with poles along f (that is along the hypersurface
f = 0)

C[x]f =

{
g

fm
| g ∈ C[x], m ∈ N

}
.

C[x]f is a C[x]-module and an An-module in a natural way. Of course if f
is not a constant C[x]f is not a finitely generated C[x]-module. We have an
analogous situation in the analytic setting, i.e. starting from f ∈ C{x}, the
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ring of convergent power series around 0, and considering C{x}f , the ring of
(germs of) meromorphic functions with poles along f , as a Dn-module, where
Dn = Diff(C{x}) is the ring of linear differential operators over C{x} (see
Remark 1).

One of the main results in D-module theory is the following theorem:

Theorem 4 ([8]) For any f ∈ C[x], the An-module C[x]f is finitely generated.
More precisely, there exists a positive integer number α such that C[x]f is the
An-module generated by the rational function 1

fα .

The analogous version for the analytic case was proved in [9]. The main
ingredient in the proof of Theorem 4 is the existence of the b-function attached
to f and the positive integer postulated is −α0 if α0 is the smallest integer root
of bf (s). So we have the following problem:

Problem.- Let f ∈ C[x]. Give a presentation of C[x]f as a finitely generated
An-module.

A way to solve the problem is to:

Compute bf (s) and α0.

As C[x]f ≡ Anf
α0 , compute a system of generators of the annihilating

ideal
annAn

(fα0) = {P ∈ An |P (fα0) = 0},
and then

C[x]f ≃ An
annAn

(fα0)
.

There are algorithms based in Gröbner bases for LDOs to obtain bf (s) (see
[59, 60]) and the annihilating ideal of a power of f [60]. Unfortunately, many
interesting examples can not be treated due to the size of the intermediate
computations. Nonetheless, it is possible to obtain the so called logarithmic
D-modules that are natural approximations to C[x]f .

3.3 Logarithmic D-modules

The starting point of this approach are the works of K. Saito [69] about
logarithmic vector fields and logarithmic differential forms. After [13] the
connection with D-modules of this subject became very important. Here we will
treat only the global (algebraic) case of logarithmic An-modules to simplify.

Let D ⊂ Cn be an hypersurface —usually called a divisor in algebraic
geometry— defined by f ∈ C[x]. A vector field with polynomial coefficients

δ =

n∑

i=1

ai(x)∂i

is said to be logarithmic with respect to D if δ(f) = af for some a ∈ C[x]. The
C[x]-module of logarithmic vector fields is denoted by Der(− logD).
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We will consider some ideals in An associated to any divisor D:

I logD = AnDer(− logD)

Ĩ logD = An{δ + δ(f)
f | δ ∈ Der(− logD)}.

Notice that if δ(f) = af then (δ+a)(1/f) = 0 and so δ+ δ(f)
f ∈ annAn

(1/f)
and

Ĩ logD ⊂ annAn
(1/f).

We will write Ĩ logD = ann
(1)
An

(1/f) to emphasize that this ideal is generated
by order 1 LDOs.

It is important to notice that Der(− logD) can be computed –using
commutative Gröbner bases– since

Der(− logD) ≃ Syz(
∂f

∂x1
, . . . ,

∂f

∂xn
, f)

a natural isomorphism sending each logarithmic vector field δ =
∑
i ai(x)∂i to

the syzygy (a1(x), . . . , an(x),− δ(f)
f ).

In this context we have the following problem:

Open Problem.- If D ⊂ Cn is the divisor defined by a polynomial f ∈ C[x],
when

ann
(1)
An

(1/f) = annAn
(1/f) ?

That is, when the annihilating ideal of 1/f is generated by elements of order 1?
Some advances have been obtained for the analytical case in [18], [19], [20],

[21] and [79] for the family of free divisors i.e. for the divisors for which
Der(− logD) is a free C[x]–module ([69]).

This open problem is intimately related to the Logarithmic Comparison
Theorem (LCT) (see e.g. [16], [19], [14]): we say that LCT holds for a divisor
D ⊂ Cn if the cohomology of the complement of D in Cn is computed by the
complex of logarithmic differential forms. It has been conjectured in [79] that

LCT holds for D if and only if annAn
(1/f) = ann

(1)
An

(1/f) (at least locally).

Conclusions

We have described some applications of Computer Algebra methods to the
algebraic study of systems of linear partial differential equations. Using
Gröbner basis theory for linear differential operators we have described how
to calculate the characteristic variety of such systems and how to construct a
free resolution of the associated module. Free resolutions are used in particular
in the computation of the solution spaces of the given system. Computational
methods are also used to study the irregularity of a system, the Bernstein-Sato
polynomials and the so-called logarithmic D–modules.

The use of Gröbner basis theory in this context is motivated by analogous
situations in Commutative Algebra and Algebraic Geometry.
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complement of a free divisor. Trans. Amer. Math. Soc. 348(8):3037–3049,
1996.
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[33] I.M. Gel’fand, A.V. Zelevinskǐı and M.M. Kapranov. Hypergeometric
functions and toric varieties. Funktsional. Anal. i Prilozhen. 23(2): 12–
26, (1989). Correction in ibid, 27(4): 91, (1993).
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Université de Grenoble, 1984.
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Astérisque, 101-102, p. 243–267, Soc. Math. France, Paris, 1983.

[57] E.W. Mayr and A. Meyer. The complexity of the word problems for
commutative semigroups and polynomial ideals. Adv. in Math., 46, 3:305–
329, 1982.
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