
 1

OPTIMAL ALGORITHM FOR THE DEMAND ROUTING PROBLEM IN

MULTICOMMODITY FLOW DISTRIBUTION NETWORKS WITH

DIVERSIFICATION CONSTRAINTS AND CONCAVE COSTS

Abstract.-

Distribution problems are of high relevance within the supply chain system. In real life

situations various different commodities may flow in the distribution process.

Furthermore, the connection between production and demand centres makes use of

complex mesh networks that can include diversification constraints to avoid

overcharged paths. In addition, the consideration in certain situations of economies of

scale gives rise to non-linear cost functions that make it difficult to deal with an optimal

routing scheme. This problem is well represented by the multicommodity flow

distribution networks with diversification constraints and concave costs (MFDCC)

problem. Here we present an optimal algorithm based on the Kuhn-Tucker optimality

conditions of the problem and capable of supplying optimal distribution routes in such

complex networks. The algorithm follows an iterative procedure. Each iteration

constructive solutions are checked with respect to the Kuhn-Tucker optimality

conditions. Solutions consider a set of paths transporting all the demand allowed by its

diversification constraint (saturated paths), a set of empty paths, and an indicator path

transporting the remaining demand to satisfy the demand equation. The algorithm

reduces the total cost in the network in a monotonic sequence to the optimum. The

algorithm was tested in a trial library and the optimum was reached for all the instances.

The algorithm showed a major dependency with respect to the number of nodes and

arcs of the graph, as well as the density of arcs in the graph.

Keywords: demand routing; concave cost; distribution network; Kuhn Tucker

conditions

1. Introduction

Distribution problems are of high relevance within the supply chain system. One of the

principal root problems in the family is the transportation problem that was introduced

in 1941 by Hitchcock (Hitchcock, 1941). This has been researched extensively due to its

importance and the wide range of applications it has. The transportation problem

involves a network with a group of production centres willing to send their commodity

to a group of demand centres through a set of arcs with linear costs.

However, in real life situations various different commodities may flow instead of just

one commodity (e.g. Kengpol et al., 2011). Furthermore, each production centre is not

connected with each demand centre using a single arc but rather with a mesh network of

different arcs (Ubeda et al., 2010). Certain cases cannot be correctly modelled using a

linear cost function and require a more complex way of modelling (Tsao et al. 2010).

Sometimes more accurate results can be achieved with concave cost functions. This

situation arises when dealing with economies of scale which are very common in many

fields such as freight distribution and demand routing systems, and even other

technological fields such as telecommunication networks.

 2

In this paper, we consider a mesh network with a set of nodes as the origin of demand

and a set of nodes as the demand destination. Each pair of nodes constitutes an origin-

destination pair which is known as a specific commodity, converting the problem into a

multicommodity flow problem. Additionally, the costs in arcs are modelled by concave

costs. Lastly, we propose the diversification constraints needed to prevent the arcs from

becoming extremely loaded which can produce malfunction effects on the network and

may arise when concave costs are involved as a result of the benefits offered by

economies of scale. This type of constraint increases the survivability and reliability of

the networks.

Distribution problems with concave costs are NP-Hard and their optimal solution cannot

be found in polynomial time. Several authors have proposed approximate methods to

tackle this problem, such as the linear approximation by Thach (1992), the lagrangian

relaxation by Larsson et al. (1994), or the dynamic programming approach by Zangwill

(1968), Florian and Klein (1971) and Burkard et al. (2001). Metaheuristic approaches

have also been tested although mainly in telecommunication network problems

(Kapsalis et al, 1993; Dengiz et al, 1997; Altiparmak et al, 2003; Zhou and Gen, 2003).

In a more general case, Yan and Luo (1999) developed a heuristic based on simulated

annealing and threshold acceptance, and Altiparmark and Karaoglan (2008) proposed a

tabu approach to solve the transportation problem with concave costs. Here, we have

developed an optimal approach based on the optimality Kuhn-Tucker conditions of the

mathematical formulation of the problem.

The paper then defines the problem and its mathematical formulation in Section 2.

Section 3 presents the Kuhn-Tucker optimality conditions for the demand routing

problem in multicommodity flow networks with diversification constraints and concave

costs that has been described in the previous section. Next, the solution based on the

optimality constraints demand routing algorithm is proposed is Section 4. The results

for a trial library with 27 generated instances are presented in Section 5 and the detailed

procedure for an example network is developed. Finally, the main conclusions are

presented in Section 6.

2. Problem definition and formulation

Given a graph G=(N,E) where N is the set of nodes and E the set of arcs, a set of

commodities K is considered and represents every origin-destination pair of demand.

We define each arc of the network as e∈E and the set of paths connecting every origin-

destination pair is given by P(k). A subset of this set is given by the arc-disjoint paths,

P
d
(k).

Let γk be the demand volume for each origin-destination pair, k, and δk the

diversification parameter for each pair k, so that the demand of pair k is routed along

1 kδ   different paths. As paths and arcs are pre-computed, ϕeh is a binary parameter

that determines if arc e is on path h.

The variables of the problem are the demand fraction related to the origin-destination

pair k that is routed on path h, which is a continuous variable given by pkh, and the total

 3

flow transported on arc e, including the total amount of flow from all the commodities

on the arc, which is a continuous variable given by xe.

Owing to the nature of the problem described, numerous concave cost functions can be

considered. We used the objective function given by ()e e e ec x d x= for arc e, where xe

has been previously explained and de means the per unit variable cost corresponding to

the arc. We selected this function because it provides a widely acknowledged basis of

analysis of scale economies’ effect in transportation problems, and because it is taken as

a representative cost function very similar to many transportation cost functions in

practice (see detailed arguments in LeBlanc 1976; Larsson et al. 1994; Yan and Luo

1999; and Altiparmak and Karaoglan 2008). The cost concave function is, therefore, a

differentiable function. Note that the objective function is used to provide comparable

numerical examples in the subsequent results section. The selection of this function

does not condition the methodology and developed algorithm, because the objective

function only affects the procedure for the calculation of the derivative providing

numerical data.

As a result, the demand routing problem in multicommodity flow networks with

diversification constraints and concave costs (MFDCC problem) can be formulated as:

()

()

()

Minimize

 , 1

 , 2

 ,

e e

e E

e eh kh

k K h (k)

kh k

h (k)

kh k k

c x

s.t. :

x p e E

p k K

p h

∈

∈ ∈Ρ

∈Ρ

= ϕ ∀ ∈

= γ ∀ ∈

≤ δ γ ∀ ∈ Ρ

∑

∑ ∑

∑

() () , 3

 0 , 0

d

e kh

k k K

x p

∀ ∈

≥ ≥

Constraint (1) calculates the total amount of flow on the arc e; constraint (2) ensures

that the demand for every origin-destination pair is met; and constraint (3) ensures that

the demand is routed along 1 kδ   alternative paths. Set P
d
(k) represents all the feasible

disjoint paths for each origin-destination pair. The “disjoint” concept is important and

can be weakly imposed on the arcs or strongly imposed on the nodes. Here, we have

chosen the arc diversification concept because in most cases it is normally only

necessary to take this weak constraint into consideration. Using an example from

telecommunications, disjoint arcs can be used to model reality, since the optical cross-

connect (OXC) in an all-optical WDM mesh network is seldom broke. The OXC is a

device which switches an optical signal from an incoming fibre to an outgoing fibre on

the same wavelength. So, constraint (3) is equivalent to:

� () () , d

kh k
p i, j h , h P k : k K≤ δ ∀ ∈ ∈ ∈ , constraint for arc-disjoint paths

� () , d

kh k
p j h , h P k : k K≤ δ ∀ ∈ ∈ ∈ , constraint for node-disjoint paths

depending on what is being considered and as explained above, we are looking at

 4

constraints for arc-disjoint paths.

3. Kuhn Tucker conditions for the demand routing problem in multicommodity

flow networks with diversification constraints and concave costs

Every solution verifying the necessary and sufficient Kuhn-Tucker conditions of any

problem will be the optimal solution of problem. This fact is proven for linear or non-

linear problems since they are global optimality conditions. Additionally, duality theory

can be regarded as a particular case of the Kuhn-Tucker conditions for linear problems.

See classic theory such as Hillier and Lieberman (1977), Nocedal and Wright (1999),

Avriel (2003) for detailed explanations on Kuhn-Tucker conditions. Appendix 1 depicts

a general overview on the Kuhn-Tucker necessary optimality conditions and their

detailed corresponding application to MFDCC problem, and appendix 2 depicts the

equivalent general overview and detailed application of the Kuhn-Tucker sufficient

optimality conditions to the MFDCC problem.

Next, we re-formulate MFDCC problem to specify the objective function in terms of pkh

variables. This can be done because pkh and xe are inter-related by constraint (2).

Therefore, constraint (2) is included in the objective function to re-formulate the

problem and subsequently formulate the Kuhn-Tucker necessary optimality conditions:

() () ()

()

 = 0 , (free multipliers)

 0 , , (non-negative multip

∈

∈

≡ ≡

γ − ∀ ∈ ← µ

− δ γ ≤ ∀ ∈ ∀ ∈ ←

∑

∑

kh

h P(k)

e e

e E

k k

d

kh k k kh

p

Minimize c x Minimize C x Minimize C p

s.t. :

k K

p · h P k k K v

()

liers)

 0 , , (non-negative multipliers)− ≤ ∀ ∈ ∀ ∈ ←d

kh kh
p h P k k K u

Kuhn-Tucker conditions state that all ()d
h P k∈ and k K∈ can be written as:

kh khk

kh

k khkkh

khkh

C(p)
 = u v

p

(·) · = 0p v

 · = 0p u

-

-

∂
µ

∂

γδ

-

(4)

By calculating the cost function variation related to the demand fraction routed along

path h, we replace the expression of the total cost in the network C(p) with the sum of

the costs of the flows in the arcs, and then we substitute the value of the flow xe

accordingly with equation (1):

 5

ϕϕ ehee
Ee

ehkh
P(k)hKk

kh

ee
Ee

kh

e

e

ee

Ee
kh

ee

Ee
kh

ee
Ee

kh

)x(c = p
p

)x(c =

=
p

x

x

)x(c
 =

p

)x(c
 =

p

)x(c
 =

p

C(p)

'·' ∑















∑∑

∂

∂
∑

∂

∂

∂

∂
∑

∂

∂
∑

∂

∑∂

∂

∂

∈∈∈∈

∈∈

∈

(5)

that corresponds to the sum of cost variations on the arcs belonging to path h. The

optimality conditions are thus enforced on the increase of the cost and not on its

absolute value. By analysing these conditions, we can differentiate the meaning of the

conditions and three different types of paths are found:

� Case 1: the origin-destination pair does not use path h to establish a

communication.

kh khkh

khk

kh

e khe eh k

e E

ee eh k

e E

 = 0 0 and = 0 p u v

C(p)
 - = 0u

p

c' () - = 0x u

 c' () x

∈

∈

⇒ ≥

∂
≥µ

∂

≥ϕ µ

≥ϕ µ

∑

∑

 (6)

Therefore, the sum of the cost variations corresponding to the arcs on the empty

or void paths that are not used by the origin-destination pair k is greater than
kµ .

� Case 2: the origin-destination pair uses path h to establish a communication.

Here, two possibilities arise:

o Case 2.a: the arc transports all the flow allowed by the diversification

constraint. There are
1

1
k

  
−   δ  

 paths in this case. In this case, the Kuhn-

Tucker conditions are reduced to:

k kh khkh

khk

kh

e khe eh k

e E

ee eh k

e E

 = = 0 and 0 p u v

C(p)
 - = - 0v

p

c' () - = - 0x v

c' () x

∈

∈

⇒ ≥δ

∂
≤µ

∂

≤ϕ µ

≤ϕ µ

∑

∑

(7)

The sum of the cost variations corresponding to the arcs on the saturated

paths used by the origin-destination pair k, i.e. ()d
h P k∈ , is upper

bounded by
kµ .

 6

o Case 2.b: the arc transports less flow than the limitation imposed by the

diversification constraint. There is only one path that verifies this

situation, which is:

k kh khkh

k

kh

e eh k

e E

 < = 0 and = 0p u v

C(p)
 - = 0

p

c'() = x
∈

⇒δ

∂
µ

∂

ϕ µ∑

(8)

The sum of the cost variations corresponding to the arcs on the path that

transports a positive amount of flow but below the maximum value

imposed by the diversification constraint related to the origin-destination

pair k is equal to
kµ . This path will be known as the indicator path. This

is a concept that appears in similar terms in the traditional transportation

problem (when links in the graph are grouped into three sets; a set of

slacks equal to zero; a set of slacks equal to the capacity, that is empty

arcs; and one link with an amount of flow equal to the difference

between the demand and the sum of all the flow in arcs with slack equal

to zero). We originally introduced this term in Cortes et al. (2006).

The existence of only one indicator path is also intuitive. Note that if there was a

cheaper path, that path would be full, and if there was a more expensive path it should

be empty, and so the path in the middle separating cheap paths from expensive paths

should transport the rest of demand to satisfy the demand equation. There could be only

two particular cases: (i) the rest of demand is equal to the capacity, so it would be full,

(ii) there is a draw between two paths, corresponding to a case of alternative solutions,

but the solution cost would be the same, and these two cases do not condition the

algorithm procedure that will be later detailed in section 4, because either of the

drawing paths could act as indicator as a matter of fact.

In summary:

� For every origin-destination pair, k, cheap, expensive and indicator paths can be

considered.

The cheap paths are saturated and transport as much flow as possible, i.e.:

kh k k
p ·= δ γ .

The expensive paths are empty and do not transport flow, i.e.: 0
kh

p =

The indicator path transports the necessary amount of flow to satisfy the demand

equation (eq. 2), which is less than k k
·δ γ and more than 0.

� The transported product that flows through the communication paths in order to

satisfy the demand of all origin-destination pairs will be optimum if the

“separator cost concept” is given by ek eh

e E

c'() x
∈

=µ ϕ∑ in the indicator path.

In this way, the Kuhn-Tucker multipliers include the following meanings:

 7

'hk i
c ∼µ It is a concept associated with the value of the derivative of the cost

function along the indicator path.

()hshkh c -c v
i

''∼ It is a concept associated with the deviation between the values of the

derivative of the cost function of the indicator path and each

saturated path. The Kuhn-Tucker optimality conditions determine

that this deviation must be positive for every ()d
h P k∈ and k K∈ .

()
iv hhkh c -c u ''∼ It is a concept associated with the deviation between the values of the

derivative of the cost function of each empty path and the indicator

path. The Kuhn-Tucker optimality conditions determine that this

deviation must be positive for every ()d
h P k∈ and k K∈ .

4. Demand routing algorithm

After having explained the Kuhn-Tucker optimality conditions above, this section

describes an optimal iterative algorithm that can be used to solve the demand routing

problem in multicommodity flow networks with diversification constraints and concave

costs. The algorithm converges to the optimal process by reducing the non-feasibility

after every iteration.

The algorithm needs to pre-compute all the paths of the graph between a pair of nodes.

This is done with an algorithm based on a depth first search routine that is shown in

appendix 4. Although the problem of finding all the paths between every pair of nodes

in a graph is a NP-Hard problem, we consider sparse networks, so that results can be

obtained quickly as the result section shows next.

Step 1. Initialisation. Greedy heuristic

The procedure is based on the k shortest disjoint path algorithm provided by Kleinberg

(1996).

1. Order the origin-destination pairs according to the demand volume, γk.

Subsequently, following that order:

2. For each origin-destination pair, k:

a. For a number of times equal to 1 kδ   -1

i. Calculate the shortest path between the origin o(k) and the

destination d(k).This is a saturated path hs∈ P
d
(k).

ii. Assign a volume of demand equal to δ k·γk.

iii. Erase the path to search for a new disjoint path.

b. Calculate the shortest path between the origin o(k) and the destination

d(k), and assign the remaining demand to satisfy equation (2). This is the

candidate indicator path hi∈ P
d
(k).

In the greedy heuristic the costs of the arcs are simplified to ()e e e
c x d= in order to

calculate the shortest paths. Dijkstra’s algorithm can, therefore, be applied. This initial

flow load provides a determined level of flow along the paths, pkh
0
, corresponding to a

 8

specific level of flow load on the arcs of the network, xe
0
.

We used this greedy heuristic with the objective of providing an initial set of disjoint

paths. It starts selecting a set of edge-disjoint paths that provides an initial set that is

only considered as the seed of the algorithm. After that, the iterative algorithm (next

steps of the iterative routine that forces to accomplish the Kuhn-Tucker conditions)

guides the flow in the paths from that seed to optimality by testing the optimality

conditions for all the paths of the graph connecting such pair k. The main reason to use

this shortest path based initialization algorithm is to generate a seed quickly.

Furthermore, as the shortest path tries to minimise the cost between a pair of nodes, this

can be taken as a reasonably good initial solution following the arguments detailed in

Kleinberg (1996).

Step 2.Checking the Kuhn-Tucker optimality conditions

The Kuhn-Tucker conditions are checked for every origin-destination pair, k. The

condition is given by (9):

() () ()
() () (){ } ()

() ()

0 0 0

0

for every saturated path indicator path empty or void path

where

s i vh kh h kh h kh

d

s i v

h kh e e eh

e E

c' p c' p c' p

h h ,h ,h P k

c' p c' x
∈

≤ ≤

= ∈

= ⋅ϕ∑
 (9)

After the saturated and indicator paths have been obtained (as a result of step 1 or the

iterative process), we have to check the conditions for all the empty paths of the graph

(it has to be taken into account that the condition must be verified for all the empty

paths in the graph as well. These do not necessarily have to be disjoint paths).

The iterative process comes to an end if the optimality conditions are checked;

otherwise, the procedure follows step 3.

Step 3. Iteration

All the origin-destination pairs that do not check the optimality conditions shape the set

K (we say that k K∈ if pair k does not verify the Kuhn-Tucker conditions, i.e. eq. 9).

For these pairs, the set H(k) is defined as the paths that do not check the condition of

such pair, k K∈ . Next procedure is followed:

1. For every k K∈ , paths in H(k) are arranged in increasing order according to the

derivative of the cost function assessed for the previous (step 2) demand routing

pattern, 0

khp . That is, () ()0 0
' 'h kh e e eh

e E

c p c x
∈

= ⋅ϕ∑ is calculated for every h∈ H(k),

for every k K∈ .

2. Origin-destination pair k
*
 is selected as it is the pair that provides the highest

absolute deviation with respect to the optimality conditions, as calculated in

(10).

 9

()
() (){ } () (){ }{ }* ' 0 ' 0 ' 0 ' 0: max max ,max

s i i v
s v

h kh h kh h kh h kh
h H k h h

k k K c p c p c p c p
∈

  
= ∈ − − 
  

 (10)

3. For *
k K∈ , the maximum demand allowed by constraint (3), δ k·γk, is assigned to

the “ ()1 1
k

δ −   ” disjoint paths with lower value of ()*

' 0

h k h
c p . These are

saturated paths for the new iteration.

4. The next disjoint path, following the order determined by the derivative,

transports the rest of the required demand to satisfy constraint (2). This is the

indicator path for the new iteration.

Subsequently, the procedure follows step 2 to check the optimality of the new demand

routing pattern.

Although we have tackled for this algorithm only the Kuhn-Tucker optimality necessary

conditions, the sufficient condition is always checked for every intermediate feasible

(non-optimal) solution of the algorithm given the special characteristics of the problem.

In fact, the sufficiency condition is always checked independently from its optimality

condition due to every solution composed of an indicator path, a number of ()1 1
k

δ −  

saturated paths and a set of empty paths checks it (see appendix 2 for a detailed

argument and proof). Therefore, a feasible solution []
*

kh
p which also checks the

necessary optimality conditions previously described in equation (9) will be the global

optimum of the MFDCC problem. See Hanson and Mond (1987) for detailed arguments

and explanations for necessary and sufficient conditions in optimisation problems.

In addition, the procedure guarantees that the algorithm follows a monotonic sequence

that reduces the cost of the objective function step-by-step. Proof and arguments are

shown in appendix 3 arguing how the total cost is reduced after each iteration.

5. Computational results

5.1. Application example

We present here the next case as an application example to demonstrate the

performance of the algorithm. Consider the eight nodes, and eleven arcs network in

Figure 1. Data over the arcs represent the value of de in the cost function

()e e e ec x d x= . The remaining data appear in Table 1.

 10

Figure 1. Example network

Table 1. Origin-destination data

k ∈Κ∈Κ∈Κ∈Κ origin-destination γγγγκκκκ δk

1 1-2 46 1.00

2 1-3 12 0.53

3 1-5 31 0.89

4 1-8 51 0.51

5 1-6 3 1.00

6 1-7 36 1.00

7 2-5 33 0.8

8 2-8 16 0.95

9 2-6 3 1.00

10 3-8 44 0.38

11 3-6 6 1.00

12 4-8 33 1.00

13 7-8 34 1.00

Although this example network is a simple case, the size of the problem leads to 37

constraints (11 corresponding to the flow evaluation in the arc, eq. [1]; 13

corresponding to the demand satisfaction equation, eq. [2]; and 13 corresponding to the

diversification constraint, eq. [3]), and 154 variables (143 path variables,
kh

p , and 11

flow variables, xe). The example provides an idea of how complex the problem is in real

cases.

We initialise the demand routing pattern in the network with the values shown in Table

2:

Table 2. Greedy heuristic: first demand routing pattern

k∈Κ∈Κ∈Κ∈Κ Origin-destination pkh Path

1 1-2 46.00 (1,2)

2 1-3
6.31 (1,3) hs

5.69 (1,2);(2,3) hi

3 1-5
27.47 (1,2);(2,5) hs

3.53 (1,3);(3,5) hi

4 1-8
26.01 (1,2);(2,5);(5,8) hs

24.99 (1,3);(3,6);(6,8) hi

0.00 (1,4);(4,7);(7,8) hv

5 1-6
3.00 (1,3);(3,6) hs
0.00 (1,2);(2,3);(3,6) hv

6 1-7 36.00 (1,4);(4,7)

7 2-5
26.37 (2,5) hs

6.63 (2;3);(3,5) hi

8 2-8
15.12 (2,5);(5,8) hs

0.88 (2,3);(3,6);(6,8) hi

9 2-6 3.00 (2,3);(3,6)

10 3-8
36.55 (3,5);(5,8) hs

7.45 (3,6);(6,8) hi

11 3-6 6.00 (3,6)

12 4-8 33.00 (4,7);(7,8)

13 7-8 34.00 (7,8)

 11

This assignment provided a total cost given by (11) and equal to 105.02.

e e e e e kh eh

e E e E e E k E h P(k)

CT c (x) d x d p
∈ ∈ ∈ ∈ ∈

= = = ϕ∑ ∑ ∑ ∑ ∑ (11)

The second step was to check the optimality conditions in pairs 2; 3; 4; 5; 7; 8; and 10.

To do so, we needed to calculate the value of the derivatives, ()h kh
c' p , for every path

connecting such pairs (eq. 12):

() ()0

2 2

e e

h kh e e eh eh eh
kh

e E e E e Ee kh e

k K h P(k)

d d
c' p c' x

x p∈ ∈ ∈

∈ ∈

 
  

= ⋅ϕ = ⋅ϕ = ⋅ϕ   
   δ   

 

∑ ∑ ∑
∑ ∑

 (12)

By computing the values for those origin-destination pairs, the following results were

obtained (Table 3):

Table 3. Checking the optimality conditions. 1

st
 iteration

k∈Κ∈Κ∈Κ∈Κ Origin-destination pkh Path Type ()h kh
c' p

2 1-3
6.31 (1,3) hs 0.163
5.69 (1,2);(2,3) hi 0.173

3 1-5
27.47 (1,2);(2,5) hs 0.151
3.53 (1,3);(3,5) hi 0.236

4 1-8
26.01 (1,2);(2,5);(5,8) hs 0.208
24.99 (1,3);(3,6);(6,8) hi 0.323

0.00 (1,4);(4,7);(7,8) hv 0.265

5 1-6
3.00 (1,3);(3,6) hs 0.237
0.00 (1,2);(2,3);(3,6) hv 0.247

7 2-5
26.37 (2,5) hs 0.103

6.63 (2;3);(3,5) hi 0.197

8 2-8
15.12 (2,5);(5,8) hs 0.159
0.88 (2,3);(3,6);(6,8) hi 0.285

10 3-8
36.55 (3,5);(5,8) hs 0.130
7.45 (3,6);(6,8) hi 0.161

The optimality conditions as stated in (9) were not checked for pair 4, specifically, it

was the comparison value between the indicator and empty paths of pair k = 4 that was

not checked. Values are shown in bold and italic figures. So, in this case { }4K = with k
*

= 4 as well. The saturated path stayed the same (it had the lowest value for the

derivative) and the indicator and empty paths had to be swapped. So, according to the

algorithm 24.99 units of flow followed path (1,4);(4,7);(7,8) and path (1,3);(3,6);(6,8)

remained empty.

This modification affected not only pair 4, but also every pair whose communicating

paths contained some of the arcs whose relative demand fraction had been modified.

Subsequently, we recalculated the values as shown in Table 4:

Table 4. Checking the optimality conditions. 2

nd
 iteration

k∈Κ∈Κ∈Κ∈Κ Origin-destination pkh Path Type ()h kh
c' p

2 1-3
6.31 (1,3) hs 0.279

5.69 (1,2);(2,3) hi 0.173

3 1-5 27.47 (1,2);(2,5) hs 0.151

 12

�� = �2,5�.

3.53 (1,3);(3,5) hi 0.352

4 1-8
26.01 (1,2);(2,5);(5,8) hs 0.208
24.99 (1,4);(4,7);(7,8) hi 0.219
0.00 (1,3);(3,6);(6,8) hv 0.563

5 1-6
3.00 (1,3);(3,6) hs 0.390

0.00 (1,2);(2,3);(3,6) hv 0.284

7 2-5
26.37 (2,5) hs 0.103

6.63 (2;3);(3,5) hi 0.197

8 2-8
15.12 (2,5);(5,8) hs 0.159
0.88 (2,3);(3,6);(6,8) hi 0.408

10 3-8
36.55 (3,5);(5,8) hs 0.130
7.45 (3,6);(6,8) hi 0.284

This new assignment provided a total cost given by (11) and equal to 100.77.

The optimality conditions were not checked by pair 2 (where the derivative of the

saturated path was greater than the derivative of the indicator path) and pair 5 (where

the derivative of the saturated path was greater than the derivative of the empty path) as

can be viewed in Table 4 (values are shown in bold and italic figures) being

The difference (equation 10) is the same for both cases and equal to 0.106, and any of

them can be chosen. We selected for this iteration k
*

= 2. By performing the

corresponding re-arrangement for pair 2, the following results were obtained (Table 5):

Table 5. Checking the optimality conditions. 3

rd
 iteration

k∈Κ∈Κ∈Κ∈Κ Origin-destination pkh Path Type ()h kh
c' p

2 1-3
6.31 (1,2);(2,3) hs 0.171
5.69 (1,3) hi 0.286

3 1-5
27.47 (1,2);(2,5) hs 0.151
3.53 (1,3);(3,5) hi 0.359

4 1-8
26.01 (1,2);(2,5);(5,8) hs 0.208
24.99 (1,4);(4,7);(7,8) hi 0.219
0.00 (1,3);(3,6);(6,8) hv 0.570

5 1-6
3.00 (1,3);(3,6) hs 0.397

0.00 (1,2);(2,3);(3,6) hv 0.281

7 2-5
26.37 (2,5) hs 0.103

6.63 (2;3);(3,5) hi 0.195

8 2-8
15.12 (2,5);(5,8) hs 0.159
0.88 (2,3);(3,6);(6,8) hi 0.406

10 3-8
36.55 (3,5);(5,8) hs 0.130
7.45 (3,6);(6,8) hi 0.284

This new assignment provided a total cost given by (11) and equal to 100.70.

Again, the optimality conditions were not checked by pair 5 (where the derivative of the

saturated path was greater than the derivative of the empty path) as Table 5 depicts.

Therefore, the flow was recirculated between both paths and (1,2);(2,3);(3,6) turned into

the saturated path meanwhile (1,3);(3,6) remained as the empty path. Calculating again

the values for the fourth iteration (Table 6):

Table 6. Checking the optimality conditions. 4
rth

 iteration

k∈Κ∈Κ∈Κ∈Κ Origin-destination pkh Path Type ()h kh
c' p

2 1-3
6.31 (1,2);(2,3) hs 0.160
5.69 (1,3) hi 0.329

 13

3 1-5
27.47 (1,2);(2,5) hs 0.151
3.53 (1,3);(3,5) hi 0.402

4 1-8
26.01 (1,2);(2,5);(5,8) hs 0.207
24.99 (1,4);(4,7);(7,8) hi 0.219
0.00 (1,3);(3,6);(6,8) hv 0.613

5 1-6
3.00 (1,2);(2,3);(3,6) hs 0.271
0.00 (1,3);(3,6) hv 0.440

7 2-5
26.37 (2,5) hs 0.103

6.63 (2;3);(3,5) hi 0.185

8 2-8
15.12 (2,5);(5,8) hs 0.159
0.88 (2,3);(3,6);(6,8) hi 0.396

10 3-8
36.55 (3,5);(5,8) hs 0.130
7.45 (3,6);(6,8) hi 0.284

This demand routing provided a total cost equal to 100.28. In addition, after this

iteration, every path now checked the optimality conditions, being optimal the solution

provided, and ending the procedure.

Next Table 7 shows the flow in the links through the different iterations of the algorithm

showing the cost evolution to the optimum value.

Table 7. Flow in links and network cost through the iterations

Link de
1

st
 iteration 2

nd
 iteration 3

rd
 iteration 4

th
 iteration

xe Ce(xe) xe Ce(xe) xe Ce(xe) xe Ce(xe)

(1,2) 1 105,17 10,26 105,17 10,26 105,79 10,29 108,79 10,43

(1,3) 2 37,83 12,30 12,84 7,17 12,22 6,99 9,22 6,07

(1,4) 1 36,00 6,00 60,99 7,81 60,99 7,81 60,99 7,81

(2,3) 1 16,20 4,02 16,20 4,02 16,82 4,10 19,82 4,45

(2,5) 2 94,97 19,49 94,97 19,49 94,97 19,49 94,97 19,49

(3,5) 1 46,71 6,83 46,71 6,83 46,71 6,83 46,71 6,83

(3,6) 1 45,32 6,73 20,33 4,51 20,33 4,51 20,33 4,51

(4,7) 2 69,00 16,61 93,99 19,39 93,99 19,39 93,99 19,39

(5,8) 1 77,68 8,81 77,68 8,81 77,68 8,81 77,68 8,81

(6,8) 1 33,32 5,77 8,33 2,89 8,33 2,89 8,33 2,89

(7,8) 1 67,00 8,19 91,99 9,59 91,99 9,59 91,99 9,59

Total cost 105,02 Total cost 100,77 Total cost 100,70 Total cost 100,28

Improvement -4,25 Improvement -0,069 Improvement -0,423

5.2. Computational results

We constructed a trial library with 30 instances to carry out a detailed analysis of the

algorithm, including convergence to the optimum, time consumption, and the analysis

of the main algorithm parameters. This trial library can be accessed through the website

http://io.us.es/RedTeltrials/ConcaveOptimize/. In the library, the first 26 trials

correspond to sparse and medium density graphs while the four last problems

correspond to fully connected dense graphs (density ratio equal to one). These two

different set of trial graphs are separated by a dot line in Table 8. These two sets allow

analysing the behaviour of the algorithm when increasing the connectivity among nodes

in the graph. The dimension of the problems depending on the parameters arcs, origin-

 14

2	
� ·
� − 1��⁄

destination pairs, and number of paths communicating such pairs varies from around

500 constraints and 200 variables (instances 6 or 13) to more than 2,000 constraints and

1,000 variables (instances 1, 2 8, 16, 18, 29 or 30). This variety provides a good basis

for the analysis.

The considered parameters are detailed in Table 8. First, we included the number of

nodes, N, arcs, E, and origin-destination pairs, K. We have, also, analysed the volume of

demand in the network noted as kγ∑ , and the level of alternative paths forced in the

demand routing that we have called diversification and is given by kδ∑ (a lower result

from the sum requires a higher degree of alternative routing paths).

The main output values from our analysis are the cost, the algorithm computational time

and the required number of iterations, and they are compared with respect to the main

design parameter. The considered parameters were: (i) the number of nodes; (ii) the

number of arcs; (iii) the density of the graph that is calculated as the ratio between the

arcs and the maximum number of arcs considering possible connections among all the

nodes. So, the ratio is calculated as: ; (iv) the number of origin-

destination pairs; (v) the total demand volume in the network; and (vi) the

diversification parameter.

Table 8 provides the results obtained for the 30 instance library. Data related to the cost

and the required computational time and number of iterations to obtain the optimum are

provided together with data related to preparation of the problem. That is, the required

time for finding the paths in the graph connecting every origin-destination pair, as well

as the number of paths that was found.

 15

Table 8. Summary of the trial library result

No.

Graph

Nodes

(N)

Arcs

(E)
Density

Origin-destination

pairs (K) kγ∑ kδ∑

Pre-computing(1)
Number of

iterations

Algorithm

time

(seconds)

Cost Time for

finding paths

Number of

paths

1 29 76 0.19 325 7500 243.60 0.093 8284 51 1415 2330.99

2 16 40 0.33 101 2470 74.52 0.015 653 19 52 867.90

3 17 44 0.32 134 2748 81.30 0.062 2832 20 128 929.25

4 28 64 0.17 349 6040 175.14 0.078 7221 23 1544 1976.86

5 24 65 0.24 235 5699 167.73 0.063 6290 42 756 1815.33

6 11 22 0.40 48 1184 37.31 0.063 171 8 11 363.51

7 21 49 0.23 165 3114 97.17 0.016 866 15 87 1163.39

8 26 65 0.20 284 5366 169.77 0.015 14950 34 2705 1846.75

9 10 14 0.31 37 671 22.44 0.001 91 2 1 274.93

10 19 47 0.27 162 4143 122.84 0.001 5442 19 215 1096.81

11 26 64 0.20 287 6984 217.22 0.079 15327 39 1312 2012.19

12 23 56 0.22 206 3915 125.53 0.001 3519 12 171 1236.76

13 18 31 0.20 137 2381 76.76 0.156 921 4 14 832.22

14 10 18 0.40 38 661 22.21 0.046 113 3 13 292.31

15 13 27 0.35 62 1440 47.23 0.047 227 5 11 559.51

16 30 73 0.17 346 6988 206.28 0.001 16882 28 2498 2284.20

17 14 28 0.31 66 1315 38.93 0.016 219 4 24 478.74

18 24 66 0.24 252 6353 179.64 0.001 18071 38 2767 1831.47

19 20 52 0.27 162 3597 100.10 0.001 2094 23 144 1148.47

20 21 56 0.27 173 3690 104.53 0.001 3050 22 160 1203.23

21 28 68 0.18 322 7438 244.62 0.094 6412 31 563 2337.84

22 15 37 0.35 94 1625 47.08 0.063 933 18 51 605.38

23 21 53 0.25 174 3890 128.89 0.063 3870 46 489 1270.06

24 17 37 0.27 111 2573 84.58 0.001 648 13 27 891.24

25 12 26 0.39 53 1069 31.22 0.001 181 7 28 448.28

26 15 31 0.30 78 1418 44.49 0.015 333 9 16 528.53

27 10 45 1.00 45 1099 44.01 0.005 1013 14 23 265.39

28 12 66 1.00 66 1695 64,01 0.005 4083 21 49 387.04

29 15 105 1.00 105 2638 103,01 0.005 32752 49 2890 618.72

30 16 120 1.00 120 3102 109 0.015 65519 51 3801 745.69
(1) See appendix 4

In next sections, we make a graphical analysis of the results in Table 8 (done in figures

2 to 6) in order to appreciate tendencies, dominances, etc. Firstly, we provide an

analysis for the set of sparse and medium density graphs, and secondly an analysis for

the four dense graphs is provided. The reason for separating them in the analysis is for

avoiding possible interferences between different conceptual graphs with a very

different density of arcs.

5.3. Analysis of the results for sparse and medium density graphs

First, we analyse tendencies and dependencies for sparse and medium density graphs.

Starting with the objective function dependencies with respect to the main parameters,

we can say that the cost of the problem maintains an approximately linear tendency with

respect to the number of nodes, the number of origin-destination pairs, the total demand

volume in the network, and the diversification parameter. On the other hand, the

relation with respect to the number of arcs in the graph slightly shows a higher than

 16

linear relation that shoots up the distribution cost in the network, being the parameter

with a more significant repercussion (see Figure 2).

Figure 2. Relation between cost and main design parameters for instances 1 to 26

The time required by the algorithm to get the optimal solution was mainly dependent on

the number of arcs and nodes (Figure 3). The time consumption increased at a greater

rate than the size of the problem as expected for a NP-Hard problem such as the

analysed.

Instances 8, 16 and 18 showed the higher times to reach the optimum of the problem

because they represent the major dimension problems. So, worse results were obtained

for graphs which combined a large number of nodes, arcs, origin-destination pairs, and

demand.

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35

C
o

st

Nodes

0

500

1000

1500

2000

2500

0 20 40 60 80

C
o

st

Arcs

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400

C
o

st

Number of origin-destination pairs

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000

C
o

st

Total demand volume

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300

C
o

st

Diversification

 17

Figure 3. Relation between computational time and main design parameters for instances 1 to 26

The number of iterations of the algorithm is strongly linked to the computational time of

the algorithm, and it is mainly affected by the density of the graph, as well as the

number of arcs and nodes too. So, the problems that take a greater time in the optimum

convergence were the larger problems and also those problems with a higher number of

pre-computed paths, which required a greater number of iterations (Table 8).

Following this later aspect, Figure 4 shows the relation between the number of paths

that were pre-computed for each graph, and the computational time and the number of

iterations of the algorithm. The figure shows that the increase in terms of computational

time and number of iterations follows an increasing tendency with a rate lower than

when it is analysed with respect to other design parameters (see how the increasing rate

is higher when the computational time is analysed with respect to other design

parameters in Figure 3). This fact contributes to validate and enhance the real potential

applicability of the approach.

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

T
im

e

Nodes

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80

T
im

e

Arcs

0

500

1000

1500

2000

2500

3000

0 100 200 300 400

T
im

e

Number of origin-destination pairs

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000
T

im
e

Total demand volume

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300

T
im

e

Diversification

 18

Figure 4. Time and number of iterations evolution with respect to the number of paths in the graph

for instances 1 to 26

Finally, Figure 5 provides an interesting analysis related to the algorithm convergence.

The optimising curve depicts a monotonic decrease of the total cost value that the

algorithm achieved, as shown in the figure. We have selected instances 1, 4, 8 and 18 as

representative examples to appreciate the algorithm convergence. It is interesting to

note how this phenomenon that is argued in appendix 3 is empirically checked when

solving the instances of the trial library.

Figure 5. Convergence to the optimum curves for graph instances 1, 4, 8 and 18

5.4. Analysis of the results for dense graphs

Finally, we analyse the main parameter dependencies related to dense graphs. Starting

with the objective function, the cost analysis in dense graph follows a very similar

structure to the analysis in sparse or medium density graphs, depicting a clearly linear

tendency. However, the linear dependency is stronger with respect to the nodes than the

arcs (see left side of Figure 6). Furthermore, the dependency with respect to the

diversification parameter (kδ∑) than with respect to the number of origin-destination

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000

T
im

e

Number of paths in the graph

0

10

20

30

40

50

60

0 5000 10000 15000 20000

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

Number of paths in the graph

2325,00

2330,00

2335,00

2340,00

2345,00

2350,00

2355,00

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051

C
T

(t
o

ta
l
c
o

s
t)

iterations

Graph #1

CT(Nº de Iteraciones)

1985,74

1985,57

1985,28

1983,23
1982,99

1981,03

1980,98

1980,21

1980,19

1980,14

1979,48

1979,47

1979,33

1979,28

1979,18

1978,96

1978,89
1978,59

1977,95

1977,00

1976,99

1976,93

1976,90

1976,86

1976,00

1977,00

1978,00

1979,00

1980,00

1981,00

1982,00

1983,00

1984,00

1985,00

1986,00

1987,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
T
(T
o
ta
l
c
o
s
t)

Iterations

Graph #4

CT(Nº de Iteraciones)

1844

1846

1848

1850

1852

1854

1856

1858

1860

1862

1864

1866

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

C
T

(T
o

ta
l c

o
s

t)

Iterations

Graph #8

CT(Nº de Iteraciones)

483,07

482,12

479,65

479,05

478,74

478,50

479,00

479,50

480,00

480,50

481,00

481,50

482,00

482,50

483,00

483,50

0 1 2 3 4

C
T

(T
o

ta
l c

o
s

t)

Iterations

Graph #18

CT(Nº de Iteraciones)

 19

pairs (see right side of Figure 6).

Figure 6. Relation between cost and main design parameters for instances 27 to 30

The analysis of the computational time against the main parameters is also interesting

and relevant. Here again major dependencies appear for nodes and diversification. Also,

a higher than linear tendency is appreciated with respect to number of nodes (left side of

Figure 7), and especially with respect to the diversification parameter (right side of

Figure 7).

Figure 7. Relation between time and main design parameters for instances 27 to 30

Finally, similar comments to those provided for sparse and medium density graphs

attending to the computational time and number of iterations with respect to the number

of paths is also valid for dense graphs. Here again, the increase both in computational

time and number of iterations is not so high with respect to the number of paths in the

graphs as with respect to other design parameters as can be viewed in Figure 8.

Figure 8. Time and number of iterations evolution with respect to the number of paths in the graph

for instances 27to 30

0

500

1000

1500

2000

2500

3000

3500

4000

0 10000 20000 30000 40000 50000 60000 70000

T
im

e

Number of paths in the graph

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000 60000 70000

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

Number of paths in the graph

 20

6. Conclusions

In this paper we have proposed a novel optimal algorithm based on the Kuhn-Tucker

optimality conditions to determine the optimum of the demand routing problem in

multicommodity flow networks with diversification constraints and concave costs. The

aforementioned problem is considered NP-Hard because of its concave cost function. In

addition, it is an ambitious problem that takes most of the elements from traditional

concave cost transportation problems literature such as the objective function and the

multicommodity constraints, but also includes new elements as the diversification

constraints that have not been considered in concave cost paper literature, depicting a

more complex problem that those tackled in most of the concave cost transportation

papers. Such diversification constraints are required many times to model situations that

require diversifying elements in alternative routes of a distribution network, such as

freight in transportation networks or cells in telecommunication networks, modelling a

fact that appear in a number of real practice situations.

We have presented an iterative algorithm based on the Kuhn-Tucker optimality

conditions of the problem. Feasible solutions composed of an indicator path, a number

of ()1 1
k

δ −   saturated paths and a set of empty paths are analysed for checking the

Kuhn-Tucker necessary conditions each iteration, since the sufficient condition is

always checked for every intermediate feasible solution defined as the previous one and

independently from its optimality. The algorithm enables the optimum to be reached

after a number of iterations. The method is a constructive step-by-step method because

after each iteration the total cost in the network is reduced in a monotonic sequence.

Therefore, given a MFDCC problem, a sufficiently high number of iterations of the

algorithm will allow reaching the optimum of the problem. It is clear that as the

MFDCC problem is NP-Hard, the number of iterations of the algorithm increases in a

non-polinomial way when the size of the problem increases. For very great size

problems this exact algorithm could not be efficient.

The algorithm showed a major dependency with respect to the number of nodes and

arcs of the problem as well as the level of diversification, which define the size of each

instance. Also the density of the graph depicted a clear influence for problems of the

same size increasing significantly the computational time. The number of origin-

destination pairs, as well as the number of alternative paths for connecting each origin-

destination pair revealed a not so relevant dependency levelling off its tendency. Also, it

is relevant to note that tendencies were appreciated in a similar way both for sparse,

medium density and dense graphs.

The optimum was obtained for all the instances studied, and the time consumption was

feasible when analysed from a non-real-time perspective, which is normal in network

design problems. Although in real time situations, the algorithm may not be suitable

depending on the time response required, alternatives such as stop criteria after a

number of iterations or time consumption could be considered because the method

guarantees a monotonic approach to the optimum.

 21

Acknowledgements

The authors acknowledge an anonymous referee for his/her helpful comments on earlier

versions of this manuscript that have significantly contributed to enrich the quality of

the paper in its final form.

Appendix 1

Appendix 1 states the Kuhn-Tucker optimality necessary conditions for every

optimisation problem, and its application to the MFDCC problem.

Consider the next generic optimization problem:

The Kuhn-Tucker conditions are given by:

The Kuhn-Tucker conditions for the MFDCC problem are given by:

A solution verifying the necessary condition is only optimum if it verifies also the

sufficiency condition in problems with non-convex objective functions.

Appendix 2

Appendix 2 deals with the Kuhn-Tucker optimality sufficient conditions. In addition,

here is proven that every solution for the communication of K commodities, each of

them with a demand γk and forced to a diversification given by δk, that is composed by a

set of ()1 1
k

δ −   saturated paths, an indicator path and being the rest void paths verifies

the Kuhn-Tucker sufficient conditions. Thus, every solution associated to each iteration

of the algorithm described in section 4 will verify the Kuhn-Tucker sufficient condition.

 ��� �
�� (13)

s.t.: ��
�� ≤ 0 , ∀� (14) ℎ�
�� = 0 , ∀� (15) � ∈ ℛ�

∇�
�� + # $� ∇��
�� +� # %�∇ℎ�
��
� = 0

(16)

��
�� ≤ 0 , ∀� ℎ�
�� = 0 , ∀� (17) $� · ��
�� = 0 , ∀� (18) $� ≥ 0 ∀� and %� �*++ (19)

 ,-
.�,.�ℎ − %� = $�ℎ − /�ℎ
(20)

.�ℎ − 0� · 1� � · /�ℎ = 0 (21) .�ℎ · $�ℎ = 0 (22) $�ℎ , /�ℎ ≥ 0 and %� �*++ (23)

 22

2ℎ3′ > 2ℎ�′

Let consider the generic problem given by equations (13-15). The sufficiency condition

for such generic problem is given by (24):

Where:

The sufficiency condition for the MFDCC problem is given by (25):

And this expression must be satisfied in set V(x) that is defined as:

Therefore, any flow pattern verifying equations (20 to 23) verifies the sufficient

condition too, and therefore the necessary conditions becomes the global optimality

conditions for the specific structure of the analysed problem.

Appendix 3

Appendix 3 proves that the algorithm described in section 4, guarantees the reduction of

the cost of the objective function after each step following a monotonic sequence to

optimality.

Suppose that after iterating, the Kuhn-Tucker conditions cannot be satisfied for every

origin-destination pairs. Therefore, the origin-destination pair k
*
 is given by (9). For

such pair three options can appear:

a) the derivative is higher in a saturated path than in the indicator path

 67∇�� 8
�, $, %�6 ≥ 0 ∀6 ∈ 9
�� (24)

∇� 8
�, $, %� = ∇�
�� + # $� ∇��
�� +� # %�∇ℎ�
��
�

and: 9
�� = �6 ∈ ℛ� : ∇ℎ�
��7 · 6 = 0 , ∀� ; ∇��
��7 · 6 = 0 , ∀� ∈ 	
���

where A(x) is the set of active constraints (that is, verifies constraint ��
�� ≤ 0 with

zero slack).

67 <,2-
.�,.�ℎ2 = 6 ≥ 0, ∀6 ∈ 9
�� (25)

9
�� = >6 ∈ ℛ� : # 6�ℎ = 0, ∀� ∈ �ℎ∈?
�� and 6�ℎ = 0 for those paths ℎ ∈ ?
�� so that .�ℎ
= 0�
saturated paths�or so that .�ℎ = 0
empty paths�K

which is verified by every feasible solution associated to the corresponding iteration of

the algorithm described in section 4. In effect, equation (25) is verified in every

saturated and empty path because 6�ℎ = 0 for such paths, and the indicator path verifies

also 6�ℎ = 0 because ∑ 6�ℎ = 0, ∀� ∈ �ℎ∈?
�� and there is only one indicator path in

each iteration, so being the other paths (saturated and empty) equal to zero, the indicator

path must be equal to zero too.

 23

2ℎ�′ > 2ℎ/′
2ℎ3′ − 2ℎ�′ � and
2ℎ �′ − 2ℎ/′ �

2ℎ3′ − 2ℎ�′ � >
2ℎ�′ − 2ℎ/′ �.

2ℎ3′ − 2ℎ�′ � <
2ℎ�′ − 2ℎ/′ �.

b) the derivative is higher in the indicator path than in a void path

c) Both situations occur but one of the expressions: is

higher than the other, so we select the corresponding case.

So we need to analyse the recirculation of flow for the two cases given below as option

A and option B.

Option A:

It corresponds to recirculate the flow from the saturated path to the indicator path for

cases a) or c) when

Total cost is given for current situation (26) and, after recirculating, new situation (27):

So, there is an unchanging part given by the flown on the links for every link not

belonging to the saturated or indicator path, and a changing part given by the links in

the saturated and indicator paths.

Calculating the variation of cost between new and current situations, equation (28) is

reached.

Option B

It corresponds to recirculate the flow from the indicator path to the void path for cases

b) or c) when

Total cost is given for current situation (29) and, after recirculating, new situation (30):

-2
?� = # 2+
�+ �+∉�ℎ3 ;ℎ�� + # 2+
�+ �+∈ℎ3
+ # 2+
�+ �+∈ℎ�

 (26)

-�
?� = # 2+
�+ �+∉�ℎ3;ℎ�� + # 2+
�+ −△ ��+∈ℎ3
+ # 2+
�+ +△ ��+∈ℎ�

 (27)

-�
?� − -2
?� = O # 2+
�+ �
+∈ℎ3

+ # 2+
�+ −△ ��
+∈ℎ3

P + O# 2+
�+ �
+∈ℎ�

+ # 2+
�+ +△ ��
+∈ℎ�

P (28)

From the checking of the Kuhn-Tucker conditions we know that 2ℎ3′ > 2ℎ�′ (that was the

reason for non-optimality). Therefore, the decrease in the cost experimented when

reducing flow in the saturated path corresponding to the evaluation of the first term of

the sum is higher than the increase in the cost experimented when increasing flow in the

indicator path corresponding to the evaluation of the second term of the sum (this

argument is based on 2ℎ3′ > 2ℎ�′). And thus, -�
?� − -2
?� < 0 producing a decrease of the

total cost after recirculating the flow consequently.

-2$**+�R
?� = # 2+
�+ �+∉�ℎ� ;ℎ/� + # 2+
�+ �+∈ℎ�
+ # 2+
�+ �+∈ℎ/

 (29)

 24

So, there is an unchanging part given by the flown on the links for every link not

belonging to the indicator or void path, and a changing part given by the links in the

indicator and void paths.

Calculating the variation of cost between new and current situations, equation (31) is

reached.

These arguments prove that after each iteration the total cost in the network is reduced.

Therefore, given a MFDCC problem, a sufficiently high number of iterations of the

algorithm allow reaching the optimum of the problem. It is clear that as this problem is

NP-Hard, the number of iterations of the algorithm increases in a non-polinomial way

when the size of the problem increases.

Appendix 4

This appendix includes the procedure followed to find all the paths in a graph. There are

several alternatives to find all the paths between a pair of nodes in a graph. Most of

them follow Depth-First Search (DFS) or Breadth-First-Search (BFS) structures. We

followed a procedure based in the DFS algorithm. This is a well-known algorithm that

can be described as next:

Input: A graph G and a vertex v of G

Output: A labelling of the edges in the connected component of v as

discovery edges and back edges

procedure DFS(G,v):

 label v as explored

 for all edges e in G.adjacentEdges(v) do

 if edge e is unexplored then

 w ← G.adjacentVertex(v,e)

 if vertex w is unexplored then

 label e as a discovery edge

 recursively call DFS(G,w)

-�+S
?� = # 2+
�+ �+∉�ℎ� ;ℎ/� + # 2+
�+ −△ ��+∈ℎ�
+ # 2+
�+ +△ ��+∈ℎ/

 (30)

-�
?� − -2
?� = O# 2+
�+ �
+∈ℎ�

+ # 2+
�+ −△ ��
+∈ℎ�

P + O # 2+
�+ �
+∈ℎ/

+ # 2+
�+ +△ ��
+∈ℎ/

P

(31)

From the checking of the Kuhn-Tucker conditions we know that 2ℎ�′ > 2ℎ/′ (that was the

reason for non-optimality). Therefore, the decrease in the cost experimented when

reducing flow in the indicator path corresponding to the evaluation of the first term of

the sum is higher than the increase in the cost experimented when increasing flow in the

void path corresponding to the evaluation of the second term of the sum (this argument

is based on 2ℎ�′ > 2ℎ/′). And thus, -�
?� − -2
?� < 0 producing a decrease of the total cost

after recirculating the flow consequently.

 25

 else

 label e as a back edge

References

1. Altiparmak F, Dengiz B, Smith AE., 2003. Optimal design of reliable computer

networks: A comparison of metaheuristics. Journal of Heuristics 9, 471-487.

2. Altiparmak F, Karaoglan I., 2008. An adaptive tabu-simulated annealing for concave

cost transportation problems. Journal of the Operational Research Society 59, 331-341.

3. Avriel, M., 2003. Nonlinear Programming: Analysis and Methods. Dover Publishing.

4. Burkard RE, Dollani H, Thach PT., 2001. Linear approximations in a dynamic

programming approach for the uncapacitated single source minimum concave cost

network flow problem in acyclic networks. Journal of Global Optimization 19, 121-139.

5. Dengiz B, Altiparmak F, Smith AE., 1997. Local search genetic algorithm for

optimal design of reliable networks. IEEE Transactions on Evolutionary Computation 1;

179–188.

6. Cortes, P., Muñuzuri, J., Onieva, L., Larrañeta, J., Vozmediano, J.M., Alarcon, J.C.,

2006. Andalucía assesses the investment needed to deploy a fiber-optic network.

Interfaces 36 (2), 105-117

7. Florian M, Klein M., 1971. Deterministic production planning with concave cost and

capacity constraints. Journal of Management Science 18, 12–20.

8. Hanson MA, Mond B., 1987. Necessary and sufficient conditions in constrained

optimization. Mathematical programming 37; 51-58.

9. Hillier, F.S., Lieberman, G.J., 1974. Operations Research. Holden-Day Inc. (San

Francisco, California, US)

10. Hitchcock, F.L., 1941. The distribution of a product from several sources to

numerous locations. Journal of Mathematical Physics 20, 224–230.

11. Kapsalis A, Rayward-Smith VJ, Smith GD., 1993. Solving the graphical Steiner tree

problem using genetic algorithms. Journal of the Operational Research Society 44, 397–

406.

12. Kengpol, A., Meethom, W., Tuominen, M., 2012. The development of a decision

support system in multimodal transportation routing within Greater Mekong sub-region

countries. International Journal of Production Economics 140(2), 691–701.

13. Kleinberg, J. 1996. Approximation Algorithms for Disjoint Paths Problems. Ph.D

Thesis, Department of EECS, MIT.

 26

14. Larsson T, Migdalas A, Ronnqvist M., 1994. A lagrangian heuristic for the

capacitated concave minimum cost network flow problem. European Journal of

Operational Research 78, 116–129.

15. LeBlanc, L.J., 1976. Global solutions for a nonconvex, nonconcave rail network

model. Management Science 23, 131-139.

16. Nocedal, J., Wright, S. J., 2006. Numerical Optimization (Second Edition) by

Numerical Optimization, Springer.

17. Thach PT., 1992. A decomposition method using a pricing mechanism for minimum

concave cost flow problems with a hierarchical structure. Journal of Mathematical

Programming 53, 339–359.

18. Tsao, Y-C., Sheen, G-J., 2012. A multi-item supply chain with credit periods and

weight freight cost discounts. International Journal of Production Economics 135 (1),

106-115.

19. Ubeda, S., Arcelus, F.J., Faulin, J., 2011. Green logistics at Eroski: A case study.

International Journal of Production Economics 131(1), 44-51.

20. Yan S, Luo SC., 1999. Probabilistic local search algorithms for concave cost

transportation network problems. European Journal of Operational Research 117, 511–

521.

21. Zangwill WI., 1968. Minimum concave cost flows in certain networks. Management

Science 14, 429–450.

22. Zhou G, Gen M., 2003. A genetic algorithm approach on tree like

telecommunication network design problem. Journal of the Operational Research

Society 54, 248-254.

