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A TEST FOR THE RIEMANN HYPOTHESIS

Juan Arias de Reyna

Abstract: We prove that the Riemann Hypothesis holds if and only if

I =

Z +∞

1

˘

Π(x) − Li(x)
¯2

x
−2

dx < +∞

with I = J , where J is some definite, computable real number (1.266 < J < 1.273). This
provides us with a numerical test for the Riemann Hypothesis.

The main interest of our test lies in the fact that it can also supply a goal. Namely, having

computed J(a) :=
R

a

1

˘

Π(x) − Li(x)
¯2

x−2 dx < J for a number of values of a = an, we can
estimate a value a for which, within our precision, we will have J(a) ≈ J .
Keywords: Riemann hypothesis, prime numbers, Fourier Transform

1. Introduction

The main result of this paper is that the integral

I =

∫ +∞

1

{

Π(x) − Li(x)
}2
x−2 dx,

is finite if and only if the Riemann Hypothesis (RH, for short) is true. Moreover,
if I < +∞, then I is equal to a computable real number J given by the integral

J =
1

π

∫ +∞

0

∣

∣

∣

log {(−1/2 + it)ζ(1/2 + it)}
1/2 + it

∣

∣

∣

2

dt,

where the log must be understood in a definite sense that we explain in section 2.
As usual, we denote Π(x) =

∑

pm≤x
1
m .

By a test for the Riemann Hypothesis we understand here a proposition equiv-
alent to the Riemann Hypothesis, which is of the form (∀x > 0)P (x) (or (∀n ∈
N)P (n)), where P (x) is a condition that can be verified numerically, for every x
(or n), by a halting algorithm. Thus, the algorithm must yield, in a finite amount
of time, a decision about the truth or falsity of P (x).
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Our test will be

(∀x > 1)

∫ x

1

{

Π(y) − Li(y)
}2
y−2 dy < J.

Strictly (∀x)(I(x) < J) is not a test in the sense defined above. If the RH is
not true then there exists a finite y such that I(y) = J , but for this value any
algorithm will have problems deciding whether I(y) < J or not. However, this is
not a real problem. For example, we can write the test in the form (∀x)[(I(x) <
J) or (I(x+ 1) < J)]. (The same remark applies to the tests by Schoenfeld (1.1),
Robin (1.2), and Xian-Jin Li (1.3) which we will recall on page 2.)

There are many equivalent formulations of the Riemann Hypothesis (see [10],
[3], [14], [1], [8], [9]). But most of them cannot be written in the form of a
test as described above. From those which can be rephrased as a test the most
representative are:

Schoenfeld’s [13]

(∀x > 2657) |π(x) − Li(x)| ≤
√
x log x

8π
, (1.1)

Robin’s [11]
(∀n > 5040) σ(n) < eγn log logn, (1.2)

Xian–Jin Li’s [7]

(∀n ≥ 1) λn ≥ 0 where λn =
1

n

∑

ρ

[

1 −
( ρ

1 − ρ

)n]

, (1.3)

and that of Nicolas [9]

(∀k) Nk

ϕ(Nk)
> eγ log logNk, (1.4)

where Nk denotes the product of the first k primes.
In all these cases, even assuming that we have checked these tests for all y ≤ x0,

there is no clue about which value of y will have a good chance of yielding a coun-
terexample to the Riemann Hypothesis. This is why our test is more interesting. If
we compute an approximation J0 to the number J , and then compute the integral
I(x) in our test for x ≤ x0, we can give a value a > x0 where we expect I(a) ≈ J0.
We explain this in Section 4. We expect this to happen for an a between 1016 and
1031. (This broad range could be narrowed by computing J with more precision.)
Since we can compute π(x) to 1020, the computation of I(1020) is feasible.

The above considerations do not mean that our test gives more weight to the
opinion that the Riemann Hypothesis is false. On the contrary, the computations
will probably give the answer I(a) < J , and point to a new b > a, and so on.

It would be interesting to find a connection between a hypothetical a with
I(a) > J and the ordinate of the first zero off the critical line. But we have not
pursued this any further.
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2. The main Theorem

The function Li(x) is defined as

Li(x) = P.V.

∫ x

0

dt

log t
, x > 1.

The following lemmas are well known but we prove them for the sake of complete-
ness.

Lemma 2.1. For every s ∈ C with Re(s) > 1 we have

s

∫ +∞

0

Li(et)e−st dt = − log(s− 1) (2.1)

where the integral is absolutely convergent.

Proof. In [6] we find that

Li(x) = γ + log log x+
∞
∑

k=1

(log x)k

k! k
, x > 1.

Assuming s > 1 we have

∫ +∞

0

Li(et)e−st dt = γ

∫ +∞

0

e−st dt+

∫ +∞

0

(log t)e−st dt+

∫ +∞

0

∞
∑

k=1

tk

k! k
e−st dt =

=
γ

s
+

1

s

∫ +∞

0

(

log
y

s

)

e−y dy +
1

s

∞
∑

k=1

1

k

1

sk
= −1

s
log s− 1

s
log(1 − 1/s).

Therefore, (2.1) is true for every real s > 1. Since both sides of the identity
are holomorphic functions on Re s > 1, the assertion follows by the principle of
analytic continuation. �

Lemma 2.2. For every complex number s with Re(s) > 1 we have

log {(s− 1)ζ(s)}
s

=

∫ +∞

1

{Π(x) − Li(x)} x−s−1 dx. (2.2)

Proof. In [2, p. 22] it is proved that for every s ∈ C with Re(s) > 1

log ζ(s) = s

∫ +∞

0

Π(x)x−s−1 dx.

Since Π(x) = 0 for 0 < x < 2, the integral may be restricted to the interval
(1,+∞). Combining this with the previous lemma we obtain (2.2). �
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Let Ω be the complex plane C with a cut along the negative real axis and
additional cuts along the half-lines Lρ starting at each non-trivial zero ρ of ζ(s) in
the direction of the negative real axis. (That is to say, Lρ = {(σ + it : σ ≤ β, t =
γ}). The function (s− 1)ζ(s) is analytic on Ω and does not vanish there. Since Ω
is simply connected there exists a branch of the logarithm log{(s−1)ζ(s)}. We fix
the unique branch of this logarithm which is positive for real s > 2. Now define
for s ∈ Ω

H(s) =
log{(s− 1)ζ(s)}

s
.

Observe that for every σ ≥ 1
2 , the function t 7→ H(σ + it) is defined for all t ∈ R

unless t coincides with the ordinate of a non-trivial zero of ζ(s).

Remark. Notice that in the following Proposition we do not assume the Riemann
Hypothesis.

Proposition 2.1. There exists a constant C < +∞ such that for all σ ≥ 1
2 we

have
∫ +∞

−∞

|H(σ + it)|2 dt < C.

Proof. First assume that 1
2 ≤ σ ≤ 2. By Theorem 9.6 (B) of Titchmarsh [15] we

have, uniformly in −1 ≤ σ ≤ 2,

log ζ(s) =
∑

|t−γ|<1

log(s− ρ) + O(log t)

where log ζ(s) has its usual meaning and | Im log(s − ρ)| ≤ π. The number of γ
satisfying |t − γ| < 1 is less than c log(2 + |t|) (cf. Titchmarsh, Theorem 9.2).
It follows that arg ζ(s) = O(log t), with an implicit constant independent of σ ∈
(1
2 , 2].

Since we can write

H(σ + it) =

log
{

((σ − 1)2 + t2)1/2|ζ(σ + it)|
}

+ i(arg ζ(σ + it) + arg(σ − 1 + it))

σ + it

we only have to show that

(σ + it)−1 log |ζ(σ + it)|

is uniformly bounded in L2(R) for σ ∈ (1
2 , 2]. Again, by (2),

log |ζ(σ + it)| =
∑

|t−γ|<1

log |σ − β + i(t− γ)| + O(log t)

and we have to show that

R(t) := (σ + it)−1
∑

|t−γ|<1

log |σ − β + i(t− γ)|
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is uniformly bounded in L2(R).

Observing that

(t− γ)2 ≤ (σ − β)2 + (t− γ)2 ≤ 5

we find that (taking into account that |t− γ| < 1)

∣

∣log |σ − β + i(t− γ)|
∣

∣ ≤ 1

2
log 5 − log |t− γ|.

Since the number of γ satisfying |t−γ| < 1 is less than c log(2+ |t|), and we assume
1
2 < σ ≤ 2, we get

|R(t)| ≤ |1/2 + it|−1
{

C log(2 + |t|) −
∑

|t−γ|<1

log |t− γ|
}

.

Therefore, we only have to show that

(1/2 + it)−1
∑

|t−γ|<1

log |t− γ| =:
U(t)

1/2 + it

is in L2(R). Here U(t) is defined by

U(t) :=
∑

|t−γ|<1

log |t− γ| =
∑

γ

log |t− γ|Iγ(t),

where Iγ is the characteristic function of the interval (γ − 1, γ + 1).

With this notation we have

U(t)2 =
(

∑

γ

{

log |t− γ|
}

Iγ

)2

=
∑

γ

{

log |t− γ|
}2
Iγ +

∑

γ 6=γ′

{

log |t− γ|
}{

log |t− γ′|
}

IγIγ′ .

To every term of the last sum we apply the Cauchy-Schwarz inequality, obtaining

|U(t)|2 ≤
∑

γ

N(γ + 2, γ − 2)
{

log |t− γ|
}2
Iγ ,

where for every t we denote by N(t+ 2, t− 2) the number of zeros α = β + iγ of
ζ(s) with 0 < β < 1 and t − 2 < γ < t + 2. The number N(γ + 2, γ − 2) then
denotes the number of γ′ such that IγIγ′ 6= 0.
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Now we have

∫ +∞

−∞

U(t)2

1/4 + t2
dt ≤

∑

γ

N(γ + 2, γ − 2)

∫

Iγ

{

log |t− γ|
}2

1/4 + t2
dt

≤ 2
∑

γ>0

N(γ + 2, γ − 2)

∫

Iγ

{

log |t− γ|
}2

1/4 + t2
dt

≤ 2
∑

γ>0

N(γ + 2, γ − 2)

1/4 + (γ − 1)2

∫

Iγ

{

log |t− γ|
}2
dt

≤ C
∑

γ>0

log(2 + |γ|)
1/4 + (γ − 1)2

< +∞

where we have applied the trivial fact that for every γ
∫

Iγ

{

log |t− γ|
}2
dt = 4

and that γ > 14 for every γ > 0. The convergence of the series follows from
γn ∼ 2πn/ logn (cf. Titchmarsh p. 214).

For σ ≥ 2, we have |ζ(s) − 1| < 0.65, so that | log ζ(s)| is bounded. Hence, in
this case the bound of the integral is elementary. �

Following Proposition 2.1 we put

J : =
1

2π

∫ +∞

−∞

∣

∣

∣

log {(−1/2 + it)ζ(1/2 + it)}
1/2 + it

∣

∣

∣

2

dt

=
1

π

∫ +∞

0

∣

∣

∣

log {(−1/2 + it)ζ(1/2 + it)}
1/2 + it

∣

∣

∣

2

dt < +∞.

We can now formulate our main result.

Theorem 2.1. There are only two possibilities for the integral

I :=

∫ +∞

1

∣

∣

∣

Π(x) − Li(x)

x

∣

∣

∣

2

dx :

(a) I = J < +∞, and then the Riemann Hypothesis is true.
(b) I = +∞, and then the Riemann Hypothesis is false.

Proof. First assume that the integral I is finite. Then the integral in the right
hand side of (2.2) is absolutely convergent for Re s > 1

2 . The right hand side will
then be holomorphic on Re s > 1

2 , but this implies that ζ(s) does not vanish for
Re s > 1

2 . Hence, I < +∞ implies the Riemann Hypothesis.
Now assume the Riemann Hypothesis holds. By Proposition 2.1 we can apply

the Paley–Wiener Theorem [12, Theorem 19.2] to the function H(s) on the half-
plane Re s > 1

2 . We thus find that there exists a function F ∈ L2(0,+∞) such
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that for Re s > 1
2

H(s) =

∫ +∞

0

F (u)e−u(s− 1
2
) du.

But, for Re s > 1, by (2.2)

H(s) =

∫ +∞

1

{Π(x) − Li(x)} x−s−1 dx =

∫ +∞

0

{Π(eu) − Li(eu)} e−us du,

and it follows that
F (u) = {Π(eu) − Li(eu)} e−u/2.

It is easily seen that

∫ +∞

0

|F (u)|2 du =

∫ +∞

1

∣

∣

∣

Π(x) − Li(x)

x

∣

∣

∣

2

dx.

Since F ∈ L2(0,+∞), we have proved that the Riemann Hypothesis implies that
I < +∞.

Assuming the Riemann Hypothesis holds, the conditions of the Paley–Wiener
Theorem are satisfied, and in this case the Fourier transform of F (u) equals the
pointwise limit limσ→1/2H(σ + 2πit). Hence, by Plancherel’s theorem

I =

∫ +∞

−∞

|F (u)|2 du =

∫ +∞

−∞

|H(1
2 + 2πit)|2 dt = J.

So, we have proved that I < +∞ if and only if the Riemann Hypothesis is true,
and furthermore in this case I = J . This completes the proof of Theorem 2.1. �

Remark. The proof above gives something more. Namely, assuming the Riemann
Hypothesis holds, the functions

{Π(ex) − Li(ex)} e−x/2 and
log {(−1/2 + 2πit)ζ(1/2 + 2πit)}

1/2 + 2πit

are in L2(R) and the second is the Fourier transform of the first. If we do not
assume the Riemann Hypothesis, only the second function is in L2(R).

3. Computational results

In order to obtain approximations of I and J we have performed extensive com-
putations. The results are presented in this section.

First we establish an upper bound for the integral

1

2π

∫ +∞

−∞

∣

∣

∣

log {(−1/2 + it)ζ(1/2 + it)}
1/2 + it

∣

∣

∣

2

dt

=
1

π

∫ +∞

0

∣

∣

∣

log {(−1/2 + it)ζ(1/2 + it)}
1/2 + it

∣

∣

∣

2

dt.
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Table 1: Values of J(T ).

T J(T ) T J(T ) T J(T )
10 000 1.2631401 130 000 1.2662640 250 000 1.2664425
20 000 1.2646766 140 000 1.2662883 260 000 1.2664504
30 000 1.2652488 150 000 1.2663118 270 000 1.2664577
40 000 1.2655542 160 000 1.2663316 280 000 1.2664646
50 000 1.2657463 170 000 1.2663492 290 000 1.2664710
60 000 1.2658790 180 000 1.2663650 300 000 1.2664770
70 000 1.2659766 190 000 1.2663793 310 000 1.2664827
80 000 1.2660517 200 000 1.2663922 320 000 1.2664881
90 000 1.2661113 210 000 1.2664040 330 000 1.2664931

100 000 1.2661600 220 000 1.2664148 340 000 1.2664979
110 000 1.2662004 230 000 1.2664248 350 000 1.2665024
120 000 1.2662346 240 000 1.2664340 360 000 1.2665067

To this end we split the integral as follows

J =
1

π

∫ T

0

· · · +
1

π

∫ +∞

T

· · · ,

and compute

J(T ) :=
1

π

∫ T

0

∣

∣

∣

log {(−1/2 + it)ζ(1/2 + it)}
1/2 + it

∣

∣

∣

2

dt.

It will be convenient to take T = γN , the height of a zero of the zeta function. We
rewrite the integral as follows

1

π

∫ T

0

· · · =
1

π

∫ γ1

0

· · · +
N−1
∑

n=1

1

π

∫ γn+1

γn

· · ·

(To this end we have computed the ordinates of the first 106 zeros of ζ(s) with
more than 100 D. But we only used 40 significant digits of the first 300000 zeros).

The values obtained for J(T ) are tabulated in Table 1.
We have also obtained rigorous upper bounds for the rest. Finally we prove

1.2663935 . . .

≤ J =
1

2π

∫ +∞

−∞

∣

∣

∣

log {(−1/2 + it)ζ(1/2 + it)}
1/2 + it

∣

∣

∣

2

dt ≤ 1.2723669 . . .

With respect to the integral I, we compute

I(y) =

∫ y

1

(Π(u) − Li(u)

u

)2

du.
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Table 2: Values of I(y).

y/106 I(y) y/106 I(y) y/106 I(y)
10 1.2638110 180 1.2642554 350 1.2643224
20 1.2639254 190 1.2642704 360 1.2643233
30 1.2639572 200 1.2642754 370 1.2643286
40 1.2640642 210 1.2642781 380 1.2643358
50 1.2640987 220 1.2642818 390 1.2643415
60 1.2641128 230 1.2642899 400 1.2643422
70 1.2641313 240 1.2642960 410 1.2643427
80 1.2641482 250 1.2642988 420 1.2643432
90 1.2641583 260 1.2643019 430 1.2643440

100 1.2641708 270 1.2643071 440 1.2643445
110 1.2641863 280 1.2643088 450 1.2643456
120 1.2642043 290 1.2643109 460 1.2643468
130 1.2642149 300 1.2643116 470 1.2643488
140 1.2642192 310 1.2643136 480 1.2643508
150 1.2642269 320 1.2643174 490 1.2643555
160 1.2642341 330 1.2643181 500 1.2643607
170 1.2642406 340 1.2643214 510 1.2643622

We split this integral into integrals over the intervals (an, an+1), where (an)n is
the increasing sequence consisting of primes and prime-powers. The integrals are
easy to compute, and the results are contained in Table 2.

In order to see how the function I(y) increases, we have plotted the obtained
values on a logarithmic scale for y. We observe that the increase is slow. It seems
that the Riemann Hypothesis is not threatened at all by these values of I(y). But
recall that, even assuming the Riemann Hypothesis, I(y) is eventually greater than
the goal 1.2663935.

4. Setting of the goal

Now we try to compute a value of x for which we think that I(x) will be ap-
proaching or exceeding J . Of course, if the Riemann Hypothesis is true, then the
function I(x) will always be smaller than J . So we will take the position of the
nonbelievers.

First, by Theorem 2.1 there would be a real number a ∈ (1,+∞) such that
∫ a

1

{

Π(x) − Li(x)
}

x−2 dx = J.

Thus, there would exist a finite set of prime powers

Q = {pk : pk ≤ a}
whose mere existence would contradict the Riemann Hypothesis. How large would
a be? Answering this question led us to the following theorem.
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6 7 8

1.2663935

1.266

1.265

1.264

1.263

I(y)

log
10

y

Figure 1.1: Growth of I(y).

Theorem 4.1. Assuming that there are some constants A > 0 and 0 < θ ≤ 1
such that for every x > 1

|{t : 1 ≤ t ≤ x, |Π(t) − Li(t)| > A
√
t}| ≥ θ(x − 1) (4.1)

then the Riemann Hypothesis is not true. (Here |E| denotes the Lebesgue measure
of the set E.)

Also, there exists x0 = x0(A, θ) such that if inequality (4.1) is true for x < x0,
then the Riemann Hypothesis is false.

Proof. Let b > 0 be such that θb > 2 and denote by En the set

En := {t : 1 ≤ t ≤ bn, |Π(t) − Li(t)| > A
√
t}.

By hypothesis, En is a subset of [1, bn] such that |En| ≥ θ(bn − 1). Therefore,

{t : bn < t ≤ bn+1, |Π(t) − Li(t)| > A
√
t} = En+1 r En

has measure |En+1 r En| ≥ θ(bn+1 − 1) − (bn − 1) > bn.
Hence, we have

∫ bn+1

bn

∣

∣

∣

Π(t) − Li(t)

t

∣

∣

∣

2

dt ≥ A2

∫

En+1rEn

dt

t
≥ A2

∫ bn+1

bn+1−bn

dt

t
= A2 log

b

b− 1
.
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Thus, with the notation of Theorem 2.1, we have

I >

∫ bn

1

∣

∣

∣

Π(t) − Li(t)

t

∣

∣

∣

2

dt ≥ nA2 log
b

b− 1
.

Choose n0 such that

n0A
2 log

b

b− 1
> J.

Then, if (4.1) is true for x < x0 = bn0 , the Riemann Hypothesis will not be true
since we would have I > J . �

A look at the values in Table 2 suggests that

∫ 2n+1107

2n107

∣

∣

∣

Π(t) − Li(t)

t

∣

∣

∣

2

dt

are greater than a fixed constant. In fact the values for n = 0, 1, 2, 3 and 4 are

0.0001144, 0.0001388, 0.000084, 0.0000859, 0.0000833, . . .

Thus, assuming these integrals are always ≥ 0.00008, we have to determine n0

such that

∫ 32·107

1

∣

∣

∣

Π(t) − Li(t)

t

∣

∣

∣

2

dt+ 0.00008(n0 − 5) = 1.2643173 + 0.00008(n0 − 5) = J.

Our computations imply that 1.2663935 ≤ J ≤ 1.2723669. Therefore we get two
limits n0 = 31 and n0 = 106. Hence the possible value of a lies between 1016 and
1039.

5. Some other equivalences for the Riemann Hypothesis

A glance at the values of Π(x) and Li(x) reveals that in fact the approximation is
very good. So, it seems that Theorem 4.1 is not very striking. But we can write the
theorem in terms of the function π(x) and here the result is more striking, because
the known values of this function make one believe that usually |π(x) − Li(x)| is
of the size of

√
x.

Corollary 5.1 (to Theorem 2.1). The Riemann Hypothesis is true if and only
if

∫ +∞

1

∣

∣

∣

π(x) − Li(x)

x

∣

∣

∣

2

dx < +∞. (5.1)

Proof. We know that Π(x) = π(x) + O(x1/2/ log x) (see [4, p. 104]). Since
x−1/2/ log(1 + x) ∈ L2(1,+∞), we have that (Π(x)−Li(x))x−1 is in L2(1,+∞) if
and only if (π(x) − Li(x))x−1 is in L2(1,+∞). �
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Theorem 5.1. Assuming that there are some constants A > 0 and 0 < θ ≤ 1
such that for every x > 1

|{t : 1 ≤ t ≤ x, |π(t) − Li(t)| > A
√
t}| ≥ θ(x − 1) (5.2)

then the Riemann Hypothesis is not true. (Here |E| denotes the Lebesgue measure
of the set E).

Also, there exists x0 = x0(A, θ), such that if inequality (5.2) is true for x < x0,
then the Riemann Hypothesis is not true.

Proof. Similar to that of Theorem 4.1. Refining the proof of the above corollary
we could even obtain an explicit limes superior for the integral in (5.1). �
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