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1 Introduction.

Large number of geophysical fluids are modeled by the so-called “primitive equa-
tions”. This model is obtained formally from the Navier-Stokes equations, with
anisotropic (eddy) viscosity, assuming two important simplifications: “hydrostatic
pressure” (depending linearly on the depth) and “rigid lid hypothesis” (fix water
surface), see [10], [14] and references therein cited.

The model: For simplicity, we take constant density and assume that the effects
due to the temperature (and salinity) can be decoupled from the dynamic of the
flow. Then, we have a three-dimensional flow induced by the wind tension on the
surface and by the centripetal and Coriolis forces. When the Earth curvature is
not considered, we can use Cartesian coordinates instead of spherical coordinates
(see in Lions-Temam-Wang [12] the model with spherical coordinates), hence the
Lipschitz-continuous domain Ω is given by

Ω = {(�x, z) ∈ IR3; �x ∈ ω,−D(�x) < z < 0}, (1)

where ω ⊆ IR2 is an open domain and D : ω → IR+ is the depth function. The
different boundaries of Ω (surface, bottom and sidewalls) are respectively: Γs =
{(�x, 0); �x ∈ ω}, Γb = {(�x,−D(�x)); �x ∈ ω} and Γl = {(�x, z); �x ∈ ∂ω,−D(�x) < z <
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0} (here, ∂ω denotes the boundary of ω). The (three-dimensional) model is:

(EP )






∂t�u+ (�u ·∇H)�u+ u3∂z�u+ α�u
⊥

−νh∆H�u− νv∂
2
zz
�u+∇Hps = �F in (0, T )× Ω,

∇H ·
�� 0

−D(�x)
�u(t; �x, z)dz

�

= 0 in (0, T )× ω,

�u|t=0 = �u0 in Ω,

νv∂z�u|Γs
= �τ , �u|Γb∪Γl

= �0 in (0, T ).

Here, we denote �x = (x, y), ∇H = (∂x, ∂y) and ∆H = ∂
2
xx

+ ∂
2
yy
. The unknowns are

the horizontal components of the velocity �u = (u1, u2) : (0, T ) × Ω → IR2 and the
surface pressure ps : (0, T )× ω → IR (in fact, ps is a potential function, since it also
includes centripetal and gravity effects, see [14]), whereas the vertical component of
the velocity is

u3(t; �x, z) = −
�

z

−D(�x)
∇H · �u(t; �x, s)ds, for t ∈ (0, T ) and (�x, z) ∈ Ω. (2)

Moreover, νh and νv > 0 are positive constants, representing respectively horizontal
and vertical (eddy) viscosity coefficients, �F : (0, T ) × Ω → IR2 is a given function
(depending on the temperature and the salinity, for instance) and �τ : (0, T )× Γs →
IR2 represents the horizontal stress on the surface produced by the wind. Finally,
α�u

⊥ = α(−u2, u1)t models Coriolis effects. The no-slip condition is assumed on the
bottom and vertical slipping is permitted on the sidewalls.

Most of the results for these equations have been obtained by means of isotropic
estimates (i.e. using norms with the same regularity in all spatial directions), see
[2], [12], [10] and [9]. For 2D domains and using isotropic estimates, we obtained
in [9]: existence of global strong solution (see Definition 1.6) for small data (via
a Galerkin method), local strong solution in time for small depth (via Schauder’s
Fixed Point Theorem) and uniqueness of the weak solution assuming that there
exists a strong solution. We also explained in [9] that similar results in 3D domains
cannot be obtained if we use the same kind of estimates.

The main new results: In this work, we use anisotropic estimates that let us
obtain the following results. The precise notions of weak solution and strong solution
(jointly with the space V ) will be given in the next subsection.

First, we obtain existence of global strong solution for small data, given by the
following theorem:

Theorem 1.1 “Global strong solution for small data”. Let ω ⊂ IRd
(d = 1

or 2) be a C
2
domain and D ∈ C

3(ω) such that D ≥ Dmin > 0 in ω. Suppose that
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�u0 ∈ V , �F = �f1 + �f2 with �f1 ∈ L
2(0, T ;L2(Ω)d) and �f2 ∈ L

∞(0, T ;L2(Ω)d), and

�τ = �τ1 + �τ2 with �τ1 ∈ L
2(0, T ;H1/2+ε

0 (Γs)d) and �τ2 ∈ L
∞(0, T ;H1/2+ε

0 (Γs)d) for some

ε > 0, such that ∂t�τ1 ∈ L
2(0, T ;H−1/2(Γs)d) and ∂t�τ2 ∈ L

∞(0, T ;H−1/2(Γs)d). If,

moreover the data verify the “smallness conditions”:

(H)






��f1�L2
T (L2) < c ν

3/2
, ��f2�L∞

T (L2) < c ν
2
,

��τ1�
L
2
T (H1/2+ε

0 )
< c ν

3/2
, �∂t�τ1�L2

T (H−1/2) < c ν
5/2

,

��τ2�
L
∞
T (H1/2+ε

0 )
< c ν

2
, �∂t�τ2�L∞

T (H−1/2) < c ν
3
,

��u0�H1 < c ν

�
ν

ν̄
, ��τ1(0)�H−1/2 < c ν

2

�
ν

ν̄
,

��τ2(0)�H−1/2 < c ν
2

�
ν

ν̄
,

where ν = min{νh, νv}, ν̄ = max{νh, νv} and c is a small enough constant (depending

only on Ω), then there exists a (unique) strong solution (�u, ps) of (EP ) in (0, T ) (ps
is unique up to an additive function depending only on t).

Remark 1.1 We denote L
q

T
(Lp) = L

q(0, T ;Lp(Ω)), where T can be equal to +∞
and q ∈ (1,+∞]; H−1/2 = H

−1/2(Γs) and H
1/2+ε

0 = H
1/2+ε

0 (ΓS).

Secondly, we obtain existence of local strong solution for any data. In the 2D
case, this result improves the results obtained in [9] (by relaxing the small depth
hypothesis). The 3D case is new.

Theorem 1.2 “Local strong solution for any data.” Let ω ⊂ IRd
(d = 1 or

2) be a C
2
domain and D ∈ C

3(ω) such that D ≥ Dmin > 0 in ω. Suppose that

�u0 ∈ V , �F ∈ L
2(0, T ;L2(Ω)d) and �τ ∈ L

2(0, T ;H1/2+ε

0 (Γs)d), for some ε > 0, such
that ∂t�τ ∈ L

2(0, T ;H−1/2(Γs)d). Then, there exists T∗ ∈ (0, T ] and a unique strong

solution (�u, ps) of (EP ) in (0, T∗).

Third, we get uniqueness of weak solution assuming existence of a strong one. The
precise notion of the space L

∞
z
L
2
�x
will be given in Subsection 3.1.

Theorem 1.3 “Uniqueness of strong/weak solution.” Assume Ω ⊆ IR3
. Let

�u be a weak solution of (EP ) in (0, T ). If there exists a weak solution �u of (EP ) in
(0, T ) with the same initial conditions, such that it verifies the additional regularity:

∇H�u ∈ L
2(0, T ;L∞

z
L
2
�x
)

∂z�u ∈ L
∞(0, T ;L2(Ω)2) ∩ L

2(0, T ;H1(Ω)2),
(3)

then both solutions coincide on [0, T ).
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And finally, we obtain convergence of global strong solution to a stationary strong
solution (under small data hypothesis), when t ↑ +∞.

Theorem 1.4 “Convergence of the 3D-evolution solution to a 3D-stationary

solution”. Let �u be a strong solution of (EP ) in (0,+∞) with second member

�F = �f1 + �f2, where
�f1 ∈ L

2(0,+∞;L2(Ω)2) and �f2 ∈ L
2(Ω)2 is independent of t,

and Newman boundary condition �τ = �τ1 + �τ2, where �τ1 ∈ L
2(0,+∞;H1/2+ε

0 (Γs)2)

for some ε > 0, such that ∂t�τ1 ∈ L
2(0,+∞;H−1/2(Γs)2), and �τ2 ∈ H

1/2+ε

0 (Γs)2 for

some ε > 0. Assuming “smallness conditions” (H) with T = +∞, if �v is the

stationary strong solution of (EP ) with second member �f2 and Newman boundary

condition �τ2, then �u(t) → �v in the H
1(Ω)-norm as t ↑ +∞.

1.1 Definitions and auxiliary results.

To give a variational formulation to problem (EP ), we define the following function
spaces:

C
∞
b,l
(Ω) = {ϕ ∈ C

∞(Ω); supp(ϕ) is a compact set ⊆ Ω\(Γb ∪ Γl)},

H
1
b,l
(Ω) = C

∞
b,l
(Ω)

H
1

= {v ∈ H
1(Ω); v = 0 on Γb ∪ Γl}, H

−1
b,l

(Ω) = dual of H1
b,l
(Ω),

V = {�ϕ ∈ C
∞
b,l
(Ω)d; ∇H · ��ϕ� = 0 in ω}, where ��ϕ�(�x) =

� 0

−D(�x)
�ϕ(�x, z)dz,

H = VL
2

= {�v ∈ L
2(Ω)d; ∇H · ��v� = 0 in ω, ��v� · �n∂ω = 0},

V = VH
1

= {�v ∈ H
1(Ω)d; ∇H · ��v� = 0 in ω, �v|Γb∪Γl

= �0}.

Definition 1.5 Let �u0 ∈ H, �F ∈ L
2(0, T ;H−1

b,l
(Ω)d) and �τ ∈ L

2(0, T ;H−1/2(Γs)d)
be given. We say that �u : (0, T ) × Ω → IR2

is a weak solution of (EP ) in (0, T )
if �u ∈ L

∞(0, T ;H) ∩ L
2(0, T ;V ), verifies the variational formulation:

�
T

0

�

Ω
−�u ·

�
∂t�ϕ+ (�u ·∇H)�ϕ+ u3∂z �ϕ

�
+ νh∇H�u : ∇H �ϕ+ νv∂z�u · ∂z �ϕ+ α�u

⊥ · �ϕ

=
�

Ω
�u0 · �ϕ(0) +

�
T

0

�
��F , �ϕ�Ω + ��τ , �ϕ�Γs

�
dt, ∀ �ϕ ∈ C

1([0, T ];V) s.t. �ϕ(T ) = �0,

and, moreover �u satisfies the “energy inequality” a.e. t ∈ (0, T ),

1

2
��u(t)�2

L2(Ω) +
�

t

0
��u�2

V
ds ≤ 1

2
��u0�2L2(Ω) +

�
t

0

�
��F , �u�Ω + ��τ , �u�Γs

�
ds. (4)

In the case T = +∞, we say that �u is a weak solution of (EP ) in (0,+∞) if �u is a

weak solution of (EP ) in (0, T ), ∀T < +∞.
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Here, �·, ·�Ω denotes duality between H
−1
b,l

(Ω) and H
1
b,l
(Ω), whereas �·, ·�Γs denotes

duality between H
−1/2(Γs) and H

1/2(Γs). On the other hand, the V -norm will
be denoted by ��u�2

V
= νh�∇H�u�2L2(Ω) + νv�∂z�u�2L2(Ω), and the H

1(Ω)-norm will be
denoted by ��u�2

H1(Ω) = �∇H�u�2L2(Ω) + �∂z�u�2L2(Ω).

Definition 1.6 Let �u0 ∈ V , �F ∈ L
2(0, T ;L2(Ω)d), �τ ∈ L

2(0, T ;H1/2(Γs)d) and

∂t�τ ∈ L
2(0, T ;H−1/2(Γs)d) be given. Let �u be a weak solution of (EP ) in (0, T ),

we say that �u is a strong solution of (EP ) in (0, T ) if it verifies the additional

regularity:

�u ∈ C([0, T ];V ) ∩ L
2(0, T ;H2(Ω)d ∩ V ), ∂t�u ∈ L

2(0, T ;H).

Remark 1.2 In the 2D case, besides changing vectorial notation by scalar notation,

one important difference with respect to the 3D case is that ω ⊆ IR is an open interval

which simplifies the function spaces of free divergence. Indeed, conditions ∇H ·��v� = 0
in ω and ��v� · n∂ω = 0 are replaced by �v� = 0 in ω.

Auxiliary results: In this work, we will frequently consider the evolution linear
problem (Stokes with hydrostatic pressure):

(S)






∂t�v − νh∆H�v − νv∂
2
zz
�v +∇Hqs = �f in (0, T )× Ω,

∇H · ��v� = 0 in (0, T )× ω,

�v|t=0 = �v0 in Ω,

νv∂z�v = �τ on (0, T )× Γs, �v = �0 on (0, T )× (Γb ∪ Γl),

and the stationary problem associated to (S), that it will be called (Sst).
We denote by C different positive constants, always independent of νh and νv.

Theorem 1.7 “Weak solution of (Sst)” Let ω ⊆ IRd
(d = 1 or 2) and let Ω ⊆

IRd+1
, defined as in (1), be a Lipschitz-continuous domain. If �f ∈ H

−1
b,l

(Ω)d and

�τ ∈ H
−1/2(Γs)d, then the problem (Sst) has a unique solution �v ∈ H

1(Ω)d. Moreover,

there exists a constant C = C(Ω) > 0 such that

��v�2
H1(Ω) ≤

C

ν2

�
��τ�2

H−1/2(Γs)
+ ��f�2

H
−1
b,l (Ω)

�
. (5)

In [2], [4] and [10], there are different proofs of this result.
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Theorem 1.8 “Weak solution of (S)” ([12]) Let ω and Ω as in Theorem 1.7. If
�f ∈ L

2(0, T ;H−1
b,l

(Ω)d) and �τ ∈ L
2(0, T ;H−1/2(Γs)d), then there is a (unique) weak

solution �v of problem (S) in (0, T ).

Theorem 1.9 “Strong solution of (Sst)”([16]) Let ω ⊆ IRd
(d = 1 or 2) be

a C
2
domain and D ∈ C

3(ω) with D ≥ Dmin > 0 in ω. If �f ∈ L
2(Ω)d and

�τ ∈ H
1/2+ε

0 (Γs)d (for some ε > 0), then there exists a (unique) strong solution �v of

(Sst) (i.e. �v ∈ H
2(Ω)d ∩ V ). Moreover, there exists C = C(Ω) > 0 such that:

��v�2
H2(Ω) ≤

C

ν2

�
��f�2

L2(Ω) + ��τ�2
H

1/2+ε
0 (Γs)

�
. (6)

Finally, the next result gives a linear version of Theorem 1.1 and will be used in the
case �τ2 = �0 and �f2 = �0 to lift the data �v0, �τ1 and �f1.

Theorem 1.10 “Strong solution of (S)” Let ω ⊆ IRd (d = 1 or 2) be a C
2

domain and D ∈ C
3(ω) with D ≥ Dmin > 0 in ω. If �v0 ∈ V , �f = �f1 + �f2

with �f1 ∈ L
2((0, T ) × Ω)d and �f2 ∈ L

∞(0, T ;L2(Ω)d), �τ = �τ1 + �τ2 with �τ1 ∈
L
2(0, T ;H1/2+ε

0 (Γs)d) and �τ2 ∈ L
∞(0, T ;H1/2+ε

0 (Γs)d) (for some ε > 0), such that

∂t�τ1 ∈ L
2(0, T ;H−1/2(Γs)d) and ∂t�τ2 ∈ L

∞(0, T ;H−1/2(Γs)d), then there exists a

(unique) strong solution �v of (S) in (0, T ). Moreover, there exists C = C(Ω) > 0
such that

��v�2
L
∞
T (H1) ≤ ν̄

ν

�
��v0�2H1 +

C

ν2

�
��τ1(0)�2H−1/2 + ��τ2(0)�2H−1/2

��

+
C

ν

�
��f1�2L2

T (L2) + ��τ1�2
L
2
T (H1/2+ε

0 )

�
+

C

ν3
�∂t�τ1�2L2

T (H−1/2)

+
C

ν2

�
��f2�2L∞

T (L2) + ��τ2�2
L
∞
T (H1/2+ε

0 )

�
+

C

ν4
�∂t�τ2�2L∞

T (H−1/2),

(7)

��v�2
L
2
T (H2) ≤ ν̄

ν

�
1

ν
��v0�2H1 +

C

ν3

�
��τ1(0)�2H−1/2 + ��τ2(0)�2H−1/2

��

+
C

ν2

�
��f1�2L2

T (L2) + ��τ1�2
L
2
T (H1/2+ε

0 )

�
+

C

ν4
�∂t�τ1�2L2

T (H−1/2)

+
CT

ν2
��f2�2L∞

T (L2) +
CT

ν2
��τ2�2

L
∞
T (H1/2+ε

0 )
+

CT

ν4
�∂t�τ2�2L∞

T (H−1/2),

(8)
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�∂t�v�2L2
T (L2) ≤ ν̄

ν

�
ν��v0�2H1 +

C

ν

�
��τ1(0)�2H−1/2 + ��τ2(0)�2H−1/2

��

+ C��f1�2L2
T (L2) +

C

ν2
�∂t�τ1�2L2

T (H−1/2)

+ CT��f2�2L∞
T (L2) +

CT

ν2
�∂t�τ2�2L∞

T (H−1/2).

(9)

Proof of Theorem 1.10: A proof of the existence can be seen in [9]. Here, we only
sketch the proof of the continuous dependence estimates, specifying the dependence
of these estimates on the viscosities.
We set �v = �y1+�y2+�e1+�e2, where �ei(t) (i = 1, 2) are the solutions of the stationary
problems:

(Si)






−νh∆H�ei − νv∂
2
zz
�ei +∇Hqi = �0 in Ω, ∇H · ��ei� = 0 in ω,

νv∂z�ei = �τi(t) on Γs, �ei = �0 on Γb ∪ Γl,

and �y1, �y2 are the solutions of the evolution problems:

(E1)






∂t�y1 − νh∆H�y1 − νv∂
2
zz
�y1 +∇Hp1 = �f1 − ∂t�e1 in (0, T )× Ω,

∇H · ��y1� = 0 in (0, T )× ω, �y1|t=0 = �v0 − �e1(0)− �e2(0) in Ω,

νv∂z�y1 = �0 on (0, T )× Γs, �y1 = �0 on (0, T )× (Γb ∪ Γl),

(E2)






∂t�y2 − νh∆H�y2 − νv∂
2
zz
�y2 +∇Hp2 = �f2 − ∂t�e2 in (0, T )× Ω,

∇H · ��y2� = 0 in (0, T )× ω, �y2|t=0 = �0 in Ω,

νv∂z�y2 = �0 on (0, T )× Γs, �y2 = �0 on (0, T )× (Γb ∪ Γl),

Then, we have the following estimates for �e1 and �e2:

��e1(t)�2H1 ≤
C

ν2
��τ1(t)�2H−1/2 ≤

C

ν2

�
��τ1(0)�2H−1/2 + 2

�
t

0
��τ1�H−1/2�∂t�τ1�H−1/2

�

≤ C

ν2
��τ1(0)�2H−1/2 +

C

ν3
�∂t�τ1�2L2

t (H
−1/2) +

C

ν
��τ1�2

L
2
t (H

1/2+ε
0 )

, ∀t ∈ [0, T ],

��e1�L2
T (H2) ≤ C

ν
��τ1�

L
2
T (H1/2+ε

0 )
, �∂t�e1�L2

T (H1) ≤ C

ν
�∂t�τ1�L2

T (H−1/2),
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��e2�2L∞
T (H1) ≤ C

ν2
��τ2�2L∞

T (H−1/2)

��e2�2L2
T (H2) ≤ C T

ν2
��τ2�2L∞

T (H1/2+ε), �∂t�e2�2L2
T (H1) ≤ C T

ν2
�∂t�τ2�2L∞

T (H−1/2),

Now, we define hydrostatic Stokes operator A, i.e. A�v = �u means that (see [9]):






−νh∆H�v − νv∂
2
zz
�v +∇Hps = �u in Ω,

∇H · ��v� = �0 in ω,

νv∂z�v = �0 on Γs, �v = �0 on Γl ∪ Γb.

Taking A�y1 as a test function in the variational formulation of (E1), we obtain:

d

dt
��y1(t)�2V + �A�y1(t)�2L2(Ω) ≤ ��f1(t)�2L2(Ω) + �∂t�e1(t)�2L2(Ω).

Thus, integrating in time, using that

ν��y1(t)�2H1(Ω) ≤ ��y1(t)�2V ≤ ν̄��y1(t)�2H1(Ω),

��y1(t)�2H2(Ω) ≤
C

ν2
�A�y1(t)�2L2(Ω), (10)

and the previous estimates for ∂t�e1, we get:

��y1�2L∞
T (H1) ≤ ν̄

ν
��y1(0)�2H1 +

C

ν

�
��f1�2L2

T (L2) +
1

ν2
�∂t�τ1�2L2

T (H−1/2)

�
,

��y1�2L2
T (H2) ≤ ν̄

ν2
��y1(0)�2H1(Ω) +

C

ν2

�
��f1�2L2

T (L2) +
1

ν2
�∂t�τ1�2L2

T (H−1/2)

�
.

In the same way, we have for �y2:

d

dt
��y2(t)�2V + �A�y2(t)�2L2(Ω) ≤ C

�
��f2�2L∞

T (L2) + �∂t�e2�2L∞
T (L2)

�
. (11)

Therefore, using that
ν��y2(t)�2V ≤ C1�A�y2(t)�2L2(Ω), (12)

multiplying by exp

�
ν

C1
t

�
and integrating in time, one has:

��y2�2L∞
T (H1) ≤

C

ν2

�
��f2�2L∞

T (L2) +
1

ν2
�∂t�τ2�2L∞

T (H−1/2)

�
. (13)
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Now, using (10) for �y2(t), from (11)− (13), we deduce:

��y2�2L2
T (H2) ≤

CT

ν2

�
��f2�2L∞

T (L2) +
1

ν2
�∂t�τ2�2L∞

T (H−1/2)

�
.

All the above bounds let us obtain (7) and (8). Expression (9) is easily obtained
taking ∂t�yi (i = 1, 2) as test functions in (Ei) and arguing as before.

Remark 1.3 If T = +∞, we only can handle expression (7). Therefore, only

estimates in L
∞(0,+∞;H1(Ω)d) can be obtained.

2 The 2D case.

We start with the proof of the existence results (Theorems 1.1 and 1.2) in the 2D
case and postpone the 3D case to the next section, where we need to prove more
precise anisotropic Sobolev inequalities.

2.1 Some 2D anisotropic spaces and related estimates.

We introduce the following 2D anisotropic function spaces.

Definition 2.1 Given p, q ∈ [1,+∞], a function u belongs to L
p

x
L
q

z
(Ω) if:

u(x, ·) ∈ L
q(−D(x), 0) and �u(x, ·)�Lq(−D(x),0) ∈ L

p(ω).

Moreover, its norm is given by the expression:

�u�Lp
xL

q
z(Ω) =

����u(x, ·)�Lq(−D(x),0)

���
Lp(ω)

Remark 2.1 The most useful norms that we will use in the 2D case will be:

�u�L∞
x L2

z(Ω) = sup
x∈ω

�
�u(x, ·)�L2(−D(x),0)

�

�u�L2
xL

∞
z (Ω) =

����� sup
z∈(−D(x),0)

|u(x, z)|
�����
L2(ω)

.

Remark 2.2 For sake of simplicity, we sometimes denote L
p

x
L
q

z
instead of L

p

x
L
q

z
(Ω),

and L
p
instead of L

p(Ω), when there is no risk of confusion.

Now, we enunciate several lemmas that will be frequently used in this work. We
denote Dmax = max

ω

D.
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Lemma 2.2 “Anisotropic regularity for the vertical velocity”. Let v : Ω →
IR be a function such that ∂xv ∈ L

2(Ω) and define v3(x, z) = −
�

z

−D(x)
∂xv(x, s)ds,

then one verifies:

�v3�L2
xL

∞
z
≤ D

1/2
max�∂xv�L2(Ω).

Proof: From the definition of v3,

�v3(x, ·)�L∞(−D(x),0) ≤
� 0

−D(x)
|∂xv(x, s)|ds.

Then,

�v3�2L2
xL

∞
z

≤
�

ω

�� 0

−D(x)
|∂xv(x, s)|ds

�2

dx

≤
�

ω

�� 0

−D(x)
|∂xv(x, s)|2ds

�

D(x)dx ≤ Dmax�∂xv�2L2(Ω) .

Lemma 2.3 “Vertical Poincaré’s inequalities”. Let u ∈ L
2(Ω) be a function

such that ∂zu ∈ L
2(Ω). Then, u ∈ L

2
x
L
∞
z

and verifies the following estimates:

(a) �u�2
L2
xL

∞
z
≤ 2 �u�L2(Ω)�∂zu�L2(Ω) if (unz)|Γb

= 0,

(b) �u�2
L2
xL

∞
z
≤ C�u�L2(Ω)�u�H1(Ω) for some constant C = C(Ω) > 0.

Remark 2.3 We denote �n = (nx, nz) the outward normal vector to ∂Ω. Notice that
since u ∈ L

2(Ω) and ∂zu ∈ L
2(Ω), then unz ∈ H

−1/2(∂Ω).

Proof: In case (a), by hypothesis, u(x,−D(x)) = 0. Then,

u(x, z)2 =
�

z

−D(x)
∂z(u(x, s)

2)ds = 2
�

z

−D(x)
u(x, s)∂zu(z, s)ds

≤ 2 �u(x, ·)�L2(−D(x),0)�∂zu(x, ·)�L2(−D(x),0).

Taking essential supremum in z ∈ (−D(x), 0),

�u(x, ·)�2
L∞(−D(x),0) ≤ 2 �u(x, ·)�L2(−D(x),0)�∂zu(x, ·)�L2(−D(x),0),

and integrating on x ∈ ω,

�u�2
L2
xL

∞
z
≤ 2 �u�L2(Ω)�∂zu�L2(Ω).

As for case (b), we consider the following “Extension Theorem” (see [6] for instance):
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“Let Ω be a C
0,1
-domain in IR2

. Given a domain Ω� ⊃⊃ Ω, there exists a (linear)

extension operator E from H
1(Ω) into H

1
0 (Ω

�) such that Eu|Ω = u and

�Eu�H1(Ω�) ≤ C�u�H1(Ω) ∀u ∈ H
1(Ω), (14)

where C = C(Ω,Ω�) > 0. Moreover, one verifies:

�Eu�L2(Ω�) ≤ C�u�L2(Ω) ∀u ∈ H
1(Ω).�� (15)

It is easy to demonstrate that:

�u�2
L2
xL

∞
z (Ω) ≤ �Eu�2

L2
xL

∞
z (Ω�).

On the other hand, applying case (a) to Eu we have:

�Eu�2
L2
xL

∞
z (Ω�) ≤ 2 �Eu�L2(Ω�)�∂z(Eu)�L2(Ω�).

Taking into account the two previous estimates and using (14) and (15), we arrive
at (b).

Lemma 2.4 “Horizontal Poincaré’s inequalities”. Let u ∈ L
2(Ω) be a function

such that ∂xu ∈ L
2(Ω). Then, u ∈ L

∞
x
L
2
z
(Ω) and verifies the following estimate:

(a) �u�2
L∞
x L2

z
≤ 2 �u�L2(Ω)�∂xu�L2(Ω) if (unx)|Γb∪Γl

= 0,

(b) �u�2
L∞
x L2

z
≤ C�u�L2(Ω)�u�H1(Ω), for some constant C = C(Ω) > 0.

Remark 2.4 Notice that, since u ∈ L
2(Ω) and ∂xu ∈ L

2(Ω), then unx ∈ H
−1/2(∂Ω).

Proof: In the case (a), given (x, z) ∈ Ω, we consider x0 ∈ ∂ω
i0
z

where ωz = {x ∈
ω/ (x, z) ∈ Ω} =

�
i ω

i

z
, being (ωi

z
)i∈Iz the connexe components of ωz and x ∈ ω

i0
z
.

By hypothesis, u(x0, z) = 0. Then,

u(x, z)2 =
�

x

x0

∂x(u(s, z)
2)ds = 2

�
x

x0

u(s, z)∂xu(s, z)ds

≤ 2 �u(·, z)�L2(ωz)�∂xu(·, z)�L2(ωz).

Integrating in z ∈ (−D(x), 0) and taking essential supremum in x ∈ ω, the inequality
(a) of this Lemma is obtained.

Case (b) follows the same argument as Lemma 2.3 (b), changing ∂zu by ∂xu and
applying Lemma 2.4 (a) instead of Lemma 2.3 (a).
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2.2 Existence of strong solution of the 2D hydrostatic prob-

lem.

Proof of Theorem 1.1 in the 2D case (d = 1):

We are going to focus on the study of the strong regularity for problem (EP ),
considered in a domain Ω ⊂ IR2 and data F = f1 + f2, with f1 ∈ L

2(0, T ;L2(Ω))

and f2 ∈ L
∞(0, T ;L2(Ω)), τ = τ1 + τ1 with τ1 ∈ L

2(0, T ;H1/2+ε

0 (Γs)) and τ2 ∈
L
∞(0, T ;H1/2+ε

0 (Γs) for some ε > 0, such that ∂tτ1 ∈ L
2(0, T ;H−1/2(Γs)) and ∂tτ2 ∈

L
∞(0, T ;H−1/2(Γs). To do this, first we lift up the non homogeneous Neumann

boundary condition τ2 by taking (e∞(t), q∞
s
(t)) the strong solution of the steady

hydrostatic Stokes problem:






−νh∂
2
xx
e
∞ − νv∂

2
zz
e
∞ + ∂xq

∞
s

= 0 in Ω, �e∞� = 0 in ω,

νv∂ze
∞ = τ2(t) on Γs, e

∞ = 0 on Γb ∪ Γl.

Then, we lift up τ1, the horizontal force f1 and the initial condition by taking (e, qs)
the strong solution of hydrostatic Stokes evolution problem,

(E)






∂te− νh∂
2
xx
e− νv∂

2
zz
e+ ∂xqs = f1 in (0, T )× Ω,

�e� = 0 in (0, T )× ω, e|t=0 = u0 − e
∞(0) in Ω,

νv∂ze = τ1 on (0, T )× Γs, e = 0 on (0, T )× (Γb ∪ Γl).

Therefore, we have to study the resulting problem (R) that verifies (w, πs) = (u −
e− e

∞
, ps − qs − q

∞
s
), where (u, ps) is a (possible) strong solution of (EP ):

(R)






∂tw − νh∂
2
xx
w − νv∂

2
zz
w + (w + e+ e

∞)∂x(w + e+ e
∞)

+(w3 + e3 + e
∞
3 )∂z(w + e+ e

∞) + ∂xπs = f2 − ∂te
∞ in (0, T )× Ω,

�w� = 0 in (0, T )× ω, w|t=0 = 0 in Ω,

νv∂zw = 0 on (0, T )× Γs, w = 0 on (0, T )× (Γb ∪ Γl),

where w3 = −
�

z

−D(x)
∂xw ds and e3 = −

�
z

−D(x)
∂xe ds (similarly for e∞3 ).

Existence and weak estimates of approximate solutions of (R): We ap-
proximate w by wm, the Galerkin approximations in the m-dimensional spaces
Vm = {z1, .., zm}, where {z1, .., zm, ...} is a basis of orthonormal (in H

1) eigenfunc-
tions of the 2D hydrostatic operator A. Then, we consider the variational formula-
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tion for wm with test functions in Vm:

(R)m






�

Ω
∂twmvmdΩ+

�

Ω
AwmvmdΩ+

�

Ω
(wm + e+ e

∞)∂x(wm + e+ e
∞)vmdΩ

+
�

Ω
(wm3 + e3 + e

∞
3 )∂z(wm + e+ e

∞)vmdΩ

=
�

Ω
f2vmdΩ−

�

Ω
∂te

∞
vmdΩ, ∀vm ∈ Vm,

wm(0) = 0.

Obviously, one has wm = um − e− e
∞, where um is the corresponding Galerkin ap-

proximation of problem (EP ). Standard weak estimates of (um) can be obtained in
a standard way. Then, weak estimates of (wm) and (wm3) follow from weak estimates
of (um) and weak regularity of e and e

∞. Since (wm) is bounded in L
∞(0, T ;H) ∩

L
2(0, T ;V ), (∂twm) in L

2(0, T ; (V ∩H
2(Ω))�) and (wm3) in L

2(0, T ;L2(Ω)), we can
extract a subsequence that converges weakly to a limit function w (and w3), which
is a weak solution of (R). Therefore, it suffices to obtain strong estimates for (wm)
(i.e. (wm) is bounded in L

∞(0, T ;V )∩L2(0, T ;H2(Ω)) and (∂twm) in L
2(0, T ;L2(Ω)))

to ensure that w is also a strong solution of (R), and consequently, u is a strong
solution of (EP ).

Strong estimates for the approximate solutions of (R): Taking vm = Awm(t) ∈
Vm as test functions in (R)m , we arrive at:






1

2

d

dt
�wm�2V + �Awm�2L2(Ω) = −

�

Ω
(wm + e+ e

∞)∂xwmAwm dΩ

−
�

Ω
(wm + e+ e

∞)∂xeAwm dΩ−
�

Ω
(wm + e+ e

∞)∂xe
∞
AwmdΩ

−
�

Ω
((wm3 + e3 + e

∞
3 )∂zwmAwm dΩ−

�

Ω
((wm3 + e3 + e

∞
3 )∂zeAwm dΩ

−
�

Ω
((wm3 + e3 + e

∞
3 )∂ze

∞
AwmdΩ+

�

Ω
f2AwmdΩ−

�

Ω
∂te

∞
AwmdΩ ≡

8�

i=1

Ii

(16)
Using Lemma 2.4 (a) for wm, e and e

∞, Lemma 2.3 (b) for ∂xwm, ∂xe and ∂xe
∞

(because (∂xwm)|Γb
, (∂xe)|Γb

, (∂xe∞)|Γb
�= 0 and (∂xwm)|Γs , (∂xe)|Γs , (∂xe

∞)|Γs �= 0
in general), taking into account (10) for wm(t) and estimate:

�wm(t)�H1(Ω) ≤
1

ν1/2
�wm(t)�V , (17)
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we bound I1, I2 and I3 in the form:

I1 ≤
�
�wm�L∞

x L2
z
+ �e�L∞

x L2
z
+ �e∞�L∞

x L2
z

�
�∂xwm�L2

xL
∞
z
�Awm�L2(Ω)

≤ C

ν1/2

�
�wm�1/2L2(Ω)�wm�1/2H1(Ω) + �e�1/2

L2(Ω)�e�
1/2
H1(Ω) + �e∞�1/2

L2(Ω)�e
∞�1/2

H1(Ω)

�

× �wm�1/2H1(Ω)�Awm�3/2L2(Ω)

≤ 1

16
�Awm�2L2(Ω) +

C

ν2

�
�wm�4H1(Ω)�wm�2L2(Ω)

+
�
�e�2

L2(Ω)�e�2H1(Ω) + �e∞�2
L2(Ω)�e∞�2

H1(Ω)

�
�wm�2H1(Ω)

�

≤ 1

16
�Awm�2L2(Ω) +

C

ν5
�wm�6V +

C

ν3

�
d
4
1 + d

4
2

�
�wm�2V ,

where d1 = �e�L∞
T (H1) and d2 = �e∞�L∞

T (H1) whose expressions are bounded by using
(5) and (7).

I2 ≤
�
�wm�L∞

x L2
z
+ �e�L∞

x L2
z
+ �e∞�L∞

x L2
z

�
�∂xe�L2

xL
∞
z
�Awm�L2(Ω)

≤ C

�
�wm�1/2L2(Ω)�wm�1/2H1(Ω) + �e�1/2

L2(Ω)�e�
1/2
H1(Ω) + �e∞�1/2

L2(Ω)�e∞�1/2
H1(Ω)

�

× �e�1/2
H1(Ω)�e�

1/2
H2(Ω)�Awm�L2(Ω)

≤ 1

16
�Awm�2L2(Ω) +

C

ν
�e�H1(Ω)�e�H2(Ω)�wm�2V

+ C

�
�e�L2(Ω)�e�2H1(Ω) + �e∞�L2(Ω)�e∞�H1(Ω)�e�H1(Ω)

�
�e�H2(Ω)

≤ 1

16
�Awm�2L2(Ω) +

Cd1

ν
�e�H2(Ω)�wm�2V + C

�
d
3
1 + d1d

2
2

�
�e�H2(Ω)

I3 ≤ 1

16
�Awm�2L2(Ω) +

C

ν
�e∞�H1(Ω)�e∞�H2(Ω)�wm�2V

+ C

�
�e�L2(Ω)�e�H1(Ω)�e∞�H1(Ω) + �e∞�L2(Ω)�e∞�2

H1(Ω)

�
�e∞�H2(Ω)

≤ 1

16
�Awm�2L2(Ω) +

Cd2

ν
�e∞�H2(Ω)�wm�2V + C

�
d
2
1d2 + d

3
2

�
�e∞�H2(Ω)
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Using Lemma 2.2 for wm3 , e3 and e
∞
3 , and Lemma 2.4 (b) for ∂zwm, ∂ze and ∂e

∞,
we obtain the following estimates for I4, I5 and I6:

I4 ≤ �wm3 + e3 + e
∞
3 �L2

xL
∞
z
�∂zwm�L∞

x L2
z
�Awm�L2(Ω)

≤ C

ν1/2

�
�wm�H1(Ω) + �e�H1(Ω) + �e∞�H1(Ω)

�
�wm�1/2H1(Ω)�Awm�3/2L2(Ω)

≤ 1

14
�Awm�2L2(Ω) +

C

ν2

�
�wm�6H1(Ω) +

�
�e�4

H1(Ω) + �e∞�4
H1(Ω)

�
�wm�2H1(Ω)

�

≤ 1

16
�Awm�2L2(Ω) +

C

ν5
�wm�6V +

C

ν3

�
d
4
1 + d

4
2

�
�wm�2V

I5 ≤
�
�wm3�L2

xL
∞
z
+ �e3�L2

xL
∞
z
+ �e∞3 �L2

xL
∞
z

�
�∂ze�L∞

x L2
z
�Awm�L2(Ω)

≤ C

�
�wm�H1(Ω) + �e�H1(Ω) + �e∞�H1(Ω)

�
�e�1/2

H1(Ω)�e�
1/2
H2(Ω)�Awm�L2(Ω)

≤ 1

16
�Awm�2L2(Ω) + C

�
�e�H1(Ω)�e�H2(Ω)�wm�2H1(Ω)

+ �e�3
H1(Ω)�e�H2(Ω) + �e∞�2

H1(Ω)�e�H1(Ω)�e�H2(Ω)

�

≤ 1

16
�Awm�2L2(Ω) +

C

ν
d1�e�H2(Ω)�wm�2V + C

�
d
3
1 + d1d

2
2

�
�e�H2(Ω)

I6 ≤ 1

16
�Awm�2L2(Ω) + C

�
�e∞�H1(Ω)�e∞�H2(Ω)�wm�2H1(Ω)

+ �e∞�H1(Ω)�e∞�H2(Ω)�e�2H1(Ω) + �e∞�3
H1(Ω)�e∞�H2(Ω)

�

≤ 1

16
�Awm�2L2(Ω) +

C

ν
d2�e∞�H2(Ω)�wm�2V + C

�
d
2
1d2 + d

3
2

�
�e∞�H2(Ω)

Finally,

I7 ≤ �f2�L2(Ω)�Awm�L2(Ω) ≤
1

16
�Awm�2L2(Ω) + C�f2�2L2(Ω)

I8 ≤ �∂te∞�L2(Ω)�Awm�L2(Ω) ≤
1

16
�Awm�2L2(Ω) + C�∂te∞�2

L2(Ω)
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Combining all the above bounds, we arrive at:

d

dt
�wm�2V + �Awm�2L2(Ω) ≤

C

ν5
�wm�6V +

C

ν3

�
d
4
1 + d

4
2

�
�wm�2V

+
C

ν

�
d1�e�H2(Ω) + d2�e∞�H2(Ω)

�
�wm�2V + C

�
�f2�2L2(Ω) + �∂te∞�2

L2(Ω)

�

+C (d31 + d1d
2
2) �e�H2(Ω) + C (d21d2 + d

3
2) �e∞�H2(Ω)

≤ C

ν5
�wm�6V +

C

ν3

�
d
4
1 + d

4
2

�
�wm�2V + C

�
�f2�2L2(Ω) + �∂te∞�2

L2(Ω)

�

+C

�
(d31 + d1d

2
2) �e�H2(Ω) + (d21d2 + d

3
2) �e∞�H2(Ω)

�

+Cν
2
�
�e�2

H2(Ω) + �e∞�2
H2(Ω)

�

(18)

Using the inequality (12) for wm(t), we obtain:

d

dt
�wm�2V +

1

C1

�

ν − C

ν5
�wm�4V − C(d41 + d

4
2)

ν3

�

�wm�2V

≤ Cν
2
�
�e�2

H2(Ω) + �e∞�2
H2(Ω)

�
+ C

�
�f2�2L2(Ω) + �∂te∞�2

L2(Ω)

�

+C

�
(d31 + d1d

2
2) �e�H2(Ω) + (d21d2 + d

3
2) �e∞�H2(Ω)

�

(19)

As d21 and d
2
2 have the following bounds:






d
2
1 ≤ C

ν

�
�f1�2L2

T (L2) + �τ1�2
L
2
T (H1/2+ε

0 )

�
+

C

ν3
�∂tτ1�2L2

T (H−1/2)

+
ν̄

ν

�
�u0�2H1 +

C

ν2

�
�τ1(0)�2H−1/2 + �τ2(0)�2H−1/2

��
,

d
2
2 ≤ C

ν2
�τ2�2L∞

T (H−1/2) ≤
C

ν2
�τ2�2

L
∞
T (H1/2+ε

0 )

(see (7) and the inequality for e2 in the proof of Theorem 1.10), hypothesis (H)
allows us to bound:

d1, d2 < Cc ν,

�e∞�L∞
T (H2) ≤ C

ν
�τ2�

L
∞
T (H1/2+ε

0 )
< Cc ν,

�f2�2L∞
T (H2) < c ν

2
,
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�∂te∞�2
L
∞
T (L2) ≤ C

ν
�∂tτ2�2L∞

T (H−1/2) < Cc ν
2
,

where c is the small constant that appears in (H) (depending only on the size of the
data). Therefore, we can rewrite (19) as

d

dt
�wm�2V +

ν

C1

�
1− C

ν6
�wm�4V − Cc

4
�
�wm�2V

≤ C

�
φ(c)ν4 + ν

2�e(t)�2
H2(Ω)

�
,

(20)

where φ(c) = c
2(1 + c

2 + c
4).

Then we choose a small constant γ > 0 satisfying the following two conditions:





C (γ4 + c
4) <

1

2
,

C φ(c) < γ
2

(21)

(this choice is possible since c is small enough).

Then we can conclude that �wm(t)�V ≤ γν
3/2, ∀t ∈ [0, T ] (here, we assume T < +∞

for simplicity). To prove this statement, we argue by contradiction. Suppose there
exists some instant in (0, T ) where the bound γν

3/2 is reached. Let t∗ be the smallest
of these instants, i.e. �wm(t)�V < γν

3/2, ∀t ∈ [0, t∗) and �wm(t∗)�V = γν
3/2. Then,

∀t ∈ [0, t∗], from (20) and (21)1, we have:

d

dt
�wm(t)�2V +

ν

2C1
�wm(t)�2V ≤ C

�
φ(c)ν4 + ν

2�e(t)�2
H2(Ω)

�
.

If we multiply by exp

�
ν

2C1
t

�
and integrate in time (recall that wm(0) = 0), one

has:

�wm(t)�2V ≤ C

�
φ(c)ν3 + ν

2
�

t

0
�e(s)�2

H2(Ω)ds

�
∀t ∈ [0, t∗]

Now, using (H) and estimate (8), we can bound �e�2
L
2
T (H2) (recall that there is no

force in L
∞
T
(L2) in this case) as follows:

�e�2
L
2
T (H2) < Cc

2
ν,

and we get:
�wm(t)�2V < Cφ(c)ν3

, ∀t ∈ [0, t∗],

hence we get a contradiction, taking into account (21)2. Then, one has that (wm)
is bounded in L

∞(0, T ;V ). The estimates of (wm) in L
2(0, T ;H2(Ω)) and of (∂twm)

in L
2(0, T ;L2(Ω)) can be deduced from this last estimate (see [9]).
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Therefore, we have demonstrated the existence of a strong solution v of (EP ) in
(0, T ), where T can be equal to +∞, under the smallness hypothesis (H).

Proof of Theorem 1.2 in the 2D case:

If we call y(t) = �wm(t)�2V , dividing (18) (recall that there is no force in L
∞
T
(L2))

by (1 + y(t))3, we obtain:

−1

2

d

dt
[(1 + y(t))−2] + (1 + y(t))−3�Awm(t)�2L2(Ω)

≤ C

�
1

ν5
+

d
4
1

ν3
+ d

3
1�e(t)�H2(Ω) + ν

2�e(t)�2
H2(Ω)

�

.

(22)

Integrating (22) on (0, t) and taking into account that �e�2
H2(Ω) ∈ L

1(0, T ), we get
the following inequality:

1

2(1 + y(0))2
+

�
t

0

�Awm(s)�2L2(Ω)

(1 + y(s))3
ds ≤

≤ 1

2(1 + y(t))2
+

C

ν3

�
1

ν2
+ d

4
1

�
t+ Cd

3
1�e�L2

t (H
2)

√
t+ Cν

2�e�2
L
2
t (H

2).

(23)
Therefore, a sufficient condition for having y(t) bounded independently of m is:

C

ν3

�
1

ν2
+ d

4
1

�
t+ Cd

3
1�e�L2

t (H
2)

√
t+ Cν

2�e�2
L
2
t (H

2) <
1

2(1 + y(0))2
. (24)

Indeed, if we have (24), then:

0 <
1

2(1 + y(0))2
−
�
C

ν3

�
1

ν2
+ d

4
1

�
t+ Cd

3
1�e�L2

t (H
2)

√
t+ Cν

2�e�2
L
2
t (H

2)

�
≤ 1

2(1 + y(t))2
.

Now, we pull out the (1 + y(t)) factor to obtain:

1 + y(t) ≤ (1 + y(0))
�
1− 2(1 + y(0))2

×
�
C

ν3

�
1

ν2
+ d

4
1

�
t+ Cd

3
1�e�L2

t (H
2)

√
t+ Cν

2�e�2
L
2
t (H

2)

� �−1/2
.

Coming back to (24), since �e�L2(0,t;H2(Ω)) is a continuous function with respect to t

(that vanishes for t = 0), we can always find a T∗ small enough to verify condition
(24) for all t ∈ [0, T∗].

Remark 2.5 In the context of Theorem 1.2, one can obtain Hausdorff estimates for

the singular times (times of blow up in H
1(Ω)-norm), imposing more regularity in

18



time for F , τ and ∂tτ . For instance, if F ∈ L
∞(0, T ;L2(Ω)), τ ∈ L

∞(0, T ;H1/2+ε

0 (Γs))
and ∂tτ ∈ L

∞(0, T ;H−1/2(Γs)), then we can estimate the Hausdorff dimension by

1/2 (see [5]). Finally, for intermediate regularities L
q
in time one obtain a dimen-

sion ≤ d(q) =
q

2(q − 1)
(see [8]).

3 The 3D case.

In this section, we give the necessary changes to handle the nonlinear terms in the
3D case. We start by some 3D anisotropic estimates.

3.1 Some 3D anisotropic spaces and related estimates.

Definition 3.1 Given p, q ∈ [1,+∞], it will be said that a function �u belongs to

L
q

z
L
p

�x
(Ω) if:

�u(·, z) ∈ L
q(ωz) and ��u(·, z)�Lq(ωz) ∈ L

p(−Dmax, 0),

and its norm is given by the expression:
�����u(·, z)�Lq(ωz)

���
Lp(−Dmax,0)

Remark 3.1 The most useful norms that we will use in the 3D case will be:

��u�L2
zL

4
�x(Ω) =

�� 0

−Dmax

��u(·, z)�2
L4(ωz)dz

�1/2

��u�L∞
z L

4
�x(Ω) = sup

z∈(−Dmax,0)
��u(·, z)�L4(ωz),

Lemma 3.2 Let �v : Ω → IR2
be a function such that ∇H · �v ∈ L

2(Ω) and define

v3(�x, z) = −
�

z

−D(�x)
∇H · �v(�x, s)ds, then one verifies:

�v3�L∞
z L

2
�x
≤ D

1/2
max�∇H · �v�L2(Ω).

Proof: Using definition of v3, we have:

|v3(�x, z)|2 =
�����

�
z

−D(�x)
∇H · �v(�x, s)ds

�����

2

≤
��

z

−D(�x)
|∇H · �v(�x, z)|2ds

�

Dmax

Therefore integrating in x, we get
�

ωz

|v3(�x, z)|2 d�x ≤ Dmax

�

ωz

�
z

−D(�x)
|∇H · �v(�x, s)|2dsd�x ≤ Dmax�∇H · �v�2

L2(Ω).

Taking the essential supremum in z ∈ (−Dmax, 0), we conclude the proof.
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Lemma 3.3 “Interpolation inequalities”

(a) Let v ∈ L
2(Ω) be a function such that ∂zv ∈ L

2(Ω) and (vnz)|Γb
= 0. Then,

v ∈ L
∞
z
L
2
�x
(Ω) and verifies the estimate:

�v�2
L∞
z L

2
�x
≤ 2 �v�L2(Ω)�∂zv�L2(Ω). (25)

More generally, if v ∈ H
1(Ω) then v ∈ L

∞
z
L
2
�x
(Ω), and there exists C = C(Ω) >

0 such that:

�v�2
L∞
z L

2
�x
≤ C(Ω)�v�L2(Ω)�v�H1(Ω) ∀v ∈ H

1(Ω). (26)

(b) Let v ∈ L
2(Ω) be a function such that ∇Hv ∈ L

2(Ω)2 and (vn�x)|Γb∪Γl
= 0. Then,

v ∈ L
2
z
L
4
�x
(Ω) and verifies the estimate:

�v�2
L2
zL

4
�x
≤ 4 �v�L2(Ω)�∇Hv�L2(Ω). (27)

More generally, if v ∈ H
1(Ω) then v ∈ L

2
z
L
4
�x
, and there exists C = C(Ω) > 0

such that:

�v�2
L2
zL

4
�x
≤ C(Ω)�v�L2(Ω)�v�H1(Ω). (28)

Proof:

(a) If (vnz)|Γb
= 0, then v(�x,−D(�x)) = 0. So that,

v(�x, z)2 = 2
�

z

−D(�x)
v(�x, s)∂zv(�x, s)ds.

Therefore, integrating in ωz, we arrive at:
�

ωz

|v(�x, z)|2dx ≤ 2
�

ωz

�
z

−D(x)
|v(�x, z)||∂zv(�x, z)|dsd�x

≤ 2
�

Ω
|v||∂zv|dΩ ≤ 2 �v�L2(Ω)�∂zv�L2(Ω).

Hence, taking essential supremum in z ∈ (−Dmax, 0), we arrive at (25).

Remark 3.2 In the previous argument, hypothesis (vnz)|Γb
= 0 can be changed by

v|Γs = 0.

Now, if we consider the case v ∈ H
1(Ω), without hypothesis on its trace, using the

Extension Theorem that appears in Lemma 2.3 (b) and the previous argument for
the extended function, we can prove (26).
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(b) Let v be a function such that vn�x|Γb∪Γl
= 0. Then, v(·, z) ∈ H

1
0 (ωz) for a.e. z in

(−Dmax, 0) and we can easily obtain:

�v(·, z)�2
L4(ωz) ≤ 4 �v(·, z)�L2(ωz)�∇Hv(·, z)�L2(ωz). (29)

Indeed, to prove (29) it suffices to prove the following inequality (this is an adapta-
tion of a result in [13]):

�ϕ�2
L2(ω) ≤ �∂xϕ�L1(ω)�∂yϕ�L1(ω), ∀ϕ ∈ W

1,1
0 (ω), (30)

and apply this inequality to ϕ = |v|2. To prove (30), we express ϕ as:

ϕ(x, y) = ϕ(x, y0) +
�

y

y0

∂yϕ(x, t)dt

and
ϕ(x, y) = ϕ(x0, y) +

�
x

x0

∂xϕ(s, y)ds

where x0 (resp. y0) is one point of the intersection of ωy = {s/(s, y) ∈ ω} (resp.
ωx = {t/(x, t) ∈ ω}) and ∂ω. Since ϕ = 0 on ∂ω, multiplying the two above
equalities, we have:

|ϕ(x, y)|2 ≤
��

ωx

|∂yϕ(x, t)|dt
���

ωy

|∂xϕ(s, y)|ds
�

.

Integrating on (x, y) ∈ ω, we get (30).

Integrating (29) on z ∈ (−Dmax, 0), we get

�v�2
L2
zL

4
�x

≤ 4
� 0

−Dmax

�v(·, z)�L2(ωz)�∇Hv(·, z)�L2(ωz)dz

≤ 4
�� 0

−Dmax

�v(·, z)�2
L2(ωz)dz

�1/2 �� 0

−Dmax

�∇Hv(·, z)�2L2(ωz)dz

�1/2

= 4 �v�L2(Ω)�∇Hv�L2(Ω).

For a more general function v ∈ H
1(Ω), we use Extension Operator as in Lemma

2.3 (b), and extends v ∈ H
1(Ω) to a function Ev ∈ H

1(Ω̃) with Ev|Γb∪Γl
= 0. Then,

from (27) we obtain:

�Ev�2
L2
zL

4
�x
≤ C(Ω)�Ev�

L2(Ω̃)�Ev�
H1(Ω̃).

Now, applying properties of Extension Operator (see proof of Lemma 2.3), (28)
holds.
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Lemma 3.4 “New estimate for v3”. Let �v ∈ L
2(Ω)2 be a function such that

∇H · �v ∈ H
1(Ω). Then, if we consider v3 defined in function of ∇H · �v as in Lemma

3.2, we have that v3 ∈ L
∞
z
L
4
�x
(Ω) and verifies the estimate:

�v3�L∞
z L

4
�x
≤ C (Ω) �∇H · �v�1/2

L2(Ω)�∇H · �v�1/2
H1(Ω)

Proof: We will use that if p > q,

�u�Lp
�xL

q
z
≤ �u�Lq

zL
p
�x
.

Then, from Lemma 3.3 (b),

�∇H · �v�2
L
4
�xL

2
z
≤ �∇H · �v�2

L2
zL

4
�x
≤ C(Ω)�∇H · �v�2

L2(Ω)�∇H · �v�2
H1(Ω),

and as v3(�x, z) = −
�

z

−D(�x)
∇H · �v(�x, s)ds,

�v3(�x, ·)�L∞(−D(�x),0) ≡ sup
z∈(−Dmax,0)

|v3(�x, z)| ≤
� 0

−D(�x)
|∇H · �v(�x, z)|dz

≤ D
1/2
max

�� 0

−D(�x)
|∇H · �v(�x, z)|2dz

�1/2

≡ D
1/2
max�∇H · �v(�x, ·)�L2(−D(�x),0).

So we can easily finish the proof, using that �v3�L∞
z L

4
�x
≤ �v3�L4

�xL
∞
z
.

3.2 Global strong solution for small data.

Proof of Theorem 1.1 in the 3D case: For simplicity, we take �τ2 = �0, and then
�e
∞ = �0.
As in the 2D case, it suffices to obtain the strong estimate of (wm) in L

∞(0, T ;H1(Ω)2),
where wm is the approximate solution of (R) in the 3D case. In all this Section, we
drop the subindex m. Starting from the variational formulation (R)m and taking
�v = A�w as a test function, we obtain:

1

2

d

dt
��w�2

V
+ �A�w�2

L2(Ω) = −
�

Ω
((�w + �e) ·∇H)�w · A�w dΩ

−
�

Ω
((�w + �e) ·∇H)�e · A�w dΩ−

�

Ω
(w3 + e3)∂z �w · A�w dΩ

−
�

Ω
(w3 + e3)∂z�e · A�w dΩ+

�

Ω

�f2 · A�wdΩ ≡
5�

i=1

Ii.
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Using interpolation inequality ��v�L4(Ω) ≤ C��v�1/4
L2(Ω)��v�

3/4
H1(Ω), (10) and (17), we es-

timate I1 and I2 in the form:

I1 ≤ �A�w�L2(Ω)

�
��w�L4(Ω) + ��e�L4(Ω)

�
�∇�w�L4(Ω)

≤ C�A�w�L2(Ω)

�
�∇�w�3/4

L2(Ω)��w�
1/4
L2(Ω)

+ ��e�3/4
H1(Ω)��e�

1/4
L2(Ω)

�
�∇H �w�3/4

H1(Ω)�∇H �w�1/4
L2(Ω)

≤ C

ν3/4
�A�w�7/4

L2(Ω)

�
��w�H1(Ω) + ��e�H1(Ω)

�
��w�1/4

H1(Ω)

≤ C

ν7/8
�A�w�7/4

L2(Ω)

�
1

ν1/2
��w�V + ��e�H1(Ω)

�
��w�1/4

V

≤ 1

10
�A�w�2

L2(Ω) + C

�
1

ν11
��w�8

V
+

1

ν7
��e�8

H1(Ω)

�
��w�2

V

In an analogous way, we can obtain estimates for I2:

I2 ≤ �A�w�L2(Ω)

�
��w�L4(Ω) + ��e�L4(Ω)

�
�∇H�e�L4(Ω)

≤ C�A�w�L2(Ω)

�
�∇�w�3/4

L2(Ω)��w�
1/4
L2(Ω) + ��e�3/4

H1(Ω)��e�
1/4
L2(Ω)

�
�∇H�e�1/4L2(Ω)�∇H�e�3/4H1(Ω)

≤ 1

10
�A�w�2

L2(Ω) +
C

ν
��e�1/2

H1(Ω)��e�
3/2
H2(Ω)��w�

2
V
+ C��e�5/2

H1(Ω)��e�
3/2
H2(Ω)

Using Lemma 3.4 for w3 and e3 and Lemma 3.3 (estimate (28)) for ∂z �w and ∂z�e, we
estimate I3 and I4. To be more transparent, we separate I3 = J1 + J2, where

J1 = −
�

Ω
(w3 · ∂z)�w · A�wdΩ,

and
J2 = −

�

Ω
(e3 · ∂z)�w · A�wdΩ.

|J1| ≤ �A�w�L2(Ω)�w3�L∞
z L

4
�x
�∂z �w�L2

zL
4
�x

≤ C

ν
�A�w�2

L2(Ω)��w�H1(Ω) ≤
C

ν3/2
�A�w�2

L2(Ω)��w�V .

In a similar way,

|J2| ≤ C�A�w�L2(Ω)��w�1/2H2(Ω)��w�
1/2
H1(Ω)��e�

1/2
H2(Ω)��e�

1/2
H1(Ω)

≤ 1

10
�A�w�2

L2(Ω) +
C

ν3
��w�2

V
��e�2

H1(Ω)��e�2H2(Ω).
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And similar estimates for I4:

I4 ≤
�
�w3�L∞

z L
4
�x
+ �e3�L∞

z L
4
�x

�
�∂z�e�L2

zL
4
�x
�A�w�L2(Ω)

≤ C

�
��w�1/2

H1(Ω)��w�
1/2
H2(Ω) + ��e�1/2

H1(Ω)��e�
1/2
H2(Ω)

�
��e�1/2

H1(Ω)��e�
1/2
H2(Ω)�A�w�L2(Ω)

≤ 1

10
�A�w�2

L2(Ω) +
C

ν3
��e�2

H1(Ω)��e�2H2(Ω)��w�2V + C��e�2
H1(Ω)��e�2H2(Ω).

Finally for I5 we get:

I5 ≤ 1

10
�A�w�2

L2(Ω) + C��f2�2L2(Ω).

Putting together all these bounds, we arrive at:

d

dt
��w�2

V
+ �A�w�2

L2(Ω) ≤
C

ν3/2
�A�w�2

L2(Ω)��w�V +
C

ν11
��w�10

V

+
C

ν

�
1

ν6
��e�8

H1(Ω) + ��e�1/2
H1(Ω)��e�

3/2
H2(Ω) +

1

ν2
��e�2

H1(Ω)��e�2H2(Ω)

�
��w�2

V

+ C

�
��e�5/2

H1(Ω)��e�
3/2
H2(Ω) + ��e�2

H1(Ω)��e�2H2(Ω) + ��f2�2L2(Ω)

�
.

(31)

Now, imposing ��w(t)�V < γν
3/2, we can control the term C�A�w�2

L2(Ω)��w�V . After-
wards, using hypothesis (H) on the data, we follow the same kind of reasoning as in
the 2D case, hence we can deduce that ��w(t)�V < γν

3/2, ∀t ∈ [0, T ] (for some small
constant γ > 0) and finish the proof.

3.3 Local strong solution for any data.

Proof of Theorem 1.2 in the 3D case:

Arguing as for the proof of existence of global strong solution for small data, we
arrive at (31). As �wm(0) = �0 and �wm is continuous in time with values in H

1, we
can choose a time T

1
m
such that:

��wm(t)�V ≤ ν
3/2

2C
, ∀t ∈ [0, T 1

m
].

Then, we want to show that T 1
m
can be chosen such that T 1

m
is bounded from below

independently from m. Integrating the expression (31) between 0 and t, and using
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that t ∈ [0, T 1
m
], we obtain

��wm(t)�2V +
�

t

0
�A�wm(s)�2L2(Ω)ds

≤ C

�

ν
4 +

d
8
1

ν4
+ d

4
1 + d

2
1ν

2 + ν
2��e�2

H2(Ω)

�

.

Next, we can take a time T
2 such that:

C

��

ν
4 +

d
8
1

ν4
+ d

4
1 + d

2
1ν

2

�

T
2 + ν

2��e�2
L
2
T2 (H

2(Ω))

�

<
ν
3

4C2
.

Hence, we see that for all m, T 1
m

can be chosen to be equal to T
2. The existence

proof can then be carried out very easily.

Remark 3.3 The argument of Hausdorff estimates for singular times are not pos-

sible in the 3D case, due to the term
C

ν3/2
�A�w�2

L2(Ω)��w�V on the right hand side of

(31) (which did not appear in (18)).

4 Uniqueness of weak/strong solution of hydro-

static problem.

In this Section, we are going to prove that any weak solution �u coincides with a
more regular solution �u, whenever this regular solution exists. We will do our study
in the 3D case and then we will only state the results for the 2D case.
Proof of Theorem 1.3: Using definition 1.5 for almost every t ∈ (0, T ) the energy
inequality (4) is verified. Observe that, starting from the variational formulation
of �u (Definition 1.5), one has that ∂t�u ∈ L

4/3(0, T ;W �), where W = {�ψ ∈ V ; ∂z �ψ ∈
H

1(Ω)2}. Indeed, the more difficult term to handle is
�

Ω
u3∂z

�ψ · �u dΩ, that can

be controlled using that u3 ∈ L
2(0, T ;L∞

z
L
2
�x
) (Lemma 3.2) and �u ∈ L

4(0, T ;L2
z
L
4
�x
)

(Lemma 3.3). Therefore, �ψ = �u can be taken as test function in the variational
formulation of �u.

Following the same arguments that in [9], one has:





1

2
�(�u− �u)(t)�2

L2(Ω) + ν

�
t

0
��u− �u�2

H1(Ω)ds

≤ −
�

t

0

�

Ω
((�u− �u) ·∇H�u+ (u3 − u3)∂z�u) · �u dΩ ds

(32)
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Then, we have to bound the second member (32). Using the free divergence condition
for �u,

−
�

t

0

�

Ω
((�u− �u) ·∇H�u+ (u3 − u3)∂z�u) · �u dΩ ds

= −
�

t

0

�

Ω
((�u− �u) ·∇H�u+ (u3 − u3)∂z�u) · (�u− �u) dΩ ds ≡ I1 + I2.

Using bounds from Lemmas of Section 3.1, we get the following estimates:

I1 ≤
�

t

0

�

Ω
|�u− �u|2|∇H�u| dΩ ds ≤

�
t

0
��u− �u�2

L2
zL

4
�x
�∇H�u�L∞

z L
2
�x
ds

≤ C

�
t

0
��u− �u�L2(Ω)��u− �u�H1(Ω)�∇H�u�L∞

z L
2
�x
ds

≤ ν

4

�
t

0
��u− �u�2

H1(Ω) ds+
C

ν

�
t

0
�∇H�u�2L∞

z L
2
�x
��u− �u�2

L2(Ω) ds.

I2 ≤
�

t

0

�

Ω
|u3 − u3||∂z�u||�u− �u| dΩ ds

≤ C(Ω)
�

t

0
��u− �u�3/2

H1(Ω)��u− �u�1/2
L2(Ω)�∂z�u�

1/2
L2(Ω)�∂z�u�

1/2
H1(Ω)ds

≤ ν

4

�
t

0
��u− �u�2

H1(Ω) ds+
C

ν

�
t

0
�∂z�u�2L2(Ω)�∂z�u�2H1(Ω)��u− �u�2

L2(Ω) ds.

Arranging the constants from all the previous bounds, inequality (32) becomes:





1

2
�(�u− �u)(t)�2

L2(Ω) + ν

�
t

0
�(�u− �u)(s)�2

H1(Ω)ds

≤ C

ν

�
t

0

�
�∇H�u(s)�2L∞

z L
2
�x
+ �∂z�u(s)�2L2(Ω)�∂z�u(s)�2H1(Ω)

�
�(�u− �u)(s)�2

L2(Ω)ds

(33)

Therefore, if �u verifies, besides the weak regularity, the additional regularity (3),
then the inequality (33) yields the uniqueness of �u by using a Gronwall Lemma

Remark 4.1 Using Lemma 3.3 (a) for ∇H�u ∈ H
1(Ω), we obtain the following

estimate:

�∇H�u�2L∞
z L

2
�x
≤ C�∇H�u�L2(Ω)�∇H�u�H1(Ω).

26



Then, we can conclude that if there exists a strong solution as constructed on its time

of existence, every weak solution of (EP ) coincides with this strong solution. In [9],

using isotropic estimates, we obtained uniqueness imposing ∂z�u ∈ L
8(0, T ;L4(Ω)2),

that is a regularity that, in general, a strong solution does not verify.

Remark 4.2 (Constant depth) If the depth is constant, ∇H�u|Γb
= �0, we can use

the first inequality in Lemma 3.3 (a) for ∇H�u, obtaining:

�∇H�u�2L∞
z L

2
�x
≤ C�∇H�u�L2(Ω)�∂z(∇H�u)�L2(Ω).

Therefore, it is only necessary to make the additional regularity assumption for ∂z�u

given in (3).

Remark 4.3 (2D case) In the 2D case, the authors have obtained (see [9]) unique-

ness of the weak solution, if there exists a weak solution ū of (EP ) in (0, T ) with

the additional regularity:

∂zū ∈ L
4(0, T ;L4(Ω)).

Now, using 2D anisotropic estimates, we can deduce that it is sufficient to impose:

∂zū ∈ L
4(0, T ;L2(Ω)).

5 Asymptotic behaviour of solutions.

As in the previous section, we will do the study in the 3D case. Results in the 2D
case are similar and easier.
Proof of Theorem 1.4: Let �v be the solution of the stationary problem:

(EP )st






−νh∆H�v − νv∂
2
zz
�v + (�v ·∇)�v + v3∂z�v +∇Hps = �f2 in Ω,

∇H · ��v� = 0 in ω,

νv∂z�v|Γs
= �τ2, �v|Γb∪Γl

= �0.

If data �f2 and �τ2 are small enough in L
2(Ω)2 and H

1/2+ε

0 (Γs)2-norms respectively,
then there exists a unique solution for (EP )st and the following estimates for weak
and strong regularity solutions are verified:

��v�2
H1(Ω) ≤

C

ν2

�
��f2�2H−1(Ω) + ��τ2�2H−1/2(Γs)

�
,
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��v�2
H2(Ω) ≤

C

ν2

�
��f2�2L2(Ω) + ��τ2�2

H
1/2+ε
0 (Γs)

�
.

Let �e be the solution of (S) with �f = �f1, �e(0) = �u0 − �v and �τ = �τ1. The problem
verified by �w = �u(t)− �e(t)− �v is the following:






∂t �w − νh∆H �w − νv∂
2
zz
�w + (�w ·∇H)�w + w3∂z �w

+((�v + �e) ·∇H)�w + (v3 + e3)∂z �w

+(�w ·∇H)(�v + �e) + w3∂z(�v + �e) + (�e ·∇H)�v + e3∂z�v

+((�v + �e) ·∇H)�e+ (v3 + e3)∂z�e = 0 in (0, T )× Ω,

∇H · ��w� = 0 in (0, T )× ω, �w(t = 0) = 0 in Ω,

νv∂z �w = 0 on (0, T )× Γs, �w = 0 on (0, T )× (Γb ∪ Γl).

Taking A�w as a test function, we obtain:

1

2

d

dt
��w�2

V
+ �A�w�2

L2(Ω) = −
�

Ω
((�w ·∇H)�w) · A�wdΩ−

�

Ω
w3∂z �w · A�wdΩ

−
�

Ω
((�v + �e) ·∇H) · �w · A�wdΩ−

�

Ω
(v3 + e3)∂z �w · A�wdΩ

−
�

Ω
((�w ·∇H) (�v + �e) · A�wdΩ−

�

Ω
w3∂z (�v + �e) · A�wdΩ

−
�

Ω
((�e ·∇H)�v · A�wdΩ−

�

Ω
e3∂z�v · A�wdΩ

−
�

Ω
((�v + �e) ·∇H�e · A�wdΩ−

�

Ω
(v3 + e3)∂z�e · A�wdΩ

Bounding each term in an analogous way to the previous ones, we obtain:

d

dt
��w�2

V
+ �A�w�2

L2(Ω) ≤ C

ν3/2
�A�w�2

L2(Ω)��w�V +
C

ν11
��w�10

V

+ (a1(t) + a2(t)) ��w�2V + b(t),
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where





a1(t) = C

�
1

ν7

�
��v�8

H1(Ω) + ��e�8
L∞(H1)

�
+

1

ν3
��v�2

H1(Ω)��v�2H2(Ω) +
1

ν
��v�1/2

H1(Ω)��v�
3/2
H2(Ω)

�

a2(t) = C

�
1

ν3
��e�2

L∞(H1)��e�2H2(Ω) +
1

ν
��e�1/2

H1(Ω)��e�
3/2
H2(Ω)

�

≤ C

ν

�
d
2
1

ν2
+ 1

�

��e�2
H2(Ω) ≤

C

ν
��e�2

H2

b(t) = C

�
��e�2

H1(Ω)��v�
1/2
H1(Ω)��v�

3/2
H2(Ω) + ��e�H1��v�H1(Ω)��v�H2(Ω)��e�H2(Ω)

+ ��v�2
H1��e�1/2H1 ��e�3/2H2 + ��e�5/2

H1(Ω)��e�
3/2
H2(Ω) + ��e�2

H1(Ω)��e�2H2(Ω)

�

≤ C

�
��v�1/2

H1(Ω)��v�
3/2
H2(Ω) + ��v�H1(Ω)��v�H2(Ω) + ��v�2

H1 + ��e�2
H1(Ω)

�
��e�2

H2(Ω)

≤ Cν
2��e�2

H2(Ω).

We notice that a1 ∈ L
∞(0,∞) and that a2 ∈ L

1(0,∞). Then, from hypothesis (H)
we can deduce that: ∀t ∈ [0,+∞)

��w(t)�V < γν
3/2

, (34)

for some small constant γ > 0.

Now, taking into account (34) and smallness condition for the data (H), we obtain
the following inequality:

y
�(t) +

ν

2C
y(t) ≤ Cν

2��e(t)�2
H2(Ω)

where we call y(t) = ��w(t)�2
V
and we have used (12) for �w. To get this inequality,

we use that a2(t)��w�2V + b(t) ≤ Cν
2��e�2

H2(Ω) and absorb the other terms with the
�A�w�2

L2(Ω). Then, we get

y(t) ≤
�

t

0
e

ν
2C (s−t)��e(s)�2

H2(Ω)ds.

As ��e�2
H2(Ω) ∈ L

1(0,+∞), for all δ > 0 there exists T∗ ∈ [0,+∞) such that

� +∞

T∗
��e(t)�2

H2(Ω)dt < δ.

Then,

e
− ν

2C t

�
t

0
e

ν
2C s��e(s)�2

H2(Ω)ds ≤ e
− ν

2C t
e

ν
2C T∗

�
T∗

0
��e(s)�2

H2(Ω)ds+
�

t

T∗
��e(s)�2

H2(Ω)ds.
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Therefore, as t ↑ +∞, we can conclude that y(t) = ��u(t)− �e(t)− �v�2
V
→ 0.

Then, it suffices to prove that ��e(t)�V → 0 as t ↑ +∞. Considering the completely
homogeneous problem verified by �e−�e1 (being �e1 the solution of stationnary problem
(S1) given in the proof of Theorem 1.10) and taking as test function A(�e− �e1), one
has:

d

dt
�(�e− �e1)(t)�2V + �A(�e− �e1)(t)�2L2(Ω) ≤ C

�
��f1(t)�2L2(Ω) + �∂t�e1(t)�2L2(Ω)

�
. (35)

Adding in both parts of (35),
d

dt
��e1(t)�2V + �A�e1(t)�2L2(Ω), taking into account (12)

for (�e− �e1)(t) and �e1(t) and that:

d

dt
��e1(t)�2V ≤ ��e1(t)�V �∂t�e1(t)�V ≤ C

�
ν��e1(t)�2V +

1

ν
�∂t�e1(t)�2V

�
,

we obtain for z(t) = �(�e− �e1)(t)�2V + ��e1(t)�2V the inequality:

z
�(t) +

ν

C
z(t) ≤ C

�
��f1(t)�2L2(Ω) + �A�e1(t)�2L2(Ω) +

1

ν
�∂t�e1(t)�2V

�
.

Multiplying by exp

�
ν

C
t

�
, integrating in (0, t), using that ��e�2

V
≤ 2z(t) and taking

into account that

�∂t�e1(s)�2V ≤ C

ν
�∂t�τ1(s)�2H−1/2(Γs)

and �A�e1(s)�2L2(Ω) ≤ C��τ1(s)�2
H

1/2+ε
0 (Γs)

,

we obtain:

��e(t)�2
V

≤ Cν̄

ν
e
− ν

C t

�
��u0 − �v�2

H1(Ω) +
1

ν2
��τ1(0)�2H−1/2(Γs)

�

+ C

�
t

0
e
− ν

C (t−s)
�
��f1(s)�2L2(Ω) + ��τ1(s)�2

H
1/2+ε
0 (Γs)

+
1

ν2
�∂t�τ1(s)�2H−1/2(Γs)

�

Then, since the term between brackets is in L
1(0,+∞), we do as before and we

prove the convergence to 0.

Remark 5.1 The smallness condition (H) is only necessary to insure the existence

of a global strong solution. The result is also true if we assume the existence of a

global strong solution in (0,+∞) and only impose smallness condition for �τ2 and
�f2.
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[4] T. Chacón & F. Guillén, An intrinsic analysis of existence of solutions for the hydrostatic
approximation of the Navier-Stokes equations, C. R. Acad. Sci. Paris, t. 330, Série I, p. 841-
846, 2000.

[5] P. Constantin & C. Foias, Navier-Stokes Equations, The University of Chicago Press, Chicago,
1988.

[6] D. Gilbarg & N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-
Verlag, 1977.

[7] F. Guillén & M. V. Redondo, Convergencia de algunos esquemas numéricos hacia el modelo
evolutivo de Ecuaciones Primitivas, Actas XVI CEDYA, VI CMA, Universidad de Las Palmas
de Gran Canaria, p. 1165-1172, 1999.
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