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ABSTRACT. David Hilbert’s early foundational views, especially those corresponding to 
the 1890s, are analysed here. I consider strong evidence for the fact that Hilbert was a 
logicist at that time, following upon Dedekind’s footsteps in his understanding of pure 
mathematics. This insight makes it possible to throw new light on the shape and evolution of 
Hilbert’s foundational ideas, including his early contributions to the foundations of geometry 
and the real number system. Most interestingly, the context of Dedekind-style logicism 
makes it possible to offer a new analysis of the emergence of Hilbert’s famous ideas on 
mathematical existence. And a careful scrutiny of his published and unpublished work 
around the turn of the century uncovers deep differences between his ideas about consistency 
proofs before and after 1904. Along the way, we cover topics such as the role of sets (and of 
the dichotomic conception of set theory) in Hilbert’s early axiomatics, and detailed analyses 
of Hilbert’s paradox and of his completeness axiom (Vollständigkeitsaxiom). 

 

 

It is well known that in the address ‘Axiomatisches Denken’ (1918) Hilbert expressed great 

interest in the work of Frege and Russell, praising their “magnificent enterprise” of the 

axiomatization of logic, and saluting its “completion … as the crowning achievement of the 

work of axiomatization as a whole”1 (1918, 1113). His high praise not only aimed at formal 

logic, but more particularly at logicism, as the remarkable statement that anteceded the above 

phrases made clear: 
since the examination of consistency is a task that cannot be avoided, it appears necessary to 
axiomatize logic itself and to prove that number theory and set theory are only parts of logic. 
(Hilbert 1918, 412; emphasis mine) 
 

This constitutes obvious endorsement of the logicistic viewpoint, but usually it is regarded as a 

short-lived outburst of enthusiasm, perhaps arising from study of the Principia Mathematica.2 In 

a summer course in 1920, Hilbert had become agnostic with regards to logicism, and in his 

publications of the following decade he clearly opposed that conception. Indeed, he had already 

expressed serious doubts in a well-known talk given in August 1904 (published as Hilbert 

1905). 

 That this usual reconstruction is inadequate has been made clear by several unpublished 

documents, especially those that are coming to light thanks to the Hilbert Edition. For one thing, 

                                                        
1
 Hilbert immediately went on: “However, this completion will still require new and many-sided work,” which makes it 

clear that the “crowing achievement” was not Russell’s work itself but rather its promised completion. 
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one should pause to consider that, if we start reconstructing Hilbert’s views as of 1904, we shall 

be missing everything he was convinced of between, roughly, 25 and 40 years old. We would 

ignore what might be called his “Field’s medal” period! Fortunately, the edition of Hilbert’s 

lecture courses on foundational matters is shedding a lot of new light on that period. And the 

evidence suggests that the 1917 address forms a unity with most of Hilbert’s earlier thinking. 

 The development of Hilbert’s foundational ideas was marked by exploration and doubts 

much more than his confident (but conflicting) remarks suggest. He explored in detail ideas 

related to all the three famous, classical foundational viewpoints – intuitionism, formalism, 

logicism, – and one can go as far as saying that he extracted from each of them some viewpoints 

and methods of lasting value. It cannot be my aim here to review all of those changes.3 I shall 

aim at Hilbert’s early career, at logicism, since I find reason to believe that it played a much 

more important role for him than is usually realized.  

 In particular, we shall analyze the light logicism throws on the emergence of the principle 

that mathematical existence is nothing other than consistency. The story is intimately related 

with Hilbert’s evolving reflections in the wake of the set-theoretic paradoxes. I shall emphasize 

the links between Hilbert and Dedekind, and in this connection my contribution is in line with 

the work of Wilfried Sieg.4 My attention was first drawn to Hilbert’s early logicism by some key 

texts from Hilbert’s lecture notes of the 1890s, quoted by Hallett in a still unpublished paper 

(nevertheless, Hallett did not thematize that topic). The view that Hilbert “was a logicist in 

Dedekind’s spirit” around 1899 is also shared by Sieg & Schlimm (2005, 157), but they have 

not entered into a detailed analysis. (As regards the influence of logicism on Hilbert’s later 

thought, especially in the 1910s, see Mancosu 2003.) 

 My main claim is easy to state: the (contradictory) principle of comprehension, a central 

element of logic for the logicists, was the soil from which Hilbert’s claim – that the consistency 

of an axiom system entails the mathematical existence of its objects – was to emerge. Another 

key point, dealt with in section 6, is the character of consistency proofs as Hilbert envisaged 

                                                                                                                                                                  
2
 The particular historical context, and the role of Heinrich Behman in it, has been clarified by Mancosu (2002). 

3
 See Sieg 2002, where one can find a general overview that is essentially coincident with my reconstruction. 

4
 See especially his papers Sieg 1988 and 1990. In my book (1999), the links between Dedekind’s work and Hilbert’s 

early axiomatics were not appraised properly, one important reason being that I followed a traditional (but incorrect) way of 
understanding the contrast between “genetic” and “axiomatic” methods. By contrast, Sieg was the first to clearly grasp the 
intimate links between the methodologies of the two mathematicians; for more detailed remarks on the relations between my 
views and Sieg’s, and clarifications about the points on which my understanding has shifted, see pp. 458-463 of the new 
paperback edition of Labyrinth of Thought (Birkhäuser, 2007, Epilogue).  

In a recent essay (Sieg & Schlimm 2005, 156-157), the authors have criticized my (1999) for “misjudging” the general 
character of Dedekind’s foundational work. The claim seems to me incorrect in the main, as I have explained in pp. 461-463 
of the 2007 edition, while granting the points made in the previous paragraph. This means that I agree with the points made 
by Sieg & Schlimm with some important provisos in all cases. Particularly wrong seems to me the idea that the discussion 
on pp. 119-124 of (Ferreirós 1999) “only reveals the limitations” of our perspective; much to the contrary, I still regard that 
discussion, particularly what is said in pp. 122-123, as crucial for understanding the deep contrast between the freedom of 
axiomatic postulation in the absence of a set-theoretic background, as was the case up to 1900, or in its presence, as has been 
the case later. 
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them around 1900, a topic which is likely to surprise the reader. 

 

1.  HILBERT AND LOGICISM REVISITED. 

 

1.1. Textual evidence.  

I begin by quoting a surprising statement from the introduction to the 1899 course Elemente der 

euklidischen Geometrie. Note that this lecture course (more precisely, this Ausarbeitung of 

lecture notes, due to his student H. von Schaper) was the immediate precedent of Hilbert’s 

legendary Grundlagen der Geometrie. And there we read: 
It is of importance to establish precisely the starting point of our investigation: As given, we take 
the laws of pure logic and in particular all of arithmetic. (On the relationship between logic and 
arithmetic see Dedekind, Was sind und was sollen die Zahlen?) Our question will then be: Which 
propositions must we “adjoin” to the domain defined above in order to obtain Euclidean 
geometry? (Hilbert 2004, 303; p. 2 of the original)5 
 

First of all, this is explicit endorsement of logicism as regards arithmetic, taken in a very general 

sense – by “all of arithmetic” Hilbert understood the theory of the fields of real and complex 

numbers, and thus the basis for analysis and algebra. Dedekind (1888, 335) had written that 

“arithmetic (algebra, analysis) is only a part of logic,” in reference to the “purely logical process 

of building up the science of numbers.” Geometry, by contrast, is conceived by Hilbert as based 

on particular assumptions or axioms, which reflect the “facts” that concern this “natural 

science” (Hilbert 2004, 221; this agrees with Dedekind’s understanding).  

 It is quite astonishing to realize that Hilbert was presenting himself as a logicist in the very 

same year of his pivotal contribution to geometry and axiomatization. Further documents of the 

years 1888, 1891, and even 1906 allow us to reinforce the point.6 In Hilbert’s 1891 lecture 

course Projective Geometrie, one can read a passage that spells out the position behind the 1899 

text: 
Geometry is the theory of the properties of space. It is essentially different from the purely 
mathematical domains of knowledge, like, e.g., number theory, algebra, function theory. The 
results of these domains can be obtained by pure thought, in that one reduces the facts asserted to 
simpler ones through clear logical inferences, until in the end one only needs the concept of the 
whole number. … Today a proposition is only then regarded as proven, when in the last instance it 
expresses a relationship between whole numbers. Thus, the whole number is the element. And we 
can obtain the concept of the whole number also by pure thought, … The methods, the foundations 
of pure mathematics belong to pure thought. I need nothing else than purely logical thinking, when 
I occupy myself with number theory or algebra. (Hilbert 2004, 22; p. 5 of the original) 
 

This again is a confession of logicism, with logic conceived as the science of the pure laws of 

thought (following a tradition that includes Boole, Dedekind, and many others). There are 

                                                        
5
 There is no correspondence to this paragraph in Hilbert’s preparatory notes (2004, 221–223), one has to assume that 

these words were added in the public presentation. A natural explanation would be that the standpoint was clear in Hilbert’s 
mind from early on, and the text of his 1891 lectures (given below; see 2004, 22) seems to confirm this explanation. 

6
 For 1906, see section 7 towards the end. 
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reasons to think that the passage is again influenced by Dedekind, who likewise presented his 

views within the general context of the “arithmetisation” of pure mathematics, and defined 

logicism as the view that “the number concept” is an “immediate product of the pure laws of 

thought”.7 

 Hilbert began paying close attention to Dedekind’s booklet Was sind und was sollen die 

Zahlen? as soon as 1888, during his trip to Berlin as a newly established Privatdozent. He 

recorded that everybody in Berlin was talking about the book, but mostly in critical terms; for 

instance, du Bois-Reymond said that its views are “horrendous.” This contrasted strongly with 

Hilbert’s positive  reaction. Even many years later, in the context of critical remarks motivated 

by the set-theoretic paradoxes, he always had words of high praise, saying that Dedekind’s 

theory was “extremely sagacious” (Hilbert 1905, 130), or that it’s key idea of grounding the 

finite upon the infinite was “dazzling and captivating” (Hilbert 1922, 162). This last must, in my 

opinion, be read as an autobiographical remark.  

 We see how the picture emerges of young Hilbert as a logicist during the 1890s, until at least 

1903. In 1902, he presented geometry as “the simplest and most complete natural science” and, 

as in 1898, his analysis of the foundations of geometry took as given “the laws of pure logic and 

arithmetic [Zahlenlehre]” (2004, 540–41; p. 1 of the original). This seems to be evidence that 

his basic logicistic understanding of arithmetic had not changed, although I must concede that 

this Ausarbeitung of 1902 is more ambiguous than the previous one. Judged in this light, his 

outburst of enthusiasm in 1917 was nothing but a return to his earliest convictions, in the hopes 

that Russell’s innovative type theory would, after all, prove logicism right.8  

 In the middle of his early logicistic period, Cantor himself informed Hilbert about the set-

theoretic paradoxes. The paradoxes created most serious difficulties for logicism, and Hilbert 

immediately set out to find remedies. His first reaction found expression in a paper dated Oct. 

1899 and devoted to the number concept, Über den Zahlbegriff (Hilbert 1900). This paper, 

which includes the first published formulation of the idea that mathematical existence can be 

derived from consistency, will be at the center of the present contribution. Also at center stage 

will be Hilbert’s second problem from the famous 1900 list presented in Paris, the problem of 

the consistency of arithmetic. 

 

1.2. Logicism in the 1890s: the influence of Dedekind. 

The first thing we need, then, is to gain a clearer understanding of what it meant for Hilbert to 

                                                        
7
 Dedekind 1888, 335–38; for another good reason to establish a link with Dedekind, see § 3 below. 

8
 The lecture course on logic given in 1917/18, on which the later Grundzüge der theoretischen Logik was based (Hilbert 

& Ackermann 1928), offers further confirmation of this point. The 1928 Grundzüge offer a development of type theory in 
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be a logicist in the 1890s. Elsewhere I have defended that one must distinguish at least two 

phases in the development of logicism (up to 1931):9 an early, triumphant phase from about 

1870 to the shocking discovery of the contradictions in the years 1897–1903, and a later phase 

of Russellian logicism based upon the theory of types. The 1890s was a crucial decade of 

explosive diffusion for this viewpoint, which found adherents in all the countries that 

represented mathematical powers – Dedekind, Frege, Hilbert and Schröder in Germany, Russell 

and Jourdain in England, Couturat in France, some of Peano’s followers in Italy. 

 The path-breaking contributions of Frege were of very little influence until Russell and the 

Göttingen people (Hilbert, Zermelo) drew attention to them. In the 1890s logicism was a 

foundational conception associated primarily with the name of Dedekind. This thesis comes as a 

surprise because it goes against historiographic usage, but one can find a great deal of evidence 

in its favor. 

 Dedekind was then a highly respected mathematician, generally regarded as one of the great 

masters of number theory. His work was easily available, and evidence of a very good reception 

abounds. Ernst Schröder adopted the logicist viewpoint in explicit reference to Dedekind; 

Peano’s enthusiasm for the work was evidenced in his publications from 1889; even Frege’s 

comments in 1893, albeit very critical as usual, emphasize the quality of Dedekind’s work and 

its convergence with Frege’s own.10 Last, but not least, we have seen evidence that it was 

precisely through Dedekind that Hilbert came to logicism. 

 As I have mentioned, to emphasize the role of Dedekind in the first phase of logicism is to 

go against historiographic tradition. Interestingly enough, this tradition comes from Bertrand 

Russell himself, through Russellians such as Carnap, Quine, and others. Russell was not just a 

prominent logician and proponent of an influential version of logicism: through his prolific 

writing and influence as a philosopher, he established a standard interpretation of the recent 

history of logic. Figures like Frege and Peano played a key role in this interpretation, while 

authors such as Dedekind and Schröder were sidestepped.11 Historians of science know well how 

such partisan interpretations of the past tend to be biased, and in fact they conflict with each 

other: Dedekind played a much more central role in Hilbert’s interpretation (by which I mean 

his retrospective remarks, especially but not only in papers of the 1920s). 

 Logicism defends two key theses, the conceptual thesis (1) that the basic concepts of 

mathematics can be defined by logical concepts alone, and the doctrinal thesis (2) that the basic 

                                                                                                                                                                  
complete adherence to Russell, which was eliminated from the second edn of 1937 (in the first, Ackermann seems to have 
followed uncritically Hilbert’s lectures of a decade earlier). 

9
 Ferreirós (1996) and (2001). See also my book (1999). 

10
 See Schröder 1895, the preface and introduction to Frege 1893, and the abundant references in Peano’s papers 

(especially his 1891) and above all in the Formulaire of 1898, which quoted Dedekind’s (1888) verbatim. Dedekind’s 
booklet saw German edns. in 1888 and 1893, the English in 1901, and a Russian one in 1905. 
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principles of mathematics can be derived from logical principles. Such was exactly Dedekind’s 

standpoint. In his view, all of arithmetic and pure mathematics can be “divest[ed] … of [its] 

specifically arithmetic character” so as to be “subsumed under more general notions and under 

activities of the understanding without which no thinking is possible at all.” And the universal 

(logical) principles governing such notions are such that “with [them] a foundation is provided 

for the reliability and completeness of proofs”.12 Indeed Dedekind succeeded in reducing the 

whole number system to sets and mappings, to the “logical theory of sets” (Systemlehre der 

Logik; see Dedekind 1932, vol. 2, 112–13). Thus all of pure mathematics was proved to be an 

outgrowth of the pure laws of logic (modulo his conception of logic). 

 Most readers are puzzled to find that the concepts of set and mapping were simply regarded 

as logical ones. With regards to the concept of set, this was a usual view in the late 19th century, 

well represented for instance with Schröder, Peano, and Russell. As Russell said from the (now 

remote) perspective of the early twentieth century, logic consists of three parts: the theory of 

propositions, the theory of classes, and the theory of relations (Russell 1903, 11) – Dedekind’s 

logicism was based on the latter two. Both the old Aristotelian logic and the modern logical 

calculi were taken to deal centrally with concepts, and sets were nothing but extensions of 

concepts; the theory of sets or classes was simply a formal theory of concepts, a part of formal 

logic. For related reasons, many 19th century authors accepted the (often unstated) 

comprehension principle; we shall see below that Dedekind and Hilbert did so. 

 With respect to the concept of mapping, Dedekind took pains (by his standards of verbal 

argument) to show that it was indeed indispensable to all thought, being as it is “the ability of 

the mind to relate things to things, to make a thing correspond to another, or to represent a thing 

by another” (Dedekind 1888, 335–336). This concept is “absolutely indispensable” for 

arithmetic and pure mathematics, as witnessed by the role of functions, isomorphisms, 

automorphisms, etcetera; at the same time it is sufficient to erect the building of arithmetic. 

Writers as influential as Schröder, Peirce, or Hilbert came to agree, although the logicians 

expressed a preference to reconsider Dedekind’s mappings within a general theory of relations. 

Thus, Ernst Schröder devoted two of his Vorlesungen über die Algebra der Logik (1895) to a 

reelaboration of Dedekind’s work on mappings and chains. Even Frege acknowledged (1893), 

grudgingly, the parallelism between Dedekind’s system and his own on this score (with 

intensional concepts replacing equivalent extensional ones, as follows: set ≡ concept, mapping ≡ 

                                                                                                                                                                  
11
 The paradoxes also played a pivotal role, see Garciadiego (1992), Moore & Garciadiego (1981). 

12
 Quotations from the letter to Keferstein of Febr. 1890 (Dedekind 1890), 100. By “activities of the understanding” 

Dedekind meant set-formation and mappings; here it seems most adequate to read his terminology in Kantian spirit, and thus 
not at all psychologistically. Logic is taken to be the doctrine of the “Denkgesetze,” the laws of thought, but such laws 
govern how we should think, not the psychology of how we actually think. This distinction did not originate with Frege, but 
was characteristic of the Kantian treatment of logic. 
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relation).  

 It is often said that Dedekind’s work does not qualify as a reasonable form of logicism, 

because he did not develop a system of formal logic. Certainly, he only entered into details to 

the limited extent that he felt indispensable for the purpose at hand, namely, to establish a 

foundation for the arithmetic of natural numbers and its extension up to the complex numbers. 

This limited treatment meant in particular that Dedekind did not need to discuss the more 

elementary parts of logic having to do with the propositional connectives and the quantifiers (to 

be sure, he uses this logic in a clear way, but he does not theorize it). However, as I have argued 

at length elsewhere, it should be obvious that what is of great relevance for logicism is not the 

elementary layers of logical theory, but rather the higher layers. That part of logic which is 

essential for the logicistic project is only the upper reaches, the theory of classes and relations 

(resp., sets and mappings), since these are the ones that must do the work of reducing 

mathematical concepts and propositions. 

 All of the above means that, without denying the great contribution made by Frege (1879) 

(1893) with his analysis and formalization of elementary logic and especially quantification 

theory, we can regard Dedekind’s contribution as a perfectly reasonable form of logicism. 

Indeed, a most noteworthy one, which is how Schröder, Hilbert, and others saw it. 

 There is additional evidence that, during the years around 1900, Hilbert relied significantly 

on Dedekind’s foundational work. Let me add a couple of examples. Two of them will be 

reviewed in what follows, as both Hilbert’s own set-theoretic paradox (elaborated after having 

been made aware of the phenomenon by Cantor) and his ideas about consistency proofs in 1900 

are essentially related to Dedekind’s contributions. A third example is the strong links between 

Dedekind’s foundation of arithmetic and aspects of Hilbert’s first sophisticated attempt to prove 

consistency (1905). Included are the axiom system employed, – a rendering of Dedekind’s 

characterization of the structure of the natural numbers in prop. 71 of (1888, 359) – and some of 

his philosophical ideas.13 

 

2.   EXISTENCE BEFORE HILBERT. 

 

The modern methodology of mathematics, with its peculiarly non-constructive characteristics 

that pose the difficult problem of the meaning of existence claims, can be found in several 19th-

century mathematicians. The main German names are Dirichlet, Riemann, Dedekind, Cantor, 

and Hilbert; generally speaking, mathematicians who belonged to the Göttingen tradition.14 

                                                        
13
 Unfortunately, for lack of space we shall not enter into this topic in the present paper. 

14
 The new methodology emerged in the context of what I have called the “abstract conceptual approach;” see Ferreirós 

(1999), chap. 1. I have argued that Cantor gradually moved away from the principles of the Weierstrass school, to adopt 
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Thus, the problem of the meaning of existence in the context of modern mathematics antedated 

Hilbert. Interestingly, we can find several different lines of thought that were offered to justify 

adoption of the modern methodology, in particular the ideas of Riemann (1868), Cantor (1883) 

and Dedekind. Although Cantor undoubtedly contributed to clarifying the modern methodology 

and showing its power with his extraordinary new ideas, one can be certain that his 

metaphysical excursions did little to help promote the cause.15 Hilbert was much closer to a 

sober logical standpoint regarding mathematics. 

 Some core elements in Hilbert’s position remained with him throughout his life. Consider 

the first part of his famous conference ‘On the infinite’ (1926), where he discusses the role of 

infinity in analysis and set theory, then moves on to physics, finding that recent results suggest 

that “reality is finite” in all directions. Yet Hilbert argues that “it could very well be the case 

that the infinite has a well-justified place in our thinking and plays the role of an indispensable 

notion” (Hilbert 1926, 372). The problem is how to justify this intuitive idea.  

 Dedekind and the young Hilbert hoped to find justification in the universal laws of logic, but 

the older Hilbert moved on to look for metamathematical justification in his Beweisstheorie. 

Even though both attempts have failed, one can still share the general intuitive conviction (as 

this writer, for one, confesses to do).  

 Let us then have a closer look at Dedekind’s position. In his work on the real numbers, he 

emphasizes (following Riemann, 1868) that, if space has a real existence, “it need not 

necessarily be continuous” (1872, 323). But even if we knew for sure that it is not continuous, 

nothing could prevent us from “making it continuous in thought” by the introduction of new 

elements. The creation Dedekind had in mind is strictly regulated by the laws of logic, as the 

continuous domain of the real numbers is won through “the purely logical process of building 

up the science of numbers” (1888, 335, see also 340–341). Thus considered, the 1872 passage 

contains the kernel of Dedekind’s position regarding mathematical existence. The real numbers 

exist in a purely logical sense, not in an ontological sense: they exist “in thought,” but may not 

correspond to physical reality. The mathematician can, by the use of pure logic, introduce 

continuous spaces or the set of real numbers. And he can do so in the strong sense that logic 

warrants such a step, including a warranty that no contradiction will emerge. 

 Dedekind discussed his position often in connection with Kummer’s “creation” of the ideal 

numbers, and with his own set-theoretic elaborations upon this, the theory of ideals. This is 

                                                                                                                                                                  
more and more the modern principles emanating from Göttingers like Riemann and Dedekind. The general topic of Berlin 
vs. Göttingen is discussed in Ferreirós (1999), 24–38; unfortunately, for reasons of space I didn’t thematize the topic in later 
sections of the book, but chapters IV, V, VI, and VIII are full of information concerning Cantor that should be read from this 
viewpoint. 

15
 See the highly interesting ideas presented in Cantor (1883), § 8; methodologically they are an antecedent of Hilbert’s, 

but philosophically they display a heavy load of rationalistic and theistic metaphysics. 
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obviously related with Hilbert, who would speak of the way in which the mathematician 

introduces “ideal elements” in the process of expanding available theories with the view to 

harmonize and simplify their laws or theorems, to render them more perspicuous (Hilbert 1926, 

372–373). In spite of the nuances that differentiate Hilbert’s views in 1926 from those he had 

previously held, and from Dedekind’s some forty years earlier, the basic philosophical position 

is essentially the same. By the “creation” of mental objects, Dedekind meant a process that is 

always strictly regulated by logical laws. In later work, he located the essential creative step in 

the jump from given elements to “a new determinate [thing], their set,” which is “necessarily” 

different from its elements (preface of 1911 to Dedekind 1888, 343). 

 The introduction of new mathematical objects is therefore an activity within the realm of 

pure thought, lacking stronger ontological implications. This position was consistent with 

Dedekind’s logicism. Pure mathematics (arithmetic, algebra, analysis) being “only a part of 

logic,” an immediate outflow of the pure laws of thought (1888, 335), the theories of pure 

mathematics are only limited by logical impossibility, not by any considerations of actual 

existence. Notice that this is not to deny that matters of mathematical existence are delicate and 

important: as Dedekind wrote to Lipschitz (27.07.1876), “nothing is more dangerous in 

mathematics than to assume existence without sufficient proof”.16 

 I have stated that, in Dedekind’s eyes, the theories of pure mathematics are only limited by 

logical impossibility. Reading these words conversely, the theories of pure mathematics are 

made acceptable by mere logical possibility (consistency). The point arose in connection with 

infinite sets, and this is what Dedekind had to say: 
After the essential nature of the simply infinite set, whose abstract type is the number sequence N, 
had been recognized in my analysis ([1888] articles 71, 73), the question arose: does such a set 
really exist in the realm of thought [Gedankenwelt]? Without a logical proof of existence it would 
always remain doubtful whether the notion of such a set might not perhaps contain internal 
contradictions. ((letter to Keferstein, Dedekind 1890, 101; emphases mine) 
 

To put it in Hilbert’s language, Dedekind was asking for a proof of the consistency of his 

axiomatisation of the theory of natural numbers; such proofs are essential to Dedekind’s logicist 

project. Hilbert could hardly have known of Dedekind’s explicit reflections as presented in the 

letter to Keferstein; he only knew the theoretical developments based on them, but it seems 

clear that Hilbert grasped the gist of his approach.  

 Dedekind’s “logical” proofs of existence and consistency consisted in showing that there 

exists an infinite set as a thought-object (a Ding in the Gedankenwelt; 1888, prop. 66), and that 

                                                        
16
 Dedekind to Lipschitz, 27.07.1876, in Dedekind (1932), 477; the context is the need for a continuity axiom in order to 

make sure that the set of real numbers (or the corresponding domain of magnitudes) is continuous, and the contrast between 
Euclid’s work and modern analysis. Dedekind probably had in mind, too, certain difficulties with Kummer’s way of 
development the theory of ideal numbers (see the introduction to his French paper of 1876/77, particularly Dedekind 1932, 
268). 
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each infinite set contains a simply infinite system (1888, prop. 72).17 Notice that Hilbert 

endorsed the arguments in 1891 and 1899, both times implicitly. This was more obvious in 

1891, as he explained that we can “obtain the concept of the whole number by pure thought, 

perhaps in that I can count my own thoughts” (2004, 22; p. 6 of the original). In the light of the 

words Hilbert had written but deleted: “in that I think something, then a second, a third, etc.” 

(ibid. note 5), this seems to be a very brief and imprecise rehearsal of Dedekind’s props. 66 and 

72. 

 Some years later, Hilbert (1905, 131) would speak of the objects of mathematics as 

Gedankendinge, aptly putting together two of Dedekind’s terms. Dedekind understood by a 

“thing” “any object of our thinking,” indicating that sets of things are likewise thought-objects, 

“things” [Dinge] (Dedekind 1888, 344); and the “totality of all the things that can be an object 

of my thought” was called the Gedankenwelt, the “thought-world” (o.c., 358).  

 In assuming the mathematical existence of some “thing” (say an ideal number, or an infinite 

set), metaphysical considerations are completely absent, but we need a “logical proof of 

existence” or a consistency proof. In Dedekind’s actual practice, this amounted to showing the 

existence of a model for the axioms, elaborated by the “purely logical” means of set theory. So, 

for example, “the purely logical construction of the science of numbers” helps us obtain a 

“continuous number-domain,” the set R of real numbers (1888, 335). And “logical existence” 

entails consistency, since it dispels doubts as to whether, e.g., the notion of “simply infinite” set 

might contain internal contradictions. This was not Hilbert’s formulation, but rather the 

converse.  

 Mathematical existence in the tradition of Dedekind and Hilbert is logical admissibility in 

the realm of pure thought. It is merely “ideal existence,” as Zermelo would aptly say many 

years later (1930, 43). For Dedekind, to show that simply infinite sets exist was not to prove that 

there are infinitely many objects in the world – infinite sets exist in our realm of thoughts, in the 

Gedankenwelt. In a similar way, Hilbert proved using arithmetic that both Euclidean and non-

Euclidean geometries “exist” mathematically, even though only one of these incompatible 

systems can be true of the physical world.18 Thus mathematical existence has a peculiar 

character, being far removed from the kind of existence we intend for the objects of scientific 

theories. We might refer to this by distinguishing purely logical existence (ideal existence) from 

ontological existence (real existence). 

 With regards to ideal or “purely logical” existence, the Hilbertian principle that consistency 

entails existence is quite natural… provided of course that one can envision methods of proving 

                                                        
17
 The first part is Dedekind’s “theorem” of infinity (prop. 66), which has become notorious and infamous, but whose 

subtleties are usually bypassed (see Ferreirós 1999, 241-246). 
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consistency that make this formulation reasonable! Initially, the natural formulation was rather 

that existence entails consistency. In the sequel, we shall see in more detail the way in which 

Hilbert’s principle emerged. But first, it seems advisable to consider in more detail the role that 

the “logical theory of sets” had in Hilbert’s actual work. 

 

3.   ON HILBERT’S EARLY AXIOMATICS.  

 

In order to appreciate correctly the issues that we are dealing with, it is important to counteract 

the tendency of many people to view Hilbert’s axiomatic work throughout his career as if it was 

made in one single mold. Hence the need for an excursion into his early axiomatics, 

underscoring the differences between this work and his later contributions in the context of 

proof theory. The peculiar and crucial role that sets played in Hilbert’s early axiom systems will 

serve as a touchstone of the logicistic orientation of his early foundational work. We shall 

consider in some detail an important side of Hilbert’s work in Grundlagen der Geometrie and in 

the Zahlbegriff article.  

It is well known among specialists that the kind of axiomatic work produced by Hilbert at 

this point has to be called informal, to distinguish it from the formal axiomatizations (i.e., 

groups of axioms formulated within formal systems of logic) that would be developed in the 

1920s in connection with the Hilbertprogramm. Informal axiomatics is still today the most 

frequent among mathematicians, examples being the usual axioms for groups, fields, etc. And it 

is crucial to realize that these early axiom systems had the theory of sets as their basis: set 

theory was taken to belong to the logical framework underlying the axioms. This, of course, was 

natural for a logicist. 

All of Hilbert’s early work falls within the set-theoretic tradition that led to modern 

mathematics. He regarded set theory as crucial for the “new mathematics” he was to promote so 

forcefully. His remarks in 1925 about the “Cantorian paradise” and its fruitful methods are too 

well-known to be quoted once more. During the golden pre-war years, in 1910, Hilbert 

characterized set theory as “that mathematical discipline which today occupies an outstanding 

role in our science, and beams out [ausströmt] its powerful influence into all branches of 

mathematics” (Hilbert 1935, 360). The fact that he proposed Cantor’s continuum problem as the 

very first in his celebrated list of 1900, and the consistency problem we are discussing (which at 

the time, for him, was mainly a set-theoretic problem) as the second, must be viewed as part of 

his strong bet for the new mathematics. 

Hilbert was a “man of problems” (as Blumenthal said), much more so than Dedekind, and he 

                                                                                                                                                                  
18
 Compare the discussion in Hilbert 2004, 119–20. 
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was very appreciative of the extremely novel questions and conjectures that Cantor was able to 

pose. But, as we have seen, Hilbert understood the set-theoretic methodology in the way of 

Dedekind, not in the Cantorian way with its strongly Platonistic, ontologico-theological 

underpinnings.  All of his early work had strong ties with the characteristic methodology that 

Dedekind put forward in his researches on number theory, algebra, algebraic geometry, and 

foundations. Clear examples are the famous Zahlbericht (Hilbert 1897) and also Hilbert’s 

approach in his researches on Invariantentheorie, because as Hilbert himself explained, his 

approach was essentially different from previous ones in that “the theory of invariants appears 

only as a particularly noteworthy example of the theory of fields of algebraic functions in 

several variables” (Hilbert 1893, 287). This emphasizes the link with the epoch-making theory 

of fields of algebraic functions in one variable, offered by Dedekind and H. Weber (1882).19 

 Less clearly realized has been the extent to which Hilbert’s axiomatic work develops further 

the methods used by Dedekind. Despite the contributions of W. Sieg during the last 20 years,20 

most historians and philosophers are still unaware of this connection and particularly of its 

depth. Even the Zahlbegriff paper (Hilbert 1900), with its critique of the “genetic” method in 

favor of the “axiomatic” one, is much closer to Dedekind’s way of proceeding than may seem to 

a naïve reader. In Hilbert’s mind the “genetic” approach was associated with Weierstrass and 

not Dedekind.21 Indeed, an examination of Hilbert’s 1905 lectures on the logical principles of 

mathematical thought confirms this idea: in the discussion of the genetic method (Hilbert 1905a, 

9–10; see also 212) he mentions only Weierstrass and Kronecker, and he accuses this method of 

defining things “through processes of generation, not through properties” (durch 

Erzeugungsprozesse, nicht durch Eigenschaften) – a reproach that can only be levelled against 

the Berliners, not against Dedekind.22  

 In Grundlagen der Geometrie, Hilbert gives axioms for the elements [Dinge] of three sets 

[Systeme], conventionally called points, straights and planes. The basic terminology is 

Dedekind’s, but the important issue here is the following: Hilbert’s axioms may deal with 

relations and operations between the elements, or just as well with conditions on sets of 

elements. This difference, very significant in the eyes of a modern logician, was there 

immaterial, because both are implicitly regarded as elementary logical methods. The same 

                                                        
19
 Dedekind and Weber established a theory of ideals for fields of algebraic curves in analogy with Dedekind’s number-

theoretic ideal theory. Note that Heinrich Weber was until 1883 the only full professor of mathematics at Königsberg; 
Hilbert followed his lectures on elliptic functions, number theory, and a seminar on invariant theory (Hilbert 1935, 389). 

20
 Beginning with Sieg 1988 and 1990. See in particular the recent Sieg & Schlimm 2005. 

21
 This should be clear after a careful study of the paper, as most of the problems that Hilbert was trying to sidestep with 

his axiomatic approach have nothing to do with Dedekind. Consider in particular his paragraph (1900, 184) about the finite 
character of the axiom system, as opposed to the infinitely many “possible laws” that may determine a Cantorian 
fundamental sequence. Only an algorithmic reading of Cantor’s work, in the style of the Berlin mathematicians, can pose the 
problem – not the abstract one in Dedekind’s style. 

22
 On this general topic of the contraposition between Berlin and Göttingen, see Ferreirós 1999, chap. I and passim. 
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happens with Hilbert’s axiom system for the reals: one starts with a “system” of “things” and 

defines axiomatically relations and operations between them, including an unequivocally set-

theoretic condition, the notorious axiom of completeness (Hilbert 1900, 183; 1900a, 300). This 

is similar to the way in which Dedekind proceeded while characterizing structures such as 

number fields (1871), the ordered and complete field of the real numbers (1872), or the 

structure of the natural numbers (1888). In a moment we shall have a closer look at this feature. 

 The above may suffice to conclude that all of Hilbert’s early work, from his doctoral 

dissertation to the turn of the century, was intimately linked with Dedekind’s research fields, 

new concepts, and new methods. Of course, the work of Hilbert introduced many novelties in 

matters of content, and cannot be presented as an inessential development of what Dedekind 

had done earlier. That is particularly clear in his geometric work, which allowed Hilbert to 

explore axiom systems and their interpretations in ways that were unprecedented. But also in 

invariant theory and algebraic number theory, he introduced new methods and posed very 

advanced problems, e.g., the number-theoretic questions that would lead to class field theory. 

(The resonance encountered by his work is also explained by the fact that, at the time, every 

single new instance of success for the abstract methods was important in convincing the 

mathematical community, and Hilbert’s results were noteworthy insofar as they made clear that 

all of algebra and even geometry could be approached in the “new” set-theoretic way. From a 

methodological angle, however, the turning point had already been reached by his 

predecessors.) 

 

3.1. Dedekind’s axiomatics.  

The great difference between Hilbert and Dedekind is terminological: while the former speaks 

loudly and clearly of “axioms” in the modern sense, the latter refrains completely from using 

that word. The rationale for this option was philosophical, having to do with the fact that he still 

used the word in the old meaning (like Frege) and, even more importantly, with his logicistic 

beliefs.23 But this should not obscure the fact that the modern axiomatic methodology is clearly 

present in Dedekind’s foundational work, and in his algebraic and number-theoretic work – 

whether we talk of “axioms” or “conditions” [Bedingungen] should be immaterial.24  

                                                        
23
 I have elaborated on this topic in my (1999), 241–248. Concerning Frege, see his letter to Hilbert of Dec. 27, 1899 

(Frege 1976, 62). Frege adhered to the “old meaning” of the word “axiom,” objecting to the new meaning that “seems to 
emerge” in Hilbert’s work, and which “I cannot quite comprehend.” Incidentally, I believe it is precisely for this reason that 
Frege has “fundamental laws” [Grundgesetze] of arithmetic, and not at all “axioms” – once again, his views are closer to 
Dedekind’s than is generally believed. The axiomatic style of Dedekind’s work has recently been emphasized by Sieg & 
Schlimm (2005), in a paper where they voice some criticisms of my book (I have answered to them in the Epilogue to the 
paperback edition, 2007).  

24
 Both Dedekind and Hilbert were consistent in emphasizing the arbitrary character of mathematical terminology. Their 

convergence on this point is noteworthy, because in all likelihood Hilbert was unaware of the relevant passages in 
Dedekind’s correspondence (see the very noteworthy passage in an 1876 letter to Lipschitz, Dedekind 1932, 479; and also 
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 Dedekind’s axiomatic style has very characteristic features. Whenever he discovers the need 

to introduce a new concept, he prefers to treat it separately in adequate generality; he 

characterizes the concept by a set of independent attributes or features (what we call axioms, 

following Hilbert), and explores the consequences in the corresponding degree of generality. 

Clear examples of this style are his treatment of the structure of module in algebraic number 

theory,25 and the way he treats the theory of chains in connection with set theory and arithmetic. 

Both examples were well-known to Hilbert. Let me take the second and expand on it. 

 Dedekind discovered the need for a concept of “chain” while seeking to find axioms that 

might characterize the number sequence (see Dedekind 1890, 99–101). This concept establishes 

a minimality condition, and is defined as follows: 

Given a mapping ϕ: S → S and a subset A ⊂ S, the chain of A is the intersection of all subsets K ⊂ S, 

such that K is closed under ϕ, and A ⊂ K. The chain of A is denoted A0 or ϕ0(A).26 

By defining the number structure to be the chain of a singleton {1} under an injective mapping 

ϕ (called the successor function), the chain denoted by {1}0 or ϕ0{1}, Dedekind was in a 

position to ensure the validity of proofs by mathematical induction. But in his booklet he 

proceeds to study the theory of chains for arbitrary sets and arbitrary mappings (not just 

injective mappings); this is the topic of his section 4. And since he is dealing with the concept in 

this degree of generality, Dedekind (1888, 354–355) goes on to prove a generalized theorem of 

induction, formulated not for NN , but for an arbitrary chain, where again the underlying mapping 

is not required to be injective.  

 The axiomatic style of Dedekind becomes even clearer in this section of his booklet, right 

after the definition of the chain of set A (1888, 353, prop. 44). From this definition he proves 

three simple results, namely: Prop. 45: A ⊂ A0 (trivial); Prop. 46: ϕ(A0) ⊂ A0, which holds since 

A0 is closed under ϕ; and Prop. 47: if K ⊂ S is closed under ϕ, and A ⊂ K, then A0 ⊂ K. And 

then he adds:  
Remark: It is easy to convince oneself that the concept of the chain A0 defined in 44 is 
characterized completely by the previous propositions 45, 46, 47. 
 

It is impossible to work more clearly in the axiomatic style, without using the very word 

“axiom.” The remark simply means that propositions 45, 46, 47 suffice to axiomatise the 

structure of chain. 

                                                                                                                                                                  
the letter to Keferstein (1890), 100-01); it might be that the topic had come out in personal conversations, but at any rate the 
convergence underscores how close their styles of thinking were. One should note an implicit but omnipresent way in which 
Dedekind emphasized the arbitrariness of terminology: his striking terminological choices, e.g., “body” for fields, the 
meaning of “multiple” and “divisor” of two fields, or the “ideals.” 

25
 See Dedekind 1871, § 161, 242–245; or his 1894, §§ 168–172, 493–524 (corresponding to Dedekind 1932, 60–90). 

26
 Here I modernize slightly the terminology, in a way that is immaterial to the point we are discussing; compare 

Dedekind (1888), 353. Likewise, in the next sentence I write {1}0 instead of Dedekind’s ambiguous notation 10. 
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 While Peano’s axiom of induction renders directly the customary principle, Dedekind was 

able to subsume it under the very general and powerful theory of chains. This theory yields also 

the Cantor-Bernstein theorem,27 and it is not too difficult to generalize it for use in higher set 

theory, as Zermelo discovered. The working style of Dedekind in his axiomatic analysis of N is 

also characteristic of his later work (including algebraic number theory) in one further aspect: 

he had a clear tendency to prefer “set-theoretic foundations,” to use Emmy Noether’s apt 

phrase.28 

 Many other features of the booklet are also relevant in connection with axiomatics. 

Whenever Dedekind feels the need to introduce some mathematical concept for his analysis of 

the natural numbers and their arithmetic, he antecedes a study of that concept in a general 

setting. Besides the example just given, another very relevant one is the theory of (primitive) 

recursive definitions in § 9 of the booklet; this is subsequently applied to the basic arithmetic 

operations, and to the definition and theory of finite cardinals. Also relevant is the fact that, in § 

10, Dedekind (1888, 376) studied the models or interpretations of his axiomatic characterization 

of N, proving that any two models are isomorphic. This is certainly one of the very first 

instances of a model-theoretic study in the mathematical literature. 

 

3.2. Hilbert’s axiomatics in 1899.  

Most of Hilbert’s axioms for either geometry or the real numbers state conditions on the 

elements, and therefore can be formalized in first-order logic. In this respect, his axiomatic style 

was closer to Peano’s and simpler than Dedekind’s (who preferred to characterize and study 

structures directly in terms of sets, subsets, and mappings; not at the more elementary level of 

operations on the elements of the set). But Hilbert felt free to formulate axioms postulating 

conditions on sets of elements; to formalize them, one needs to quantify over sets of elements. 

The conspicuous example of this trait is the famous Axiom of Completeness [Vollständigkeit] 

that Hilbert included first in his axiomatization of the real numbers (1900), and then in 

subsequent editions of the Grundlagen der Geometrie.  

 There is a well-established tendency in the literature to say that Hilbert’s completeness 

axiom is metamathematical, because in its formulation he would be speaking about the relation 

between axioms and models; indeed, Hilbert talks about a certain set that “erfüllt” (satisfies) 

some axioms.  But this seems to be an anachronistic reading, too strongly informed by model-

theoretic ideas that would only start to crystallize from about 1915 (see Badesa 2004). Some 

writers present Hilbert’s Axiom of Completeness as one that is second-order, but this again 

                                                        
27
 See Dedekind 1888, 356; Dedekind 1932, 447–448; and Ferreirós 1999, 239–241. 
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cannot be true to his spirit: once more the remark is anachronistic, nobody at the time had 

isolated first- or second-order logic. In my view, there is a more interesting way of 

understanding what Hilbert did – more interesting from the philosophical point of view, and 

probably also more correct conceptually and historically as an interpretation of his work. 

 In my opinion, the situation with Hilbert’s Axiom of Completeness is closely parallel to the 

situation with Dedekind’s Chain Axiom that N = ϕ0{1}, i.e., that the set of natural numbers is 

the chain of a singleton under the successor mapping. However, Dedekind’s chain condition is a 

minimality requirement, while Hilbert’s Completeness Axiom aims to ensure maximality. And 

this also entails an important difference between both. 

 In the case of the reals, Hilbert’s axiom of completeness says that they form a set of elements 

which is maximal for the remaining axioms (which characterize an Archimedean ordered field). 

His original formulation was the following: 
IV 2. (Axiom of Completeness.) It is not possible to add to the set [System] of numbers another set 
of things, in such a way that all the axioms I, II, III, IV 1 are satisfied [erfüllt] in the set obtained 
by their reunion; or in short: the numbers form a set of things which is incapable of any extension 
while maintaining all the axioms. [Hilbert 1900, 183; also in (1900a), 300]29 
 

In a sense, Hilbert was just reasoning in ways that were becoming customary for algebra and 

number theory: one defines a certain kind of structure (there, number field, or ring of algebraic 

integers, or ideal within such a ring) and thinks about all possible realizations of the structure. 

One can then consider the relations of inclusion, intersection, union, between such realizations, 

and in particular one may consider maximality (or minimality) requirements. This is exactly the 

situation with fields of algebraic numbers, which Dedekind (and Hilbert) defined as algebraic 

extensions of Q; the minimal set is Q itself (every number field K is such that Q ⊂ K), the 

maximal realization is the field C of all complex numbers (always K ⊂ C).30  

 Similarly, when we require the fields to be ordered and Archimedean, the maximality 

condition seems enough to characterize univocally the set of real numbers, with topological 

completeness emerging as a by-product of maximality. This seems to have been a key 

realization for Hilbert at the time, especially because he was interested in having a completeness 

axiom that would not entail the Archimedean property; this kind of independence was important 

for his axiomatic work. 

 My proposal for formalizing the Completeness Axiom would be the following. Hilbert’s 

                                                                                                                                                                  
28
 See, and contrast, McLarty 2006. This is one of the key differences between his axiom system and that of Peano 

(1889), which was more elementary (Peano himself seems to have perceived it; see Ferreirós 2005, 622). 
29
 It adds to the surprising parallelism between Dedekind and Hilbert, that the former too was led to his Chain axiom by 

considering ways in which the set of numbers could be augmented by an additional set of things, while keeping the 
remaining axioms satisfied – these “intruders” would destroy the structure (see the celebrated letter to Keferstein, Dedekind 
1890, point 6).  

30
 Compare Dedekind (1871), 224: “The simplest [einfachste] field is formed by all rational numbers, the biggest 

[grösste] by all numbers”, meaning real or complex numbers, as a previous sentence makes clear. 
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word “satisfy” is perfectly avoidable, its use inessential; the conjunction of the first 17 axioms 

of Hilbert provides us with a set-predicate. One can simply say “whenever a set T has the 

property defined by the axioms of groups I, …, IV.1,” or, more conveniently, one can introduce 

the set-predicate ‘X is an Archimedean ordered field,’ defined by the conjunction of all the 17 

axioms in groups I, II, III, plus axiom IV.1. Now, the Completeness Axiom says that the set S of 

real numbers is such that, whenever T has that property and S ⊂ T, then S = T. This way of 

presenting the matter, which seems to me closest to Hilbert’s own, mimicks Dedekind’s 

presentation, concretely his prop. 47: 

 Hilbert’s axiom:   ∀T (if T is an Archimedean ordered field and S ⊂ T, then S = T); 

 Dedekind’s 47:  ∀K (if K is closed under ϕ and A ⊂ K, then A0 ⊂ K). 

The difference in the consequents (identity in one case, inclusion in the other) clearly expresses 

the difference between a maximality and a minimality condition. 

 And this is also the source of the ambiguity inherent in Hilbert’s axiom. With Dedekind’s 

procedure, we are dealing with an intersection and all chains K are included in a certain set S; 

when we wrote ∀K above, we meant ‘all subsets K of S’ – we could have written ∀K ⊂ S. The 

ambient space is supposed to be given and, subsequently, problems of ‘existence’ are relatively 

well defined. But when Hilbert says ∀T, it seems that the implicit domain can only be the 

universal set V, for his sets T can only be supposed to be living in V; we should write ∀T ⊂ V.  

 This is why, with Hilbert, one gets the feeling of some ambiguity. His axiom system seems 

to presuppose the universal set V in an essential way, as Dedekind did not. More specifically, 

Dedekind’s proof of the existence of ‘simply infinite sets’ (sets isomorphic to N) relies merely 

on some given infinite set S (1888, prop. 72).31 Thus, it is the case that the contradictory 

universal set had a very limited appearance in Dedekind’s axiomatization, while the 

Completeness axiom of which Hilbert was so proud had the effect of ‘infecting’ his axiom 

system with the antinomical virus. Funny that he wanted to use these axioms as a basis for a 

consistency proof, and thereby an existence proof that would bypass the problems created by 

the paradoxes. 

 The proposed way of understanding Hilbert is simply to think that set theory belongs to the 

underlying logic in which the axiom system is formulated.32 As we have seen, the evidence 

suggests that this was just Hilbert’s – and of course Dedekind’s – own viewpoint in the 1890s. 

Hilbert’s tendency is to have full set theory in the logical background. The point is that, if talk 

of sets and elements (systems and things) is just basic logical language, there is no essential 

difference between Peano-style axioms affecting the elements and Dedekind-style conditions 

                                                        
31
 Because the set is Dedekind-infinite, we have an injective mapping ϕ: S → S, where the image is a proper subset of S. 
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affecting sets or subsets. For whenever we have a realm of things, thinking and reasoning about 

sets of such things is just elementary logical reasoning.  

 Of course, Hilbert would later learn that in foundational work one must to be more careful, 

that the old logical principles had been proven faulty precisely here, and one had to develop 

logic and mathematics simultaneously. But it seems that it was only after Frege’s reaction to the 

Zermelo-Russell paradox, published in 1903, that Hilbert came to doubt whether set theory 

really belongs to pure logic, and whether pure mathematics can be reduced to logic (Hilbert 

1905). Even later, in the 1920s, he came to use formal axiom systems, which is a completely 

different way of working axiomatically, one that in fact is foreign to most mathematicians. But 

set theory kept playing a background role in regular mathematical work, and of course informal 

axiomatics of the older style survived.
33

 This may help the reader understand the key importance 

that Hilbert kept ascribing to set theory in the 1920s. Set theory was, after all, the repository of a 

whole series of “ways of forming notions and modes of inference” that are extremely fruitful in 

mathematics. In a word, no one would steal from 20th century mathematicians the freedom and 

power of modern methods – the set-theoretic paradise (Hilbert 1926, 375–376). 

 

4.  PROBLEMS IN THE FOUNDATIONS OF SET THEORY.  

 

According to my reconstruction, Hilbert’s views on “truth and existence” in mathematics 

emerged from a logicistic understanding of set theory in terms of the principle of 

comprehension. He was led to revising that contradictory principle in the light of Cantor’s 

discovery of the antinomies of set theory; this is what triggered his noteworthy inversion of 

previous ideas about existence and consistency. We now consider both issues. 

 

4.1. The dichotomic conception. 

The typical logicistic understanding of set theory, or the “logic” of classes, can be characterized, 

following Gödel’s perceptive remarks, as the dichotomic conception.34 Any well-defined concept 

P(x) establishes a dichotomy of all things into those that are Ps and those that are non-Ps, i. e., a 

partition of V into the class { x:  P(x) } and its absolute complement, the class { x:  ¬P(x) }. 

Hence the name “dichotomic conception.” This standpoint is based on two key assumptions:  

(i) the existence of a universal set, Dedekind’s Gedankenwelt, and  

(ii) the principle of comprehension as a basic law of thought, which says: 

                                                                                                                                                                  
32
 I advanced this view for the first time in Ferreirós (1999), 301–302.  

33
 Good mathematicians made sure that their axiom systems could be adjusted within axiomatic set theory; but this was 

usually left out of their writings (an early example is Hausdorff 1914, but consider also van der Waerden 1930, etc.). 
34
 See Wang 1974, 537, which obviously (compare p. 538) was a text discussed with Gödel himself. 
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      Given a well-defined property [an open sentence] Φ(x), there is the set S = { x: Φ 

(x)}. 

To them, of course, one adds the principle of extensionality (Dedekind 1888, 345).  

 In fact it is possible to lay emphasis on either (i) or (ii), since just one of them suffices for 

“naïve” set theory. The path from the principle of comprehension to assumption (i) is well 

known: simply replace Φ(x) by a truism, such as the property ‘x = x’. But the converse is also 

true: we may begin by establishing the existence of an all-encompassing domain V given as a 

set; in order to establish the principle of comprehension, the key idea is that, since V is assumed 

to be a set, any part of it should again be a set. Hence, as a well-defined concept P(x) defines a 

subset of V, the set { x:  P(x) } exists. 

 Logicians and mathematicians from Dedekind to Quine, and some beyond, have found it 

most natural to assume that there ought to exist a universal realm, a set encompassing all objects 

and in particular all sets.35 The universal set (the set of all Dinge) was indispensable for 

logicism, since the whole bent of Dedekind’s and Frege’s viewpoints was to work out general 

logical principles, so general that they apply to the finite and the infinite alike, from which they 

hoped to establish the existence of the actual infinity of natural numbers. This can only be done 

provided that the universal set – which, obviously enough for a mathematician, will indeed be 

infinite – is given at the outset. Considering the “set” (proper class) of all possible objects of 

thought, Dedekind proves that this Gedankenwelt Σ is Dedekind-infinite. To do so, he must 

specify a one-one mapping φ: Σ → Σ (interestingly he chose the propositional function “x 

can be an object of my thought”), and an element in Σ that is not in the image φ(Σ) 

(Dedekind proposed “my own self”).36  

 Surprisingly, the comprehension principle was almost nowhere stated clearly before it was 

proved contradictory, in spite of its crucial role for logicism and naïve set theory. Many people 

tend to assume that it is identical with Frege’s infamous Law V, which however is simply a 

principle of extensionality.37 Comprehension was implicit in Frege’s symbolism, which allows 

                                                        
35
 It has taken a long and winded process to move beyond that naïve assumption, towards the idea that the set-theoretic 

universe is not itself a set, and indeed may be indeterminate, incompletable. See Zermelo (1930) and the insightful 
introduction to that text by Hallett. 

36
 The proof has been despised as “psychologistic” by Russell (1919) and others, in spite of the fact that Russell himself, 

like Hilbert and perhaps Frege, accepted it in his early years of logicism (Russell 1903, 357-58). But there is much evidence 
that Dedekind’s epistemological framework should be taken to be some form of Kantianism (broadly understood), and thus 
alien to psychologism. The “self” in Dedekind’s proof is not the psychological I, but rather some kind of transcendental 
subject. 

37
 Looking for an explicit formulation of Comprehension, it is better to consider Riemann’s pioneering work, when he 

defines a “manifold” as the class whose elements are the “different instantiations” of an “antecedent general concept” 
(Riemann 1868, 273). In this context he brings out explicitly (1868, 273–74) the idea that whenever such a concept is given, 
there is the corresponding set or manifold. Elsewhere I have argued more at length for Dedekind’s and Riemann’s 
acceptance of this principle (Ferreirós 1996 & 1999, 47–53, 104–106). A key example of the traces of Comprehension in 
Dedekind can be found in his two versions of the generalized theorem of complete induction (Dedekind 1888, props. 59 and 
60). 
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one to form the expression έ F(ε) – read: the extension of the concept F – for any given 

property F(x); Frege assumes that there somehow is a mapping which to every concept 

associates an object, but he does not present it as an explicit assumption. As regards Dedekind, 

there are traces of Comprehension in his publications, but it seems that he purposefully avoided 

relying on it as the basis of the “logical theory” of sets. I presume he doubted whether the 

principle was general enough: there might be sets for which one cannot define a corresponding 

concept (in fact, Dedekind believed that language can only represent mathematical ideas in a 

partial and incomplete way). 

 As regards Hilbert, a simple fact suggests that Comprehension was deeply imbedded in his 

mind around 1900: he tends to use the words “concept” and “set” as synonyms. The reader can 

verify this statement for herself, simply by reading the formulations employed by Hilbert in his 

Paris lecture (1900a, 299–301), when he talks about problem 2 of the consistency of arithmetic. 

Another witness is his reply to Cantor, when the sagacious explorer of the transfinite presented 

him with the antinomy of the class of all alephs. Hilbert protested: 
The collection of all alephs can be conceived as a definite well-defined set, for certainly if any 
thing is given, it must always be possible to determine whether this thing is an aleph or not; and 
nothing more belongs to a well-defined set.38 
 

Dedekind would not have answered differently: it is enough that the concept of an aleph be well 

defined, this suffices (by the unstated comprehension principle) for the corresponding set to 

exist. Hilbert’s answer is thus a perfect example of the dichotomic conception of sets.  

 

4.2. Hilbert and the antinomies, 1897–1903. 

The great impact of the paradoxes of set theory around 1900 was mainly due to the wide 

diffusion of logicism at the time. The paradoxes cast more and more doubts on the dichotomic 

conception, both from the point of view of the principle of comprehension and the universal set.  

 None other than Hilbert was the first mathematician to mention publicly the problems in set 

theory. This happened in his famous address on mathematical problems (1900a, 301), but also 

in the previous paper ‘On the number concept’ (1900). The context was in both cases the same, 

the problem of showing the consistency of the arithmetical axioms and “therefore” the existence 

of the set of real numbers. Thus in the earliest of these papers we read: 
To prove the consistency of the above axioms [for the real numbers] one needs only a suitable 
modification of familiar methods of inference. In this proof I also see the proof of the existence of 
the totality of real numbers, or –in the terminology of G. Cantor– the proof that the system of real 
numbers is a consistent (finished) set. … 
If we should wish to prove in a similar manner the existence of a totality of all powers (or of all 
Cantorian alephs), this attempt would fail; for in fact the totality of all powers does not exist, or –
in Cantor’s terminology– the system of all powers is an inconsistent (unfinished) set. (Hilbert 
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 Hilbert’s original letter is lost, but this sentence is quoted verbatim by Cantor: see Meschkowski & Nilson (1991), 390. 
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1900, 184) 
 

As the quotation makes clear, Hilbert was relying strongly on results communicated to him by 

Cantor, in the course of a correspondence from Sept. 1897 onwards.39 It is also clear that 

Hilbert’s first communication on the matter lacked the sense of disaster that would emerge in 

later works of Russell (1903) and especially Frege (1903).40 For instance, in the Paris talk 

Hilbert repeatedly declared his conviction that one can prove the admissibility and existence of 

sets such as the real numbers (Hilbert 1900a, 300, 301). Indeed, the Zahlbegriff paper was his 

first attempt to solve the problem. 

 But Hilbert too had strong doubts at the beginning. These were not mentioned in his 

publications, only discussed privately. Bernays knew that he “temporarily thought that 

Kronecker had probably been right,”41 and indeed the lecture notes of 1905 read as follows: 
when I found it [Hilbert’s paradox, see below], I thought in the beginning that it causes invincible 
problems for set theory that would lead to its failure; now I firmly believe, however, that 
everything essential can be kept after a revision of the foundations, as always in science up to now. 
(Peckhaus & Kahle 2002, 168)  
 

This confidence and “firm belief” is already present, and forcefully so, in the Paris talk of 1900 

and the Zahlbegriff paper. I am thus inclined to think that the period of doubt may have been 

either during 1898, or perhaps after seeing the reaction of Frege in 1903. 

 Names matter. Russell (1903, 101 and 523) spoke of what we call the paradoxes as 

“contradictions,” for they were plain contradictions given his (and Frege’s) standpoint at the 

time, which adopted the unrestricted principle of comprehension. But the Göttingen 

mathematicians, under the lead of Zermelo, called them “antinomies” in an explicit allusion to 

Kant and to their allegedly unavoidable character.42 The word “paradox,” wrote Zermelo, means 

merely “a statement contradicting the common opinion, it doesn’t contain anything of an inner 

contradiction (as is the case for the paradoxes of Russell and Burali-Forti, and expressed by the 

term ‘antinomy’).”43 Hilbert in his lectures of 1905 used preferentially the name “paradox,” but 

he went on to indicate that these paradoxes are a “mathematically precise version of the Kantian 

antinomies” [mathem. Präcissierung Kantischer Antinomieen] (1905a, 215). 

 Hilbert’s first acquaintance with the paradoxes was a result of his encounter with Cantor 

during a meeting of the GDNÄ (Association of German Scientists and Physicians) in 

                                                        
39
 The relevant letters were found and published by Walter Purkert; see Purkert & Ilgauds (1987). English translations are 

available in Ewald (1996), vol. 2, 926-29. 
40
 By contrast, when Dedekind first knew of the antinomies, in the course of a visit that Felix Bernstein (then still a 

student of Cantor’s) paid him in Easter 1897, he was led to “doubt whether human thought is fully rational” – strong words 
for a sober and restrained man (see Bernstein’s reminiscences as quoted by E. Noether in Dedekind 1932, 449). 

41
 See Sieg 1990, 289. Bernays goes on: “Now it became his goal, one might say, to do battle with Kronecker with his 

own weapons of finiteness,” but this remark is only valid for Hilbert’s work in 1904–05. 
42
 Today we prefer to call them “paradoxes,” a name that waters down their relevance and suggests that they are merely 

the result of a misconception, of a “naïve” approach to set theory, superseded by axiomatic set theory. 
43
 Zermelo to Nelson, December 1907; quoted in Peckhaus & Kahle (2002). 
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Brunswick, Sept. 1897. Their conversation was interrupted when Hilbert was just raising the 

question whether all infinite cardinalities are Cantorian alephs. Cantor subsequently wrote a 

letter saying that this was a theorem that, in his opinion, he could prove rigorously. The proof 

exploited the fact that the totality of all alephs is not a “finished set [fertige Menge]” or, as he 

would say in later correspondence, is not a “consistent set [consistente Menge]”.44 With this 

letter, a very interesting exchange on the matter was started, preceding the even more detailed 

correspondence with Dedekind in 1899. 

 In retrospect, one can locate the source of the tensions in Cantor’s radical expansion of the 

realm of set theory, which was essentially a result of his introduction of the transfinite ordinals 

(Cantor 1883). It was this new context that led Cantor to the paradoxes in the first place, and he 

recognized that they posed inescapable difficulties for logicists such as Dedekind. This is the 

way in which he presented the matter to Hilbert in letters of 1897/98. The arguments were mere 

paradoxes for Cantor, but for Dedekind’s “diametrically opposite” viewpoint they were 

contradictions. 

 As we have seen, Hilbert’s first reaction was typical of a logicist, since he immediately 

resorted to the dichotomic conception. “The collection of all alephs can be conceived as a well-

defined and concrete set,” he opined, for given any thing it is always possible to determine 

whether it is an aleph or not; “and nothing else can be required from a well-defined set.” Notice 

how the concept of an aleph is supposed to create a dichotomy, which in turn presupposes that 

the universal set is given. 

 Two years later, Cantor would criticize this same assumption as the crucial difference 

between his conception of set theory and Dedekind’s. Their views were “in diametrical 

opposition” because he rejected Dedekind’s “naïve assumption that all well-defined collections, 

or systems, are also «consistent systems»”.45 Here Cantor employs Dedekind’s term “System” – 

which Hilbert was using in his papers at the time – as a synonym of “well-defined collection,” 

that is, one given by a definite concept. According to Cantor, Dedekind always assumed that 

such a definite concept is sufficient for the existence of a set – the principle of comprehension. 

But the well-defined collections include both sets (which Cantor intended to be his “Mengen”) 

and what we nowadays call «proper classes». Thus Cantor intimated that Dedekind’s logicistic 

notion of set [System] was not equivalent to his own [Menge]. He was also explicit in 

suggesting that the paradoxes would force Dedekind to make essential changes in his work on 

                                                        
44
 Cantor intended at the time to publish a third instalment of his paper ‘Contributions to the foundations of the theory of 

transfinite sets’, but this was delayed and never came out (see Ferreirós 1999, 290–295). His attempt to prove that all powers 
are alephs involved also the proof that all sets can be well-ordered. 

45
 Cantor to Hilbert, Nov. 15, 1899 (in Purkert & Ilgauds 1987, 154); this letter deserves to be much better known, but it 

is not included in Ewald’s collection. 
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the foundations of the natural numbers.46 

 In late 1897 or 1898, Hilbert reacted by trying to make sure whether the antinomies were a 

real threat for the foundations of pure mathematics. This he did by looking for a contradiction 

based, not on Cantor’s transfinite arithmetic, but on Dedekind’s arithmetic of the natural 

numbers. The outcome was “Hilbert’s paradox” obtained simply from three principles:47  

(i) existence of the set of natural numbers,  

(ii) existence of the set of all internal mappings of a previously given set, ϕ: S → S, and 

(iii) the formation of unrestricted unions.  

Hilbert considered “all sets resulting from” application of these principles “arbitrarily often 

[beliebig oft]” (Peckhaus & Kahle 2002, 171). The resulting union set U should be closed for 

internal mappings, so that it encompasses all ϕ: U → U, but now a Cantorian argument by 

diagonalisation showed how to establish a “well-defined” mapping that cannot be in U. As a 

result of this “purely mathematical” argument, which avoided the complexities of Cantor’s 

transfinite arithmetic, Hilbert concluded (probably in 1898) that the paradoxes are indeed a real 

threat.  

 Notice that his paradox builds upon ingredients that can be taken directly from Dedekind’s 

work: the set N of natural numbers (1888, props. 71–72), the concept of internal mapping φ: S 

→ S (prop. 36),48 and an infinitary union principle (prop. 8). The way in which Dedekind 

formulates the principle of union (1888, 346) can be accused of having exactly the degree of 

haziness of Hilbert’s principle, since Dedekind allows to form the union of “any sets whatever” 

(irgendwelchen); he does not require this possibly infinite collection of sets to be itself a set.49 

What was not in Dedekind is “the set of all” internal mappings: this is nothing but Cantor’s 

Belegungsmenge (Cantor 1895, 288), introduced to define the exponentiation of cardinal 

numbers, and which Hilbert referred to by this same name in the lectures of 1905. Needless to 

say, the diagonalisation argument is also Cantorian.50 

 Hilbert concluded that the basic logical principles on which set theory was based needed 

amendment. It was imperative to set some bounds to the “arbitrariness” that was to be allowed 

                                                        
46
 See Cantor’s letters to Hilbert in (Purkert & Ilgauds 1987; translated in Ewald 1996, vol. 2), especially that of 

15.11.1899 (p. 154). See also the 1899 letters to Dedekind, where Cantor clearly states that the “collection of everything that 
can be thought [Inbegriff alles Denkbaren]” is not a set (Cantor 1932, 443; consider also 448). It must have been clear to 
Dedekind that he was making reference to his “world of thoughts” [Gedankenwelt], the universal set. 

47
 For further details, see Peckhaus & Kahle (2002).  

48
 For mappings, Hilbert employs here the terminology introduced by Cantor (Selbstbelegung, see Peckhaus & Kahle 

(2002), 164n, 171) instead of the original terminology of Dedekind (Selbstabbildung, or Abbildung eines Systems in sich 
selbst, Dedekind 1888, 351, § 4). We do not know the terminology that he may have employed back in 1898.  

49
 The same happens already in an earlier paper of Cantor (1880, 145; the 1895 paper does not contain such a general 

union principle). In the lecture notes, again, Hilbert prefers to use Cantor’s 1895 terminology: “Vereinigungsmenge”.  
50
 Such a fusion of ideas and methods from Dedekind and Cantor was usual in Hilbert’s papers and lectures at the turn of 

the century. This trait differentiates Hilbert from such important experts in set theory as Felix Hausdorff (1914), and it must 
be taken into account in order to understand why Zermelo too went on to combine the heritages of Cantor and Dedekind. 
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in applying principles such as union, or in the (transfinite) iteration of given operations. And it 

was also imperative to be more careful when applying the “fundamental principle” of 

comprehension: to have a well-defined concept was not enough, some further cautionary 

requirement was needed.  

 Hilbert came to accept Cantor’s distinction of two kinds of “collections,” and the need to 

revise the principle of comprehension. Some years later he offered a well-known critique of 

Frege, which interestingly enough can be applied verbatim to his own standpoint back in 1897 

(see Hilbert 1905, 130). His conclusion was that “the conceptions and means of investigation 

prevalent in logic, taken in the traditional sense,51 do not measure up to the rigorous demands 

that set theory imposes.” A major goal of the investigations into the notion of number should be 

to avoid and clarify these paradoxes. It seems likely that this analysis coincides with the 

understanding that Hilbert had reached by 1899. As we shall see, the paper ‘On the concept of 

number’ was designed precisely to answer to these new goals. 

 

5.  CONSISTENCY AND MATHEMATICAL EXISTENCE. 

 

In light of the paradoxes, it was clear that the principle of comprehension needed revision. 

Cantor himself said it as plainly as possible: one cannot start, he emphasized in the letter to 

Hilbert of 15.11.1899, from the “naïve assumption” that “all well-defined collections, or 

systems, are also «consistent systems»” (Purkert & Ilgauds 1987, 154). From the fact that the 

concept of an aleph is perfectly clear, we cannot jump to the conclusion that the set of “all” 

alephs is a “consistent collection.” Similarly for the concept of a transfinite ordinal, since the set 

of “all” ordinals is antinomical, and even for Dedekind’s concept of “thing” as any object of our 

thinking: we cannot simply assume the existence of the set of “all” things (Dedekind’s 

Gedankenwelt), given that each ordinal and each cardinal is a mathematical thing.  

 Notice that in all three cases, the problem arises when one considers “all.” It was Hilbert’s 

and Cantor’s intuition that there ought to be no problem with “some” or even “a great many” of 

the relevant “things.” To mention some examples of increasing complexity, the following sets 

should exist: – the set of natural numbers; – Cantor’s second number class (the set of all 

denumerable ordinals α, i.e., ω0 ≤ α < ω1); – the set of all alephs ℵα for index α belonging to, 

say, the first ω number classes of Cantor. And of course, the set of real numbers should 

                                                        
51
 In his eyes, the principle of (unrestricted) union and the principle of comprehension were merely well-established 

principles of “traditional logic.” For the historical context that made this appraisal reasonable, see my papers (1996) and 
(2001). In my view, only mathematicians employing the notion of set – beginning with Riemann in 1854, – and not the 
traditional logicians, originated the full principle of comprehension. The principle was related to a usual assumption of 
logicians (Ferreirós op. cit.), but only the new mathematical context provided the incentive for formulating it in the extreme 
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similarly be unproblematic, as also the set of all real-valued functions of a real variable ϕ: R → 

R; etcetera. 

 Although Cantor’s way out was unsatisfactory, since it lacked “a precise criterion” for the 

distinction between “consistent” and “inconsistent systems” (Hilbert 1905, 131), his perceptive 

diagnosis of the problem and the details of the arguments establishing his paradoxes (and 

Hilbert’s own) were enough to set Hilbert on a productive track. First of all, the problem had to 

do with the unwelcome emergence of contradictions in the area of set theory, by using 

principles that in any event were deemed necessary for analysis (the theory of the real numbers). 

Second, Hilbert believed, as a result of his previous work on foundations, that in order to find a 

way out it was necessary to apply the axiomatic method of geometry to all other relevant areas 

of mathematics, beginning with arithmetic.52 But third, when the axiomatic method is applied, 

the task necessarily arises “of showing the non-contradictoriness [Widerspruchslosigkeit] and 

the completeness of these axioms” (Hilbert 1900, 181). And the question of consistency is, in 

this axiomatic context, a clear one: the problem is to show that a finite system of axioms cannot 

lead to contradictions.  

 The step to invoking the axiomatic method and investigating the consistency of the axiom 

system provided the logical criterion that was lacking from Cantor’s reflections. To be 

consistent or not is merely a logical property of the axiom system. The fact that is was a purely 

logical test must have been particularly satisfactory for Hilbert as a logicist. 

 It deserves to be mentioned that the main meta-axiomatic questions for Hilbert in 

Grundlagen der Geometrie (especially in the first edition, 1899) were questions of 

independence, and only to a much lesser extent – one may say as a byproduct – the question of 

consistency. Interestingly, independence and consistency were also the main meta-axiomatic 

problems for Dedekind in his Was sind und was sollen die Zahlen?, according to the 1890 letter 

to Keferstein.53 But consistency only came center stage with the problem of the paradoxes. 

 

5.1. Sets – concepts – axioms systems.  

The way in which Hilbert employed the word “concept,” and interchanged it quite freely with 

“set” or “system,” deserves special mention. On the very first page of Grundlagen der 

                                                                                                                                                                  
generality that turned it into a contradictory axiom. Likewise, only mathematicians such as Cantor pushed the concept of 
union to the point needed for Hilbert’s paradox. 
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 See Hilbert’s Vorlesungen (2004) and Hilbert 1897/98. For the historical context of his involvement with geometry, see 

the work of Toepell (1986) and his contributions to the centenary edition of Grundlagen der Geometrie (Leipzig, Teubner, 
1999). 
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 Specifically, Dedekind’s props. 66 and 72 establish the consistency of his axioms for the natural numbers by providing 

a model. But in Dedekind’s publications that was left unstated in explicit terms, one had to think them through, as Hilbert 
may have done. Dedekind’s booklet addressed also, in a very interesting way, the categoricity or monomorphy of models of 
the axiom system; this is the topic of § 10, which studies “the class of simply infinite sets” and shows that it is a class of 
isomorphy. 
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Geometrie, Hilbert begins with “three distinct systems [sets] of things” (points, lines, and 

planes); then in § 2 he writes that the axioms of group I “establish a connection between the 

concepts indicated above, namely points, straight lines, and planes” (Hilbert 1899, emphasis 

mine). The comprehension principle seems to be in the background, just as it was in Hilbert’s 

letters to Cantor of 1897. In the 1905 paper discussing Frege, quoted above, he presents the 

comprehension principle as “the fundamental principle that a concept (a set) is defined and 

immediately usable if only it is determined for every object whether the object is subsumed 

under the concept or not” (Hilbert 1905, 130). What I am calling attention here to is the 

immediate jump: “a concept (a set).”  

 The Frege–Hilbert correspondence abounds in further examples, and so does the text in 

which Hilbert posed the second problem of his Paris list (1900a, 299–301). Also in Hilbert’s 

discussion of his own paradox, as presented in the 1905 lecture notes, he says that the principle 

of union makes it possible to “reunite 2 sets … into a new conceptual unity [Begriffseinheit], a 

new set”. And the source of the paradoxes of set theory, which are obtained “by purely logical 

operations,” is seen to lie above all in the axiom of union, the “reunion of many concepts into 

one common concept [Gemeinbegriff]” (Hilbert 1905a, 195). Throughout this period, the very 

notion of a set is immediately linked with a the notion of a Begriffseinheit, a “conceptual unity.” 

This in itself offers further confirmation of the thesis that Hilbert was strongly influenced by 

logicism at the time.  

 We need to mention also another association of “concept.” In their correspondence, Frege 

accused Hilbert of employing the word “axiom” in an unclear way, one of the reasons being that 

he was treating it as interchangeable with “definition.” From this point of view, the geometric 

axioms are the attributes that define the concept of “a geometry;” and the axioms for the real 

numbers are the characteristic properties of the number concept.54 As late as Nov. 1903 we find 

Hilbert speaking of the “axioms that define the concept” (Frege 1976, 80). Once again, this 

links very naturally with Dedekind, whose “definition” [Erklärung] no. 71 characterizes the set 

of natural numbers by listing four “conditions” (Dedekind 1888, 359). From Hilbert’s viewpoint 

these are nothing but the characteristic attributes, the “axioms that define the concept” of natural 

number.55 This way of considering the matter led to the well-known idea that an axiom system is 

an “implicit definition.” 

 The circle of ideas in which Hilbert is moving should now seem much clearer. An axiom 

system can always be regarded as the definition of a concept, and a concept is always linked – 
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 Notice that Hilbert’s answer to the question of the “number concept” was nothing but to set up 18 axioms divided into 

four groups (Hilbert 1900, 181–83). 
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via the comprehension principle – with a corresponding set. But, from the paradoxes, Hilbert 

learnt that it does not suffice to define a “concept” such as Euclidian space (or real number) 

with enough precision to be able to determine whether a given object falls under it or not. The 

concept of an aleph seemed definite, precise enough to establish whether a given object is or is 

not an aleph, but the totality of alephs was not a “mathematically existing” object. “Rather, the 

essential point is knowledge of the noncontradictoriness of the axioms that define the concept”.56 

 

5.2. Consistency entails existence.  

What precedes, and especially the sentence I have just quoted from Hilbert’s 1903 letter to 

Frege, contains already the heart of the matter. But it is necessary to unpack the consequences 

for an interpretation of the emergence of Hilbert’s views on existence.  

 The old principle of comprehension can be formulated as follows: 

Once a well-defined concept Φ(x) is established, there exists a set S = {x: Φ(x)} whose 
elements are all objects that fall under Φ(x). 

In a modern formal version, Φ(x) being any open sentence in one free variable x: 

∃s ∀x ( x ∈ s ↔ Φ(x) ).  

The “concept” Φ can, in Hilbert’s practice, simply be the conjunction of all the axioms in some 

axiom system. (Actually, the open sentence or “concept” Φ could have more than one free 

variable – Hilbert’s geometric system is many-sorted, with three different sets of basic objects.) 

 Now, the amendment was simply to introduce an intermediate step: before concluding the 

existence of set S, it is necessary to prove the consistency of the conditions defining Φ(x); and 

the axiomatic method makes this possible. One might say that the old principle of 

comprehension can be summarized in the words ‘definiteness entails existence,’ while Hilbert’s 

‘consistency entails existence’ is just a summary of the following revised principle of 

comprehension:  

Once a well-defined concept Φ(x) is established by means of an axiom system, the set S = 
{x: Φ(x)} exists if and only if the concept Φ is consistent, i.e., iff the axiom system is 
consistent. 

Formally, Φ(x) being any open sentence in one free variable x: 

∃s ∀x ( x ∈ s ↔ Con(Φ) ∧ Φ(x) ).  

Thus Hilbert wrote that, in the proof of consistency for the axioms for the real numbers, “I also 

see” the proof of the existence of the totality of real numbers as “a consistent (finished) set” 
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 Now consider, e.g., the content of § 13 in the Grundlagen der Geometrie, where Hilbert offers axioms for what he will 

call, rather idiosyncratically, “complex number-systems” (Hilbert 1902, 23). It should be obvious that this whole passage 
can be called a “definition” in Dedekind’s sense, and that this move would be consistent with Hilbert’s linguistic usage. 
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 Hilbert to Frege, 7.11.1903, in Frege 1976, 80 (emphasis mine). 
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(Hilbert 1900, 184). The key gain was made possible by the careful logical control that the 

axiomatic method makes possible. Hilbert could proudly say: “for the final presentation and the 

complete logical grounding of our knowledge, the axiomatic method deserves the first rank” 

(Hilbert 1900, 181). 

 Immediately thereafter, the problem of consistency and existence was discussed again in 

letters to Gottlob Frege. Frege adhered to the old meaning of the word “axiom”, which “is 

present in [Hilbert’s] proposition that axioms express basic facts of the intuition” (see GdG 

(1902), 2). He objected to the new meaning of axiom that “seems to emerge” in Hilbert’s work, 

which however “I cannot quite comprehend” (Frege 1976, 62). In Frege’s view, axioms are 

“propositions that are true, but cannot be proven” since their origin is in spatial intuition; and 

“from the truth of the axioms follows that they do not contradict each other. Therefore, that 

requires no further proof” (Frege 1976, 63). Such sound but old-fashioned remarks motivated 

Hilbert’s reply: 
as soon as I have established an axiom, it is given [vorhanden] and “true”; … I was very interested 
to see you write precisely this sentence [“from the truth of the axioms … each other”], because for 
as long as I have been thinking, writing and teaching about such things, I always say exactly the 
opposite: If the arbitrarily established axioms do not contradict each other with all their 
consequences, then they are true, then the things defined through the axioms exist. That is for me 
the criterion of truth and existence. (letter of Dec. 29, 1899; Frege 1976, 66) 
 

As we have seen (§ 2 towards the end), it had not been so long: with a rather restricted 

antecedent in 1894, the available documents indicate that Hilbert started speaking this way in 

1898. 

 The existence of the set of real numbers is derived by the force of the principle of 

comprehension, but only when the essential point of the consistency of the axioms that “define 

the concept” has been established. This is how the famous idea that consistency entails 

existence was meant. Seen from a different angle, however, one might say that Hilbert’s 

revision of the comprehension principle deprives it of its force, for, as we shall see immediately, 

Hilbert aimed to show that the axiom system is consistent by restricted set-theoretic means, by 

offering a model. 

 

6. CONSISTENCY PROOFS AS OF 1900.57 

 

We now consider a most intriguing aspect of Hilbert’s remarks in the Zahlbegriff paper. There 

he expressed the opinion that “familiar methods of inference” would suffice to prove the 

consistency of his axiom system for the real numbers – which I will refer to as HA (Hilbert 
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 In this section, I present the same conclusion that can be found in (Sieg 2002, 368-372). Sieg cautiously regarded it as 

“a reasoned though by no means unproblematic” reconstruction, but in my view it is likely to be correct. 
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arithmetic). And the claim was restated in the Paris conference on future problems of 

mathematics (1900a). What could he possibly have had in mind? 

 This is one of those instances in which careful scrutiny of Hilbert’s foundational papers 

reveals extraordinary changes in his approach. Anyone who may have hoped to find, behind the 

remarks on consistency in 1900, something akin to the proof-theoretic Hilbertprogramm of the 

1920s, will be highly disappointed. (At this point, one has to bear in mind that the idea of a 

formal proof of consistency did not exist in the 19th century. Hilbert introduced it around 1904, 

in a radical move motivated by full realization of the challenge of the set-theoretic or “logical” 

paradoxes. Before this, people only conceived the possibility of showing consistency by 

producing an actual model, exactly in the way that Dedekind did. Much evidence attests to this 

fact.58) 

 The Paris talk adds interesting information to the above, by making slightly more explicit 

what kind of “familiar methods” Hilbert had in mind. He was convinced that “it must be 

possible to find a direct proof” of consistency for HA “by means of a careful study and suitable 

modification of the known methods of reasoning in the theory of irrational numbers” (1900a, 

300).59 This is quite astonishing, and still mysterious. Could those methods of reasoning possibly 

be continued fractions? Nothing of this sort is plausible. In order to get closer to knowing what 

Hilbert had in mind, our best chances lie in considering his contemporary lecture notes.  

 Indeed, at the time Hilbert had been and was offering lectures on ‘Zahlbegriff und Quadratur 

des Kreises’ (winter 1897/89, winter 1899/1900).60 These lectures on the number concept and 

squaring the circle were a favorite of Hilbert’s throughout this period. They revised the history 

of the celebrated Greek problem, all the way until its definitive negative solution by Lindemann 

in 1882. Hilbert himself (1893) had contributed to this topic with a simplification of the proofs 

of transcendence for the numbers e (first proved by Hermite) and π (Lindemann).  

 The 1897/98 version of the lectures added detailed treatment of the set-theoretic definitions 

of the real numbers: this is what Hilbert meant by adding the word ‘Zahlbegriff’ (exactly as in 

the case of the paper Hilbert 1900). In the 97/98 lectures he treats the topic according to the 

theories proposed in 1872 by Cantor and Dedekind. Thus, in all likelihood, what Hilbert meant 

by “known methods of reasoning in the theory of irrational numbers” is simply the set-theoretic 

methods applied by Cantor and Dedekind. These, revised in light of the paradoxes, were to be 

the key for the consistency proof he envisioned in 1899 and 1900.  
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 Frege wrote to Hilbert in Jan. 1900, saying that logical consistency of a concept can only be proven by showing an object 

that has all the defining properties (Frege 1976, 75). As late as 1910, Russell wrote that the absence of contradictions can never 
be proven, except by first showing existence; this was because it is “impossible” to effect all deductions from some given 
premises (review of a book by G. Mannoury in Mind 19 (1910), quoted by R. Bunn in Grattan-Guinness 1980, 234). 

59
 Sieg (1990, 289) emphasizes this point in connection with remarks of Bernays. 
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 Notice that, at the time, Hilbert was still accustomed to think that set-theoretic methods are 

but elementary logic, an application of the “laws of thought.” From this point of view, in order 

to show that the complicated “definition” of the concept of real number (the axiom system HA) 

is consistent, one would be using just the elementary logical methods of the theory of sets. 

However, Hilbert was cautious to say that a “suitable modification” of those methods would be 

required. It should be clear that he was not willing to allow full leeway in using the methods 

employed by Cantor and Dedekind. Taking into account his paradox and his statements of the 

1890s (reviewed in § 1 above), we can start to understand what he meant.  

 It is most likely that, even as late as 1900, Hilbert was accepting Dedekind’s definition of the 

natural numbers, and in particular the existence of infinite sets as a logical principle. As the 

reader will recall, in late 1898, despite having admitted the problem posed by the paradoxes, he 

could say: 
As given, we take the laws of pure logic and in particular all of arithmetic. (On the relationship 
between logic and arithmetic, see Dedekind, Was sind und was sollen die Zahlen?) (Hilbert 2004, 
303) 
 

This sentence was not only uttered while addressing his students, but also preserved in the 

authorized Ausarbeitung of Hilbert’s lectures, of which 70 copies were made and distributed in 

1899. The only reasonable reading is that he still accepted Dedekind’s way of obtaining the 

concept of a natural number (the set of natural numbers) from an antecedent infinite set. And he 

still regarded this whole way of proceeding as purely logical.  

 Hilbert’s “purely mathematical” paradox confirms this interpretation: in order to formulate 

it, he followed Dedekind in accepting the infinite set N as given, and also the existence of the 

set of all mappings ϕ: N → N. The basic “law of thought” behind this last assumption would be 

that, whenever a set S is given, so is the set of all mappings ϕ: S → S; probably Hilbert would 

also have been inclined to accept the following more general principle: 

  (A)  Whenever sets S and T are given, so is {ϕ: ϕ: S → T}. 

Such a principle would justify Cantor’s assumption that all sequences of rational numbers are 

given; however, Hilbert’s lectures did not present the matter in this level of detail, he offered no 

general justification such as the principle (A) might afford. 

 Hilbert’s paradox shows a way in which previous set-theoretic methods needed careful study 

and suitable modification. When he presented the matter in 1905, he concluded: 
This contradiction [Widerspruch] is by no means solved yet; but one can see that it must rest upon 
the fact that the operation of uniting any sets or things whatsoever [irgend welcher Menge, Dinge] 
into new sets or totalities is not to be allowed, even though it was always used in traditional logic, 
and we have been careful to apply it exclusively to the natural numbers and sets arising from them, 

                                                                                                                                                                  
60
 See Hilbert 2004, 612–13. I thank Wilfried Sieg for making accessible to me Hilbert’s unpublished lecture notes during 

a visit to Pittsburgh in 2004, and again in 2006 while preparing the final version of this paper. 
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and thus only to purely mathematical objects.61 
 

A new mathematical logic was needed, in which the principle of union would be modified so as 

to introduce some restrictions. It seems likely that Hilbert thus contributed to Zermelo’s 

axiomatisation of set theory, in which the union axiom is restricted to an antecedently given set 

(or more intuitively to a family of sets, Zermelo 1908, 203). Let me insist that Cantor in 1880 

and Dedekind in 1888 had not introduced such restrictions into their formulations of union 

principles, which thus corresponded to the principle (iii) of Hilbert (see § 4.2 above). 

 Despite the need for such revisions and clarifications, Hilbert convinced himself that the 

introduction of the real numbers from the natural numbers would not be blocked. Consider, for 

instance, Cantor’s definition of R. Deriving the set Q of rational numbers poses no great 

difficulties, one uses “exclusively the natural numbers and sets arising from them,” simple sets 

such as classes of ordered pairs. And now, applying principle (A) as formulated above to the 

given sets N and Q, we obtain the set of all mappings ϕ: N → Q. Within this, we have the 

subset of injective mappings, which correspond to denumerable sequences of rational numbers, 

and among them the Cauchy or “fundamental” sequences. 

 Careful scrutiny of Dedekind’s derivation would have confronted Hilbert with the problem 

whether we can adopt some form of the Power Set principle – so that to every set S there 

corresponds another ℘(S), which is the set of all its subsets. The easiest way to argue for its 

adoption from Hilbert’s standpoint would be to think of the subsets of S as given by their 

characteristic mappings, ϕ: S → {0,1}. That is to say, one derives the existence of ℘(S) from 

principle (A), as instantiated in the case T = {0,1}. To be sure, we do not know whether Hilbert 

came to consider anything like this, and there is nothing of the kind in the 1905 lectures.62  

 To summarize, the existence of the set of real numbers was, in essence, derived by means of 

the (revised) principle of comprehension; this is how the famous formulation ‘consistency 

entails existence’ was meant, as emphasizing the necessary intermediate step in the application 

of Comprehension (see § 5.2). But comprehension was also deprived of its force because, in 

order to apply this revised principle, a model of the axioms had to be established in a “purely 

mathematical” way – it had to be shown by restricted set-theoretic means that the system HA is 

realizable. The consistency proof that Hilbert had in mind, as of 1900, was still of the old kind: 

consistency is proven by providing a model, not by proof-theoretic argument! The principles 

                                                        
61
 Peckhaus & Kahle (2002), 172. I have modified the translation for reasons of style and emphasis. 

62
 Quite interestingly, we do know that Cantor considered the Power Set principle in letters to Hilbert of Oct. 1898, 

thinking at first that this was acceptable, but only to have second thoughts (see Meschkowski & Nilson (1991), and my 
discussion in the ‘Epilogue 2007’ to the 2nd edn of Ferreirós 1999). This, as far as we know, was Cantor’s final word: Power 
Set did not seem to be an admissible principle; one has to say that this position was hardly tenable, since he had no trouble 
accepting all  ϕ: S → {0,1} (see Cantor 1892). It is obvious that Zermelo – who is likely to have seen those letters – 
disagreed, but we don’t know what Hilbert thought, either in 1899 or in later years. 
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admitted for the elaboration of the model were meant to be suitably modified set-theoretic 

principles, building on top of that basic ground of pure mathematics that the natural numbers 

constitute.63 

 As one can see, if this reconstruction is correct, the picture of how Hilbert’s axiomatic 

method related to the so-called “genetic method” becomes complicated. In his own words, the 

axiomatic method deserves the “first rank” for the “final presentation and the complete logical 

grounding” of our knowledge. It enables us to gain full control of our assumptions, and to make 

clear that, while those assumptions may be about infinite sets, the theory is finite: a matter of 

finite derivation from finitely many axioms.64 Perhaps the contrast with the “genetic method,” as 

Hilbert presents it in the introductory paragraphs to his (1900), might be saved entirely by 

identifying the method with Weierstrass’s way of presenting the number system (see § 3.1). But 

if we understand the “genetic method” to be identical with Dedekind’s logicistic derivation of 

the number system, there is no longer a clear contrast – especially because Dedekind’s methods, 

“suitably modified,” are needed in order to solve the all-important question of the consistency 

of the HA axioms, and therefore the problem of the existence of the set of real numbers. 

 

7.  LATER DEVELOPMENTS. 

It is very interesting that in Jan. 1900, Frege criticized Hilbert’s ideas saying that his methods of 

proving consistency would in the end come down to “showing an object that has the [required] 

properties” (Frege 1976, 75). In Sept. 1900, Frege pressed him to indicate whether he had a 

different kind of method, which he doubted (op. cit., 78), but he received no answer. If my 

reconstruction is correct, we must conclude that Frege was right. Only some years later was 

Hilbert in a position to answer Frege’s demand. One can even speculate that, perhaps, Frege’s 

pointed critique helped him realize the need for a different way of proving consistency. 

 To judge from the available evidence, the year 1903 brought deep changes to Hilbert’s 

reflections (compare § 1.1). The key event must have been the publication of vol. II of Frege’s 

Grundgesetze (1903), with its devastated appendix. Even though the Göttingers knew of 

Russell’s antinomy since about 1900, they had not fully grasped its impact. Frege’s reaction 

awakened them from their dogmatic slumber, and Hilbert took careful notice, too, of the fact 

that Dedekind himself admitted the impact of the paradoxes.65 More than twenty years later, 

                                                        
63
 My reconstruction here agrees with the “reasoned, though by no means unproblematic conjecture” suggested very 

briefly by Sieg in his (2002, 368). 
64
 Even this idea was already in Dedekind: “It appears to me all the more beautiful that man can advance to the creation 

of the pure continuous number-domain, without relying on any notion of measurable quantity and simply by a finite set of 
simple steps in thought [or inferences: durch ein endliches System einfacher Denkschritte]” (1888, 340; emphasis added). 
 65

 In 1903 Dedekind no longer regarded his foundations of arithmetic as satisfactory, refusing to give permission to 
republish his booklet (see 1888, 343). Hilbert 1905a, 212: In der Tat hat Dedekind das persönlich zugestanden und halt 
seine Begründung jetzt nicht mehr für befriedigend, er lässt daher auch sogar seine Schrift nicht mehr neu auflegen. 



 33 

Hilbert reminisced that the Zermelo-Russell paradox had “a downright catastrophic effect in the 

world of mathematics” (1926, 375). This may well have been its effect in the course of meetings 

and discussions at the Göttingen Mathematisches Seminar in 1903.  

 We know that in the session of May 12, Zermelo offered a survey of Frege’s recently 

appeared Grundgesetze, discussing Frege’s theory of real numbers in parallel with those of 

Dedekind and Cantor; it is natural to assume that the paradoxes were also discussed.66 Hilbert 

must have realized that his logicistic convictions were in need of more than slight revision, and 

that set theory stood in need of new foundations. The shock produced by full realization of the 

implications of the paradoxes was probably strong: this may have been the time when Hilbert 

“temporarily thought that Kronecker had probably been right”.67 But he recovered with 

characteristic optimism, and it became his goal, as Bernays said, “to do battle against Kronecker 

with his own weapons of finiteness” (ibid.).  

 Hilbert is likely to have begun elaborating a novel approach in the Seminar session of Nov. 

3, 1903. He lectured on the foundations of arithmetic with a view to develop clearly the 

axiomatic standpoint and to emphasize “the principle of contradiction [as] the pièce de 

résistance”.68 In all likelihood, the “non-contradictoriness” of elementary arithmetic (PA) was 

now presented as the keystone. A letter to Frege written four days later reinforces the centrality 

of the logicistic context: 
I see the essential gap in the traditional construction of logic to be the assumption that a concept is 
already there [ein Begriff bereits da sei] if one can say, for any object, whether it falls under it or 
not – which all logicians and mathematicians have assumed until now. This seems to me to be 
insufficient. Rather, the decisive point is the knowledge of the consistency of the axioms which 
define the concept. (Hilbert to Frege, 7.11.1903, in Frege 1976, 80) 
 

What we know about this stage in his foundational work is the revised text of Hilbert’s address 

at the ICM in Heidelberg, 1904, as it was published one year later (Hilbert 1905).69 This paper is 

noteworthy for many reasons, among which I would count the deep differences with respect to 

the 1920s Hilbertprogramm, differences that are too often ignored. Suffice it to say that the 

paper marks a deep change in Hilbert’s position with regard to the existence of infinite sets. This 

is, as far as I know, the first paper in any language that criticizes Dedekind’s “theorem” of 

existence for infinite sets, on the basis that it is blocked by the paradoxes (1905, 131).  

 Hilbert’s new position involved a great deepening of the insight that the usual set-theoretic 

principles have to be questioned. Hilbert tried to employ the strategy sketched in (1900) for the 

real numbers, bringing it back to the more basic level of Dedekind’s axiom system for the 

                                                        
 

66
 Jahresbericht der Deutschen Mathematiker-Vereinigung 1903, 345–46. 

67
 Bernays as reported in Reid 1970, 173. 

68
 Jahresbericht der Deutschen Mathematiker-Vereinigung 1903, 592: der Satz vom Widerspruch die pièce de résistance. 
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natural numbers. Hilbert’s project was, again, to give a consistency proof for the axioms, but the 

main purpose was to justify the assumption of an infinite set as an admissible Gedankending. 

The key new idea was to deploy, in the consistency proof, algorithmic strategies close in spirit 

to Kronecker’s methodology. Hilbert showed how to put this strategy in place, but only for a 

very simple axiom system without Infinity. Thus the idea of a syntactic consistency proof was 

sketched for the first time.  

 The new move implied also the need to abandon or at the very least revise logicism, a 

position that (fortunately enough) Hilbert had never defended in print. He argued that one must 

develop logic and arithmetic simultaneously, and suggested that the concept of set is 

mathematical more than purely logical (Hilbert 1905, 131). This idea, however, was probably 

quite unnatural to Hilbert, as shown by the evidence given above (see e.g. § 5.1) and other 

pieces of evidence, e.g. from the 1917 Zurich conference.70 

 We began this paper with Hilbert’s logicistic ideas of 1917 and the usual understanding that 

they were but a short-lived outburst of enthusiasm. Now we are coming to consider it plausible 

that, quite to the contrary, what was short-lived is the critique of logicism expressed in Hilbert’s 

address at the ICM of 1904. A piece of evidence found by Peckhaus (1990, 116) gives this 

interpretation further support; according to the mathematician Hessenberg, who was Zermelo’s 

friend:  
Zermelo is of the opinion that Hilbert’s logicism is likewise impracticable [undurchführbar; 
“likewise” refers to Russell’s], but he thinks that Poincaré’s objections are unfounded. (letter to L. 
Nelson, Feb. 1906, in Peckhaus 1990, 116) 
 

Similarly to the late 1910s, Hilbert must have hoped that a reform and axiomatization of “logic 

itself” would make it possible to prove that arithmetic and set theory are only parts of logic” 

(1918, 412). Such hopes vanished from about 1920: the lecture courses show increasing 

skepticism with respect to logicism, probably under the influence of Bernays (who, among other 

things, knew Weyl’s critique of Russell’s logic); no less important was the need to rely on a 

concrete extralogical basis (the visualizable sign-system at the basis of finitary, “contentual” 

mathematics) as the soil on which to build the consistency proofs for modern mathematical 
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 Judging from the information given in Jahresbericht der Deutschen Mathematiker-Vereinigung (1904), p. 61, the 

published version is not exactly Hilbert’s conference of 1904 but rather a later revision, originating at the earliest from Nov. 
1904. 

70
 Hilbert said: “The question of the consistency of the axiom system for the real numbers can also be reduced to the 

same question for the whole numbers; this is the merit of the theories of the irrational numbers of Weierstrass and 
Dedekind” (Hilbert 1918, 412). The decisive role of set theory in this procedure is not even mentioned, as if the theory of 
sets were transparent, merely a part of elementary logic! (when Bernays took care of editing this talk for the Gesammelte 
Abhandlungen vol. 3, p. 153, he felt the need to add a few words). Indeed, in that talk Hilbert regarded set theory as one of 
the “parts of logic” (op. cit.). 
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systems.71  

 Another question that receives new light from an appreciation of Hilbert’s early adherence to 

logicism is his reaction to Zermelo’s axiomatization of set theory. Although he always thought 

highly of that accomplishment and its relevance for modern mathematics, it seems that it never 

appeared definitive to him. This is understandable, for Zermelo did not answer to the deeper 

question whether, and to what extent, the set-theoretic axioms could be reduced to logic. This 

also helps explain Hilbert’s very positive, but somewhat naïve, reaction to the Principia 

Mathematica of Whitehead and Russell.72 Notice that, even in Hilbert’s mature presentation of 

logic, we find what may well be traces of logicistic hopes and beliefs, the best example being 

his “epsilon calculus,” which was to be the basis for both the introduction of the quantifiers and 

the axiom of choice (see Ferreirós 2001, § 2.2). 

 

8.  CONCLUSION. 

 

The context of Hilbert’s early logicistic convictions was central to the process by which he 

came to formulate his celebrated (and debated) views on mathematical existence. The principle 

of comprehension seems to have been in the background. When he discovered that having a 

well-defined “concept” was insufficient, Hilbert emphasized “the consistency of the axioms 

which define the concept” as “the decisive point” (letter to Frege, Nov. 1903, quoted above). As 

we have seen, Hilbert was led to such views through Dedekind’s work on the logicistic (set-

theoretic) foundations of arithmetic. 

 Of course, this is not to deny that the process was also influenced by his studies of geometry, 

which in fact was the first domain for which he stated the idea that logical consistency is the 

only requirement for existence in mathematics. In fact, consistency and existence of a model for 

the axioms of geometry were proved simultaneously on the basis of real-number arithmetic, 

used to provide a model of the geometric axioms (Euclidean and non-Euclidean). Hilbert’s 

handwritten notes for the 1898/99 lecture course on the foundations of Euclidean geometry read 

as follows: 
Usual analytic geometry. 
This is possible, because the properties of the real numbers do not contradict each other, but are all 
compatible with each other. Thus the axioms I–V are all compatible with each other. Therefore 
also single axioms do not contradict each other, and hence the existence [Existenz] of non-
Euclidean geometry.  

                                                        
71
 Hilbert (1926, 376) contrasts his position with that of Dedekind and Frege, emphasizing that Kant was right when he 

insisted on the need for an intuitive basis. Criticism of the logicist position is already present in the lecture course of 1920 
‘Probleme der mathematischen Logik’, pp. 22–28 (Moore 1997, 80). 

72
 For my reasons to call it naïve, see Ferreirós 1999, 329–31, 357–59. The influence of Russell’s logicism, and the role 

of Hilbert’s student Heinrich Behman during the 1910s, have recently been studied by Mancosu (2003), whose work is a 
most interesting complement to the present contribution. 
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To exist means that the attributes (axioms) defining the concept do not contradict each other, i.e., 
that it is not possible to prove, by means of all [axioms] with the exception of one, through purely 
logical inferences, a proposition that contradicts the last axiom. (Hilbert 2004, 282; p. 104 of the 
original) 
 

Consistency was proved only relative to the consistency of real arithmetic, but remember the 

phraseology in the 1898/99 lectures: “As given, we take the laws of pure logic and in particular 

all of arithmetic”.73 This viewpoint enabled Hilbert to understand his arithmetical proofs as 

purely logical ones. 

 Early on, The first sentence of Grundlagen der Geometrie is: “Wir denken uns drei Systeme 

von Dingen,” we consider or think of three sets of things. This is meant to pose an existential 

assumption. However, those things are not “out there” but only in our thoughts – they are ideal 

things, Gedankendinge as he would say in 1905.  

  Starting in 1898, the paradoxes taught Hilbert that one had to be very cautious with 

assumptions of existence, even if we are only talking of ideal existence. The Cantorian 

paradoxes led him to expand the use of the axiomatic method to arithmetic, and finally to logic 

itself. They forced him to deepen the foundational application of his existence principle, looking 

for a consistency proof for the axiom system HA for the real numbers. Hilbert tended to 

emphasize that, in giving an axiomatic system, we assume the existence of “things” (or 

“systems” of things) such as described by the axioms; with the consistency proof, the existential 

assumption established at the outset (existence of R as a set) would be completely justified. 

 Such a way of thinking must have appeared satisfactory to a logicist, for the essential 

criterion that decides the whole issue is a purely logical condition (“non-contradictoriness” of 

the number concept = the axiom system). It was also a natural reply, for, as we are talking of 

ideal thought-existence (Gedankendinge), it should be enough to show that its assumption is 

logically possible. Consistency guarantees logical possibility, and this seems entirely sufficient 

for ideal existence.74 On the other hand, Hilbert’s idea of logic was, at this point, still the set-

theoretic one that we find in Dedekind. Working on this basis, the early consistency proofs 

literally establish the “existence” of a model satisfying the axioms – they are semantic, model-

theoretic. 

 The necessity to treat logical principles carefully had been clear to Hilbert right from his first 

acquaintance with the antinomies, 1897/98, but at the time he only looked for “suitable 

modifications” (indeed slight ones) of the set-theoretic principles employed by Dedekind and 
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 Hilbert 2004, 303; emphasis mine. We have seen essentially the same viewpoint even much later (Hilbert 1918, 412). 

74
 Hilbert’s notes for a course given at Königsberg in 1894, ‘Die Grundlagen der Geometrie,’ present already the idea of 

proving consistency for hyperbolic geometry, but here he talked of “possibility” instead of “existence”: “The possibility 
[Möglichkeit] of such [a geometry], i. e., its inner consistency [Widerspruchslosigkeit], can rather be proven strictly. For it is 
possible to establish (and even to define it purely arithmetically by numbers) a system of units – points, lines, planes – in 
which all our axioms … are satisfied” (Hilbert 2004, 119–20; p. 87–88 in the original) 
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Cantor. The situation changed rather dramatically after 1903, when the very basis of set theory, 

the infinitary standpoint (the axiom of infinity), was questioned. In 1903/04 Hilbert searched for 

refined means by which consistency could be established, and this took him to a completely 

new and unprecedented development, the idea of syntactic consistency proofs (see § 7). 

 Along the way of reviewing these developments, we have encountered what may well be 

more interesting findings. Particularly noteworthy seems to me the shift in Hilbert’s ideas about 

consistency proofs, from the 1890s to 1905. Take the assumption of the “three sets of things” 

with which Grundlagen begins; Hilbert justified it quite directly by showing that one can give 

arithmetic models: triples of real numbers for points, etc. This justification was based on 

building arithmetical models, and the existence of the real numbers was presupposed;75 the 

consistency proof was, at the very same time, a proof of existence. The surprising finding is that 

Hilbert’s ideas about the consistency of real-number arithmetic in 1900 were no different! The 

situation changed completely after the idea of a syntactic proof of consistency emerged in 1904, 

as we saw in section 7.76 

 In the 1920s Hilbert did not insist again on the idea that logical consistency of an axiom 

system entails the existence of its object domain. The main purpose of the celebrated 

Hilbertprogramm was to prove the consistency of formalized mathematical theories, period. He 

did not insist on the more speculative idea that this yields some kind of existence – but he did 

not disavow the idea either. Now Hilbert tended to emphasize the disparity between “contentual 

mathematics,” the finitary part of the discipline constituting its most indubitable subject matter, 

and the “ideal elements” that are added in the course of expansion of the discipline (Hilbert 

1926). But, even though this marks a stronger attitude of doubt concerning higher mathematics, 

the position is still coherent with the old view that mathematical existence is only some form of 

“ideal,” quasi-logical existence. 
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 Hilbert was very explicit about this in 1902, see (2004), 563–64; see also the 1898/99 text on p. 391. 
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 This had the side effect that the existence principle now sounded much more speculative, which may have been the 
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