
On the strong solutions of the Primitive Equations in 2D

domains.
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1 Introduction

Some geophysical fluids can be modelled through the so-called “primitive equations” [1],
[2]. This model is obtained formally from the Navier-Stokes equations, with anysotropic
(eddy) viscosity, assuming two important simplifications: hydrostatic pressure (depending
linearly on the depth) and the rigid lid hypothesis (fix water surface) [3] . For simplicity, we
take constant density and assume that the effects due to the temperature (and salinity)
can be decoupled from the dynamic of the flow. Then, we have a three-dimensional
flow induced by the wind tension on the surface and by the centripetal and Coriolis
forces. When the Earth curvature is not considered, we can use cartesian coordinates
instead of spherical coordinates (see Lions-Teman-Wang [2] for the model with spherical
coordinates), hence the domain is given by

Ω = {(�x, z) ∈ IR3; �x ∈ ω,−D(�x) < z < 0}, (1)

where ω ⊆ IR2 is an open domain and D : ω → IR+ is the depth function. The different
boundaries of Ω (surface, bottom and sidewalls) are respectively: Γs = {(�x, 0); �x ∈ ω},
Γb = {(�x,−D(�x)); �x ∈ ω} and Γl = {(�x, z); �x ∈ ∂ω,−D(�x) < z < 0}. Including, as it is
usual ([4]), centripetal effects into the pressure term, the three-dimensional model is:

(EP )






∂t�u+ (�u · ∇)�u+ u3∂z�u− νh∆�u− νv∂
2
zz
�u+ α�u

⊥ +∇ps = �F in (0, T )× Ω,

∇ ·
�� 0

−D(�x)
�u(t; �x, z)dz

�

= 0 in (0, T )× ω,

�u|t=0 = �u0 in Ω,

νv∂z�u|Γs
= �τ , �u|Γb∪Γl

= �0 in (0, T ).
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Here, we denote �x = (x, y), ∇ = (∂x, ∂y) and ∆ = ∂
2
xx

+ ∂
2
yy
. The unknowns are the

horizontal component of flow velocity �u = (u1, u2) : (0, T ) × Ω → IR2 and the surface
pressure ps : (0, T )× ω → IR, whereas the vertical component of the flow velocity is

u3(t; �x, z) = −
�

z

−D(�x)
∇ · �u(t; �x, s)ds, ∀ t ∈ (0, T ), ∀ (�x, z) ∈ Ω. (2)

Moreover, νh and νv > 0 are positive constants, representing horizontal and vertical (eddy)
viscosity coefficients respectively, �F : (0, T )×Ω → IR2 is an horizontal external force field
(depending on temperature and salinity, for instance) and �τ : (0, T )×Γs → IR2 represents
the horizontal stress on the surface produced by the wind. Finally, α�u⊥ = α(−u2, u1)
models Coriolis effects, the no-slipt condition is assumed on the bottom and vertical
slipting is permitted on the sidewalls.

To give a variational formulation to problem (EP ), let us define the following function
spaces:

C
∞
b,l
(Ω) = {�ϕ ∈ C

∞(Ω)2; supp(�ϕ) is a compact set ⊆ Ω\(Γb ∪ Γl)},

H
1
b,l
(Ω) = C

∞
b,l

H
1

(Ω) = {�v ∈ H
1(Ω)2; �v = 0 on Γb ∪ Γl}, H

−1
b,l

(Ω) = dual of H1
b,l
(Ω),

V = {�ϕ ∈ C
∞
b,l
(Ω)2; ∇ · ��ϕ� = 0 in ω}, where ��ϕ�(�x) =

� 0

−D(�x)
�ϕ(�x, z)dz,

H = VL
2

= {�v ∈ L
2(Ω)2; ∇ · ��v� = 0 in ω, ��v� · �n|∂ω = 0},

V = VH
1

= {�v ∈ H
1(Ω)2; ∇ · ��v� = 0 in ω, �v|Γb∪Γl

= �0}.

Definition 1.1 Let �u0 ∈ H, �F ∈ L
2(0, T ;H−1

b,l
(Ω)2) and �τ ∈ L

2(0, T ;H−1/2(Γs)2). We
say that �u : (0, T )×Ω → IR2 is a weak solution of (EP ) in (0, T ) if �u ∈ L

∞(0, T ;H)∩
L
2(0, T ;V ), verifies the variational formulation:

�
T

0

�

Ω

�
−�u · (∂t�ϕ+ (�u · ∇)�ϕ+ u3∂z �ϕ) + νh∇�u : ∇�ϕ+ νv∂z�u · ∂z �ϕ+ α�u

⊥ · �ϕ
�
dΩ dt

=
�

Ω
�u0 · �ϕ(0) dΩ +

�
T

0
��F , �ϕ�Ωdt+

�
T

0
��τ , �ϕ�Γsdt, ∀ �ϕ ∈ C

1([0, T ];V) s.t. �ϕ(T ) = �0,

and, moreover �u satisfies the energy inequality:

1

2
��u�2

L2(Ω) +
�

t

0

�
νh�∇�u�2

L2(Ω) + νv�∂z�u�2L2(Ω)

�
ds

≤ 1

2
��u0�2L2(Ω) +

�
t

0
��F , �u�Ωds+

�
t

0
��τ , �u�Γsds a.e. t ∈ (0, T ).

(3)

Here, �·, ·�Ω denotes duality between H
−1
b,l

(Ω) and H
1
b,l
(Ω), whereas �·, ·�Γs denotes duality

between H
−1/2(Γs) and H

1/2(Γs).
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Definition 1.2 Let �u0 ∈ V , �F ∈ L
2(0, T ;L2(Ω)2), �τ ∈ L

2(0, T ;H1/2(Γs)2) and ∂t�τ ∈
L
2(0, T ;H−3/2(Γs)2). Let �u be a weak solution of (EP ) in (0, T ), we say that �u is a

strong solution if verifies the additional regularity conditions:

�u ∈ L
∞(0, T ;V ) ∩ L

2(0, T ;H2(Ω)2 ∩ V ), ∂t�u ∈ L
2(0, T ;H).

The existence of a weak solution is well known, see Lewandovski [3] and Lions-Teman-
Wang [2], always in domains with sidewalls (i.e. D ≥ Dmin > 0 in ω). In these works,
compactness method is used to obtain the velocity �u in a space with the restriction
∇ · ��u� = 0 and the pressure is recovered, in the latter part of the argument, by a specific
De Rham’s lemma on the surface. In domains without sidewalls, the existence of a weak
solution is obtained as a consequence of a limit process applied to the Navier-Stokes
equations with anysotropic viscosity when the ratio depth over horizontal diameter (of
the domain) tends to zero, see Besson-Laydi [5] for the stationary case and Azerad-Guillén
[6] for the evolution case. Finally, the existence of a weak solution in domains without
sidewalls can be proved by internal approximation arguments: a mixed (velocity-pressure)
variational formulation of the stationary problem is approximated by a conform Finite
Element method in Chacón-Guillén [7] and a semi-discretization in time of the evolution
problem is proved that converges to continuous problem in Guillén-Redondo [8, 9].

However, to as far as we know, there are not results about the existence of strong
solution of problem (EP ), excepting the stationary linear case [10]. One of the principal
problems in this study is the treatment of the boundary conditions; on the surface we
have a non homogeneous Neumann condition, whereas the sidewalls and the bottom have
homogeneous Dirichlet condition. On the other hand, the uniqueness of the solution of
problem (EP ) is also an open problem, even in the case of strong solutions.

1.1 The 2D problem

In this work, we are going to consider mainly the two-dimensional problem (with only
one horizontal direction). In this case, Coriolis forces have not sense. Now, the model is:

(EP2)






∂tu+ u∂xu+ u3∂zu− νh∂
2
xx
u− νv∂

2
zz
u+ ∂xps = F in (0, T )× Ω,

∂x�u� = 0 in (0, T )× ω,

u|t=0
= u0 in Ω,

νv∂zu|Γs
= τ, u|Γb∪Γl

= 0 in (0, T ).

Then, all the unknowns are scalar: the horizontal component of the flux velocity u :
(0, T )×Ω → IR and the superficial pressure ps : (0, T )×ω → IR. The vertical component

of the flux velocity is u3(t; x, z) = −
�

z

−D(x)
∂xu(t; x, s)ds. One important difference respect

to 3D case is that now ω ⊆ IR is an interval, which changes the function spaces of free
divergence. Now, we have the following simpler characterizations:

V = {ϕ ∈ C
∞
b,l
(Ω); �ϕ� = 0 in ω},
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H = {v ∈ L
2(Ω); �v� = 0 in ω},

V = {v ∈ H
1(Ω); �v� = 0 in ω, v|Γb∪Γl

= 0}.

Finally, definitions of weak and strong solutions are similar to the 3D case (changing
vectorial notation by scalar notation in u and x, and vanishing the Coriolis term).

Remark 1.1 Now, the 2nd. equation in (EP2) means that �u� only depends on t.

1.2 Main results

In this paper, we will obtain the following main results, all in the 2D case and in domains
with sidewalls.

Theorem 1.3 (Strong global solution for small data.) Let ω ⊆ IR an interval and
D ∈ C

2(ω) such that D ≥ Dmin > 0 in ω. We assume u0 ∈ V , F ∈ L
2(0, T ;L2(Ω)) and

τ ∈ L
2(0, T ;H1/2+ε

0 (Γs)), for some ε > 0, with ∂tτ ∈ L
2(0, T ;H−1/2(Γs)). If the following

“smallness restriction” is assumed: ∀t ∈ [0, T ],

(H)






exp

�
− 1

4C
t+

�
t

0
a(s)ds

��
2
�
�u0�2V + C

2�τ(0)�2
H−1/2(Γs)

�

+
�

t

0
exp

�
1

4C
s−

�
s

0
a(σ)dσ

�
b(s)ds

�
< M

2
,

where M is a small enough positive constant (see Lemma 5.2), C is a constant that
appears in (11) and a, b are functions depending on the data τ and F (see (30) and (31)),
then there exists a unique strong solution (u, ps) of (EP2) in (0, T ) (ps is unique up to a
function of t).

Corollary 1.4 (Asymptotic behaviour when t ↑ +∞.) Let ω ⊆ IR an interval and
D ∈ C

2(ω) such that D ≥ Dmin > 0 in ω. We assume u0 ∈ V , F ∈ L
2(0,+∞;L2(Ω))

and τ ∈ L
2(0,+∞;H1/2+ε

0 (Γs)), for some ε > 0, with ∂tτ ∈ L
2(0,+∞;H−1/2(Γs)). If the

“smallness restriction” (H) is assumed ∀t ∈ [0,+∞), then there exist a unique strong
solution u ∈ L

2(0,+∞;H2(Ω) ∩ V )) ∩ L
∞(0,+∞;V ), ∂tu ∈ L

2(0,+∞;H). Moreover, if

� +∞

0
exp

�
1

4C
t

��
�τ(t)�2

H
1/2+ε
0 (Γs)

+ �∂tτ(t)�2H−1/2(Γs)
+ �F (t)�2

L2(Ω)

�
dt < +∞, (4)

there exists two constants K1, K2 > 0 such that:

�∇u(t)�2
L2(Ω) ≤ exp

�
− 1

4C
t

�
K1

�
2�u0�2V + C

2�τ(0)�2
H−1/2(Γs)

+K2

�
∀t ≥ 0, (5)

(i.e. the solution vanishes exponentially in the H
1(Ω)-norm, as t increases).
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Theorem 1.5 (Strong local solution for any data.) Under hypotheses of Theorem
1.3, changing the restriction (H) by Dmax(= max

ω

D) small enough, then there exists

T∗ ∈ (0, T ] and a unique strong solution (u, ps) of (EP2) in (0, T∗).

Theorem 1.6 (Uniqueness of strong/weak solution.) Let u be a weak solution of
(EP2) in (0, T ). If there exists another weak solution ū of (EP2) in (0, T ), such that
verifies the additional regularity:

∂zū ∈ L
4(0, T ;L4(Ω)), (6)

then both solutions coincide in (0, T ).

Remark 1.2 The arguments to prove all these main results, will not be valid in the 3D
case. On the other hand, the additional regularity (6) that implies uniqueness is verified by
the strong solutions of (EP2) (and not by only weak solutions). Applying this uniqueness
argument to the 3D case, it is necessary an additional regularity that is not verified by
the strong solutions.

To make the study about existence of strong solutions, it will be convenient to decom-
pose the problem (EP ) in two: one linear problem (L) with nonhomogeneous boundary
conditions on the surface, and a nonlinear problem (P ) with homogeneous boundary
conditions.

This paper is organized as follows. In Section 2, we prove some technical inequalities
that we will use in the following.

The linear problem (L) is studied in Sections 3 and 4, whereas the study of (P ) (by
means of a Galerkin method) is made in Section 5, where the proof of Theorem 1.3 is
finished. Indeed, in Section 3, using the known results ([10]) about strong solution of the
linear stationary problem (Lst), we deduce some properties of the differential operator
associated, that we apply in Section 4, arriving at the existence and uniqueness of strong
solution of (L) (all these results are valid in any space dimension).

In Section 6, we present the proof of Theorem 1.5, based in a fixed point argument (in
particular, it is not possible to make a Galerkin argument as in Theorem 1.3). Finally,
the uniqueness of weak solution assuming that a strong solution exists (Theorem 1.6), is
proved in Section 7.

2 Some technical results

First, we see three technical lemmas that we will used several times in this paper:

Lemma 2.1 Let Ω ⊆ IRN (N = 2 or 3) be the domain considered in this work (defined by

(1)). Then, for all �v ∈ W
1,p(Ω)N−1 (p > 1), if we define v3(�x, z) = −

�
z

−D(�x)
∇ · �v(�x, s)ds,

one has:
�v3�Lp(Ω) ≤ Dmax�∇ · �v�Lp(Ω)

5



Proof: It is a consequence of Fubini’s Theorem:

�v3�pLp(Ω) =
�

Ω

�����

�
z

−D(�x)
∇ · �v(�x, s)ds

�����

p

dΩdz

≤
�

Ω

��
z

−D(�x)
|∇ · �v(�x, s)|pds

�

(z +D(�x))p/p
�
dΩdz

=
�

ω

� 0

−D(�x)
|∇ · �v(�x, s)|p

�� 0

s

(z +D(�x))p/p
�
dz

�
dΩ ds

≤ D
p

max

p

�

ω

� 0

−D(�x)
|∇ · �v(�x, z)|pdΩds = D

p

max

p
�∇ · �v�p

Lp(Ω)

Lemma 2.2 (Interpolation inequalities.) Let Ω ⊆ IRN be a Lipschitz-continuous
domain. The following inequality holds:

��u�Lp(Ω) ≤ C��u�1−q/p

W 1,N (Ω)��u�
q/p

Lq(Ω), ∀�u ∈ W
1,N(Ω)N−1

, (7)

where N ≤ q ≤ p < +∞.

Proof: It is taken from the Nirenberg’s paper [11], where is proved the result when
Ω = IRN . Here, we adapt the proof to a Lipschitz-continuous domain Ω.

For this, we pass these inequalities to Ω using a prolongation operator [12]

E : W 1,1(Ω)N−1 −→ W
1,N(IRN)N−1

,

verifying E�u|Ω = �u and �E�u�W 1,N (IRN ) ≤ C��u�W 1,N (Ω), ∀ �u ∈ W
1,N(Ω)N−1, for some

C = C(Ω) > 0. Nirenberg’s result says

�E�u�Lp(IRN ) ≤ C�E�u�1−q/p

W 1,N (IRN )�E�u�Lq(IRN ).

Therefore, since ��u�Lp(Ω) ≤ �E�u�Lp(IRN ) and �E�u�Lq(IRN ) ≤ C��u�Lq(Ω), we arrive at (7).

An easy application to the above Lemma and the Poincaré’s inequality, give us the
following:

Corollary 2.3 Let Ω ⊆ IRN be the domain considered in this work. The following in-
equality holds:

��u�Lp(Ω) ≤ C�∇�u�1−q/p

LN (Ω)��u�
q/p

Lq(Ω) ∀ �u ∈ W
1,N
b,l

(Ω)N−1
, (8)

where N ≤ q ≤ p < +∞.

Remark 2.1 The main advantage of the 2D case is to consider (7) and (8) for N = 2.
In the following, we will call Gagliardo-Nirenberg’s inequality to (7) or (8) in the case
N = 2, p = 4 and q = 2, i.e.

�u�L4(Ω) ≤ C�u�1/2
L2(Ω)�u�

1/2
H1(Ω) ∀ u ∈ H

1(Ω), (9)

�u�L4(Ω) ≤ C�u�1/2
L2(Ω)�∇u�1/2

L2(Ω) ∀ u ∈ H
1
b,l
(Ω). (10)
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3 The stationary linear case

In this Section, we will see some preliminary results about the linear stationary system
(also called hydrostatic Stokes system):

(Lst)






−νh∆�u− νv∂
2
zz
�u+∇ps = �g in Ω,
∇ · ��u� = 0 in ω,

νv∂z�u = �a on Γs,

�u = �0 on Γb ∪ Γl.

3.1 Known results about existence and uniqueness

Lemma 3.1 (Weak solution of (Lst)) Let ω ⊆ IRd (d = 1 or 2) and let Ω ⊆ IRd+1,
defined as in (1), be a Lipschitz-continuous domain. If �g ∈ H

−1
b,l

(Ω)d and �a ∈ H
−1/2(Γs)d,

then the problem (Lst) has a unique solution �u ∈ H
1(Ω)d. Moreover, one has the contin-

uous dependence, i.e. there exists a constant C = C(Ω, νh, νv) > 0 such that

��u�V ≤ C

�
��a�H−1/2(Γs) + ��g�

H
−1
b,l (Ω)

�
. (11)

In [5], [7] and [3], there are different proofs of this result (even in the nonlinear case).

Lemma 3.2 (Strong solution of (Lst)) Let ω ⊆ IRd (d = 1 or 2) be a C
2 domain and

D ∈ C
2(ω) with D ≥ Dmin > 0 in ω. If �g ∈ L

2(Ω)d and �a ∈ H
1/2+ε

0 (Γs)d, for some ε > 0,
then the unique solution �u of the problem (Lst) belongs to H

2(Ω)d∩V . Moreover, we have
the continuous dependence, i.e. there exists a constant C = C(Ω, νh, νv) > 0 such that:

��u�H2(Ω) ≤ C

�
��a�

H
1/2+ε
0 (Γs)

+ ��g�L2(Ω)

�
. (12)

See [10] for the proof of regularity. The continuous dependence can be deduced fol-
lowing the construction of the auxiliary problems made by Ziane in [10].

3.2 The hydrostatic Stokes operator

We define A, that it will call “hydrostatic Stokes operator”, as the resolvent operator
related to the homogeneous Neumann boundary conditions on the surface and Dirichlet
boundary conditions on the bottom and sidewalls, i.e. A : V → V

� such that

�A�u,�v�V �,V =
�

Ω
(νh∇�u : ∇�v + νv∂z�u · ∂z�v)dΩ ∀ �u,�v ∈ V. (13)

Then, if we denote �g = A�u ∈ V
�, from Lemma 3.1, �u is the unique weak solution of the

hydrostatic Stokes problem (Lst), with �a = �0. Moreover, taking into account Lemma 3.2,
A is a self-adjoint isomorphism from H

2(Ω)2 ∩ V to H. In particular, if A�u = �g with
�g ∈ H, �u is characterized as the unique strong solution of the problem (Lst), with �a = �0.
Finally, the domain of A, defined by

D(A) = {�u ; �u ∈ V and A�u ∈ H}.

can be characterized as follows:

7



Lemma 3.3 Let ω ⊆ IRd (d = 1 or 2) be a C
2 domain and D ∈ C

2(ω) with D ≥ Dmin > 0
in ω. Then

D(A) = {�u ; �u ∈ H
2(Ω)d ∩ V and ∂z�u = �0 on Γs}. (14)

Moreover, there exists C = C(Ω, νh, νv) > 0 sucht that

��u�H2(Ω) ≤ C �A�u�L2(Ω) ∀ �u ∈ D(A). (15)

Proof: Let Y be the right hand side of (14).
a) D(A) ⊂ Y : Let �u ∈ D(A). If we denote �g = A�u, then �u is the weak solution

of (Lst) with �a = �0. As �g ∈ H, from the Ziane’s regularity results [10], we deduce that
�u ∈ Y , and the continuous dependence (12) says:

��u�H2(Ω) ≤ C ��g�L2(Ω) = C �A�u�L2(Ω)

b) Y ⊂ D(A): Let �u ∈ Y . If we denote �f = −νh∆�u − νv∂
2
zz
�u, then �f ∈ L

2(Ω)d and
A�u = P �f , where P is the ortogonal projection from L

2(Ω)d onto H. Hence A�u ∈ H, i.e.
�u ∈ D(A).

3.3 Construction of a special basis

In this subsection, we will prove the following result:

Lemma 3.4 Under the conditions of Lemma 3.3, there exists a sequence {λj}j≥1 ⊆ IR
with 0 < λ1 ≤ λ2 ≤ ... ≤ λj ≤ λj+1 ≤ ..., {λj} → +∞, and an orthonormal basis of H,
{�wj}j≥1, where each �w

j is an eigenfunction of A associated to eigenvalue λj.

Proof: Let Λ : H −→ D(A) �→ H be the operator that associates each �g ∈ H to
�u ∈ D(A), the unique strong solution of the problem (Lst) with �a = �0 (i.e. A�u = �g). This
is an compact (using Lemma 3.3 and the compact embedding of H2(Ω)2 ∩ V into H) and
self-adjoint operator

(Λ�g1, �g2) = (�u1, �g2) = (�u1, A�u2) = (A�u1, �u2) = (�g1,Λ�g2).

Then, as H is separable, we can apply the Hilbert Schmidt’s Theorem (of spectral de-
composition), and there exists an orthogonal basis of H formed by eigenfunctions of Λ,
{�vj}j≥1 (Λ�vj = µj�v

j, where µj � 0 as j � +∞). Let λj = 1/µj and �z
j = µj�v

j. Then

A�z
j = λj�z

j, and the sequence �w
j = �z

j
/

�
λj is the orthonormal basis of the Lemma.

4 The evolution linear case

In this section we will study the strong solution of the nonstationary linear problem:

(L)






∂t�v − νh∆�v − νv∂
2
zz
�v +∇qs = �f in (0, T )× Ω,

∇ · ��v� = 0 in (0, T )× ω,

�v|t=0 = �v0 in Ω,

νv∂z�v = �τ on (0, T )× Γs,

�v = �0 on (0, T )× (Γb ∪ Γl).
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Theorem 4.1 Let ω ⊆ IRd (d = 1 or 2) be a C
2 domain and D ∈ C

2(ω) with D ≥
Dmin > 0 in ω. If �f ∈ L

2((0, T ) × Ω)d, �v0 ∈ V , �τ ∈ L
2(0, T ;H1/2+ε

0 (Γs)d), for some
ε > 0, with ∂t�τ ∈ L

2(0, T ;H−1/2(Γs)d), then there exists a unique strong solution �v of (L)
in (0, T ). Moreover, there exists C > 0 sucht that

��v�2
L∞(V )+ ��v�2

L2(D(A)) + �∂t�v�2L2(H) ≤ C

�
��v0�2V + ��τ(0)�2

H−1/2(Γs)

+ ��f�2
L2(L2(Ω)) + ��τ�2

L2(H1/2+ε
0 (Γs))

+ �∂t�τ�2L2(H−1/2(Γs))

� (16)

Proof: Uniqueness can be easily deduced from the linearity of the problem (L). The
proof of the existence will be separate in several steps.

Step 1. Weak solution of (L). The weak solution �v of (L) in (0, T ) can be obtained
as a limit of Galerkin approximations �vm ∈ C

1([0, T ];Vm) (being Vm a m-dimensional
subspace of V ) such that

(L)m






d

dt

�

Ω
�vm · �ϕdΩ + νh

�

Ω
∇�vm : ∇�ϕdΩ + νv

�

Ω
∂z�vm · ∂z �ϕdΩ

=
�

Ω

�fm · �ϕdΩ +
�

Γs

�τm · �ϕ|Γsdσ ∀ �ϕ ∈ Vm,

�vm(0) being the projection of �v0 onto Vm,

where �fm ∈ C
0([0, T ];H−1

b,l
(Ω)2) and �τm ∈ C

0([0, T ];H−1/2(Γs)2) are respectively regular

approximations to �f and �τ .

Taking �vm as test function in (L)m, one can deduce that the sequence �vm is bounded
in L

∞(0, T ;H) ∩ L
2(0, T ;V ). Passing to the limit in a standard way, we obtain the weak

regularity for �v.

Remark 4.1 (Weak solution of (EP )). Galerkin approximations of nonliner problem
(EP ) are similar to problem (L)m. The only differences are the nonlinear terms:

�

Ω

�
(�um · ∇)�um + um3∂z�um

�
· �ϕdΩ,

where um3 is defined from ∇ · �um as in (2). But, these terms vanish when �um is taken as
test function, hence we can also deduce that �um is bounded in L

∞(0, T ;H) ∩ L
2(0, T ;V ).

Now, by using a compactness result (estimating ∂t�um in a convenient space), we could
pass to the limit and obtain a weak solution �u of (EP2) in (0, T ).

Step 2. “Lifting” of the Neumann boundary conditions. We define the operator
B : �a ∈ H

−1/2(Γs)d → �u = B�a ∈ V , where �u is the weak solution of the hydrostatic
Stokes problem (Lst) with �g = �0, i.e.

�u ∈ V such that �A�u, �ψ�V �,V = ��a, �ψ�Γs ∀ �ψ ∈ V.
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Then, let us define
�e(t) = B(�τ(t)) a.e. t ∈ (0, T ).

From Lemma 3.2, since �τ(t) ∈ H
1/2+ε

0 (Γs)d a.e. t ∈ (0, T ), we have that �e(t) ∈ H
2(Ω)d∩V

a.e. t ∈ (0, T ), and
��e(t)�H2(Ω) ≤ C ��τ(t)�

H
1/2+ε
0 (Γs)

.

Therefore, �e ∈ L
2(0, T ;H2(Ω)d ∩ V ) and

��e�L2(H2(Ω)) ≤ C ��τ�
L2(H1/2+ε

0 (Γs))
. (17)

On the other hand, we have

∂t�e = B(∂t�τ(t)) a.e. t ∈ (0, T ). (18)

To prove this one, we define �g(t) = B(∂t�τ(t)) and

�vδ(t) =
�e(t+ δ)− �e(t)

δ
− �g(t) = B

�
�τ(t+ δ)− �τ(t)

δ
− ∂t�τ(t)

�

.

From Lemma 3.1, for �a =
�τ(t+ δ)− �τ(t)

δ
− ∂t�τ(t),

��vδ(t)�V ≤ C

�����
�τ(t+ δ)− �τ(t)

δ
− ∂t�τ(t)

�����
H−1/2(Γs)

.

The last expression tends to zero when δ → 0, hence, ��vδ(t)�H1(Ω) → 0. Therefore, we
conclude (18). Moreover, Lemma 3.1 for �a = ∂t�τ(t) says

�∂t�e(t)�V ≤ C �∂t�τ(t)�H−1/2(Γs) a.e. t ∈ (0, T ).

Therefore, as ∂t�τ ∈ L
2(0, T ;H−1/2(Γs)), then ∂t�e ∈ L

2(0, T ;V ) and

�∂t�e�L2(V ) ≤ C �∂t�τ�L2(H−1/2(Γs)). (19)

In particular, �e ∈ C
0([0, T ];V ). Moreover, from (19),

��e�2
L∞(V ) ≤ C

�
��e(0)�2

V
+ ��e�L2(V )�∂t�e�L2(V )

�

≤ C

�
��τ(0)�2

H−1/2(Γs)
+ ��τ�2

L2(H−1/2(Γs))
+ �∂t�τ�2L2(H−1/2(Γs))

�
.

(20)

Step 3. Strong solution of the resulting problem (with homogeneous boundary
conditions). If we decompose the solution �v of (L) as �v = �e + �y, where �e is the regular
function furnished in Step 2, then �y is the solution of the resulting problem:

(R)






∂t�y − νh∆�y − νv∂
2
zz
�y +∇πs = �h in (0, T )× Ω,

∇ · ��y� = 0 in (0, T )× ω,

�y|t=0 = �y0 in Ω,

νv∂z�y = �0 on (0, T )× Γs,

�y = �0 on (0, T )× (Γb ∪ Γl),
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where �h = �f − ∂t�e+ νh∆�e+ νv∂
2
zz
�e ∈ L

2(0, T ;L2(Ω)d) and �y0 = �v0−�e(0) ∈ V . Obviously,
the proof of Theorem 4.1 will be finish if we show existence of strong solution �y of the
problem (R) in (0, T ).

Let Vm the subspace V generated by {w1
, ..., w

m}, where {wj}j≥1 is the basis of eigen-
functions furnished in Lemma 3.4. It is easy to prove that the weak solution �y of (R)
in (0, T ) can be obtained as a limit of the Galerkin approximations, �ym : [0, T ] → Vm,
solving the ordinary differential problem:

(R)m






d

dt

�

Ω
�ym(t) · �vmdΩ + νh

�

Ω
∇�ym(t) : ∇�vmdΩ + νv

�

Ω
∂z�ym(t) · ∂z�vmdΩ

=
�

Ω

�hm(t) · �vmdΩ, ∀ vm ∈ Vm,

�ym(0) = �y0m =
�

m

j=1

��

Ω
∇�y0 : ∇�w

j
dΩ

�
�w
j
,

being �hm regular approximations to �h.
Now, we are going to obtain strong estimations for �ym. First, by construction, �y0m ∈

Vm and �y0m → �y0 in V . Considering �vm = A�ym(t) ∈ Vm as test functions in (R)m, we
obtain: ∀ t ∈ [0, T ],

d

dt
��ym(t)�2V + �A�ym(t)�2L2(Ω) ≤ ��hm(t)�2L2(Ω)

Here and in the sequel, the notation ��y�2
V

= νh�∇�y�2
L2(Ω) + νv�∂z�y�2L2(Ω) will be used.

Integrating in time:

��ym(t)�2V +
�

T

0
�A�ym(t)�2L2(Ω)dt ≤ ��y0m�2V +

�
T

0
��hm(t)�2L2(Ω)dt.

Then, the sequence (�ym) is bounded in L
2(0, T ;D(A)) ∩ L

∞(0, T ;V ), hence the limit
verifies �y ∈ L

2(0, T ;D(A)) ∩ L
∞(0, T ;V ) and

��y�2
L∞(V ) + ��y�2

L2(D(A)) ≤ C

�
��y0�2V + ��h�2

L2(L2(Ω))

�
. (21)

On the other hand, taking ∂t�ym(t) ∈ Vm as test functions in (R)m and integrating in time,

�∂t�ym�2L2(H) ≤ ��y0m�2V + ��hm�2L2(L2(Ω)).

Therefore, the limit ∂t�y ∈ L
2(0, T ;H) and

�∂t�y�2L2(H) ≤ C

�
��y0�2V + ��h�2

L2(L2(Ω))

�
. (22)

Finally, from (21) and (22), using that �y0 = �v0 − �e(0) and �h = �f − ∂t�e+ νh∆�e+ νv∂
2
zz
�e,

��y�2
L∞(V ) + ��y�2

L2(D(A)) + �∂t�y�2L2(H) ≤ C

�
��v0�2V + ��e(0)�2

V

+��f�2
L2(L2(Ω)) + ��e�2

L2(H2(Ω)) + �∂t�e�2L2(L2(Ω))

�
.

(23)

Using the above bounds of the �e and �y, (17), (19), (20) and (23), we conclude the
estimation (16).
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5 Global strong solution for small data

5.1 Proof of Theorem 1.3

We focus our study on the strong regularity of the problem (EP2). To do that, first we lift
the nonhomogeneous Neumann boundary condition νv∂zu|Γs = τ , considering the lifting
function (e(t), qs(t)), the strong solution of the two-dimensional version of problem (Lst),
with a = τ and f = 0 (this solution has already been used in Section 4). Then, it suffices
to study the following problem that verifies (w = u − e, πs = ps − qs), being (u, ps) a
solution of (EP2),

(P )






∂tw + (w + e)∂xw + (w3 + e3)∂zw

+w∂xe+ w3∂ze− νh∂
2
xx
w − νv∂

2
zz
w + ∂xπs = F (e) in (0, T )× Ω,

∂x�w� = 0 in (0, T )× ω,

w|t=0
= w0 in Ω,

νv∂zw = 0 on (0, T )× Γs,

w = 0 on (0, T )× (Γb ∪ Γl),

where w0 = u0 − e(0) and F (e) = F − ∂te− e∂xe− e3∂ze. We will study problem (P ) in
several steps.

Step 1. Existence and weak estimates of the approximate solutions of (P ).
We approximate w by w

m, the Galerkin approximations in Vm = span{w1
, ..., w

m}, being
{wj}j≥1 the eigenfunctions of the hydrostatic Stokes operator A (see Lemma 3.4). This
is, wm ∈ C

1(0, T ;Vm) and satisfies the following variational formulation (in Vm), where
Fm denotes regular approximations to F ,






�

Ω

�
d

dt
wm + Awm + (wm + e)∂xwm + (wm3 + e3)∂zwm

�

vm dΩ

+
�

Ω
(wm∂xe+ wm3∂ze)vm dΩ =

�

Ω
(Fm − e∂xe− e3∂ze)vmdΩ ∀ vm ∈ Vm,

wm(0) = wm0 =
m�

j=1

��

Ω
∇w0 · ∇w

j
dΩ

�
w

j
.

(24)

In the sequel, we denote Fm = F .

To prove existence of solution wm of (24), we write

wm(t; x, z) =
m�

j=1

φj(t)w
j(x, z). (25)

Introducing (25) in the expression (24) for vm = w
i, i = 1, ..,m, we conclude that wm

is a solution of (24) if only if {φj}mj=1 ∈ C
1([0, T ])m and verifies the following ordinary

12



differential problem:





m�

j=1

aijφ
�
j
(t) +

m�

j=1

bij(t)φj(t) +
m�

l,j=1

cijlφl(t)φj(t) = di(t) en (0, T ), 1 ≤ i ≤ m,

φj(0) =
�

Ω
∇u0 · ∇w

j
dΩ, j = 1, ..,m,

(26)

where the coefficients are:

aij =
�

Ω
w

j
w

i
dΩ,

bij(t) =
�

Ω

� �
e(t)∂xw

j + e3(t)∂zw
j + w

j
∂xe(t) + w

j

3∂ze(t)
�
w

i

+ νh∂xw
j
∂xw

i + νv∂zw
j
∂zw

i

�
dΩ ∈ C

0([0, T ]),

cijl =
�

Ω

�
w

l
∂xw

j + w
l

3∂zw
j
�
w

i
dΩ,

di(t) =
�

Ω

�
F (t)− e(t)∂xe(t)− e3(t)∂ze(t)

�
w

i
dΩ ∈ C

0([0, T ]).

Using that {wj} is an orthonormal system in H, it is easy to prove that the matrix
(aij)mi,j=1 is symmetric and definite positive (uniformely in (0, T )). In particular, matrix
(aij)mi,j=1 is invertible and, therefore, (26) can be written as a Cauchy problem:

(PC)

�
Φ� = g(t,Φ), t ∈ [0, T ],
Φ(0) ∈ IRm given,

where g : IRm+1 → IRm is a continuous function respect to (t,Φ), and smooth respect to
Φ (in fact, g(t, ·) is a polynomial function). By Picard’s Theorem, one has existence and
uniqueness of local solution Φ = (φi)mi=1, i.e. define in a interval [0, Tm) for some Tm > 0.

By uniqueness of the approximate problems for um and wm, one has wm = um − e.
Then, the weak estimations obtained for um (see Remark 4.1) leads to the same weak
estimations for wm. In particular, taking into account expression (25),

m�

j=1

|φj(t)|2 =
�

Ω
|wm|2dΩ ≤ C ∀ t ∈ [0, T ].

Therefore, the positive semitrajectory of Φ, {(s, φ1(s), .., φm(t)) ∈ IRm+1
, s ∈ [0, Tm)}, is

bounded in IRm+1, so that Φ can be extended to all [0, T ]. From this fact, we conclude
existence of the approximate solution wm in all [0, T ] and their corresponding weak esti-
mations.

Step 2. Strong estimates of the approximate solutions of (P ): We recall the
convection for the V -norm that follows:

�v�2
V
= νh�∂xv�2L2(Ω) + νv�∂zv�2L2(Ω).
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Lemma 5.1 The following estimate holds:

d

dt
�wm�2V + �Awm�2L2(Ω) ≤ C1 Dmax�Awm�2L2(Ω)�wm�V + C2�wm�4V

+C3

�
�e�2

V
�e�2

L2(Ω) + (D4
max

+ 1) �e�2
H2(Ω)�e�2V

�
�wm�2V

+C4 �e�H2(Ω)�e�2V
�
�e�L2(Ω) +D

2
max

�e�H2(Ω)

�

+C5 �F�2
L2(Ω) + C6 �∂te�2L2(Ω)

(27)

for some Ci > 0, i = 1, .., 6.

Proof: Taking vm = Awm(t) ∈ Vm as test functions in (24) (here, we have used the
properties of the A-eigenfunction basis), one has:

1

2

d

dt
�wm�2V + �Awm�2L2(Ω) = −

�

Ω
(wm + e)∂xwmAwmdΩ

−
�

Ω
(wm3 + e3)∂zwmAwmdΩ−

�

Ω
wm∂xeAwmdΩ

−
�

Ω
wm3∂zeAwmdΩ +

�

Ω
F (e)AwmdΩ ≡

5�

i=1

Ii

(28)

We bound the right hand side (using Lemmas 2.1, 2.2, 2.3 and 3.3, and the weak
estimates for wm):

I1 ≤ �Awm�L2(Ω)�∂xwm�L4(Ω)

�
�wm�L4(Ω) + �e�L4(Ω)

�

≤ C�Awm�3/2L2(Ω)�∂xwm�1/2L2(Ω)

�
�∇wm�1/2L2(Ω)�wm�1/2L2(Ω) + �∇e�1/2

L2(Ω)�e�
1/2
L2(Ω)

�

≤ 1

10
�Awm�2L2(Ω) + C�wm�2V

�
�wm�2V + �e�2

V
�e�2

L2(Ω)

�

I2 ≤ �Awm�L2(Ω)�∂zwm�L4(Ω)

�
�wm3�L4(Ω) + �e3�L4(Ω)

�

≤ Dmax�Awm�3/2L2(Ω)�∂zwm�1/2L2(Ω)

�
�∂xwm�L4(Ω) + �∂xe�L4(Ω)

�

≤ CDmax�Awm�3/2L2(Ω)�wm�1/2V

�
�Awm�1/2L2(Ω)�wm�1/2V

+ �e�1/2
H2(Ω)�e�

1/2
V

�

≤ CDmax�Awm�2L2(Ω)�wm�V +
1

10
�Awm�2L2(Ω) + CD

4
max

�wm�2V �e�2H2(Ω)�e�2V

I3 ≤ �wm�L4(Ω)�∂xe�L4(Ω)�Awm�L2(Ω)

≤ C�Awm�L2(Ω)�wm�1/2V
�wm�1/2L2(Ω)�e�

1/2
H2(Ω)�e�

1/2
V

≤ 1

10
�Awm�2L2(Ω) + C �wm�2V �e�2H2(Ω)�e�2V
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I4 ≤ �wm3�L4(Ω)�∂ze�L4(Ω)�Awm�L2(Ω)

≤ Dmax�∂xwm�L4(Ω)�∂ze�L4(Ω)�Awm�L2(Ω)

≤ CDmax�Awm�3/2L2(Ω)�wm�1/2V
�e�1/2

H2(Ω)�e�
1/2
V

≤ 1

10
�Awm�2L2(Ω) + CD

4
max

�wm�2V �e�2H2(Ω)�e�2V

I5 ≤ �Awm�L2(Ω)�F (e)�L2(Ω) ≤
1

10
�Awm�2L2(Ω) +

5

2
�F (e)�2

L2(Ω)

To bound the �F (e)�2
L2(Ω) term, we write:

5

2
�F (e)�2

L2(Ω) ≤ C

�
�F�2

L2(Ω) + �∂te�2L2(Ω) + �e∂xe�2L2(Ω) + �e3∂ze�2L2(Ω)

�
≡

4�

i=1

Ji,

where:
J3 ≤ �∂xe�2L4(Ω)�e�2L4(Ω) ≤ C �e�H2(Ω)�e�2V �e�L2(Ω)

J4 ≤ �e3�2L4(Ω)�∂ze�2L4(Ω) ≤ D
2
max

�∂xe�2L4(Ω)�∂ze�2L4(Ω)

≤ C D
2
max

�e�2
H2(Ω)�e�2V

Incorporing all these bounds in (28), we have (27).

The most difficult term in (27) (to bound globally in time) is C1 Dmax�Awm�2L2(Ω)�wm�V .
One possibility is to control this one with the �Awm�2L2(Ω) term of the left hand side of
(27), when small data are assumed.

We rewrite (27) in the form:

d

dt
�wm�2V + �Awm�2L2(Ω)

�
1− C1Dmax�wm�V

�

≤ C2 �wm�4V + a(t) �wm�2V + b(t),

(29)

where:
a(t) = C3

�
�e�2

V
�e�2

L2(Ω) + (D4
max

+ 1)�e�2
H2(Ω)�e�2V

�

b(t) = C4 �e�H2(Ω)�e�2V
�
�e�L2(Ω) +D

2
max

�e�H2(Ω)

�

+ C5 �F�2
L2(Ω) + C6 �∂te�2L2(Ω).

(30)

It is easy to check that a, b ∈ L
1(0, T ). Indeed, using the estimates for e (17), (19)

and (20), one has

�a�L1(0,T ) ≤ C3 (D4
max

+ 1)A(τ)2,

�b�L1(0,T ) ≤ {C4(D2
max

+ 1) + C6}A(τ)2 + C5�F�2
L2(L2(Ω)),

(31)

where A(τ)2 = C
2
�
�τ(0)�2

H−1/2(Γs)
+ �τ�2

L2(H1/2+ε
0 (Γs))

+ �∂tτ�2L2(H−1/2(Γs))

�
.
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Lemma 5.2 Under the hypothesis (H) of the Theorem 1.3 and supposing (29), let M be
a constant such that :

(a) 1− C1DmaxM > 1/2,

(b) C2M
2
< 1/(4C),

(C1 and C2 are the constants that appear in (29) and C > 0 is the equivalence constant
between �Au�L2 and the H

2-norm, see Lemma 3.3), then

�wm(t)�V < M, ∀ t ∈ [0, T ].

Proof: Arguing by contradiction, we suppose there exists some instant in (0, T ) where
the bound M is reached. Let t

∗ the smallest of these instants, i.e. �wm(t)�V < M ,
∀ t ∈ [0, t∗) and �wm(t∗)�V = M . Then, ∀ t ∈ [0, t∗],

1− C1Dmax�wm(t)�V ≥ 1− C1DmaxM > 1/2.

In the last estimation, we have used hypothesis (a). If we denote y(t) = �wm(t)�2V , using
that 1

C
�wm�2V ≤ �Awm�2L2(Ω) (see (15) in Lemma 3.3), (29) yields:

y
�(t) +

1

2C
y(t) ≤ C2M

2
y(t) + a(t)y(t) + b(t), ∀ t ∈ [0, t∗].

Now, from hypothesis (b),

y
�(t) +

1

4C
y(t) ≤ a(t)y(t) + b(t), ∀ t ∈ [0, t∗]. (32)

Integrating this differential inequality between 0 and t
∗, we obtain:

y(t∗) ≤ exp

�

− 1

4C
t
∗ +

�
t
∗

0
a(t)dt

��
y(0) +

�
t
∗

0
exp

�
1

4C
t−

�
t

0
a(s)ds

�
b(t)dt

�

Therefore, since

y(0) = �wm0�2V ≤ �w0�2V ≤ 2
�
�u0�2V + �e(0)�2

V

�
≤ 2

�
�u0�2V + C

2�τ(0)�2
H−1/2(Γs)

�
,

hypothesis (H) implies �wm(t∗)�V < M , hence we arrive at contradiction.

Step 3. Proof of Theorem 1.3: From Lemma 5.2, wm is bounded in L
∞(0, T ;V ).

Moreover, applying hypothesis (a) of Lemma 5.2 in (29), one has

d

dt
�wm�2V +

1

2
�Awm�2L2(Ω) ≤ C2M

4 +M
2
a(t) + b(t), (33)

hence, integrating in time, we deduce that wm is bounded in L
2(0, T ;H2(Ω)). On the other

hand, taking ∂twm(t) ∈ Vm as a test function in (24), integrating in time and using the
above regularity, one deduces that ∂twm is bounded in L

2(0, T ;H). Then, by a standard
argument of passage to the limit, we obtain that w (and a surface pressure associated πs)
is a strong global solution of (P ). Finally, (u, ps) = (e+w, qs + πs) is a strong solution of
(EP2) in (0, T ). The uniqueness of strong solution of (EP2) stems from Section 7.
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Remark 5.1 In the 3D case, we cannot obtain the above strong estimates. It is because
in the right hand side of (27), if we estimate the corresponding I2 term, we obtain a bound
of the form

Dmax�Awm�5/2L2(Ω)�wm�1/2V

which cannot be controlated with the left hand side of (27).

5.2 Proof of Corollary 1.4.

Let us first prove existence of a strong solution of (EP2) in (0,+∞). The argument is
based in Step 1 and 2 of the proof of Theorem 1.3. In particular, it is not difficult to
obtain the global weak estimations:

wm is bounded in L
2(0,+∞;V ) ∩ L

∞(0,+∞;H).

Now, using hypothesis (H) in [0,+∞), we can deduce that �wm�V < M , ∀t ∈ [0 +∞).

Let us change Step 3. Instead of (33), we rewrite (29) as:

d

dt
�wm�2V +

1

2
�Awm�2L2(Ω) ≤ C2M

2�wm�2V +M
2
a(t) + b(t).

Using that wm is bounded in L
2(0,+∞;V ) and a, b ∈ L

1(0,+∞) (thanks to (31) and the
global regularity of τ , ∂tτ and F ), we have that wm is bounded in L

2(0,+∞;H2(Ω) ∩
V ). Then, we can conclude the existence of a strong solution u ∈ L

∞(0,+∞;V ) ∩
L
2(0,+∞;H2(Ω) ∩ V ) and ∂tu ∈ L

2(0,+∞;H).

Now, let us see the asymptotic behaviour of u. Adding in both parts of (32)
d

dt
�e(t)�2

V
+

1

4C
�e(t)�2

V
, taking into account that

d

dt
�e(t)�2

V
≤ 2�e(t)�V �∂te(t)�V ,

we obtain for z(t) = �wm(t)�2V + �e(t)�2
V
the inequality:

z
�(t) +

�
1

4C
− a(t)

�
z(t) ≤ b(t) +

1

2C
�e(t)�2

V
+ 4C�∂te(t)�2V .

Multiplying by exp

�
1

4C
t−

�
t

0
a(s)ds

�
and integrating on (0, t),

z(t) ≤ exp

�
− 1

4C
t+

�
t

0
a(s)ds

��
z(0)

+
�

t

0
exp

�
1

4C
s−

�
s

0
a(σ)dσ

��
b(s) +

1

2C
�e(s)�2

V
+ 4C�∂te(s)�2V

�
ds

�
.

(34)

Now, using that �um(t)�2V ≤ 2 z(t),

�um(t)�2V ≤ exp

�
− 1

4C
t

�
K1

�
z(0)

+
2

K1

�
t

0
exp

�
1

4C
s

��
b(s) +

1

2C
�e(s)�2

V
+ 4C�∂te(s)�2V

�
ds

�
,
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where K1 = 2 exp
�
�a�L1(0,+∞)

�
. Since z(0) ≤ 2�u0�2V + C

2�τ(0)�2
H−1/2(Γs)

, bounding in a

convenient way b, e and ∂te (in function of τ , ∂tτ and F ), we can deduce the asymptotic
behaviour (5) whenever the hypothesis (4) holds.

6 Local strong solution for any data (proof of Theo-
rem 1.4)

We want to apply now a fixed point argument to obtain strong solution of (EP2), local
in time, but for any data. Now, we study problem (Q), which is similar to (P ) but whose
solution is (w = u − v, π̃s = ps − qs), where (v, qs) is the solution of (L) with v0 = 0
anf f = 0. With this purpose, we rewrite (Q) as a fixed point equation by means of a
linearisation. We define, for each T > 0:

Y (T ) =
�
w̄ ; w̄ ∈ L

2(0, T ;D(A)) ∩ L
∞(0, T ;V ), ∂tw̄ ∈ L

2(0, T ;H),

w̄(0) = u0, �w̄�2L∞(V ) + �w̄�2
L2(D(A)) + �∂tw̄�2L2(H) ≤ R

2
�
.

Given v the strong solution of (L) in (0, T ) and w̄ ∈ Y (T ), we consider the linear problem:

(Ql)






∂tw − νh∂
2
xx
w − νv∂

2
zz
w + ∂xπs = G(w̄, v) in (0, T )× Ω,

∂x�w� = 0 in (0, T )× ω,

w|t=0
= u0 in Ω,

νv∂zw = 0 on (0, T )× Γs,

w = 0 on (0, T )× (Γb ∪ Γl),

where G(w̄, v) = F − (w̄ + v)∂x(w̄ + v)− (w̄3 + v3)∂z(w̄ + v). Problem (Ql) is similar to
problem (R), which has already been studied in Section 4. Therefore, since u0 ∈ V and
G ∈ L

2((0, T )× Ω), then w ∈ L
2(0, T ;D(A)) ∩ L

∞(0, T ;V ) and ∂tw ∈ L
2(0, T ;H).

First, we are going to prove that, there exists R
2 large enough such that Y (T ) �= ∅,

∀T > 0. Indeed, let w∗ be the unique solution of the hydrostatic Stokes problem:





∂tw∗ − νh∂
2
xx
w∗ − νv∂

2
zz
w∗ + ∂xπs = 0 in (0, T )× Ω,

∂x�w∗� = 0 in (0, T )× ω,

w∗|t=0 = u0 in Ω,

νv∂zw∗ = 0 on (0, T )× Γs,

w∗ = 0 on (0, T )× (Γb ∪ Γl).

Following the reasoning of the problem (R), see (21) and (22), we know that:

�w∗�2L∞(V ) + �w∗�2L2(D(A)) + �∂tw∗�2L2(H) ≤ �u0�2V , (35)

therefore, taking R
2 ≥ �u0�2V , then w∗ ∈ Y (T ), ∀T > 0.
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Now, we introduce the Banach space XT = L
2(0, T ;V ) and the mapping

Φ : Y (T ) −→ XT , given by Φ(w̄) = w,

where w is the unique solution of (Ql). Obviously, a fixed point of Φ solves problem (Q).
Arguing as in problem (R), we have:

�w�2
L∞(V ) + �w�2

L2(D(A)) + �∂tw�2L2(H) ≤ �u0�2V + C �G(w̄, v)�2
L2(L2(Ω)) (36)

On the other hand, v verifies problem (L), with inicial data zero and homogeneous
second member (i.e. v0 = 0 and f = 0) but a nonhomogeneous Neumann boundary
condition (τ) on the surface. Then, v satisfies the estimate (see (16)):

�v�2
L∞(V ) + �v�2

L2(H2(Ω)) + �∂tv�2L2(H) ≤ B(τ)2, (37)

where B(τ)2 = C

�
�τ(0)�2

H−1/2(Γs)
+ �τ�2

L2(H1/2+ε
0 (Γs))

+ �∂tτ�2L2(H−1/2(Γs))

�
.

Now, we want to find conditions to apply Schauder’s Theorem.

1) ∃T∗ ∈ (0, T ] such that Φ(Y (T∗)) ⊂ Y (T∗):
Let w̄ ∈ Y (T ) and w = Φ(w̄). Then:

�G(w̄, v)�2
L2(L2(Ω)) ≤ 9

�
�F�2

L2(L2(Ω)) + �(w̄ + v)∂x(w̄ + v)�2
L2(L2(Ω))

+ �(w̄3 + v3)∂z(w̄ + v)�2
L2(L2(Ω))

�
≡

3�

i=1

Ii

(38)

We bound each term Ii (constant G will come from the Gagliardo-Nirenberg’s inequal-
ities, see Lemmas 2.2 and 2.3, whereas C we will denote different constants independent
of R, B(τ), Dmax and T ). First, we estimate

�(w̄ + v)∂x(w̄ + v)�2
L2(Ω) ≤ �w̄ + v�2

L4(Ω)�∂x(w̄ + v)�2
L4(Ω)

≤ 4
�
�w̄�2

L4(Ω) + �v�2
L4(Ω)

� �
�∂xw̄�2L4(Ω) + �∂xv�2L4(Ω)

�

≤ 4G2
�
�w̄�V �w̄�L2(Ω) + �v�V �v�L2(Ω)

� �
�w̄�H2(Ω)�w̄�V + �v�H2(Ω)�v�V

�
.

Integrating in (0, T ), taking into account definition of Y (T ) and (37),

I2 ≤ 4G2
T

1/2
�
�w̄�L∞(V )�w̄�L∞(H) + �v�L∞(V )�v�L∞(H)

�

×
�
�w̄�L∞(V )�w̄�L2(H2(Ω)) + �v�L∞(V )�v�L2(H2(Ω))

�

≤ C T
1/2 (B(τ)2 +R

2)2 .

In a similar way, we bound the vertical velocity terms as follows:

�(w̄3 + v3)∂z(w̄ + v)�2
L2(Ω) ≤ �w̄3 + v3�2L4(Ω)�∂z(w̄ + v)�2

L4(Ω)

≤ 4
�
�w̄3�2L4(Ω) + �v3�2L4(Ω)

� �
�∂zw̄�2L4(Ω) + �∂zv�2L4(Ω)

�

≤ 4D2
max

�
�∂xw̄�2L4(Ω) + �∂xv�2L4(Ω)

� �
�∂zw̄�2L4(Ω) + �∂zv�2L4(Ω)

�

≤ 4G2
D

2
max

�
�w̄�H2(Ω)�w̄�V + �v�H2(Ω)�v�V

�2
.
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Therefore, integrating in (0, T ),

I3 ≤ 4C D
2
max

�
�w̄�L2(H2(Ω))�w̄�L∞(V ) + �v�L2(H2(Ω))�v�L∞(V )

�2

≤ C D
2
max

(B(τ)2 +R
2)2 .

In the last estimates, we could not obtain any power of T , and this fact is the main
difficulty in our argument. Indeed, inserting all the above bound in (38),

�G(w̄, v)�2
L2(L2(Ω)) ≤ C

�
�F�2

L2(L2(Ω)) + (B(τ)2 +R
2)2

�
D

2
max

+ T
1/2

��
(39)

Then, from (36) and (39),

�w�2
L∞(V ) + �w�2

L2(D(A)) + �∂tw�2L2(H) ≤ �u0�2V

+ C

�
�F�2

L2(L2(Ω)) + (B(τ)2 +R
2)2

�
D

2
max

+ T
1/2

�� (40)

The above inequality can be written as

�w�2
L∞(V ) + �w�2

L2(H2(Ω)) + �∂tw�2L2(H) ≤ aR
4 + bR

2 + c,

where, for some C = C(Ω, νh, νv) > 0,

a = C

�
D

2
max

+ T
1/2

�
,

b = 2C B(τ)2
�
D

2
max

+ T
1/2

�
,

c = �u0�2V + C

�
�F�2

L2(0,T ;L2(Ω)) +B(τ)4
�
D

2
max

+ T
1/2

��
.

Taking R
2 ≥ �u0�2V (hence Y (T ) �= ∅, ∀T > 0), one has w ∈ Y (T ) whenever

aR
4 + bR

2 + c ≤ R
2
. (41)

In the following, we will see that for any data F , τ , u0, (41) is verified. A necessary
condition to (41) is b < 1. But, it can also find some sufficient conditions. Indeed, one
possibility is to impose the following three conditions:

Condition 1: Dmax and T are small enough sucht that

b ≤ 1

2
.

For instance, 2C B(τ)2 D2
max

≤ 1/4 and 2C B(τ)2 T 1/2 ≤ 1/4.
Condition 2: R2 big enough such that

c ≤ 1

4
R

2
.

Condition 3: a small enough (i.e. Dmax and T small enough) such that

aR
2 ≤ 1

4
.
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In conclusion, there exists T∗ ∈ (0, T ] and Dmax > 0 small enough, such that for some
R big enough, one has Φ(Y (T∗)) ⊂ Y (T∗).

2) Y (T∗) is relatively compact in XT∗.
Let WT∗ = {w̄; w̄ ∈ L

2(0, T∗;D(A)) and ∂tw̄ ∈ L
2(0, T∗;H)}. Y (T∗) is a bounded set

of WT∗ and WT∗ is embedded in a compact way in XT∗ . Therefore, Y (T∗) is relatively
compact in XT∗ .

3) Y (T∗) is closed in XT∗.
Let {w̄n}n≥1 ⊆ Y (T∗) such that w̄n −→ w̄ strongly in XT∗ (i.e. in the L

2(0, T ;V )-
norm). Let us see that w̄ ∈ Y (T∗). As {w̄n}n≥1 is bounded in WT∗ , in particular, there
exists a subsequence {w̄k} of {w̄n} such that:

w̄k � w̄ in L
2(0, T∗;D(A) ∩ V ),

∂tw̄k � ∂tw̄ in L
2(0, T∗;H).

(42)

Then, applying a compactness result of Aubin-Lions type [13]:

w̄k −→ w̄ in C([0, T∗];H).

Therefore, since w̄k(0) = u0, ∀ k ≥ 1, then w̄(0) = u0. By lower semi-continuity of the
norm,

�w̄�2
L∞(V ) + �w̄�2

L2(D(A)) + �∂tw̄�2L2(H)

≤ lim infk→+∞
�
�w̄k�2L∞(V ) + �w̄k�2L2(D(A)) + �∂tw̄k�2L2(H)

�
≤ R

2
,

then w̄ ∈ Y (T∗), hence Y (T∗) is closed in XT∗ . This one, jointly with 2), imply that Y (T∗)
is compact in XT∗ .

4) Φ : Y (T∗) −→ Y (T∗) is continuous respect to XT∗ topology.
Let {w̄n}n≥1 ⊆ Y (T∗) such that w̄n → w̄ strongly in XT∗ . Let us prove that:

Φ(w̄n) = wn −→ Φ(w̄) = w strongly in XT∗ .

As also {wn}n≥1 ⊆ Y (T∗), there are subsequences {w̄k} of {w̄n} and {wk} of {wn} such
that

w̄k � w̄, w̄ ∈ WT∗

wk � w̃, w̃ ∈ WT∗

(where the above convergences are as in (42)).
If we consider the system verified by wk and we pass to the limit as k → +∞, we ob-

tain that w̃ is a solution of the problem (Ql) with second member G(w̄, v). By uniqueness
w̃ = Φ(w̄) = w. Therefore, wk −→ w weakly in WT∗ and, by compactness, wk −→ w in
XT∗ . Finally, all the sequence converges.

5) Existence of a fixed point. As Y (T∗) is a convex compact set of XT∗ and Φ is
continuous respect to XT∗ topology, applying the Schauder’s Theorem we deduce the ex-
istence of a fixed point w of Φ in Y (T∗). Therefore, w is a strong solution of (Q) in (0, T∗)
(if T∗ verifies jointly with Dmax the conditions 1 and 3).
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Remark 6.1 Again, in the 3D case we cannot bound the nonlinear vertical convection
�w̄3∂zw̄�2L2(Ω) in function of the strong regularity. Concretely, we obtain a bound of the
form

�w̄�3
D(A)�w̄�V

which cannot be bounded using the definition of Y (T ). Therefore, we cannot continue with
the Fixed Point reasoning.

7 Uniqueness of weak/strong solution (proof of The-
orem 1.6)

We start from a weak solution u of the system (EP ) (see definition 1.1), in particular u
verifies the energy inequality:

1

2
�u(t)�2

L2(Ω) +
�

t

0

�
νh�∂xu�2L2(Ω) + νv�∂zu�2L2(Ω)

�
ds

≤ 1

2
�u0�2L2(Ω) +

�
t

0
�F, u�Ωds+

�
t

0
�τ, u�Γsds, a.e. t ∈ (0, T ).

(43)

Suppose that there exists another weak solution ūmore regular (associated to the same
data u0 and F ). The idea is to find under what regularity conditions, only on ū, we have
that u ≡ ū. Observe that, starting from the weak variational formulation of u (definition
1.1), it is easy to verify that ∂tu ∈ L

4/3(0, T ;W �), where W = {ψ ∈ V ; ∂zψ ∈ L
4(Ω)}.

In fact, if we want to take ϕ = ū as test function in the weak variational formulation of

u, the unique term that presents problems is
�

Ω
u3∂zū u dΩ. Then, with the additional

regularity of the Theorem 1.6 for ū (recall ∂zū ∈ L
4(0, T ;L4(Ω))) this term has a sense,

hence one verifies the following equality: a.e. t ∈ (0, T ),

�u(t), ū(t)�Ω −
�

t

0
�∂tū, u�Ωds+

�
t

0

�

Ω
(νh∂xu∂xū+ νv∂zu∂zū) dΩ ds

= �u0�2L2(Ω) +
�

t

0
�F, ū�Ωds+

�
t

0

�

Ω
(u∂xū+ u3∂zū) u dΩ ds+

�
t

0
�τ, ū�Γsds.

(44)

Now, we write the differential system for (ū, p̄s) as:

∂tū+ u∂xū+ u3∂zū− νh∂
2
xx
ū− νv∂

2
zz
ū+ ∂xp̄s

= F + (u− ū)∂xū+ (u3 − ū3)∂zū.
(45)

Thanks to the additional regularity of ū, we can multiply (45) by u and integrate on
Ω× (0, t):

�
t

0
�∂tū, u�Ωds+

�
t

0

�

Ω

�
(u∂xū+ u3∂zū) u+ νh∂xū∂xu+ νv∂zū∂zu

�
dΩds

=
�

t

0
�F, u�Ωds+

�
t

0

�

Ω

�
(u− ū)∂xū+ (u3 − ū3)∂zū

�
u dΩ ds+

�
t

0
�τ, u�Γsds

(46)
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Adding (44) and (46), the terms
�

t

0
�∂tū, u�Ω ds and

�
t

0

�

Ω
(u∂xū+ u3∂zū) u dΩ ds are

cancelled, obtaining:

�u(t), ū(t)�Ω +
�

t

0

�

Ω
2 (νh∂xu∂xū+ νv∂zu∂zū) dΩds

= �u0�2L2(Ω) +
�

t

0
�F, u+ ū�Ωds+

�
t

0
�τ, u+ ū�Γsds

+
�

t

0

�

Ω

�
(u− ū)∂xū+ (u3 − ū3)∂zū

�
u dΩ ds a.e. t ∈ (0, T ).

(47)

Finally, we multiply (45) by ū and integrate on Ω×(0, t), obtaining the energy equality:

1

2
�ū(t)�2

L2(Ω) +
�

t

0

�
νh�∂xū�2L2(Ω) + νv�∂zū�2L2(Ω)

�
ds

=
1

2
�u0�2L2(Ω) +

�
t

0
�F, ū�Ωds+

�
t

0
�τ, ū�Γsds

+
�

t

0

�

Ω

�
(u− ū)∂xū+ (u3 − ū3)∂zū

�
ū dΩ ds,

(48)

where the last term on the right hand of (48) vanishes (by the free divergence condition).
Then, doing (43) + (48)− (47), we obtain: a.e. t ∈ (0, T ),

1

2
�u(t)− ū(t)�2

L2(Ω) +
�

t

0
�u(s)− ū(s)�2

V
ds

≤ −
�

t

0

�

Ω

�
(u− ū)∂xū+ (u3 − ū3)∂zū

�
u dΩ ds

= −
�

t

0

�

Ω

�
(u− ū)∂xū+ (u3 − ū3)∂zū

�
(u− ū) dΩ ds

= −
�

t

0

�

Ω
|u− ū|2∂xū dΩ ds−

�
t

0

�

Ω
(u3 − ū3)∂zū(u− ū) dΩ ds ≡ I1 + I2

(49)

We estimate the Ii-terms (using lemmas of Section 2):

I1 ≤
�

t

0
�∂xū�L2(Ω)�(u− ū)�2

L4(Ω)ds

≤
�

t

0
�∂xū�L2(Ω)�(u− ū)�L2(Ω)�∇(u− ū)�L2(Ω)ds

≤ 1

4

�
t

0
�(u− ū)�2

V
ds+ C

�
t

0
�(u− ū)�2

L2(Ω)�∂xū�2L2(Ω)ds
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I2 ≤
�

t

0
�u− ū�L4(Ω)�∂zū�L4(Ω)�u3 − ū3�L2(Ω)ds

≤ Dmax

�
t

0
�∇(u− ū)�1/2

L2(Ω)�u(s)− ū�1/2
L2(Ω)�∂zū�L4(Ω)�∂x(u3 − ū3)�L2(Ω)ds

≤ C Dmax

�
t

0
�u− ū�3/2

V
�u− ū�1/2

L2(Ω)�∂zū�L4(Ω)ds

≤ 1

4

�
t

0
�(u− ū)�2

L2(Ω)ds+ C D
4
max

�
t

0
�∂zū�4L4(Ω)�u− ū�2

L2(Ω)ds

Hence, the inequality (49) becomes: a.e. t ∈ (0, T ),

�u(t)− ū(t)�2
L2(Ω) +

�
t

0
�u(s)− ū(s)�2

V
ds

≤ C

�
t

0

�
�∂xū(s)�2L2(Ω) +D

4
max

�∂zū(s)�4L4(Ω)

�
�u(s)− ū(s)�2

L2(Ω)ds

(50)

Then, from Gronwall lemma, we can conclude the uniqueness.

Remark 7.1 In the 3D case, the bound obtaining for I2 is

1

4

�
t

0
��u(s)− �̄u(s)�2

V
ds+ C

�
t

0
�∂z�̄u(s)�8L4(Ω)��u(s)− �̄u(s)�2

L2(Ω)ds.

Now, to obtain uniqueness, we have to impose in �̄u the following additional regularity

∂z�̄u ∈ L
8(0, T ;L4(Ω)2),

which it is not a consequence of the strong regularity.
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