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1 Introduction

Some geophysical fluids can be modelled through the so-called “primitive equations” [1],
[2]. This model is obtained formally from the Navier-Stokes equations, with anysotropic
(eddy) viscosity, assuming two important simplifications: hydrostatic pressure (depending
linearly on the depth) and the rigid lid hypothesis (fix water surface) [3] . For simplicity, we
take constant density and assume that the effects due to the temperature (and salinity)
can be decoupled from the dynamic of the flow. Then, we have a three-dimensional
flow induced by the wind tension on the surface and by the centripetal and Coriolis
forces. When the Earth curvature is not considered, we can use cartesian coordinates
instead of spherical coordinates (see Lions-Teman-Wang [2] for the model with spherical
coordinates), hence the domain is given by

Q={(7,2) e R* 7€ w, —D() <z <0}, (1)

where w C IR? is an open domain and D : @ — R, is the depth function. The different
boundaries of ) (surface, bottom and sidewalls) are respectively: T'y = {(#,0); ¥ € w},
'y ={(, —-D(%)); ¥ € w} and I'; = {(Z, 2); ¥ € Ow, —D(¥) < z < 0}. Including, as it is
usual ([4]), centripetal effects into the pressure term, the three-dimensional model is:

Ot + (4 - V)T + u30.0 — v AU — 1,020 + o™ + Vp, = F in (0,7) x 9,

0
v-(/ ﬁ(t;f,z)dz) — 0 in(0,T) xw,
(EP) -D(@)

ﬁ|t:0 = ’IIO in Q,

in (0,7).
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Here, we denote Z = (z,y), V = (0,,0,) and A = 92, + 02, The unknowns are the
horizontal component of flow velocity @ = (uy,ug) : (0,7) x © — IR? and the surface
pressure pg : (0,7) X w — R, whereas the vertical component of the flow velocity is

us(t; 7, 2) = —/ o VG Es)ds, VEEO.T), V(#z) en 2)

-D(@
Moreover, v, and v, > 0 are positive constants, representing horizontal and vertical (eddy)
viscosity coefficients respectively, F': (0,T) x Q — R? is an horizontal external force field
(depending on temperature and salinity, for instance) and 7 : (0,T) x 'y — IR? represents

the horizontal stress on the surface produced by the wind. Finally, ait = a(—usg,u)

models Coriolis effects, the no-slipt condition is assumed on the bottom and vertical
slipting is permitted on the sidewalls.

To give a variational formulation to problem (EP), let us define the following function
spaces:

Cp3 () = {F € C*(Q)? supp(P) is a compact set C Q\(T, UT,)},
Hy () = TE‘Z’Hl(Q) ={te H' ()% v=00on UL}, H,'(Q) = dual of H} (),

V={Fec Q% V(@) =0 inw}, where (§)(&) = / BT, 2)dz,

v=y" = {5e H'(Q* V- () =0 inw, fr,or, = 0}

Definition 1.1 Let @, € H, F € L*(0,T; Hy (Q)?) and 7 € L*(0,T; H-V/(I,)?). We
say that @ : (0,T) x Q — IR? is a weak solution of (EP) in (0,T) if © € L>=(0,T; H)N
L?(0,T;V), verifies the variational formulation:

and, moreover U satisfies the energy inequality:

1. . t o ~
SNl + [ (vall Vil + voll0:lEa ) ds
1 . : 3)
< 5||ﬁo||iz(m+/O (F,ﬁ>9ds+/0 (F.d)r.ds ae.te(0,T).

Here, (-,-Yo denotes duality between H, ' (Q) and Hp,(), whereas (-,-)r, denotes duality
between H=Y/2(T',) and HY?(T,).



Definition 1.2 Let @y € V, F € L2(0,T; L2(Q)?), 7 € L2(0,T; H/2(T,)?) and 9,7 €
L2(0,T; H-3/2(T',)?). Let @ be a weak solution of (EP) in (0,T), we say that @ is a
strong solution if verifies the additional reqularity conditions:

@€ L®0,T;V)NL*0,T; H*(Q)*NV), o € L*(0,T; H).

The existence of a weak solution is well known, see Lewandovski [3] and Lions-Teman-
Wang [2], always in domains with sidewalls (i.e. D > D, > 0 in @). In these works,
compactness method is used to obtain the velocity @ in a space with the restriction
V - (@) = 0 and the pressure is recovered, in the latter part of the argument, by a specific
De Rham’s lemma on the surface. In domains without sidewalls, the existence of a weak
solution is obtained as a consequence of a limit process applied to the Navier-Stokes
equations with anysotropic viscosity when the ratio depth over horizontal diameter (of
the domain) tends to zero, see Besson-Laydi [5] for the stationary case and Azerad-Guillén
[6] for the evolution case. Finally, the existence of a weak solution in domains without
sidewalls can be proved by internal approximation arguments: a mixed (velocity-pressure)
variational formulation of the stationary problem is approximated by a conform Finite
Element method in Chacén-Guillén [7] and a semi-discretization in time of the evolution
problem is proved that converges to continuous problem in Guillén-Redondo [8, 9].

However, to as far as we know, there are not results about the existence of strong
solution of problem (EP), excepting the stationary linear case [10]. One of the principal
problems in this study is the treatment of the boundary conditions; on the surface we
have a non homogeneous Neumann condition, whereas the sidewalls and the bottom have
homogeneous Dirichlet condition. On the other hand, the uniqueness of the solution of
problem (EP) is also an open problem, even in the case of strong solutions.

1.1 The 2D problem

In this work, we are going to consider mainly the two-dimensional problem (with only
one horizontal direction). In this case, Coriolis forces have not sense. Now, the model is:

Opu + udyu + uzd,u — v 0% u — v, 02 u+0yps = F in (0,T) x Q,
Op(uy = 0 in (0,7) x w,
u,_, = Up in ),

= 0 in(0,7).

(EP,)

Vvazuh“s =T U‘FbUFl

Then, all the unknowns are scalar: the horizontal component of the flux velocity u :
(0,7) x Q — IR and the superficial pressure pg : (0,7) X w — IR. The vertical component

of the flux velocity is us(t; z,2) = — / O,u(t; z, s)ds. One important difference respect
D(z)

to 3D case is that now w C IR is an interval, which changes the function spaces of free
divergence. Now, we have the following simpler characterizations:

V={p € C(Q); (p) =0 in w},



H={veL*N); (v) =0 in w},

V={ve H(Q); (v) =0 in w, Ulp,or, = 0}

Finally, definitions of weak and strong solutions are similar to the 3D case (changing
vectorial notation by scalar notation in v and z, and vanishing the Coriolis term).

Remark 1.1 Now, the 2nd. equation in (EPs) means that (u) only depends on t.

1.2 Main results

In this paper, we will obtain the following main results, all in the 2D case and in domains
with sidewalls.

Theorem 1.3 (Strong global solution for small data.) Let w C R an interval and
D € C*(w) such that D > D, > 0 inw. We assume ug € V, F € L*(0,T; L*(Q)) and
e L*0,T; Hé/%a(I’s)), for some & > 0, with 0, € L*(0,T; H~Y%(T'y)). If the following
“smallness restriction” is assumed: ¥Vt € [0,T],

eap (=gt + [ a()ds) {2 (leoll? + CIr O e, )
—|—/ exp (s—/ (a)da) b(S)ds} < M?,

where M is a small enough positive constant (see Lemma 5.2), C' is a constant that
appears in (11) and a, b are functions depending on the data 7 and F (see (30) and (31)),
then there exists a unique strong solution (u,ps) of (EPs) in (0,T) (ps is unique up to a
function of t).

(H)

Corollary 1.4 (Asymptotic behaviour when t 1 +00.) Let w C R an interval and
D € C*(w) such that D > D, > 0 in @. We assume ug € V, F € L?(0, +00; L*(2))
and T € L*(0, +00; Hé/%E(FS)), for some € > 0, with O,7 € L*(0, +oo; H-Y3(T,)). If the
“smallness restriction” (H) is assumed Vt € [0, +00), then there exist a unique strong
solution u € L*(0, +oo; H*(Q) NV)) N L>(0, +00; V), dyu € L*(0,+oc; H). Moreover, if

+oo 1
[ emn (5t) {IrO R e + 10T @O sy + 1P @} dt < 4o, (4)

there exists two constants Ky, Ky > 0 such that:

1
IVt < eap (~55t) K (2ol + CorO) v, +K2) V20, ()

(i.e. the solution vanishes exponentially in the H'(Q)-norm, ast increases).



Theorem 1.5 (Strong local solution for any data.) Under hypotheses of Theorem
1.3, changing the restriction (H) by Dyue.(= max D) small enough, then there ezists

T. € (0,T] and a unique strong solution (u,ps) of (EP,) in (0,T}).

Theorem 1.6 (Uniqueness of strong/weak solution.) Let u be a weak solution of
(EP,) in (0,T). If there exists another weak solution u of (EP,) in (0,T), such that
verifies the additional reqularity:

o,u € L*0,T; L*(Q)), (6)

then both solutions coincide in (0,T).

Remark 1.2 The arguments to prove all these main results, will not be valid in the 3D
case. On the other hand, the additional reqularity (6) that implies uniqueness is verified by
the strong solutions of (E'P) (and not by only weak solutions). Applying this uniqueness
argument to the 3D case, it is necessary an additional regularity that is not verified by
the strong solutions.

To make the study about existence of strong solutions, it will be convenient to decom-
pose the problem (EP) in two: one linear problem (L) with nonhomogeneous boundary
conditions on the surface, and a nonlinear problem (P) with homogeneous boundary
conditions.

This paper is organized as follows. In Section 2, we prove some technical inequalities
that we will use in the following.

The linear problem (L) is studied in Sections 3 and 4, whereas the study of (P) (by
means of a Galerkin method) is made in Section 5, where the proof of Theorem 1.3 is
finished. Indeed, in Section 3, using the known results ([10]) about strong solution of the
linear stationary problem (Lg), we deduce some properties of the differential operator
associated, that we apply in Section 4, arriving at the existence and uniqueness of strong
solution of (L) (all these results are valid in any space dimension).

In Section 6, we present the proof of Theorem 1.5, based in a fixed point argument (in
particular, it is not possible to make a Galerkin argument as in Theorem 1.3). Finally,
the uniqueness of weak solution assuming that a strong solution exists (Theorem 1.6), is
proved in Section 7.

2 Some technical results

First, we see three technical lemmas that we will used several times in this paper:

Lemma 2.1 Let Q C RN (N = 2 or 3) be the domain considered in this work (defined by

(1)). Then, for all G € WHP(Q)N=1 (p > 1), if we define v3(T,z) = —/Z ( )V - U(@, s)ds,
D@
one has:

lvsllzr@) < DmaallV - 0l o)



Proof: It is a consequence of Fubini’s Theorem:

losliney = [ 1], V- 8@ s)ds

—D(@)

’ (i P — p/p/
/Q </—D(f) V- 9(&, 9)] ds) (z+ D(2))"'? dQ2d=

. // V- s)|p(/80(2+D(f))p/p/dz>dﬂds

maw p Dglaa: =P
s [ [ (V0@ 2 Pdftds = 22|V -

p

dQdz

IN

IN

Lemma 2.2 (Interpolation inequalities.) Let Q@ C RY be a Lipschitz-continuous
domain. The following inequality holds:

— S l— — — —
[ o0y < Clllly Ry T4y, Vi € WHY ()N, (7)
where N < g < p < +o0.

Proof: It is taken from the Nirenberg’s paper [11], where is proved the result when
Q= R"Y. Here, we adapt the proof to a Lipschitz-continuous domain §2.
For this, we pass these inequalities to € using a prolongation operator [12]

E - Wl,l(Q)Nfl — Wl,N(]];{N)Nfl’

verifying ), = @ and |Etd|lyrvmyy < Clldllwivg), Vi € WH(Q)N!, for some
C' = C(Q) > 0. Nirenberg’s result says

| Bill gy < ClBly gy | Bl o)
Therefore, since ||u||zr) < || Bl poryy and || B||powyy < Cl|t]|Laq), we arrive at (7). m

An easy application to the above Lemma and the Poincaré’s inequality, give us the
following:

Corollary 2.3 Let Q C IRYN be the domain considered in this work. The following in-
equality holds:

— S l— — — 1,N _
1] o0y < CIVll N 1| gy VT € Wi ()N, 8)
where N < g < p < +00.

Remark 2.1 The main advantage of the 2D case is to consider (7) and (8) for N = 2.
In the following, we will call Gagliardo-Nirenberg’s inequality to (7) or (8) in the case
N=2p=4andq=2, ie.

1/2 1/2

lullps@y < Cllull g llullig Yue HY(Q), 9)
1/2 1/2

s < CllullfioVullisg, Yu€ Hyy(Q). (10)



3 The stationary linear case

In this Section, we will see some preliminary results about the linear stationary system
(also called hydrostatic Stokes system):

—vp At — v,0*° 0+ Vps = ¢ inQ,
V - (u) 0 in w,
(Lat) vd.ii — @ onT.,
U = 6 on Fb U Fl.

3.1 Known results about existence and uniqueness

Lemma 3.1 (Weak solution of (L)) Let w C R® (d = 1 or 2) and let Q C R4
defined as in (1), be a Lipschitz-continuous domain. If § € H,;ZI(Q)d and @ € H-Y/2(T,),
then the problem (L) has a unique solution @ € H*(Q)?. Moreover, one has the contin-
uous dependence, i.e. there exists a constant C = C(, vy, v,) > 0 such that

Il < € {ll-sraey + 12 oy - (1)
In [5], [7] and [3], there are different proofs of this result (even in the nonlinear case).

Lemma 3.2 (Strong solution of (L)) Let w CR® (d =1 or 2) be a C? domain and
D € C?*(@) with D > Dypip > 0inw. If §€ L*(Q)? and @ € H3/2+E(Fs)d, for some ¢ > 0,
then the unique solution @ of the problem (Lg) belongs to H*(Q)4NV . Moreover, we have
the continuous dependence, i.e. there exists a constant C' = C(Q2, vy, vy) > 0 such that:

|0y < € {1l gpraee ey + 172260 - (12)

See [10] for the proof of regularity. The continuous dependence can be deduced fol-
lowing the construction of the auxiliary problems made by Ziane in [10].

3.2 The hydrostatic Stokes operator

We define A, that it will call “hydrostatic Stokes operator”, as the resolvent operator
related to the homogeneous Neumann boundary conditions on the surface and Dirichlet
boundary conditions on the bottom and sidewalls, i.e. A:V — V' such that

(AT, Tyyry = /Q (Vi : Vi + 0,0, - 0.5)dQ Y, 7eV. (13)

Then, if we denote ¢ = Au € V', from Lemma 3.1, ¢ is the unique weak solution of the
hydrostatic Stokes problem (L), with @ = 0. Moreover, taking into account Lemma 3.2,
A is a self-adjoint isomorphism from H?(2)> NV to H. In particular, if A7 = § with
g € H, 4 is characterized as the unique strong solution of the problem (L), with @ = 0.
Finally, the domain of A, defined by

D(A)={u; ueV and Au € H}.

can be characterized as follows:



Lemma 3.3 Letw C R? (d =1 or2) be a C? domain and D € C*(@) with D > Dy, > 0
mw. Then

D(A) ={u; @€ HX(Q)?NV and 0.4 =0onT,}. (14)
Moreover, there exists C = C(S2, v, v,) > 0 sucht that
| g2y < O || At 12y Vi € D(A). (15)

Proof: Let Y be the right hand side of (14).

a) D(A) C Y: Let @ € D(A). If we denote § = Au, then 4 is the weak solution
of (Ly) with @ = 0. As § € H, from the Ziane’s regularity results [10], we deduce that
@ € Y, and the continuous dependence (12) says:

4] 2y < C |G| r200) = C || At 120

b) Y € D(A): Let @ € Y. If we denote f = —1,Ali — 1,02, then f € L2(Q)? and
Al = Pf, where P is the ortogonal projection from L?*(Q)? onto H. Hence A@ € H, i.e.
ue D(A). n

3.3 Construction of a special basis

In this subsection, we will prove the following result:

Lemma 3.4 Under the conditions of Lemma 3.3, there exists a sequence {\;};>1 C R
with 0 < A < Xy < .. <A < Ay <., {Aj} = +o0, and an orthonormal basis of H,
{w};51, where each W is an eigenfunction of A associated to eigenvalue ;.

Proof: Let A : H — D(A) — H be the operator that associates each § € H to
i € D(A), the unique strong solution of the problem (L) with @ = 0 (i.e. A = §). This
is an compact (using Lemma 3.3 and the compact embedding of H?(2)2NV into H) and
self-adjoint operator

(A§17§2) = (61752) = (UlyAl_L)?) = (Aﬁlal_l:2> = (§17A§2)'
Then, as H is separable, we can apply the Hilbert Schmidt’s Theorem (of spectral de-
composition), and there exists an orthogonal basis of H formed by eigenfunctions of A,
{Uj}j21 (Al_)v = /Ljﬁj, where i \ 0 asj /‘ +OO) Let )‘j = 1/,[113 and 7 = ,U/jﬁj. Then
Azl = )\;Z, and the sequence @’ = Z7/,/); is the orthonormal basis of the Lemma. =

4 The evolution linear case

In this section we will study the strong solution of the nonstationary linear problem:

T — AT — 1,20+ Vq, = f in(0,T)xQ,
V) = 0 in(0,7) X w,
(L) Tji=o Up 1in €2,
v,0,0 = T on (0,T)x T,
7 = 0 on(0,T)x ([yUT)).




Theorem 4.1 Let w C RY (d = 1 or 2) be a C* domain and D € C*(w) with D >
Dpin > 0 inw. If f € L2((0,T) x Q)%, 5, € V, 7 € L*0,T; H5/2+E(Fs)d), for some
e >0, with 0,7 € L*>(0,T; H-Y2(T,)?), then there exists a unique strong solution v of (L)
in (0,7). Moreover, there ezists C > 0 sucht that

1813yt 1113200y + 10822001y < CLIT N + 1O 12121
y (16)
1 Beay + 1712 e oy 10T 217200, )

Proof: Uniqueness can be easily deduced from the linearity of the problem (L). The
proof of the existence will be separate in several steps.

Step 1. Weak solution of (L). The weak solution ¢ of (L) in (0,7") can be obtained
as a limit of Galerkin approximations @,, € C'([0,7T];V,,) (being V,, a m-dimensional
subspace of V') such that

d
& G g+ [ Vi VG + v, [ 0. 0.G00
dt Ja Q £

(L)m :/Qfm.gdeJr/ T Bledo VG E Vi,
s

U, (0)  being the projection of ¥y onto V,,,

where f,, € CO([0,T); H, ' (2)?) and 7, € C°([0,T]; H~*/*(I',)?) are respectively regular
approximations to f and T.

Taking #,, as test function in (L),,, one can deduce that the sequence ,, is bounded
in L°°(0,T; H) N L?(0,T;V). Passing to the limit in a standard way, we obtain the weak
regularity for v.

Remark 4.1 (Weak solution of (EP)). Galerkin approzimations of nonliner problem
(EP) are similar to problem (L),,. The only differences are the nonlinear terms:

/Q {(ﬁm V)t + Umsazﬁm} - gdsQ,

where w3 is defined from V - @, as in (2). But, these terms vanish when i, is taken as
test function, hence we can also deduce that i, is bounded in L>(0,T; H) N L*(0,T;V).
Now, by using a compactness result (estimating Oy, in a convenient space), we could
pass to the limit and obtain a weak solution U of (EPy) in (0,T).

Step 2. “Lifting” of the Neumann boundary conditions. We define the operator
B:de€ HYX I, — @ = Ba € V, where i is the weak solution of the hydrostatic
Stokes problem (L) with ¢ =0, i.e.

—, —,

@€V suchthat (Ad )y = (@), Vi eV



Then, let us define
ét) = B(7(t)) a.e. te(0,7T).

From Lemma 3.2, since 7(t) € H1/2+5(F ) a.e.t € (0,T), we have that €(t) € H*(Q)?NV
a.e. t € (0,T), and

el < CIFOl g oveg,
Therefore, € € L*(0,T; H*(Q)?NV) and

€]l 2(m2@)) < CHITI pogggirze o,y (17)
On the other hand, we have

0,€ = B(0,7(t)) a.e.t e (0,T). (18)
To prove this one, we define g(t) = B(0,7(t)) and

et + 5()5 —et) Gt = B (7?(t + 5; —7(t) @F(t)) .

Us(t) =

— 07 (1),

From Lemma 3.1, for a =

T(t+0) — 7(t) .
5 — 07(1)

1ol < C

H—l/Z(FS)

The last expression tends to zero when § — 0, hence, ||U5(t)||m1() — 0. Therefore, we
conclude (18). Moreover, Lemma 3.1 for @ = 0,7(t) says

10:(t)|lv < CoT()]| -2,y a-e.t € (0,T).
Therefore, as 0,7 € L*(0,T; H~'/?(T,)), then 0,& € L*(0,T;V) and

[0l 2vy < C 0T 21720, (19)
In particular, € € C°([0,T]; V). Moreover, from (19),
leZwey < C {IEO)IF + l1ellzw) 19 2 | o)
< C{IFO)Z ey + 17212y + 1072 g2} -

Step 3. Strong solution of the resulting problem (with homogeneous boundary
conditions). If we decompose the solution ¥ of (L) as ¥ = €+ i, where € is the regular
function furnished in Step 2, then ¥ is the solution of the resulting problem:

O — A — 1,027+ Vi, = h in(0,T) x €,
V- {y) 0 in(0,7) xXw
(1) §li=o Yo in €,
1,0,§ = 0 on (0,T7) x T,
7 = 0 on(0,T)x (IyUTy),

10



where h = f— 0,6+ v AG+ 1,026 € L*(0,T; L*(Q)%) and §j, = & — €(0) € V. Obviously,
the proof of Theorem 4.1 will be finish if we show existence of strong solution ¢ of the
problem (R) in (0,7).

Let V},, the subspace V' generated by {w?, ..., w™}, where {w’};>; is the basis of eigen-
functions furnished in Lemma 3.4. It is easy to prove that the weak solution 7 of (R)
in (0,7) can be obtained as a limit of the Galerkin approximations, 7, : [0,7] — V.,
solving the ordinary differential problem:

d
%/ﬂgm( vmdQ+uh/ Vym(t) vadQ—l—uv/ 0. Ym (t) - 0,0, dS2

(R)n! = /Q Tin() - TS, Vv € Vi,

Ym(0) = Yom = X724 ( /Q Vi : vw%m) i

being Em regular approximations to h.

Now, we are going to obtain strong estimations for ¥,. First, by construction, ¢, €
Vi and gom — 9o in V. Considering v, = Ay, (t) € V,, as test functions in (R),,, we
obtain: V¢t € [0, 7],

d R - —
*||ym(t)||%/ + |AGm () 720y < M (01720

Here and in the sequel, the notation |71, = v4||[VillZ2q) + vull0:7721) will be used.
Integrating in time:

O+ [ AT 0 st < Wionl+ [ Wi (030

Then, the sequence (¢,,) is bounded in L*(0,7; D(A)) N L>(0,T;V), hence the limit
verifies ¥ € L*(0,T; D(A)) N L*(0,T; V) and

177 vy + 137132 n0ayy < C NGl + 1BI1Z2 200y - (21)
On the other hand, taking 0;4,,,(t) € V;, as test functions in (R),, and integrating in time,

10:Gm |72y < NTom T + 1Pl 722202 -

Therefore, the limit 9,57 € L*(0,T; H) and
10172 a1y < C{H?fo”%/ + HhH%Q(LQ(Q))} ~ (22)
Finally, from (21) and (22), using that 7, = @ — &(0) and h = f — 9,6 + v A& + 1,02,
1710 vy + 1132 (p0ayy + 10132y < CLITONE + [1€(0) 17 )
23
Iz + el ey + 1080172z )

Using the above bounds of the € and , (17), (19), (20) and (23), we conclude the
estimation (16). n

11



5 Global strong solution for small data

5.1 Proof of Theorem 1.3

We focus our study on the strong regularity of the problem (EP;). To do that, first we lift
the nonhomogeneous Neumann boundary condition v,0,u|r, = 7, considering the lifting
function (e(t), gs(t)), the strong solution of the two-dimensional version of problem (L),
with @ = 7 and f = 0 (this solution has already been used in Section 4). Then, it suffices
to study the following problem that verifies (w = u — e, 7y = ps — qs), being (u,ps) a
solution of (EP;),

Ow + (w + e)d,w + (w3 + e3)d, w
+wdye + wzd,e — v 02w — v,0°w + O, = F(e) in (0,T) x Q,
Op(w)y = 0 in (0,7) x w,
wy,_, = wo in €2,
v,0,w = 0 on (0,7) x Ty,
w = 0 on (0,7) x (I'b UTY),

where wg = ug — €(0) and F(e) = F — Oie — ed,e — e30,e. We will study problem (P) in
several steps.

Step 1. Existence and weak estimates of the approximate solutions of (P).
We approximate w by w™, the Galerkin approximations in V;, = span{w!,...,w™}, being
{w7};>1 the eigenfunctions of the hydrostatic Stokes operator A (see Lemma 3.4). This
is, w, € C'(0,T;V,,) and satisfies the following variational formulation (in V,,), where
F,, denotes regular approximations to F,

/Q (iwm + Aw,, + (wm + e)aa;wm + (wm3 + 63)azwm> Uy dS

—I—/Q (WOl + Wp30,e) vy, d) = /Q (Fn — €0re — e30:)vp,d) Yy, €V, (24)

Wi (0) = W = Z (/ Vuwy - ijdQ> w.
j=1 M9
In the sequel, we denote F,, = F.

To prove existence of solution w,, of (24), we write
wnltiz,2) = 3 658w (x, 2). (25)
j=1

Introducing (25) in the expression (24) for v,, = w', i = 1,..,m, we conclude that w,,
is a solution of (24) if only if {¢;}7-, € C*([0,T])™ and verifies the following ordinary
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differential problem:

S ayd (1) + 3 by (06,0 + 3 cndi()6;(t) = dilt) en (0,T), 1< < m, .
J=1 7=1 l,j=1 2

,(0) :/Vuo-ijdQ, =1, ..m,
Q
where the coeflicients are:
;j = /ijidﬂ,
Q

bii(t) = /Q { (e(t)@ij + e3(t) 0w’ + widye(t) + wgaze(t)) w'
+ 0w’ dpw' + Vvazwjﬁzwi}dﬂ e C°[0,T)),
Cijl = / {wl(?ij + wé@zwj} w'dsY,
Q

d(t) = /Q [F(t) — e(t)d,e(t) — es(t)D.e(t) buwidQ € CO([0, T)).

Using that {w’} is an orthonormal system in H, it is easy to prove that the matrix
(aij)i%—; is symmetric and definite positive (uniformely in (0,7)). In particular, matrix
(aij)i%—, is invertible and, therefore, (26) can be written as a Cauchy problem:
' =g(t,®), tel0,T]
P Y Y . Y Y
(PC) { ®(0) € R™ given,

where g : R™™! — IR™ is a continuous function respect to (¢, ®), and smooth respect to
® (in fact, g(t,-) is a polynomial function). By Picard’s Theorem, one has existence and
uniqueness of local solution ® = (¢;),, i.e. define in a interval [0, 7,,) for some T, > 0.

By uniqueness of the approximate problems for u,, and w,,, one has w,, = u,, — e.
Then, the weak estimations obtained for w,, (see Remark 4.1) leads to the same weak
estimations for w,,. In particular, taking into account expression (25),

SI0(0F - [ fin<C viep)

Therefore, the positive semitrajectory of @, {(s, ¢1(s), .., dm(t)) € R™, s € [0,Tn)}, is
bounded in R™*!, so that ® can be extended to all [0, 7]. From this fact, we conclude
existence of the approximate solution w,, in all [0,7] and their corresponding weak esti-
mations.

Step 2. Strong estimates of the approximate solutions of (P): We recall the
convection for the V-norm that follows:

IV = vall9avlZa (@) + vl 0012 0)-

13



Lemma 5.1 The following estimate holds:
%”wmn%/ + HAme%?(Q) < G DmawHAwm”%?(Q)meHV + C2||wm||4\1/

+ s {llell¥ llell?2 ) + (Dan + 1) lelliaayllel? } llwmllF

+Cllell @ llelly: (llell 2@ + D llellize)

(27)

+ C5 | F 120y + Co |07z
for some C; >0,i=1,..,6.

Proof: Taking v,, = Aw,(t) € V,, as test functions in (24) (here, we have used the
properties of the A-eigenfunction basis), one has:
1d
2dt

_/Q(wmg + e3) 0, Wy, Aw,, dS) — / Wy Oy Aw,, dS2 (28)

lwnllf + [ Awn ey = = [ (wn + €Ot Awnd

/wmgﬁ eAwmdQ—l—/ e)Aw,,dQ = Z[

=1

We bound the right hand side (using Lemmas 2.1, 2.2, 2.3 and 3.3, and the weak
estimates for w,,):

L < || Awnl2@)l10xwnll @) (Jlwnllze + ez )

3/2 1/2 1/2 1/2 1/2 1/2
< O Awn 350y 10wl oty (IVwm | iy lomll ol + 1V el oty lell oty

1
1ol AwnlZao) + Cllwamlf (lomlly + llelllel 22 o))

IN

Iy

IN

[ Awn | 220 10w | () (s Nl o) + llesllzoey)
3/2 1/2
< Dy | Awn [ 724y 100l 5 (1010l 220) + 10l a0y
3/2 1/2 1/2 1/2 1/2 1/2
< Ol Awn [Pty It/ (Il Awn | otgy 1wl i/ + el 12 g el )

1
< CDpa| Awn|[ 72y lomllv + 751 Awml|z2(0) + C D llwm [V lle 2oy el

Iy < wm | Lao)l|0zell La) | Awm| 20
1/2 1/2 1/2 1/2
< CllAwnl| 2@l 1wl 2oy el oo el
1
<

TollAwmlza@ + C lwnlvllelzw el

14



I

IN

[wms | La |19-€ll ae) | Awml| L2()

IN

Dma:v||8acwm||L4 Q) ||az€||L4 Q) ||Awm|lL2 Q)

3/2 1/2 1/2 1/2
C Do | At |57 1w 12 e 72 el

1
TollAwnlze@) + CDmasllwnlly el llelly

IN

IN

1 5
I < [[Awnllz@|IF(€)llz@) < 15l Awnllzz) + S (€)[z20)

To bound the [[F(e)||72q term, we write:

5 4
SIF@720) < C{IIFllz20) + 10eel 2oy + lleduel T2y + llesdeelzze f = D= i

i=1
where:
Js < Ovellsollelis < Cllelm@llell el
Ji < llesllZao10:€lLs0) < DiaellOrellLall0zel 11 q)
< CDrQnaxueuHQ(Q)HeHV
Incorporing all these bounds in (28), we have (27). "

The most difficult term in (27) (to bound globally in time) is C1 Dyag || Awn |72 [ wmlv-
One possibility is to control this one with the [|Awy,[|72q, term of the left hand 81de of
(27), when small data are assumed.

We rewrite (27) in the form:
Dl + 1A o0 (1~ Co Dy
(20)
< Callwll + at) w3 + b(0)

where:
a(t) = Cy{llel}llel?2@) + (Dhae + Dllel3ewllel? |
bt) = Cullellmllel? (llellzzo) + Diaellell ) (30)

+ G5 ||F[|72i0) + Co l|0iel 20

It is easy to check that a, b € L'(0,T). Indeed, using the estimates for e (17), (19)
and (20), one has
lallzrory < Cs(Dhp + DA(T)?,

max

(31)
1Bllzior) < {CH(Dh + 1) + Co} A(T)* + C5[|Fl[72(12(0y)

where A(7)? = (2 (HT(O)H;{W(F 72, g r2ve gy 10 e ))). .
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Lemma 5.2 Under the hypothesis (H) of the Theorem 1.3 and supposing (29), let M be
a constant such that :

(a) 1 — CyDyacM > 1/2,
(b) CyM? < 1/(4C),

(Cy and Cy are the constants that appear in (29) and C > 0 is the equivalence constant
between || Aul|z2 and the H*-norm, see Lemma 3.3), then

lwm(@®)llvy <M, Vtel0,T].

Proof: Arguing by contradiction, we suppose there exists some instant in (0,7") where
the bound M is reached. Let t* the smallest of these instants, ie. |wn,(t)|v < M,
Vit e [0,t*) and ||w,(t*)||y = M. Then, Vt € [0, t*],

1— CleaJ;”wm(t)Hv >1- CleaxM > ]_/2

In the last estimation, we have used hypothesis (a). If we denote y(t) = ||w,,(t)||3, using
that & |lwn|[} < ||Awm||L2 (see (15) in Lemma 3.3), (29) yields:

Y1) + 559(0) < CM?y(t) + a()y(t) +b(t), Vi€ [0,¢]

Now, from hypothesis (b),

YO+ 5ult) < aly() + 40, Vee o] 32)

Integrating this differential inequality between 0 and t*, we obtain:

y(t*) < exp( —t +/t* dt) +/t* exp (t—/o (s)ds> b(t)dt}

Therefore, since

y(0) = llwmoll} < lwolly < 2 (luolly + le@)IF) < 2 (luolly + C2 O 1512, -

hypothesis (H) implies ||w,,(t*)|lv < M, hence we arrive at contradiction. =

Step 3. Proof of Theorem 1.3: From Lemma 5.2, w,, is bounded in L>(0,7;V).
Moreover, applying hypothesis (a) of Lemma 5.2 in (29), one has

d 1
Zlonly + Sl Awn|iaq) < CoM* + Ma(t) +b(1), (33)

hence, integrating in time, we deduce that wy, is bounded in L?(0, T'; H*(2)). On the other
hand, taking 0;w,,(t) € V,, as a test function in (24), integrating in time and using the
above regularity, one deduces that 9w, is bounded in L?*(0,T; H). Then, by a standard
argument of passage to the limit, we obtain that w (and a surface pressure associated ;)
is a strong global solution of (P). Finally, (u,ps) = (e + w, ¢s + ms) is a strong solution of
(EP,) in (0,7). The uniqueness of strong solution of (EP;) stems from Section 7. n
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Remark 5.1 In the 3D case, we cannot obtain the above strong estimates. It is because
in the right hand side of (27), if we estimate the corresponding I term, we obtain a bound

of the form
5/2 1/2
DmaxHAmeL/Q(Q)meHV/

which cannot be controlated with the left hand side of (27).

5.2 Proof of Corollary 1.4.

Let us first prove existence of a strong solution of (EP,) in (0,4+00). The argument is
based in Step 1 and 2 of the proof of Theorem 1.3. In particular, it is not difficult to
obtain the global weak estimations:

w,, is bounded in L*(0, +o00; V') N L>(0, +-o00; H).

Now, using hypothesis (H) in [0, +00), we can deduce that |w,,|v < M, Vt € [0+ o0).
Let us change Step 3. Instead of (33), we rewrite (29) as:

d 1
lwnlly + Sl Awn|z2q) < Co2M wnlly + Ma(t) + b(2).

Using that w,, is bounded in L?*(0, +00; V) and a, b € L*(0, +0c) (thanks to (31) and the
global regularity of 7, d;7 and F), we have that w,, is bounded in L?(0, +oo; H?(2) N
V). Then, we can conclude the existence of a strong solution u € L*(0,+o0;V) N
L*(0, 4+00; H*(2) N V) and dyu € L?(0, +o00; H).

d
Now, let us see the asymptotic behaviour of u. Adding in both parts of (32) g le(®)]|3+
1
—|le(®)|I}, taking into account that
4C
d 2
el < 2[e@)llvldet)llv,

we obtain for z(t) = ||w,,(t)]|? + |le(t)]|? the inequality:
, 1 1
20+ (35 — al®)) 2(0) < b(E) + 55 le@ +4CT A}

1 ¢
Multiplying by exp (ZLCt — / &(s)ds) and integrating on (0, ),
0

2(t) < eap <_416’t+/0ta<8)d8) {Z(O) (34)

v [Cean (55— [ al0io) (b + 5glle)E +4CIae)R ) ds).

Now, using that |Ju.,(¢)|3 < 2z(t),

Jun)l < eap (~4t) Ko {200
o [en (550) (660) + 5 @R +4C1ae(s) 1) ds),

17



where Ky = 2exp(|lallzi(o-4o0) ) Since 2(0) < 2lfuol} + C2[7(0)%-1 e (r -
convenient way b, e and O,e (in function of 7, 9,7 and F'), we can deduce the asymptotic
behaviour (5) whenever the hypothesis (4) holds. =

bounding in a

6 Local strong solution for any data (proof of Theo-
rem 1.4)

We want to apply now a fixed point argument to obtain strong solution of (EP;), local
in time, but for any data. Now, we study problem (@), which is similar to (P) but whose
solution is (w = u — v, Ty = ps — ¢s), where (v, qs) is the solution of (L) with vy = 0
anf f = 0. With this purpose, we rewrite (Q)) as a fixed point equation by means of a
linearisation. We define, for each T" > 0:

Y(T) = {w; w € L*0,T; D(A)) N L=(0,T:V), 8w € L2(0,T; H),
@(0) = o, 0]y + 1@ 22(piayy + 1001320y < B2}

Given v the strong solution of (L) in (0,7") and w € Y (T'), we consider the linear problem:

ow — vp 02w — 1,02 w + O,y = G(w,v) in (0,T) x Q,
O{w) = 0 in (0,7) x w,
(@) w),_, = Uo in €2,
v,0,w = 0 on (0,7) x T,
w = 0 on (0,7) x (T, UTY),

where G(w,v) = F — (0 4+ v) 0, (0 + v) — (w03 + v3)0,(w + v). Problem (@) is similar to
problem (R), which has already been studied in Section 4. Therefore, since ug € V' and
G € L*((0,T) x Q), then w € L*(0,T; D(A)) N L>=(0,T;V) and d,w € L*(0,T; H).

First, we are going to prove that, there exists R? large enough such that Y (7)) # 0,
VT > 0. Indeed, let w, be the unique solution of the hydrostatic Stokes problem:

Ow, — V02w, — 1,02 w, + Oy = 0 in (0,T) x Q,
O(w,) = 0 in(0,7) X w,
Wip=o = U in ),
v,0,w, = 0 on (0,7) x T,
w, = 0 on (0,7)x (I'yUIly).

Following the reasoning of the problem (R), see (21) and (22), we know that:
Hw*H%OO(V) + ||7~U*H%2(D(A)) + ||8tw*H%2(H) < uol%, (35)

therefore, taking R? > ||ug||%, then w, € Y/(T), VT > 0.
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Now, we introduce the Banach space Xy = L?(0,T;V) and the mapping
¢ Y(T) — Xp, given by ®(w) = w,

where w is the unique solution of (Q);). Obviously, a fixed point of ® solves problem (Q).
Arguing as in problem (R), we have:

||U)H%oo(1/) + Hw”%?(D(A)) + Hath%?(H) < uoll¥ +C HG<U_)7U)”%2(L2(Q)) (36)

On the other hand, v verifies problem (L), with inicial data zero and homogeneous
second member (i.e. v9 = 0 and f = 0) but a nonhomogeneous Neumann boundary
condition (7) on the surface. Then, v satisfies the estimate (see (16)):

||UH%°°(V) + ”UH%?(H?(Q)) + HatU”%?(H) < B(7)*, (37)
where B(r)? = C{ITO) 1 aqy + 1712, urove oy + 10 sy ey -
Now, we want to find conditions to apply Schauder’s Theorem.

1) 3T. € (0, 7] such that ®(Y(T})) C Y(T.):
Let w € Y(T) and w = ®(w). Then:
|G (W, ) 22y < 9 {||F||%2(L2(Q)) + [[(@ + v)0.(w + US)”QLQ(LQ(Q)) )
38
+ [1(@s + 030 + 0)lFa 2y } = 2
=1

We bound each term I; (constant G will come from the Gagliardo-Nirenberg’s inequal-
ities, see Lemmas 2.2 and 2.3, whereas C we will denote different constants independent
of R, B(T), Dpmas and T'). First, we estimate

(@ + 0)0:(@+ )72y < 0+ 0[[Faell0:(@ + )74

IA

4 (@l34) + 101250y (1020 ]1340) + 1020500

< 4G (|@llvl@lew + lollvivliew) (ool + vl -
Integrating in (0,7"), taking into account definition of Y (7") and (37),
L < AGPTY2 (|| ooy 0] ooty + 0]l Loy 19l )

X

(@]l oo @ 10| z2az2(0) + N0l oy 19l 2z )

< CTY*(B(r)*+ R%)”.
In a similar way, we bound the vertical velocity terms as follows:

(s + v3)0:(0 +v)[[Fai) < s+ vs]|Fa ey 10 (@ + )7y
< 4 (llwsl3a) + loslZay) (10-01 5y + 10011310
< 4D, (10:01 40 + 1020340y ) (10:0113 10y + 100112410y )
< 46202, (1@l w@lloly + [ola@lolv)
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Therefore, integrating in (0, 7),

_ _ 2
I < 4C D%, (@]l opllollew) + lollzae@lvl )
< CD?2, (B(1)?+ R%”.

max

In the last estimates, we could not obtain any power of T, and this fact is the main
difficulty in our argument. Indeed, inserting all the above bound in (38),

|G(w, U)”%Q(L?(Q) <C {HF”%Q(LQ(Q)) + (B(7)* + R?) (ngx + T1/2>} (39)
Then, from (36) and (39),

[0l Foiy + Nwiiz2peay + 10w 720y < [luoll

b {1y + (B4 R (Dt T}
The above inequality can be written as
w7 vy + 1wl Zagrraiey) + 1072y < aR* + bR + ¢,
where, for some C' = C(Q, vy, v,) > 0,
@ = C (D}, +T"?),
b = 20B(1)* (Dhu. +T'?),
¢ = luoll} + C{IIFI3 010200 + B (Dl + TV) }.
Taking R? > ||ug||?- (hence Y(T') # (0, VT > 0), one has w € Y(T') whenever
aR* +bR* + ¢ < R*. (41)

In the following, we will see that for any data F', 7, ug, (41) is verified. A necessary
condition to (41) is b < 1. But, it can also find some sufficient conditions. Indeed, one
possibility is to impose the following three conditions:

Condition 1: D,,,, and T are small enough sucht that

1
b < —.
-2

For instance, 2C B(7)? D?,,. < 1/4 and 2C B(7)?T"? < 1/4.

max

Condition 2: R? big enough such that

c< -R2%

] =

Condition 3: a small enough (i.e. D,,q, and T small enough) such that

1
R?< .
“h =
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In conclusion, there exists T, € (0, 7] and D,,,, > 0 small enough, such that for some
R big enough, one has ®(Y(T,)) C Y (T.).

2) Y (T.) is relatively compact in Xr,.

Let Wy, = {w; w € L*(0,T,; D(A)) and dyw € L*(0,T,; H)}. Y(T.) is a bounded set
of Wy, and Wy, is embedded in a compact way in Xr,. Therefore, Y(T,) is relatively
compact in Xy, .

3) Y(T.) is closed in Xr,.

Let {w,},>1 C Y(T.) such that w, — @ strongly in X7, (i.e. in the L?(0,T;V)-
norm). Let us see that w € Y(T,). As {w,}n>1 is bounded in Wr,, in particular, there
exists a subsequence {wy} of {w,} such that:

w, —w in L*(0,T,; D(A)NV),

Oy, — Oyp i L2(0, To: H). (42)

Then, applying a compactness result of Aubin-Lions type [13]:
wy — w  in C([0,T.]; H).

Therefore, since wg(0) = ug, Yk > 1, then w(0) = up. By lower semi-continuity of the
norm,
107 vy + 01 72(pay) + 107002 g,

< liminfy 1o <Hw1~c||2Loo(V) + 10kl 22pay + Hatwk|’%2(ﬂ)) < Rr?

then w € Y (7}), hence Y (7)) is closed in Xr,. This one, jointly with 2), imply that Y (%)
is compact in X, .

4) & :Y(T,) — Y(T,) is continuous respect to X, topology.
Let {w,}n>1 C Y(T.) such that w, — @ strongly in Xr,. Let us prove that:

O(w,) =w, — ®(w) =w strongly in Xr,.

As also {wy, }n>1 C Y(T)), there are subsequences {wy} of {w,} and {wy} of {w,} such
that

W, — W, W E WT*

wp W, weE WT*
(where the above convergences are as in (42)).

If we consider the system verified by wy and we pass to the limit as & — +o00, we ob-
tain that w is a solution of the problem (Q);) with second member G(w, v). By uniqueness
w = ®(w) = w. Therefore, wy — w weakly in Wy, and, by compactness, wy, — w in
Xr,. Finally, all the sequence converges.

5) Existence of a fixed point. As Y(7)) is a convex compact set of X, and ® is
continuous respect to X7, topology, applying the Schauder’s Theorem we deduce the ex-
istence of a fixed point w of ® in Y (7). Therefore, w is a strong solution of (@) in (0, 7})
(if T, verifies jointly with D,,,, the conditions 1 and 3). n
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Remark 6.1 Again, in the 3D case we cannot bound the nonlinear vertical convection
||w382w||%2(g) i function of the strong regularity. Concretely, we obtain a bound of the
form

— 113 _
[@][Deay @]l
which cannot be bounded using the definition of Y (T'). Therefore, we cannot continue with
the Fixed Point reasoning.

7 Uniqueness of weak/strong solution (proof of The-
orem 1.6)

We start from a weak solution u of the system (EP) (see definition 1.1), in particular u
verifies the energy inequality:

1 t
@y + [ (vll0sullfae + voll0ulFaey) ds
(43)

]_ t t
< f||u0|]%2(ﬂ)+/0 (F, u)mls—i—/o (r,u)p,ds, a.e.t € (0,T).

Suppose that there exists another weak solution @ more regular (associated to the same
data up and F'). The idea is to find under what regularity conditions, only on 4, we have
that u = u. Observe that, starting from the weak variational formulation of u (definition
1.1), it is easy to verify that dyu € LY3(0,T;W'), where W = {4 € V; 0.4 € L*(Q)}.
In fact, if we want to take ¢ = u as test function in the weak variational formulation of
u, the unique term that presents problems is /Q us0,uudS). Then, with the additional
regularity of the Theorem 1.6 for @ (recall d.u € L*(0,T; L*(£2))) this term has a sense,
hence one verifies the following equality: a.e. t € (0,7,

(u(t), u(t))q _/o <8tu,u>gds+/0 /Q(VhaxuﬁxujLuvazuazu) dQ ds

(44)
t t t
— g2y + /O (F,@)ods + /0 /Q (4B, + usd.7) udQds + /O (, @y, ds.
Now, we write the differential system for (u,p;) as:
Oyt + w0, U + uzd,u — v 0% 1 — 1,021 + Oups
(45)

=F+ (u—u)0,u+ (ug — u3)0,u.

Thanks to the additional regularity of 4, we can multiply (45) by u and integrate on
Q% (0,1):

t t
/ (Oyu, u)qods + / / { (w0, + ugd,u) u + V0, U0y u + va)zﬂazu}des
0 0o Ja (46)

-/ (F uads + / t | (=20, + (ws — a)o.a)udrds + | (. uprds
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t t
Adding (44) and (46), the terms / (Oyui, u)q ds and / /ﬂ(u@xﬂ + uz0,u) udQds are
0 0

cancelled, obtaining:
t
(u(t),u(t))o + / / 2 (0, ud, 1 + v,0,ud,u) dQds
0 Jo
t t
— JJuolfZ2(q +/0 (F,u+ @)ods +/0 (7,0 + @), ds (47)
t
+/ / ((w—u)0utt + (us — 1) 0. )udQds ae. t € (0,7).
0 Ja
Finally, we multiply (45) by @ and integrate on €2 x (0, t), obtaining the energy equality:
[T ¢ 112 112
§|’u<t)||L2(Q) +/0 (VhHa:Bu”L?(Q) + VvHaZuHB(Q)) ds
1 ) t ¢
= Sl + [ (Faads + [ (r.a)rds (48)

+ t [ (= wosa+ (s - w)o.a)adgds,

where the last term on the right hand of (48) vanishes (by the free divergence condition).
Then, doing (43) + (48) — (47), we obtain: a.e.t € (0,7,

S®) = 10 ey + [ u(s) — a(s) s
< — /Ot/Q ((u — )0, U + (uz — ﬂg)@a)u dQ ds
_ /ot/n (<u — @)0,1 + (us — ag)aza) (u—a)dQds

t t
=—/ / |u—a|28xad9ds—/ /(u3—ﬂg)@zﬂ(u—ﬂ)deSEthlg
0 JQ 0 JO

We estimate the [;-terms (using lemmas of Section 2):

t
LS [ 0ual e = D)lfFsyds

IN

t
/O 102l 20y | (w = @) 2o [V (w0 = @) | L2y s

IN

1t _ t _ _
1 L = wliEds + € [l =) 0,0 ds
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t
I, < /O||u—ﬂ||L4(Q)||8Zﬂ||L4(Q)||U3—ﬂgHLz(Q)ds

IN

1/2 1/2 - 7
Do [ 1900 = 8)[550y () = B2y 10-0] ey (s — )l s
< CDpan [ llu— a2l — a2 0. g d
< C Doy [ =l = g 10| 10y

t
< [ W= @) agyds + C D [0 s — s oy

Hence, the inequality (49) becomes: a.e. t € (0,7),

Jult) = 50 0y + [ luts) = a(s) s
(50)

t
< C/O (19:2(5) 1 2(2) + Dt 10:0(5) | () lluls) — a(5) |72y s

Then, from Gronwall lemma, we can conclude the uniqueness. [

Remark 7.1 In the 3D case, the bound obtaining for I is

t
4/Hu —i(s)l[fds +C [ 110:(s) [agoy 1(5) = () G

Now, to obtain uniqueness, we have to impose in i the following additional reqularity

d.u € L¥(0,T; L*(Q)?),

which it is not a consequence of the strong regularity.
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