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Abstract

In this note, we prove that given u a weak solution of the Primitive Equations, impos-
ing an additional condition on the vertical derivative of the velocity u (concretely ∂zu ∈
L
∞(0, T ; L2(Ω)) ∩ L

2(0, T ; H1(Ω))), then two different results hold; namely, uniqueness of
weak solution (any weak solution associated to the same data that u must coincide with u)
and global in time strong regularity for u (without “smallness assumptions” on the data).

Both results are proved when either Dirichlet or Robin type conditions on the bottom
are considered. In the last case, a domain with a strictly bounded from below depth has to
be imposed, even for the uniqueness result.

Key words: Weak-strong uniqueness, Primitive Equations, anisotropic estimates, strong solu-
tion

1 Introduction

The Primitive Equations are related with a great variety of geophysical fluids [9, 10, 12].
This system can be deduced asymptotically from the Navier-Stokes equations with anisotropic
(eddy) viscosity, when the aspect ratio (quotient between vertical and horizontal characteristic
dimensions) tends to zero [1, 2, 3]. The 3D system can be written as follows: to find u :
(0, T ) × Ω → R2, the horizontal velocity field, and ps : (0, T ) × S → R, a surface potential
function (involving the pressure), verifying:

(PE)






∂tu− νH∆Hu− νz∂
2
zzu + αu⊥+

+(u · ∇H)u + u3∂zu +∇Hps = F in (0, T )× Ω,
∇H · �u� = 0 in (0, T )× S,

u|t=0 = u0 in Ω,
νz∂zu|Γs

= Υ, u|Γl = 0 in (0, T ),
either u|Γb

= 0 or ((νH∇Hu, νz∂zu) · n + βu)|Γb
= 0 in (0, T ),

where u3 is the vertical velocity, that becomes now a diagnostic variable, depending on the
horizontal velocity u as follows:

u3(x, z) =
� 0

z

∇H · u(x, s)ds. (1)

We consider the domain Ω = {(x, y, z) = (x, z) ∈ R3
/ x ∈ S, −h(x) < z < 0}, with S ⊂ R2 a

bounded open set (the surface) and h : S → R a non-negative continuous function (the depth).
∗Corresponding author
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2 THE MAIN RESULTS. 2

Its boundary is decomposed as ∂Ω = Γb ∪ Γl ∪ Γs where Γs = {(x, 0) : x ∈ S} is the surface,
Γl = {(x, z) ∈ R3 : x ∈ ∂S, −h(x) < z < 0} are the side-walls and Γb = {(x, z) ∈ R3 : x ∈
S, z = −h(x)} is the bottom.

We have denoted by �u�(t;x) =
� 0
−h(x) u(t;x, z)dz the vertical integration of u. The hor-

izontal operators ∆H and ∇H represent ∂
2
xx + ∂

2
yy and (∂x, ∂y)t respectively. The constants

νH , νz > 0 are the viscosity coefficients and n is the outward normal vector on the bottom.
The external forces are data denoted by F : (0, T ) × Ω → R2, and αu⊥ = α(−u2, u1)t models
the Coriolis forces, with α ∈ R depending on the latitude. We consider either homogeneous
Dirichlet or Robin type boundary conditions on the bottom (with β : S → R a non-negative
data function depending on the rugosity of the bottom) and Neumann boundary conditions on
the surface, where Υ : (0, T ) × S → R2 is a data function depending on the wind force. The
Neumann conditions on the bottom are also considered taking β = 0.

Notice that Primitive Equations are variants of the Navier-Stokes equations. Now, the
pressure field depends only on x (but not on z). However, the explicit form of u3 given in (1)
implies that the system is no longer parabolic respect to (u, u3) and the regularity of u3 and
∇H ·u are comparable, hence the nonlinear term corresponding to the vertical convection u3∂zu
is less regular that in the Navier-Stokes case.

The existence of weak solution of (PE) were given in [10, 9]. The existence of local in time
strong solution (or global for small enough data) is proved in [7] for the 2D case (where S is a real
interval) and in [6] for the 3D case, using strong regularity results for the stationary linear case
given in [14]. On the other hand, some results of weak/strong uniqueness were given in [7, 6],
always imposing additional regularity hypothesis over the horizontal and vertical derivatives of
u.

In this work, we weaken these additional hypothesis found in [7, 6] supposing only addi-
tional regularity over the vertical derivative ∂zu (avoiding the additional regularity over ∇Hu).
Moreover, we will also prove that this same additional regularity implies global strong regularity
when the data are more regular but without smallness assumptions.

We think that the anisotropy between horizontal and vertical scales could produce anisotropic
regularity for the solution. Indeed, this occurs in the 2D case; existence (and uniqueness) of weak
solution u for the 2D model such that ∂zu has also weak regularity, i.e. ∂zu ∈ L

∞(0, T ;L2(Ω))∩
L

2(0, T ; H1(Ω)), is proved in [4] for Robin boundary conditions on the bottom and in [5] for
Dirichlet conditions. In this line, the existence of weak solution for (PE) with only weak
regularity for ∂zu (even local in time or global for small enough data) is an interesting open
problem, that we are going to analyse in a future work.

2 The main results.

Basically, u is a weak solution for (PE) in (0, T ), if u ∈ L
2(0, T ;H1(Ω))2∩L

∞(0, T ; L2(Ω)2)
and verifies the restriction ∇H · �u� = 0, the Dirichlet conditions in the trace sense and the
momentum equations jointly with the Neumann and Robin conditions in a variational sense
([10, 6]). Moreover, if u ∈ L

∞(0, T ; H1(Ω)2) ∩ L
2(0, T ; H2(Ω)2) and ∂tu ∈ L

2(0, T ; L2(Ω)2), u
is a strong solution for (PE) in (0, T ).

Theorem 2.1 (Uniqueness of solution) Let u be a weak solution of (PE) in (0, T ). If there
exists a weak solution ū of (PE) in (0, T ) verifying the additional regularity:

∂zū ∈ L
∞(0, T ; L2(Ω)2) ∩ L

2(0, T ;H1(Ω)2), (2)

then both solution coincided in [0, T ). When Robin conditions are considered on the bottom, the
assumption h ≥ hmin > 0 in S has to be imposed.

Remark 2.1 Notice that we have reduced the hypotheses on ū imposed in [6] for getting unique-
ness of weak/strong solution. Concretely, in [6] we considered

∇H ū ∈ L
2(0, T ;L∞z L

2
x) and ∂zū ∈ L

∞(0, T ; L2(Ω)2) ∩ L
2(0, T ; H1(Ω)2)
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(see the next section for the definition of the anisotropic space L
∞
z L

2
x). Therefore, we have

removed the hypothesis for ∇H ū.

Theorem 2.2 (Global strong regularity) Let S ⊆ R2 with ∂S ∈ C
3 and h ∈ C

3(S̄) with
h ≥ hmin > 0 in S̄. Suppose that u0 ∈ H

1(Ω) with ∇H · �u0� = 0 (and u0|Γb
= 0 in the case of

Dirichlet conditions on the bottom), F ∈ L
2(0, T ; L2(Ω)2) and Υ ∈ L

2(0, T ; H1/2+ε

0 (Γs)2) ∩
L
∞(0, T ; H−1/2(Γs)2) for some ε > 0 such that ∂tΥ ∈ L

2(0, T ;H−3/2(Γs)2) with Υ(0) ∈
H
−1/2(Γs)2. If ∂zu verifies the additional regularity of (2), then u is a strong solution of (PE)

in (0, T ).

3 Some auxiliary anisotropic estimates.

Let us to introduce the anisotropic L
p,q spaces for any exponents p, q ∈ [1, +∞]. It will said

say that a function v belongs to L
q
zL

p

x(Ω) if:

v(·, z) ∈ L
p(Sz) and �v(·, z)�Lp(Sz) ∈ L

q(−hmax, 0),

where hmax = max
S

h and Sz = {x ∈ S : (x, z) ∈ Ω} for each z ∈ (−hmax, 0).

We will use the following three anisotropic results, the first one has already been considered
and proved in [6], and the other ones are new in this work (see Appendix for the proofs).

Lemma 3.1 a) Let v ∈ H
1(Ω). Then v ∈ L

2
zL

4
x(Ω) and verifies:

�v�L2
zL4

x
≤ C�v�1/2

L2(Ω)�v�
1/2
H1(Ω) (3)

b) Let v ∈ L
2(Ω)2 such that ∇H · v ∈ L

2(Ω), and v3 defined as in (1). Then, v3 ∈ L
∞
z L

2
x(Ω)

and
�v3�L∞z L2

x
≤ h

1/2
max�∇H · v�L2(Ω) (4)

Lemma 3.2 Let v ∈ H
1(Ω) such that ∂zv ∈ H

1(Ω) and v|Γb = 0. Then v ∈ L
∞
z L

4
x(Ω) and

�v�L∞z L4
x
≤ C�v�1/4

L2(Ω)�v�
1/4
H1(Ω)�∂zv�1/4

L2(Ω)�∂zv�1/4
H1(Ω) (5)

Lemma 3.3 Assume h ≥ hmin > 0 in S.
a) Let v ∈ L

2(Ω) such that ∂zv ∈ L
2(Ω). Then v ∈ L

∞
z L

2
x(Ω) and

hmin�v�2L∞z L2
x
≤ �v�2

L2(Ω) + 2�v�L2(Ω)�∂zv�L2(Ω). (6)

b) Let v ∈ H
1(Ω) such that ∂zv ∈ H

1(Ω). Then v ∈ L
∞
z L

4
x(Ω) and

h
1/2
min�v�L∞z L4

x
≤ C�v�1/4

L2(Ω)�v�
1/4
H1(Ω)

�
�v�1/4

L2(Ω)�v�
1/4
H1(Ω) + �∂zv�1/4

L2(Ω)�∂zv�1/4
H1(Ω)

�
(7)

4 Proof of the main results in the Dirichlet case.

Proof of Theorem 2.1: We follow the direct method to prove uniqueness, used for instance in
[11] for the 3D Navier-Stokes equations. Denoting v = u− ū and v3 = u3 − ū3, one has [6] (see
[13] for more details):

1
2
�v(t)�2

L2(Ω) + ν

�
t

0
�v(s)�2

H1(Ω)ds

≤ −
�

t

0

�

Ω
[v · ∇H ū + v3∂zū] · v dΩ ds := I1 + I2,

(8)



4 PROOF OF THE MAIN RESULTS IN THE DIRICHLET CASE. 4

where ν = min{νH , νz}. With respect to the proof of uniqueness done in [6], we will change the
treatment of the term I1. Now, integrating by parts and applying (3) and (5) one has (here,
Dirichlet condition on Γb is used)

I1 =
�

t

0

�

Ω
[(v · ∇H)v · ū + (∇H · v)v · ū] dΩ ds

≤ C

�
t

0

�

Ω
|v| |∇Hv| |ū| dΩ ds ≤ C

�
t

0
�v�L2

zL4
x
�∇Hv�L2(Ω)�ū�L∞z L4

x
ds

≤ C

�
t

0
�v�1/2

L2(Ω)�∇Hv�3/2
L2(Ω)�ū�

1/4
L2(Ω)�ū�

1/4
H1(Ω)�∂zū�1/4

L2(Ω)�∂zū�1/4
H1(Ω) ds.

Using the Young inequality for the indexes (4/3, 4), we have:

I1 ≤ ε

�
t

0
�v�2

H1(Ω) ds + Cε

�
t

0
�ū�L2(Ω)�ū�H1(Ω)�∂zū�L2(Ω)�∂zū�H1(Ω)�v�2L2(Ω) ds.

We bound I2 as in [6] (using (3) and (4)), obtaining

I2 =
�

t

0

�

Ω
v3 ∂zū · v dΩ ds ≤

�
t

0
�v3�L∞z L2

x
�∂zū�L2

zL4
x
�v�L2

zL4
x
ds

≤ ε

�
t

0
�v�2

H1(Ω) ds + Cε

�
t

0
�∂zū�2L2(Ω)�∂zū�2H1(Ω)�v�

2
L2(Ω) ds

Using the previous bounds in (8), one has:

�v(t)�2
L2(Ω) + ν

�
t

0
�v(s)�2

H1(Ω) ds ≤ C

�
t

0
a(s) �v(s)�2

L2(Ω) ds (9)

where a = �ū�L2(Ω)�ū�H1(Ω)�∂zū�L2(Ω)�∂zū�H1(Ω) + �∂zū�2L2(Ω)�∂zū�2H1(Ω). Since a ∈ L
1(0, T )

(thanks to the regularity hypothesis for ū and ∂zū), we are in the hypothesis of Gronwall Lemma,
hence the uniqueness is deduced.

Proof of Theorem 2.2: First, we lift the boundary data Υ using an adequate (strong)
solution (e, qs) of a stationary hydrostatic Stokes system. Observe that hypothesis ∂tΥ ∈
L

2(0, T ; H−3/2(Γs)2) implies that ∂te ∈ L
2(0, T ; L2(Ω)2) (see [8]). Then, we reason over the

homogeneous variables (v, v3, πs) = (u− e, u3 − e3, ps − qs), verifying:





∂tv − νH∆Hv − νz∂
2
zzv + u · ∇Hv + v3∂zu +∇Hπs = G in (0, T )× Ω,

∇H · �v� = 0 in (0, T )× S,
v|t=0 = v0 in Ω,

νz∂zv|Γs = 0, v|Γb = 0, v|Γl = 0 in (0, T ),

(10)

where v0 = u0−e(0) and G = F−∂te−u ·∇He+e3∂zu. Thanks to the additional regularity of
∂zu and the strong regularity of e, one has that G ∈ L

2(0, T ; L2(Ω)2). Indeed, in the convective
terms, we have products of u (and e3) belonging to L

4
t L

∞
z L

4
x, by ∂zu (and ∇He) belonging to

L
4
t L

2
zL

4
x (accordingly Lemmas 3.1 and 3.2). Using the same argument than in [6], we apply a

Galerkin method, using Avm as test functions, where A is the hydrostatic Stokes operator and
vm its eigenfunctions. In order to bound the convection terms, we use the inequalities (3) and
(5) as follows (for simplicity, we drop the m-indexes):

�

Ω
u · ∇Hv · Av dΩ ≤ �u�L∞z L4

x
�∇Hv�L2

zL4
x
�Av�L2(Ω)

≤ C�u�1/4
L2(Ω)�u�

1/4
H1(Ω)�∂zu�1/4

L2(Ω)�∂zu�1/4
H1(Ω)�∇Hv�1/2

L2(Ω)�Av�3/2
L2(Ω)

≤ ε�Av�2
L2(Ω) + a(t)�∇Hv�2

L2(Ω),

(11)



5 PROOFS FOR ROBIN CONDITIONS ON THE BOTTOM 5

where a(t) = C�u�L∞(0,T ;L2(Ω))�u(t)�H1(Ω)�∂zu�L∞(0,T ;L2(Ω))�∂zu(t)�H1(Ω), and
�

Ω
v3∂zu · Av dΩ ≤ �v3�L∞z L4

x
�∂zu�L2

zL4
x
�Av�L2(Ω)

≤ C�∇H · v�1/2
L2(Ω)�∂zu�1/2

L2(Ω)�∂zu�1/2
H1(Ω)�Av�3/2

L2(Ω) ≤ ε�Av�2
L2(Ω) + b(t)�∇Hv�2

L2(Ω),

(12)

where b(t) = C�∂zu�2L∞(0,T ;L2(Ω))�∂zu(t)�2
H1(Ω). The additional regularity for ∂zu guarantees

that a, b ∈ L
1(0, T ). Then,

1
2

d

dt
�∇v�2

L2(Ω) + �Av�2
L2(Ω) ≤ (a(t) + b(t))�∇v�2

L2(Ω) + �G(t)�2
L2(Ω).

Gronwall’s Lemma allows us to conclude that v ∈ L
∞(0, T ; H1(Ω)2) ∩ L

2(0, T ; H2(Ω)2) and,
thanks to the strong regularity of e, one has the same regularity for u. Regularity for ∂tu is
followed by a standard way.

5 Proofs for Robin conditions on the bottom

Proof of Theorem 2.1: In this case, one arrives at (8) with the supplementary non-negative
term

�
t

0

�
Γb

β|v|2dσ ds in the left hand-side. Now, it is necessary to change the bound for the
term I1 in (8). Indeed, using directly (8) (without by parts integration), we get:

I1 ≤
�

t

0
�v�2

L2
zL4

x
�∇H ū�L∞z L2

x
≤

�
t

0
�v�L2(Ω)�v�H1(Ω)�∇H ū�L∞z L2

x
(13)

In order to bound ∇H ū, we cannot use the following inequality (proved in [6])

�∇H ū�L∞z L2
x
≤ C�∇H ū�1/2

L2(Ω)�∇H ū�1/2
H1(Ω)

because ∇H ū �∈ H
1(Ω). Instead of this, we will use Lemma 3.3 a). Indeed, applying (6) for

v = ∇H ū in (13), we arrive at

I1 ≤ ε

�
t

0
�v�2

H1(Ω) ds +
Cε

hmin

�
t

0

�
�∇H ū�2

L2(Ω) + �∇H ū�L2(Ω)�∂z(∇H ū)�L2(Ω)

�
�v�2

L2(Ω) ds

Adding this expression to the estimate for I2, one can also prove uniqueness of solution.

Proof of Theorem 2.2: The main difference in the proof is the use of inequality (7) instead
of (5) of Lemma 3.2 in order to bound the convective terms.

A Appendix

Proof of Lemma 3.2. We will use the following inequality, proved in [6]; for any p, q ∈ [1, +∞]
with q > p,

�v�
L

q
xL

p
z
≤ �v�

L
p
zL

q
x

(14)

With the same arguments one can change the integration order, i.e.,

�v�L
q
zL

p
x
≤ C�v�L

p
xL

q
z

(15)

Let v in the hypothesis of Lemma 3.2. Since v|Γb
= 0, we have

v(x, z)4 =

�
2

�
z

−h(x)
v(x, s) ∂zv(x, s)ds

�2

≤ 4�v(x, ·)�2
L2

z
�∂zv(x, ·)�2

L2
z
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Consequently,
�v(x, ·)�L∞z ≤

√
2 �v(x, ·)�1/2

L2
z
�∂zv(x, ·)�1/2

L2
z

. (16)

Taking L
4
x-norm,

�v�L4
xL∞z

≤
√

2 �v�1/2
L4

xL2
z
�∂zv�1/2

L4
xL2

z
.

Now using (14) and (3), we obtain:

�v�L4
xL∞z

≤
√

2 �v�1/2
L2

zL4
x
�∂zv�1/2

L2
zL4

x
≤ C�u�1/4

L2(Ω)�v�
1/4
H1(Ω)�∂zv�1/4

L2(Ω)�∂zv�1/4
H1(Ω).

To finish, it suffices to consider (15) in the left hand side, getting (5).

Proof of Lemma 3.3. For any function g = g(z) defined in z ∈ (−h(x), 0) with x ∈ S,
we write g

2(z) = g
2(z�) + 2

�
z

z� g(s) ∂zg(s) ds. Integrating in z
� ∈ (−h(x), 0), h(x) g

2(z) ≤
�g�2

L2
z
+2�g�L2

z
�∂zg�L2

z
, thus h(x)1/2�g�L∞z ≤ �g�L2

z
+
√

2�g�1/2
L2

z
�∂zg�1/2

L2
z

. Applying the previous
inequality to g = v(x, ·) and bounding from below h(x) ≥ hmin, we get

h
1/2
min�v(x, ·)�L∞z ≤ �v(x, ·)�L2

z
+
√

2�v(x, ·)�1/2
L2

z
�∂zv(x, ·)�1/2

L2
z

. (17)

In order to prove estimate (7), we follow the same argument that in the proof of Lemma 3.2,
replacing (16) by (17) and adapting the calculus therein. Finally, (6) follows directly taking
L

2
x-norm in (17).
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