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Chérif Amrouche a, Maŕıa Ángeles Rodŕıguez-Bellido b,1
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Abstract

The concept of very weak solution introduced by Giga [9] for the stationary Stokes equations has been intensively

studied in the last years for the stationary Navier-Stokes equations. We give here a new and simpler proof of the

existence of very weak solution for the stationary Navier-Stokes equations, based on density arguments and an

adequate functional framework in order to define more rigourously the traces of non regular vector fields. We also

obtain regularity results in fractional Sobolev spaces. All these results are obtained in the case of a bounded open

set, connected of class C1,1
of R3

and can be extended to the Laplace’s equation and to other dimensions. To cite
this article: C. Amrouche, M.A. Rodŕıguez-Bellido, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Solutions très faibles pour les équations stationnaires de Stokes. Le concept de solution très faible

introduit par Giga [9] pour les équations stationnaires de Stokes a été beaucoup étudié ces dernières années pour

les équations stationnaires de Navier-Stokes. Nous donnons ici une nouvelle preuve plus simple de l’existence de

solution très faible pour les équations stationnaires de Navier-Stokes, qui s’appuie sur des arguments de densité

et un cadre fonctionnel approprié pour définir de manière plus rigoureuse les traces des champs de vecteurs peu

réguliers. On obtient aussi résultats de régularité dans des espaces de Sobolev fractionnaires. Tous les résultats

sont obtenus dans le cas d’un ouvert connexe de classe C1,1
de R3

et peuvent être étendus à l’équation de Laplace

ainsi qu’aux autres dimensions. Pour citer cet article : C. Amrouche, M.A. Rodŕıguez-Bellido, C. R. Acad. Sci.
Paris, Ser. I 340 (2005).
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1 Partially supported by M.E.C. (Spain), Project MTM2006-07932, and by Junta de Andalućıa, Project P06-FQM-02373.
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Version française abrégée

L’objet de cette note consiste essentiellement à étudier l’existence de solutions très faibles (u , q) ∈
L

p(Ω) × W
−1,p(Ω) du problème de Stokes (S) (voir Definition 3.2). L’une des difficultés pour prouver

l’existence de telles solutions consiste à donner un sens à la condition aux limites de Dirichlet. Utilisant
un argument d’interpolation, cela nous permet d’en déduire l’existence de solutions appartenant à des
espaces de Sobolev fractionnaires. Les principaux résultats d’existence sont donnés dans la Section 3.

1. Introduction

Let Ω be a bounded connected open set of R3 of class C1,1 with boundary Γ. We study the stationary
Stokes problem (S):

−∆u +∇q = f and ∇ · u = h in Ω, u = g on Γ,

where u denotes the velocity field and q the pressure, and both are unknown. The external force f , the
compressibility condition h and the boundary condition for g are the data. The vector fields and matrix
fields (and the corresponding spaces) are respectively denoted by boldface Roman and special Roman.

The notion of very weak solutions (u , q) ∈ L
p(Ω)×W

−1,p(Ω) for the stationary Stokes or Navier-Stokes
equations, corresponding to very irregular data, has been developed in the last years by Giga [9] (and also
by Lions-Magenes [11] for the Laplace’s equation, in a domain Ω of class C∞), Amrouche-Girault [1] (in a
domain Ω of class C1,1) and more recently by Galdi-Simader-Sohr [8], Farwig-Galdi-Sohr [7] (in a domain
Ω of class C2,1, see also Schumacher [14]) and finally by Kim [10] (in a domain Ω of class C2 with connected
boundary). In this context, the boundary condition is chosen in L

p(Γ) (see Brown-Shen [3], Conca [5],
Fabes-Kenig-Verchota [6], Moussaoui [12], Shen [15], Savaré [13]) or more generally in W

−1/p,p(Γ).
The purpose of this work is to develop a unified theory of very weak solutions for the Dirichlet problem

associated to the stationary Stokes system. One important question is to define rigorously the traces of
the vector functions which are living in subspaces of L

p(Ω) (see Lemma 2.3). We prove existence and
uniqueness of very weak solutions (u , q) ∈ L

p(Ω)×W
−1,p(Ω) for the Stokes problem for any 1 < p < ∞

(see Definition 3.2). Using an interpolation argument, we deduce the existence of solutions belonging to
fractional Sobolev spaces W

s,p(Ω), with 0 ≤ s ≤ 2 (see Corollary 3.6 and Theorem 3.7). Observe that
the study of the Stokes problem is fundamental for the study of the Oseen and Navier-Stokes equations.
The detailed proofs of the results announced in this Note are given in [2].

2. Density and trace results

We introduce the spaces: Dσ(Ω) = {ϕ ∈ D(Ω); ∇ · ϕ = 0}, Dσ(Ω) = {ψ ∈ D(Ω)3; ∇ · ψ = 0},
L

p
σ(Ω) = {v ∈ L

p(Ω); ∇ · v = 0}, Xr,p(Ω) = {ϕ ∈ W
1,r
0 (Ω); ∇ · ϕ ∈ W

1,p
0 (Ω)}, 1 < r, p < ∞,

and we set Xp,p(Ω) = Xp(Ω).
Lemma 2.1 i) The space Dσ(Ω) is dense in L

p
σ(Ω).

ii) The space D(Ω) is dense in Xr,p(Ω) and for all q ∈ W
−1,p(Ω) and ϕ ∈ Xr�,p�(Ω), we have

�∇q, ϕ�[Xr�,p� (Ω)]�×Xr�,p� (Ω) = −�q, ∇ · ϕ�
W−1,p(Ω)×W 1,p�

0 (Ω)
. (1)

It is then easy to prove the following characterization:

(Xr,p(Ω))� =
�
f = ∇ · F0 +∇f1; F0 ∈ Lr�(Ω), f1 ∈ W

−1,p�(Ω), with F0 = (fij)1≤i,j≤3

�
. (2)
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As a consequence of Lemma 2.1 ii) and the Sobolev embeddings, we have the embeddings W
−1,r(Ω) �→

(Xr�,p�(Ω))� �→ W
−2,p(Ω), where the second embedding holds if 1

r ≤
1
p + 1

3 .
Giving a meaning to the trace of a very weak solution of a Stokes problem is not trivial. Remember that

we are not in the classical variational framework. In this way, we need to introduce some spaces. First,
we consider the space Yp�(Ω) = {ψ ∈ W

2,p�(Ω); ψ|Γ = 0, (∇ ·ψ)|Γ = 0} that can also be described (see
[1]) as:

Yp�(Ω) = {ψ ∈ W
2,p�(Ω); ψ|Γ = 0,

∂ψ

∂n
· n

���
Γ

= 0}. (3)

Note also that if ψ ∈ Yp�(Ω), then div ψ ∈ W
1,p�

0 (Ω) and the range space of the normal derivative
γ1 : Yp�(Ω) → W

1/p,p�(Γ) is Zp�(Γ) = {z ∈ W
1/p,p�(Γ); z · n = 0}. Secondly, we shall use the spaces:

Tp,r(Ω) = {v ∈ L
p(Ω); ∆v ∈ (Xr�,p�(Ω))�}, Tp,r,σ(Ω) = {v ∈ Tp,r(Ω); ∇ · v = 0},

endowed with the norm �v�Tp,r(Ω) = �v�Lp(Ω) + �∆v�[Xr�,p� (Ω)]� . When p = r, these spaces are denoted
as Tp(Ω) and Tp,σ(Ω), respectively.

We also introduce the space Hp,r(div; Ω) = {v ∈ L
p(Ω); ∇ · v ∈ L

r(Ω)}, which is endowed with the
graph norm. The following lemma will help us to prove a trace result:
Lemma 2.2 i) The space D(Ω) is dense in Tp,r(Ω) and in Tp,r(Ω) ∩Hp,r(div; Ω) respectively.

ii) The space Dσ(Ω) is dense in Tp,r,σ(Ω).
The following two lemmas prove that the tangential trace of functions v of Tp,r,σ(Ω) belongs to the

dual space of Zp�(Γ), which is (Zp�(Γ))� = {µ ∈ W
−1/p,p(Γ); µ · n = 0}. Besides, we recall that we can

decompose v into its tangential, vτ , and normal parts, that is: v = vτ + (v · n)n .
Lemma 2.3 Let Ω be a bounded open set of R3 of class C1,1. Let 1 < p < ∞ and r > 1 be such that
1
r ≤

1
p + 1

3 . The mapping γτ : v �→ vτ |Γ on the space D(Ω)3 can be extended by continuity to a linear and
continuous mapping, still denoted by γτ , from Tp,r(Ω) into W

−1/p,p(Γ), and the following Green formula
holds

�∆v,ψ�[Xr�,p� (Ω)]�×Xr�,p� (Ω) =
�

Ω
v · ∆ψ dx−

�
vτ ,

∂ψ

∂n

�

W−1/p,p(Γ)×W1/p,p� (Γ)

, (4)

for any v ∈ Tp,r(Ω) and ψ ∈ Yp�(Ω).
Proof: Consider v ∈ D(Ω)3 and ψ ∈ Yp�(Ω). Then (4) holds. Observe that Yp�(Ω) is included in Xr�,p�(Ω).

Suppose that µ ∈ W
1/p,p�(Γ). Then, µ = µτ + (µ · n)n . Since Ω is of class C1,1, we know that there

exists ψ ∈ W
2,p�(Ω) such that ψ = 0 and

∂ψ

∂n
= µτ on Γ, and verifying:

�ψ�W2,p� (Ω) ≤ C �µτ�W1/p,p� (Γ) ≤ C �µ�W1/p,p� (Γ).

Moreover, ψ ∈ Yp�(Ω). Therefore, we can estimate the boundary term as follows for such functions ψ:
����v τ ,µ�W−1/p,p(Γ)×W1/p,p� (Γ)

��� ≤ �v�Lp(Ω)�ψ�W2,p� (Ω) + �∆v�[Xr�,p� ]
��ψ�Xr�,p� .

Thus, �v τ�W−1/p,p(Γ) ≤ C �v�Tp,r(Ω). Therefore, the linear continuous mapping v �→ vτ |Γ defined on
D(Ω) is continuous for the norm of Tp,r(Ω). Since D(Ω) is dense in Tp,r(Ω), then we can extend this
mapping from Tp,r(Ω) into W

−1/p,p(Γ), that is, the tangential trace of functions of Tp,r(Ω) belongs to
W

−1/p,p(Γ) and the relation (4) holds.
We can also prove that D(Ω) is dense in Hp,r(div; Ω), the mapping γn : v �→ v ·n |Γ is continuous from

Hp,r(div; Ω) into W
−1/p,p(Γ), and we have the Green formula: for any v ∈ Hp,r(div; Ω) and ϕ ∈ W

1,p�(Ω),
�

Ω
v · ∇ϕ dx +

�

Ω
ϕ div v dx = �v · n , ϕ �W−1/p,p(Γ)×W 1/p,p� (Γ) .
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3. Very weak solutions and regularity

We focus on the study of the stationary Stokes problem (S) with the compatibility condition:
�

Ω
h(x ) dx = �g · n , 1�W−1/p,p(Γ)×W 1/p,p� (Γ). (5)

Basic results on weak and strong solutions of problem (S) may be summarized in the following theorem
(see [1], [4]).
Theorem 3.1 i) For every f ∈ W

−1,p(Ω), h ∈ L
p(Ω), g ∈ W

1−1/p,p(Γ) satisfying the compatibility
condition (5), the Stokes problem (S) has exactly one solution u ∈ W

1,p(Ω) and q ∈ L
p(Ω)/R, and

there exists a constant C > 0, depending only on p and Ω, such that:

�u�W1,p(Ω) + �q�Lp(Ω)/R ≤ C (�f�W−1,p(Ω) + �h�Lp(Ω) + �g�W1−1/p,p(Γ)). (6)

ii) Moreover, if f ∈ L
p(Ω), h ∈ W

1,p(Ω), g ∈ W
2−1/p,p(Γ), then u ∈ W

2,p(Ω), q ∈ W
1,p(Ω) satisfy an

analogous estimate to (6) with the corresponding norms.
We wonder about minimal necessary assumptions on f , h and g , in order that a very weak solution,

that is, (u , q) ∈ L
p(Ω)×W

−1,p(Ω)/R exists.
We are interested here in the case of singular data satisfying the following assumptions:

f ∈ (Xr�,p�(Ω))�, h ∈ L
r(Ω), g ∈ W

−1/p,p(Γ), with
1
r
≤ 1

p
+

1
3

and r ≤ p. (7)

Observe that the space (Xr�,p�(Ω))� is an intermediate space between W
−1,r(Ω) and W

−2,p(Ω).
Definition 3.2 (Very weak solution for the Stokes problem) A pair (u, q) ∈ L

p(Ω)×W
−1,p(Ω) is

a very weak solution of (S) if the following equalities hold: For any ϕ ∈ Yp�(Ω) and π ∈ W
1,p�(Ω),

−
�

Ω
u · ∆ϕ dx− �q,∇ · ϕ�

W−1,p(Ω)×W 1,p�
0 (Ω)

= �f, ϕ�Ω − �gτ ,
∂ϕ

∂n
�Γ,

�

Ω
u · ∇π dx = −

�

Ω
hπ dx + �g · n, π�Γ,

(8)

with �·, ·�Ω = �·, ·�[Xr�,p� (Ω)]�×Xr�,p� (Ω) and �·, ·�Γ = �·, ·�W−1/p,p(Γ)×W1/p,p� (Γ).

Note that W
1,p�(Ω) �→ L

r�(Ω) and Yp�(Ω) �→ Xr�,p�(Ω) if 1
r ≤

1
p + 1

3 , which means that all the brackets and
integrals have a sense. We can then prove that, if f , h and g satisfy (7), then (u , q) ∈ L

p(Ω)×W
−1,p(Ω)

is a very weak solution of (S) if and only if (u , q) satisfies the system (S) in the sense of distributions.
Proposition 3.1 Let f ∈ (Xp�(Ω))�, h ∈ L

p(Ω) and g ∈ W
−1/p,p(Γ) satisfy the compatibility condition

(5). Then, the Stokes problem (S) has exactly one solution u ∈ Tp(Ω) and q ∈ W
−1,p(Ω)/R. Moreover,

there exists a constant C > 0, depending only on p and Ω, such that:

�u�Tp(Ω) + �q�W−1,p(Ω)/R ≤ C

�
�f�[Xp� (Ω)]� + �h�Lp(Ω) + �g�W−1/p,p(Γ)

�
. (9)

Proof: The case f = 0 and h = 0 is considered in [1]. Here, we generalize the result as follows:

Step 1: We suppose g · n = 0 on Γ and
�

Ω
h(x ) dx = 0. It remains to consider the equivalent problem:

Find (u , q) ∈ L
p(Ω)×W

−1,p(Ω)/R such that: for any w ∈ Yp�(Ω) and any π ∈ W
1,p�(Ω) it holds

�

Ω
u · (−∆w +∇π) dx − �q,∇ ·w�

W−1,p(Ω)×W 1,p�
0 (Ω)

= �f ,w�[Xp� (Ω)]�×Xp� (Ω) − �gτ ,
∂w

∂n
�Γ −

�

Ω
hπ dx .

We can prove (as in [1]) that for any pair (F, ϕ) ∈ L
p�(Ω)× (W 1,p�

0 (Ω) ∩ L
p�

0 (Ω)):

4



����f ,w�[Xp� (Ω)]�×Xp� (Ω) −
�
gτ ,

∂w

∂n

�

Γ

−
�

Ω
hπ dx

���

≤ C

�
�f �[Xp� (Ω)]� + �g�W−1/p,p(Ω) + �h�Lp(Ω)

� �
�F�Lp� (Ω) + �ϕ�W 1,p� (Ω)

�
,

being (w , π) ∈ Yp�(Ω)×W
1,p�(Ω)/R the unique solution of the Stokes (dual) problem:

−∆w +∇π = F and ∇ ·w = ϕ in Ω, w = 0 on Γ.

Note that for any k ∈ R,
����
�

Ω
hπ dx

���� =
����
�

Ω
h (π + k) dx

���� ≤ �h�Lp(Ω)�π�Lp� (Ω)/R and

�w�W2,p� (Ω) +�π�W 1,p� (Ω)/R ≤ C

�
�F�Lp� (Ω) + �ϕ�W 1,p� (Ω)

�
. From this bound, we deduce that the map-

ping (F, ϕ) → �f ,w�Ω−�gτ ,
∂w

∂n
�Γ−

�

Ω
hπ dx defines an element of the dual space of Lp�(Ω)×(W 1,p�

0 (Ω)∩

L
p�

0 (Ω)) with norm bounded by C(�f �[Xp� (Ω)]� + �h�Lp(Ω) + �g�W−1/p,p(Ω)). That means that there exists
a unique (u , q) ∈ L

p(Ω)×W
−1,p(Ω)/R solution of (S) satisfying the estimate (9).

Step 2: Now, we suppose that
�

Ω
h(x ) dx = �g · n , 1�Γ. Define u0 = ∇θ with θ ∈ W

1,p(Ω) the solution

of the Neumann problem: ∆θ = h in Ω and
∂θ

∂n
= g · n on Γ. By Step 1, there exists a unique

(z , q) ∈ L
p(Ω)×W

−1,p(Ω)/R satisfying: −∆z +∇q = f +∇h and ∇·z = 0 in Ω and z = g −u0|Γ on Γ,
where ∇h ∈ (Xp�(Ω))� and g − u0|Γ satisfies the hypothesis of Step 1. Thus, the pair of functions
(u , q) = (z + u0, q) is the required solution.

The following result is a generalization of Proposition 4.11 in [1], where f = 0 and h = 0.
Theorem 3.3 Let f, h, g be given satisfying (5) and (7). Then, the Stokes problem (S) has exactly one
solution (u, q) ∈ Tp,r(Ω) ×W

−1,p(Ω)/R. Moreover, there exists a constant C > 0, only depending on p

and Ω, such that:

�u�Tp,r(Ω) + �q�W−1,p(Ω)/R ≤ C

�
�f�[Xr�,p� (Ω)]� + �h�Lr(Ω) + �g�W−1/p,p(Γ)

�
(10)

Remark 1 i) Observe that in [8] Theorem 3, the domain was of class C2,1 (here it is of class C1,1), and
the divergence term was h ∈ L

p(Ω) (here of h ∈ L
r(Ω)). Moreover, our solution is obtained in the

space Tp,r(Ω), which has been clearly characterized, contrary to the space �W1,p(Ω) appearing in [8],
which was not characterized, completely abstract and obtained as the closure of W

1,p(Ω) for the norm
�u� �W1,p(Ω)

= �u�Lp(Ω) + �A−1/2
r Pr∆u�Lr(Ω), where Ar is the Stokes operator with domain equal to

W
2,p(Ω) ∩W

1,p
0 (Ω) ∩ L

p
σ(Ω) and Pr is the Helmholtz projection operator from L

r(Ω) onto L
r
σ(Ω).

ii) Existence of very weak solution u ∈ L
p(Ω) was proved by Kim [10] for f ∈ [W1,q�

0 (Ω)∩W
2,q�(Ω)]�, for

h ∈ [W 1,q�(Ω)]� and g ∈ W
−1/q,q(Γ), but the spaces chosen for h and f are not correct either and the

equivalence in Theorem 5 of [10] is not valid.
Corollary 3.4 Let f, h, g be given satisfying (5) and f = ∇ · F0 +∇f1 with F0 ∈ Lr(Ω), f1 ∈ W

−1,p(Ω),
h ∈ L

r(Ω), g ∈ W
1−1/r,r(Γ). Then the solution u given by Theorem 3.3 belongs to W

1,r(Ω). If moreover
f1 ∈ L

r(Ω), then q belongs to L
r(Ω). In both cases, we have analogous estimates to (10).

Remark 2 It is clear that W
1,r(Ω) �→ Tp,r(Ω) when 1

r ≤
1
p + 1

3 , i.e., Tp,r(Ω) is an intermediate space
between W

1,r(Ω) and L
p(Ω).

Corollary 3.5 Let h ∈ L
r(Ω) and g ∈ W

−1/p,p(Γ) be given, satisfying (5), with 1
r ≤

1
p + 1

3 and r ≤ p.
Then, there exists at least one solution u ∈ Tp,r(Ω) verifying ∇ · u = h in Ω and u = g on Γ. Moreover,
there exists a constant C = C(Ω, p, r) such that �u�Tp,r(Ω) ≤ C

�
�h�Lr(Ω) + �g�W−1/p,p(Γ)

�
.

The following corollary gives Stokes solutions (u , q) in fractionary Sobolev spaces of type W
σ,p(Ω) ×

W
σ−1,p(Ω), with 0 < σ < 2.
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Corollary 3.6 Let s be a real number such that 0 ≤ s ≤ 1.
i) Let f = ∇·F0+∇f1, h and g satisfy the compatibility condition (5) with F0 ∈ W

s,r(Ω), f1 ∈ W
s−1,p(Ω),

g ∈ W
s−1/p,p(Γ) and h ∈ W

s,r(Ω), with 1
r ≤

1
p + 1

3 and r ≤ p. Then, the Stokes problem (S) has exactly
one solution (u, q) ∈ W

s,p(Ω)×W
s−1,p(Ω)/R satisfying the estimate

�u�Ws,p(Ω) + �q�W s−1,p(Ω)/R ≤ C
�
�F0�Ws,r(Ω) + �f1�W s−1,p(Ω) + �h�W s,r(Ω) + �g�Ws−1/p,p(Γ)

�

ii) Assume that f ∈ W
s−1,p(Ω), g ∈ W

s+1−1/p,p(Γ) and h ∈ W
s,p(Ω), fulfill the compatibility condition

(5). Then, the Stokes problem (S) has exactly one solution (u, q) ∈ W
s+1,p(Ω)×W

s,p(Ω)/R with

�u�Ws+1,p(Ω) + �q�W s,p(Ω)/R ≤ C
�
�f�Ws−1,p(Ω) + �h�W s,p(Ω) + �g�Ws+1−1/p,p(Γ)

�
.

The following theorem provides solutions for external forces f ∈ W
s−2,p(Ω) and divergence condition

h ∈ W
s−1,p(Ω) with 1/p < s < 2. In particular, if p = 2, we obtain solutions in H

1/2+ε(Ω)×H
1/2+ε(Ω),

for any 0 < ε ≤ 3/2.
Theorem 3.7 Let s be a real number such that 1

p < s ≤ 2. Let f, h and g satisfy the compatibility
condition (5) with f ∈ W

s−2,p(Ω), h ∈ W
s−1,p(Ω) and g ∈ W

s−1/p,p(Γ). Then, the Stokes problem (S)
has exactly one solution (u, q) ∈ W

s,p(Ω)×W
s−1,p(Ω)/R satisfying the estimate

�u�Ws,p(Ω + �q�W s−1,p(Ω/R ≤ C
�
�f�Ws−2,p(Ω) + �h�W s−1,p(Ω + �g�Ws−1/p,p(Γ)

�
. (11)
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