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Abstract

In [3], L. Berselli showed that the additional regularity hypothesis for the veloc-

ity gradient ∇u ∈ L
2q

2q−3 (0, T ;Lq(Ω)), for some q ∈ (3/2, +∞], implies the strong

regularity for the weak solutions of the Navier-Stokes equations. In this work, we

prove that such hypothesis is also sufficient in order to obtain the strong solution

for a nematic Liquid Crystal model (a coupled system of velocity u and orientation

crystals vector d) when periodic boundary conditions for d are considered. For

Neumann and Dirichlet boundary conditions, we obtain the same result only for

the cases of q ∈ [2, 3], whereas in the cases q ∈ (3/2, 2) ∪ (3,+∞], we also need to

impose an additional regularity hypothesis for d (either on ∇d or ∆d).

On the other hand, when the following hypothesis for u of Serrin’s type is im-

posed ([18]): u ∈ L
2p

p−3 (0, T ;Lp(Ω)) for some p ∈ (3, +∞], we can obtain strong

regularity only in the case of periodic boundary conditions for d. For Neumann or

Dirichlet boundary conditions, additional regularity for d must be imposed in all

cases.
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1 Introduction and main results

1.1 The model

In this work, we are interested in the study of regularity for a Navier-Stokes type model

for incompressible fluids that takes into account the crystallinity of the fluid molecules.

Thus, the Navier-Stokes equations are coupled with the Ginzburg-Landau equations, ob-

taining a nematic Liquid Crystal model.

The unknowns are the solenoidal velocity u(t,x), the pressure of the fluid p(t,x), and

the director field d(t,x), that represents the orientation of the liquid crystal molecules.

Moreover, we suppose that the fluid is confined in a three-dimensional smooth enough

domain Ω.

Here, we present an Ericksen-Leslie type formulation, introduced by F. H. Lin in

[11] and analyzed by F. H. Lin & C. Liu in [12]. In fact, the model is a penalized one

where the restriction |d| ≤ 1 appears as a consequence of a maximum principle for the

Ginzburg-Landau equations, which is approximated by:

fδ(d) =
1

δ2

(|d|2 − 1
)

d,

where |d| denotes the euclidean norm in R3 and δ > 0 is a penalization parameter. This

penalization function has a potential structure, i. e. there exists a potential function

Fδ(d) =
1

δ2

(|d|2 − 1
)2

such that fδ(d) = ∇d(Fδ(d)) for all d ∈ R3. Denoting Q =

(0, T )×Ω and Σ = (0, T )× ∂Ω, where Ω a smooth enough domain and ∂Ω its boundary,
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the model can be written as:

(LC)





∂tu− ν∆u + u · ∇u +∇p = −λ(∇d)t ∆d in Q,

∇ · u = 0 in Q,

∂td + γ (fδ(d)−∆d) + u · ∇d = 0 in Q,

u = 0 on Σ,

d = h or
∂d

∂n
= 0 or d is space-periodic on Σ,

u|t=0 = u0, d|t=0 = d0 in Ω,

As for the coefficients, ν > 0 is the fluid viscosity, λ > 0 is the elasticity constant and

γ > 0 is a relaxation in time constant.

Now we explain the boundary conditions: for the velocity u we always consider the

non-slip boundary condition (u = 0 on Σ); for the orientation vector d, the condition

used for the model derivation as a penalized model [12] is of non-homogeneous Dirichlet

type:

d = h on Σ such that |h| ≤ 1 in Σ. (1)

There exists some others works where the boundary condition considered is of homoge-

neous Neumann type [15] :

∂nd = 0 on Σ. (2)

jointly with the following free-slip boundary conditions for u:

u · n = 0, (∇× u)× n = 0 on Σ.

Finally, we will also consider periodic boundary conditions for d. In this case, the domain

Ω is a square (n = 2) or a cube (n = 3).

1.2 Known results

For the Navier-Stokes equations, several works have studied the influence of the addi-

tional hypothesis over the velocity u in order to turn a weak solution u into a strong solu-
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tion, or to obtain uniqueness. Serrin proved in 1962 that if u is a Leray-Hopf weak solution

belonging to Lα(0, T ;Lγ(R3)) where 2/α + 3/γ ≤ 1 for 2 < α < +∞ and 3 < γ < +∞,

then the solution u ∈ C∞((0, T )×R3). The same tesis was improved by other authors im-

posing weaker hypothesis, for instance Giga supposing u ∈ C([0, T ];L3(R3)), [7]. There

are also works were the weak regularity of the velocity is improved imposing regular-

ity criteria over the gradient of velocity (the case of the whole space was proved in [1]

and the bounded domain case in [3]) or the pressure (see for example, [2, 4]). Or even,

only supposing that one component of the velocity field belongs to L∞((0, T )× R3) (see

[10]). Recently, in [17], several different criteria on u or over some components of u are

considered with the same objective.

In our case, a coupled system of u and d is treated in a bounded domain. Here,

we analyze the cases where only additional hypothesis on u are necessary to provide the

strong regularity for (u,d). Sometimes, this will be possible (see results below when

imposing (H2) hypothesis for ∇u with q ∈ [2, 3]). Otherwise, an additional regularity on

d (the crystal orientation field) will be imposed.

We denote by H and V the space of type L2 and H1 respectively, associated to the

incompressibility and adherence velocity conditions:

H = {u ∈ L2(Ω) : ∇ · u = 0, u · n|∂Ω = 0}
V = {u ∈ H1(Ω) : ∇ · u = 0, u|∂Ω = 0}

Observe that the boldface is used to denote the vectorial spaces in order to distinguish

from the scalar spaces.

On the Liquid Crystal model (LC), under compatibility hypothesis:

|d0| ≤ 1, |h| ≤ 1 a. e. in Σ (3)

and (weak) regularity hypothesis for the data:

u0 ∈ H, d0 ∈ H1(Ω), h ∈ L∞(0, T ;H1/2(∂Ω)) ∩ L2(0, T ;H3/2(∂Ω)), (4)

it is known ([12]) the existence of weak solution global in time, that is a solution with the
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following regularity:





u ∈ L∞(0, T ;H) ∩ L2(0, T ;V)

d ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)), |d| ≤ 1.

In a previous work, some of the authors of this work obtained in [9] the existence of

a weak solution global in time (without restrictions for the data) for the limit problem

(when δ → 0 in (LC)).

Note that if Ω ⊆ R2, we know the existence and uniqueness of smooth solution global

in time, see [12]. For this, we focus our study in Ω ⊆ R3.

On the other hand, under the hypothesis of strong regularity for the data:

u0 ∈ V, d0 ∈ H2(Ω), h ∈ L∞(0, T ;H3/2(∂Ω)) ∩ L2(0, T ;H5/2(∂Ω)), (5)

it is known the existence and uniqueness of strong solution with restrictions (global in

time for small data or local in time for any data), that is, the solution has the following

regularity: 



u ∈ L∞(0, T∗;V) ∩ L2(0, T∗;H2(Ω))

d ∈ L∞(0, T∗;H2(Ω)) ∩ L2(0, T∗;H3(Ω)),

with T∗ ≤ T (small enough) or T∗ = T for small data.

Finally, from the previous regularity and under the hypothesis:

∂th ∈ L∞(0, T ;H−1/2(∂Ω)) ∩ L2(0, T ;H1/2(∂Ω)), (6)

it is easy to obtain (a posteriori) the following additional regularity (see Lemma 2.3):





∂tu ∈ L2(0, T ;H), p ∈ L2(0, T ; H1(Ω))

∂td ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).
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1.3 Main new results

Our aim is to elucidate sufficient regularity hypothesis for u in order to obtain strong

regularity global in time (and uniqueness) for the solution of (LC), without imposing

additional regularity hypothesis for d (if it is possible). In this way, we impose two kinds

of conditions for u:

(H1) ∇u ∈ L
2q

2q−3 (0, T ;Lq(Ω)) for some q: 3/2 < q ≤ ∞

or

(H2) u ∈ L
2p

p−3 (0, T ;Lp(Ω)) for some 3 < p ≤ +∞.

When necessary, we will impose the following two kinds of additional regularity for d:

(H3) ∇d ∈ L
2p

p−3 (0, T ;Lp(Ω)) for some p : 3 ≤ p ≤ +∞,

or

(H4) ∆d ∈ L
2q

2q−3 (0, T ;Lq(Ω)) for some q : 3/2 < q ≤ +∞.

Observe that hypothesis (H2) is the Serrin’s condition (see [18]) and hypothesis (H1)

was introduced by Berselli in [3] when q ≥ 3 (the case q ∈ (3/2, 3) is implied by the

Serrin’s condition). Both hypothesis guarantee the strong regularity and uniqueness for

the Navier-Stokes equations.

Next, we state the main results, indicating the sections where each result will be

proved. Always, the hypothesis (3), (5) and (6) are imposed on the data.

Theorem 1.1 (Non-homogeneous Dirichlet or homogeneous Neumann cases) Let

(u,d) be a weak solution of (LC) in (0, T ) such that ∇u verifies (H1) with exponent

q : 2 ≤ q ≤ 3. Then, (u,d) is the unique strong solution of (LC) in (0, T ).

The proof will be made using Prodi’s type estimates in a decoupled manner, first for

d, and afterwards using this regularity, for u (see Section 2).

Theorem 1.2 (Other cases) If (u,d) is a weak solution of (LC) such that u verifies

either (H1) or (H2), and d verifies either (H3) or (H4), then (u,d) is the unique strong

solution of (LC).
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In this case (see Section 3), we use Ladyzhenskaya’s type estimates for u and d in a

coupled manner.

Theorem 1.3 (Periodic boundary conditions for d) Let (u,d) be a weak solution

of (LC) with periodic boundary conditions for d such that u verifies either (H2) for p > 3

or (H1). Then, (u,d) is the unique strong solution of (LC).

The proof (see Section 4) is based on the obtention of the following non-hilbertian regu-

larity for d, ∇d ∈ L3(0, T ;L9(Ω)), and the application of Theorem 1.2.

Theorem 1.4 (Uniqueness) Suppose that the data verify the weak regularity given by

(4) and the constraints (3), and (u,d) is a weak solution of (LC) such that u verifies

either (H2) or (H1), and d verifies either (H3) or (H4). Then, this solution coincides

with any weak solution (associated to the same data).

Proof: See Section 5 when (H1) condition is imposed, and Section 6 for (H2) condition.

Remark 1.1 Observe that in Theorems 1.1, 1.2 and 1.3, strong regularity is obtained

assuming strong regularity on the data (u0,d0,h). But the uniqueness result (Theorem

1.4) is obtained only assuming weak regularity on the data (and additional regularity on

weak solutions). However, Theorems 1.1 and 1.3 give uniqueness results (a posteriori)

under less additional regularity hypothesis over the weak solution than in Theorem 1.4

(only with additional regularity for u and not for d).

Remark 1.2 (Comparison between the hypothesis (H1) and (H2) for u, and

(H3) and (H4) for d)

Thanks to the Sobolev’s embeddings, the hypothesis (H1) (resp. (H4)) for 3/2 < q < 3

implies the hypothesis (H2) (resp. (H3)) for 3 < p < +∞. In particular, the hypothesis

(H2) guarantees the strong regularity for the solution of the Navier-Stokes equations, see

for instance [18].
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2 Proof of Theorem 1.1

We want to use the additional regularity hypothesis (H1) for ∇u (with 2 ≤ q ≤ 3), in

order to obtain strong regularity for (LC) without additional regularity hypothesis for d.

Due to the particular structure of the equations for u, specially the strongly nonlinear

term (∇d)t ∆d in the u-system, now it will be necessary to obtain greater regularity for

d.

An essential characteristic of the problem for d (given u) is the following weak maxi-

mum principle:

Lemma 2.1 (Maximum principle) Given u ∈ L2(0, T ;V) ∩ L∞(0, T ;H) and d0 ∈
L2(Ω) with |d0| ≤ 1 a. e. in Ω, let d be any weak solution for the d-problem (either in

the non-homogeneous Dirichlet case, d|Σ = h with |h| ≤ 1 a. e. on Σ, or the homoge-

neous Neumann case, ∂nd|Σ = 0 or the space-periodic case), i.e. d ∈ L2(0, T ;H1(Ω)) ∩
L∞(0, T ;L2(Ω)) such that for all e ∈ H1

0(Ω) (or H1(Ω)):

〈∂td, e〉+ ((u · ∇)d, e) + (fδ(d), e) + (∇d,∇e) = 0, (7)

d(0) = d0. (8)

Then, |d(x, t)| ≤ 1 a.e. in Q.

Proof: See [5]. For reader’s convenience completeness, a proof is included in Appendix

A.1.

In particular, |fδ(d)| ≤ C and |∇fδ(d)| ≤ C |∇d|, where C is a constant (depending

on 1/δ2).

In the proof of Theorem 1.1, we distinguish between two kinds of boundary condi-

tions: homogeneous Neumann boundary conditions, that is, (∂nd)|∂Ω = 0, and non-

homogeneous Dirichlet boundary conditions, that is, d|∂Ω = h (the space-periodic case

will be easier).
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2.1 Homogeneous Neumann boundary conditions

Notice that for homogeneous Neumann boundary conditions, we are going to consider

the following equivalent norms:

‖d‖H1(Ω) ∼
(
‖∇d‖2

L2(Ω) + ‖d‖2
L2(Ω)

)1/2

‖d‖H2(Ω) ∼
(
‖∆d‖2

L2(Ω) + ‖d‖2
L2(Ω)

)1/2

‖d‖H3(Ω) ∼
(
‖∇(∆d)‖2

L2(Ω) + ‖d‖2
H2(Ω)

)1/2

The proof of existence of weak solution ([12]) is based on the restriction |d| ≤ 1 in Q

(consequence of a weak maximum principle, see Theorem 2.1 for the equation verified by

|d|2), and the following inequalities:

1

2

d

dt
‖d‖2

L2 + γ‖∇d‖2
L2 ≤ C (9)

1

2

d

dt

(
‖u‖2

L2 + λγ‖∇d‖2
L2 + λγFδ(d)

)

+ ν‖∇u‖2
L2 + λγ‖(fδ(d)−∆d)‖2

L2 ≤ 0

(10)

If we take ∆2d as a test function in the d-system, integrating by parts in every term

and a second time in the derivative in time term ∂td, the boundary integrals cancel using

that ∂n∂td = 0 on Σ):

1

2

d

dt
‖∆d‖2

L2(Ω) + γ‖∇(∆d)‖2
L2(Ω)

= γ

∫

Ω

∇fδ(d) · ∇(∆d) dΩ +

∫

Ω

∇[(u · ∇)d]∇(∆d) dΩ

≤ γ

∫

Ω

|∇(fδ(d))| |∇(∆d)| dΩ +

∫

Ω

|∇u||∇d||∇(∆d)| dΩ

+

∫

Ω

|∇u||D2d|2dΩ,

where the last term on the right hand side is obtained as follows:
∣∣∣
∫

Ω

(u · ∇)∇d · ∇(∆d) dΩ
∣∣∣ =

∣∣∣−
∫

Ω

(∇u · ∇)∇d : D2d dΩ− 1

2

∫

Ω

(u · ∇)(|D2d|2) dΩ
∣∣∣

≤
∫

Ω

|∇u| |D2d|2 dΩ
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Applying the Young’s inequality,

d

dt
‖∆d‖2

L2(Ω) + γ ‖∇(∆d)‖2
L2(Ω) ≤ C

( ∫

Ω

|∇fδ(d)|2 dΩ

+

∫

Ω

|∇u|2 |∇d|2 dΩ +

∫

Ω

|∇u| |D2d|2 dΩ
)

:= I1 + I2 + I3

If, moreover, we add (9) and γ ‖d‖2
H2(Ω) in both sides to the previous estimate, we

obtain:
d

dt
‖d‖2

H2(Ω) + γ‖d‖2
H3(Ω) ≤ I1 + I2 + I3 + γ‖d‖2

H2(Ω) + C. (11)

From the definition of fδ(d), we have that:

|∇(fδ(d))| ≤ C(|d|2 + 1)|∇d| ≤ C|∇d|, (12)

hence

I1 ≤ ε̄‖∇(∆d)‖2
L2(Ω) + Cε̄‖∇d‖2

L2 .

The terms I2 and I3 can be controlled thanks to hypothesis (H1). Indeed, for any

q ≥ 3/2,

I3 ≤ C ‖∇u‖Lq(Ω)‖D2d‖2

L
2q

q−1 (Ω)

≤ C‖∇u‖Lq(Ω)‖D2d‖
2q−3

q

L2(Ω)‖D2d‖
3
q

H1(Ω)

≤ ε̄‖d‖2
H3(Ω) + Cε̄‖∇u‖

2q
2q−3

Lq(Ω)‖d‖2
H2(Ω)

(13)

We only have been able to get a good estimate of I2 for 2 ≤ q ≤ 3. To this aim, we

separate the cases 2 < q < 3, q = 3 and q = 2.

• if 2 < q < 3, we use the Sobolev’s embedding W 1, 6q
5q−6 (Ω) ↪→ L

2q
q−2 (Ω), obtaining:

∫

Ω

|∇u|2|∇d|2 dΩ ≤ ‖∇u‖2
Lq(Ω)‖∇d‖2

L
2q

q−2 (Ω)

≤ C‖∇u‖2
Lq(Ω)‖∇d‖2

W
1,

6q
5q−6 (Ω)

≤ C‖∇u‖2
Lq(Ω)‖∇d‖2 2q−3

q

H1(Ω)‖∇d‖2( 3
q
−1)

H2(Ω)

≤ ε̄‖d‖2
H3(Ω) + Cε̄‖∇u‖

2q
2q−3

Lq(Ω)‖d‖2
H2(Ω)

(14)
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• if q = 3, then:
∫

Ω

|∇u|2|∇d|2 dΩ ≤ ‖∇u‖2
L3(Ω)‖∇d‖2

L6(Ω)

≤ C‖∇u‖2
L3(Ω)‖∇d‖2

H1(Ω)

(15)

Observe that hypothesis (H1) in this case is ∇u ∈ L2(0, T ;L3(Ω)).

• if q = 2, we use the inequality (see Friedman [6]):

‖f‖L∞(Ω) ≤ C ‖f‖1/2

H1(Ω)‖f‖1/2

H2(Ω),

obtaining:
∫

Ω

|∇u|2|∇d|2 dΩ ≤ ‖∇u‖2
L2(Ω)‖∇d‖2

L∞(Ω)

≤ C‖∇u‖2
L2(Ω)‖∇d‖H1(Ω)‖∇d‖H2(Ω)

≤ ε̄‖d‖2
H3(Ω) + Cε̄‖∇u‖4

L2(Ω)‖d‖2
H2(Ω)

(16)

Observe that hypothesis (H1) in this case is ∇u ∈ L4(0, T ;L2(Ω)).

Then, for 2 ≤ q ≤ 3 (and taking ε̄ small enough), from (11), we obtain the following

inequality:

d

dt
‖d‖2

H2(Ω) + γ‖d‖2
H3(Ω) ≤ C

(
‖∇u‖

2p
2p−3

Lp(Ω) + 1

)
‖d‖2

H2(Ω) + C (17)

that let us to conclude that d ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)).

From that regularity, we can deduce the strong regularity for (u, p) and for ∂td taking

into account the following Lemmas.

Lemma 2.2 Let (u,d) be a weak solution of (LC) such that ∇u has the additional reg-

ularity (H1), and d ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)). Then u ∈ L∞(0, T ;H1(Ω)) ∩
L2(0, T ;H2(Ω)).

Proof: See Appendix A.2.
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Lemma 2.3 Let (u,d) be a weak solution of (LC) such that:





d ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω))

u ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

Then, ∂td ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and ∂tu ∈ L2(0, T ;L2(Ω)). Moreover,

p ∈ L2(0, T ; H1(Ω)).

Proof: See Appendix A.3.

2.2 Non-homogeneous Dirichlet boundary conditions

We start considering a “good” lifting d̃ for the Dirichlet datum h in such a way that

we could write a problem similar to (LC)3 with homogeneous boundary data for d and

that regular estimates of H3-type for d can be made. We define this lifting function d̃ as

the solution of the problem:




∂td̃ + γ
(
fδ(d)−∆d̃

)
= 0 in Q,

d̃ = h on Σ, d̃|t=0 = d0 in Ω.
(18)

The system (18) also verifies the maximum principle (since |d0| ≤ 1 and |h| ≤ 1), hence

|d̃| ≤ 1 in Q. In particular, |fδ(d̃)| ≤ C and |∇fδ(d̃)| ≤ C |∇d̃|.

For Ω smooth enough, thanks to the strong regularity of the data h and d0 given by

(5) and (6), we have:





d̃ ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω))

∂td̃ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

Then, the homogeneous problem verified by d̂ = d− d̃ is written as follows:




∂td̂ + γ(fδ(d)− fδ(d̃)−∆d̂) + u · ∇d = 0 in Q,

d̂|t=0 = 0 in Ω, d̂ = 0 on Σ.

(19)
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Now, due to the homogeneous boundary condition verified by d̂, we are going to

consider the following equivalent norms:

‖d̂‖2
H1(Ω) ≈ ‖∇d̂‖2

L2(Ω)

‖d̂‖2
H2(Ω) ≈ ‖∆d̂‖2

L2(Ω)

‖d̂‖2
H3(Ω) ≈ ‖∇(∆d̂)‖2

L2(Ω) + ‖∆d̂‖2
L2(Ω),

If we take ∆2d̂ as test a function in (19) and integrate by parts (twice in the ∂td̂-term),

we arrive at the expression:

1

2

d

dt
‖∆d̂‖2

L2(Ω) + γ‖∇(∆d̂)‖2
L2(Ω)

= γ

∫

Ω

∇[fδ(d)− fδ(d̃)] · ∇(∆d̂) dΩ +

∫

Ω

∇[(u · ∇)d] · ∇(∆d̂) dΩ

:= J1 + J2

(20)

Notice that all the boundary integrals vanish. A formal justification is since ∂td̂|∂Ω,(
fδ(d) − fδ(d̃)

)∣∣∣
∂Ω

and (u · ∇d)|∂Ω = 0, hence ∆d̂|∂Ω = 0 thanks to (19). A rigorous

justification can be done with a Galerkin method, using the basis of laplacian eigenfunc-

tions.

Thus,

J1 ≤ C

∫

Ω

(
|∇d̂|+ |∇d̃|

)
|∇∆d̂| dΩ

≤ ε̄‖∇(∆d̂)‖2
L2(Ω) + Cε̄

(
‖∇d̂‖2

L2(Ω) + ‖∇d̃‖2
L2(Ω)

) (21)

(here, we have used that |∇fδ(d)| ≤ C |∇d| and |∇fδ(d̃)| ≤ C |∇d̃|). But, again inte-

grating by parts in J2 and taking into account that the boundary integrals cancel, we

obtain:

J2 =

∫

Ω

(∇u · ∇)d · ∇(∆d̂) dΩ +

∫

Ω

(u · ∇)∇d · ∇(∆d̂) dΩ := K1 + K2

The estimate of the term K1 is similar to (14), (15) and (16) (again, this estimates are

valid only for the cases 2 ≤ q ≤ 3):

K1 ≤ ε̄‖∇(∆d̂)‖2
L2(Ω) + Cε̄‖∇u‖

2q
2q−3

Lq(Ω)

(
‖∆d̂‖2

L2(Ω) + ‖d̃‖2
H2(Ω)

)
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The estimate for K2 is the following for 2 ≤ q < 3 (in fact, the argument is valid for

3/2 < q < 3):

K2 ≤ ε̄‖∇(∆d̂)‖2
L2(Ω) + Cε̄

∫

Ω

|u|2 |D2d|2 dΩ

and the last term on the right hand side is bounded as follows:

∫

Ω

|u|2|D2d|2 dΩ ≤ ‖u‖2

L
q

3−q (Ω)
‖D2d‖2

L
6q

5q−6 (Ω)
(q < 3)

≤ C ‖∇u‖2
Lq(Ω)‖D2d‖

2(2q−3)
q

L2(Ω) ‖D2d‖
2(3−q)

q

H1(Ω)

≤ ε̄‖D2d̂‖2
H1(Ω) + Cε̄‖∇u‖

2q
2q−3

Lq(Ω)

(
‖D2d̂‖2

L2(Ω) + ‖D2d̃‖2
L2(Ω)

)

+ C ‖D2d̃‖2
H1(Ω)

In order to obtain a bound of K2 for q = 3, we consider the following decomposition

of K2:

K2 = −
∫

Ω

(∇u · ∇)∇d ·∆d̂ dΩ−
∫

Ω

(u · ∇)∆d̃∆d̂ dΩ := K21 + K22

(where the equality

∫

Ω

(u · ∇)∆d̂ ·∆d̂ dΩ = 0 has been used), where:

K21 ≤ ‖∇u‖L3(Ω)‖D2d‖L3(Ω)‖D2d̂‖L3(Ω)

≤ C‖∇u‖L3(Ω)‖D2d‖1/2

L2(Ω)‖D2d‖1/2

H1(Ω)‖D2d̂‖1/2

L2(Ω)‖D2d̂‖1/2

H1(Ω)

≤ C‖∇u‖L3(Ω)

{
‖∆d̂‖L2(Ω)‖∆d̂‖H1(Ω) + ‖∆d̂‖1/2

L2(Ω)‖∆d̂‖1/2

H1(Ω)‖d̃‖1/2

H2(Ω)‖d̃‖1/2

H3(Ω)

}

≤ ε̄‖∆d̂‖2
H1(Ω) + Cε̄‖∇u‖2

L3(Ω)

(
‖∆d̂‖2

L2(Ω) + ‖d̃‖2
H2(Ω)

)
+ C‖d̃‖2

H3(Ω)

In order to bound K22, integrating by parts, we get:

K22 =

∫

Ω

(u · ∇)∆d̂∆d̃ dΩ ≤ ε̄ ‖∇(∆d̂)‖2
L2(Ω) + Cε̄

∫

Ω

|u|2 |∆d̃|2 dΩ.
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From hypothesis ∇u ∈ L2(0, T ;L3(Ω)), in particular u ∈ L2(0, T ;Lp(Ω)), ∀p < +∞.

Then,
∫

Ω

|u|2 |∆d̃|2 dΩ ≤ C ‖u‖2
Lp(Ω)‖∆d̃‖2

L2+δ(p)

≤ C ‖∇u‖2
L3(Ω)‖∆d̃‖2

L2+δ(p)(Ω)
for a certain δ(p) > 0,

and therefore, the previous bounds belongs to L1(0, T ) imposing the following additional

regularity ∆d̃ ∈ L∞(0, T ;L2+δ(Ω)) for some δ > 0 (δ = δ(p) ↓ 0 as p ↑ +∞), that is,

d̃ ∈ L∞(0, T ;W2,s(Ω)), for some s > 2. (22)

Collecting all the previous estimates in (20) and adding γ‖∆d̂‖2
L2(Ω) in both sides of

(20), we obtain:

• for q ∈ [2, 3),

d

dt
‖∆d̂‖2

L2(Ω) + γ‖d̂‖2
H3(Ω) ≤ C

{
‖d̃‖2

H3(Ω) + ‖d̂‖2
H1(Ω)

+ ‖∇u‖
2q

2q−3

Lq(Ω)

(
‖∆d̂‖2

L2(Ω) + ‖d̃‖2
H2(Ω)

)}

• for q = 3,

d

dt
‖∆d̂‖2

L2(Ω) + γ‖d̂‖2
H3(Ω) ≤ C

{
‖d̃‖2

H3(Ω) + ‖d̂‖2
H1(Ω)

+ ‖∇u‖2
L3(Ω)

(
‖∆d̂‖2

L2(Ω) + ‖d̃‖2
H2(Ω) + ‖∆d̃‖2

L2+δ(Ω)

)}

Therefore, applying the Gronwall’s Lemma we obtain that:

d̂ ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)).

In order to obtain the strong regularity for u, that is, u ∈ L∞(0, T ;H1(Ω))∩L2(0, T ;H2(Ω)),

there are not differences with the homogeneous Neumann boundary condition case (see

Lemma 2.2). Neither the obtention of regularity for ∂tu neither ∂td are different (see

Lemma 2.3). Thus, as in the Neumann case, we can conclude that ∂tu ∈ L2(0, T ;L2(Ω)),

∂td ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and p ∈ L2(0, T ; H1(Ω)).
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3 Proof of Theorem 1.2 (when (H1) is imposed).

We want to analyze those cases from the precedent Section where it could not be

deduced the strong regularity for d. For this aim, we will use Ladyzhenskaya’s type of

estimates. We study again separately the homogeneous Neumann boundary conditions

for d, i. e., ∂nd|∂Ω = 0, and the non-homogeneous Dirichlet boundary conditions, that is,

d|∂Ω = h. The periodic boundary conditions for d will be treated in the next Section.

3.1 Homogeneous Neumann boundary conditions

Remember that we use the following boundary condition for d:

∂nd = 0 on Σ, (23)

Deriving (LC) with respect to the time, and taking first ∂td as test function for (LC)3,

we obtain (using |∂tfδ(d)| ≤ C|∂td|):
1

2

d

dt
‖∂td‖2

L2(Ω) + ‖∇(∂td)‖2
L2(Ω) ≤ C

(
‖∂tu‖2

L2(Ω) + ‖∂td‖2
L2(Ω)

)
,

(where we have integrated by parts the term

∫

Ω

(∂tu · ∇)d · ∂td dΩ). On the other hand,

taking λ−1∂tu and −∆(∂td) as test functions, we obtain:

1

2

d

dt

(
λ−1‖∂tu‖2

L2(Ω) + ‖∇(∂td)‖2
L2(Ω)

)
+

ν

λ
‖∇(∂tu)‖2

L2(Ω) + γ‖∆(∂td)‖2
L2(Ω)

≤
∫

Ω

(
∂tfδ(d) · ∂t(∆d) + (u · ∇)(∂td) · ∂t(∆d)− 1

λ
(∂tu · ∇)u · (∂tu)

)
dΩ

−
∫

Ω

(∇(∂td))t ·∆d · ∂tu dΩ

≤ C

{∫

Ω

|∂td||∆(∂td)|+
∫

Ω

|∇u||∇(∂td)|2 dΩ + λ−1

∫

Ω

|∂tu|2|∇u| dΩ

}

−
∫

Ω

(∇(∂td))t ·∆d · ∂tu dΩ =
4∑

i=1

Ji.

(24)

In fact, we proceed as follows:

J1 ≤ C‖∂td‖L2(Ω)‖∆(∂td)‖L2(Ω) ≤ ε̄‖∇(∂td)‖2
H1(Ω) + Cε̄‖∂td‖2

L2(Ω)
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The estimate for J2 is similar to (13):

J2 ≤ ‖∇u‖Lq(Ω)‖∇(∂td)‖2

L
2q

q−1 (Ω)
≤ ‖∇u‖Lq(Ω)‖∇(∂td)‖

2q−3
q

L2(Ω)‖∇(∂td)‖
3
q

H1(Ω)

≤ ε̄‖∇(∂td)‖2
H1(Ω) + Cε̄‖∇u‖

2q
2q−3

Lq(Ω)‖∇(∂td)‖2
L2(Ω),

where the additional regularity (H1) for ∇u appears. The term J3 can be bound as in

Berselli’s article [3]:

J3 ≤ λ−1‖∂tu‖2

L
2q

q−1 (Ω)
‖∇u‖Lq(Ω) ≤ C‖∂tu‖

2q−3
q

L2(Ω)‖∇(∂tu)‖
3
q

L2(Ω)‖∇u‖Lq(Ω)

≤ ε̄‖∇(∂tu)‖2
L2(Ω) + Cε̄‖∇u‖

2q
2q−3

Lq(Ω)‖∂tu‖2
L2(Ω)

Summary, for ε̄ small enough, we have the following inequality:

d

dt

(
λ−1‖∂tu‖2

L2(Ω) + ‖∂td‖2
H1(Ω)

)
+

ν

λ
‖∂tu‖2

H1(Ω) + γ‖∂td‖2
H2(Ω)

≤ C

(
‖∇u‖

2q
2q−3

Lq(Ω) + 1

) (
‖∂tu‖2

L2(Ω) + ‖∂td‖2
H1(Ω)

)

−
∫

Ω

(∂tu · ∇)(∂td) ·∆d dΩ

(25)

Finally, there is left the last term to bound. We can choose two possible strategies,

depending on the way we write such term:

1. If we try to integrate the term directly, we need to impose the additional regularity

(H4) for ∆d, estimating as follows:
∫

Ω

|∇∂td
t||∆d||∂tu| dΩ ≤ ‖∂tu‖

L
2q

q−1 (Ω)
‖∆d‖Lq(Ω)‖∇(∂td)‖

L
2q

q−1 (Ω)

≤ ‖∂tu‖α
L2(Ω)‖∇(∂tu)‖1−α

L2(Ω)‖∆d‖Lq(Ω)‖∇(∂td)‖α
L2(Ω)‖∇(∂td)‖1−α

H1(Ω)

≤ ε̄
(
‖∇(∂tu)‖2

L2(Ω) + ‖∇(∂td)‖2
H1(Ω)

)
+ Cε̄‖∆d‖1/α

Lq(Ω)

(
‖∂tu‖2

L2(Ω) + ‖∇(∂td)‖2
L2(Ω)

)

with
1

α
=

2q

2q − 3
. We can conclude the following inequality:

d

dt

(
λ−1‖∂tu‖2

L2(Ω) + ‖∂td‖2
H1(Ω)

)
+

ν

λ
‖∂tu‖2

H1(Ω) + γ‖∂td‖2
H2(Ω)

≤ C

{(
‖∇u‖

2q
2q−3

Lq(Ω) + ‖∆d‖
2q

2q−3

Lq(Ω) + 1

) (
‖∂tu‖2

L2(Ω) + ‖∂td‖2
H1(Ω)

)} (26)
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2. If we integrate by parts, we will have to impose the hypothesis (H3) on ∇d. Indeed,

−
∫

Ω

(∂tu · ∇)(∂td) ·∆d dΩ =

∫

Ω

(∂tu · ∇)∇(∂td) · ∇d dΩ

+

∫

Ω

(∇(∂tu) · ∇)(∂td) : ∇d dΩ,

because of the boundary term vanishes due to ∂tu|∂Ω = 0, independently from the

boundary conditions imposed on d. The remaining terms can be bounded as follows:
∫

Ω

|D2(∂td)||∇d||∂tu| dΩ ≤ ‖D2(∂td)‖L2(Ω)‖∇d‖Lp(Ω)‖∂tu‖
L

2p
p−2 (Ω)

≤ ‖∂td‖H2(Ω)‖∇d‖Lp(Ω)‖∂tu‖
p−3

p

L2(Ω)‖∇(∂tu)‖
3
p

L2(Ω)

≤ ε̄
(
‖∂td‖2

H2(Ω) + ‖∂tu‖2
H1(Ω)

)
+ Cε̄‖∇d‖

2p
p−3

Lp(Ω)‖∂tu‖2
L2(Ω)

And similarly,
∫

Ω

|∇(∂td)| |∇d| |∇(∂tu)| dΩ ≤ ‖∇(∂td)‖
L

2p
p−2 (Ω)

‖∇d‖Lp(Ω)‖∇(∂tu)‖L2(Ω)

≤ ‖∇(∂td)‖
p−3

p

L2(Ω)‖∇(∂td)‖
3
p

H1(Ω)‖∇d‖Lp(Ω)‖∂tu‖H1(Ω)

≤ ε̄
(
‖∂td‖2

H2(Ω) + ‖∂tu‖2
H1(Ω)

)
+ Cε̄‖∇d‖

2p
p−3

Lp(Ω)‖∇(∂td)‖2
L2(Ω)

Therefore, we obtain the following inequality:

d

dt

(
λ−1‖∂tu‖2

L2(Ω) + ‖∂td‖2
H1(Ω)

)
+

ν

λ
‖∂tu‖2

H1(Ω) + γ‖∂td‖2
H2(Ω)

≤ C

(
‖∇d‖

2p
p−3

Lp(Ω) + ‖∇u‖
2q

2q−3

Lq(Ω) + 1

) (
‖∂tu‖2

L2(Ω) + ‖∂td‖2
H1(Ω)

) (27)

Thus, using the Gronwall’s Lemma, we can conclude (as in [3]) that:

∂tu ∈ L∞(ε, T ;L2(Ω)) ∩ L2(ε, T ;H1(Ω)),

∂td ∈ L∞(ε, T ;H1(Ω)) ∩ L2(ε, T ;H2(Ω))

(28)

In particular, from u and ∂tu ∈ L2(ε, T ;H1(Ω)), we obtain u ∈ C([ε, T ];H1(Ω)) (d and

∂td ∈ L2(ε, T ;H2(Ω)) implies that d ∈ C([ε, T ];H2(Ω)). Therefore, using the local in

time strong regularity as in [3], we can conclude that:

∇u ∈ L∞(0, T ;L2(Ω)) y ∆d ∈ L∞(0, T ;L2(Ω)).
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Then, d ∈ L∞(0, T ;H2(Ω)) and u ∈ L∞(0, T ;H1(Ω)).

Thus, it is only necessary to obtain d ∈ L2(0, T ;H3(Ω)) and u ∈ L2(0, T ;H2(Ω)). To

this aim, we use the following result:

Lemma 3.1 Suppose that d ∈ L∞(0, T ;H2(Ω)) and u ∈ L∞(0, T ;H1(Ω)), then d ∈
L2(0, T ;H3(Ω)) and u ∈ L2(0, T ;H2(Ω)). Moreover, ∂td ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)),

∂tu ∈ L2(0, T ;L2(Ω)) and p ∈ L2(0, T ; H1(Ω)).

Proof: See Appendix A.4.

3.2 Nonhomogeneous Dirichlet boundary condition case

In this case, we derive the equation for u in (LC) and the system for d̂ (19) with respect

to the time, and take λ−1 ∂tu and −∆(∂td̂), respectively, as test functions. Thus we obtain

an inequality similar to (25) (with three additional terms (on the right)). Concretely:

1

2

d

dt

(
λ−1‖∂tu‖2

L2(Ω) + ‖∂td̂‖2
H1(Ω)

)
+

ν

λ
‖∂tu‖2

H1(Ω) + γ ‖∂td̂‖2
H2(Ω)

≤ ε̄‖∆(∂td̂)‖2
L2(Ω) + Cε̄

∫

Ω

(
|∂td̂|2 + |∂td̃|2

)
dΩ + λ−1

∫

Ω

|∂tu|2|∇u| dΩ

−
∫

Ω

(∂tu · ∇)∂td ·∆d dΩ−
∫

Ω

(∂tu · ∇)d ·∆(∂td) dΩ

+

∫

Ω

(∂tu · ∇)d ·∆(∂td̂) dΩ +

∫

Ω

(u · ∇)(∂td) ·∆(∂td̂) dΩ :=
7∑

i=1

J̃i

(29)

The estimate of J̃3 is identical to those of J3 (in the Neumann case).

The term J̃4 can be bounded in two different ways (as the J4-term in the homogeneous

Neumann boundary case), depending on te hypothesis imposed on d. That is:

• if the hypothesis (H4) on ∆d is considered, then:

J̃4 ≤ ε̄
(
‖∂tu‖2

H1(Ω) + ‖∂td̂‖2
H2(Ω) + ‖∂td̃‖2

H2(Ω)

)

+ Cε̄‖∆d‖
2q

2q−3

Lq(Ω)

(
‖∂tu‖2

L2(Ω) + ‖∂td̂‖2
H1(Ω) + ‖∂td̃‖2

H1(Ω)

)
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• if the hypothesis (H3) on ∇d is considered, then:

J̃4 ≤ ε̄
(
‖∂tu‖2

H1(Ω) + ‖∂td̂‖2
H2(Ω) + ‖∂td̃‖2

H2(Ω)

)

+ Cε̄‖∇d‖
2p

p−3

Lp(Ω)

(
‖∂tu‖2

L2(Ω) + ‖∂td̂‖2
H1(Ω) + ‖∂td̃‖2

H1(Ω)

)

Adding J̃5 and J̃6:

J̃5 + J̃6 = −
∫

Ω

(∂tu · ∇)d ·∆(∂td̃) dΩ.

If we consider (H3) on ∇d, we bound as follows:

J̃5 + J̃6 ≤ ε̄
(
‖∂tu‖2

H1(Ω) + ‖∂td̃‖2
H2(Ω)

)
+ Cε̄‖∇d‖

2p
p−3

Lp(Ω)‖∂tu‖2
L2(Ω)

If we consider (H4) hypothesis for ∆d, we can bound as follows:

J̃5 + J̃6 ≤ ‖∂tu‖
L

2p
p−2 (Ω)

‖∇d‖Lp(Ω)‖∆(∂td̃)‖L2(Ω)

≤ C ‖∂tu‖β
L2(Ω)‖∂tu‖1−β

H1(Ω)

(
‖∆d‖Lq(Ω) + ‖d‖Lq(Ω)

)
‖∂td̃‖H2(Ω)

≤ ε̄‖∂tu‖2
H1(Ω) + Cε̄

{
‖∂td̃‖2

H2(Ω) +
(
‖∆d‖

2
β

Lq(Ω) + ‖d‖
2
β

H1(Ω)

)
‖∂tu‖L2(Ω)

}

where p =
3q

3− q
,

2

β
=

2p

p− 3
=

2q

2q − 3
if q < 3. For q > 3, we integrate by parts and:

J̃5 + J̃6 ≈
∫

Ω

|∂tu| |∇(∂td̃)| |D2d| dΩ +

∫

Ω

|∇(∂tu)| |∇(∂td̃)| |∇d| dΩ = A + B,

then, bounding A as in J4 (for the (H4) condition):

A ≤ ε̄‖∂tu‖2
H1(Ω) + C ‖∂td̃‖2

H2(Ω) + C ‖D2d‖
2q

2q−3

Lq(Ω)

(
‖∂tu‖2

L2(Ω) + ‖∂td̃‖2
H1(Ω)

)

In order to bound B, by simplicity we do not use (H4), but we impose additional regularity

on d̃, as follows

B ≤ ‖∇(∂tu)‖L2(Ω)‖∇(∂td̃)‖L3(Ω)‖∇d‖L6(Ω)

≤ ε̄‖∂tu‖2
H1(Ω) + Cε̄‖d‖2

H1(Ω)‖∂td̃‖2
W 1,3(Ω)
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hence ∂td̃ ∈ L2(0, T ;W1,3(Ω)) will be imposed.

Integrating by parts the term J̃7,

J̃7 =

∫

Ω

(u · ∇)(∂td̂) ·∆(∂td̂) dΩ +

∫

Ω

(u · ∇)(∂td̃) ·∆(∂td̂) dΩ

= −
∫

Ω

(∇u · ∇)(∂td̂) · ∇(∂td̂) dΩ +

∫

Ω

(u · ∇)(∂td̃) ·∆(∂td̂) dΩ

Observe that the first term of J̃7 is similar to J4, replacing d by d̂, hence

∫

Ω

|∇u| |∇(∂td̂)|2 dΩ ≤ ε̄‖∂td̂‖2
H2(Ω) + Cε̄‖∇u‖

2q
2q−3

Lq(Ω)‖∂td̂‖2
H1(Ω),

The second term can be estimated differently depending on the range of q:

• If 3
2
≤ q < 3, then:

∫

Ω

(u · ∇)(∂td̃) ·∆(∂td̂) dΩ ≤ ‖u‖
L

3q
3−q (Ω)

‖∇(∂td̃)‖
L

6q
5q−6 (Ω)

‖∆(∂td̂)‖L2(Ω)

≤ C ‖∇u‖Lq(Ω)‖∇(∂td̃)‖α
L2(Ω)‖∇(∂td̃)‖1−α

H1(Ω)‖∂td̂‖H2(Ω)

≤ ε̄‖∂td̂‖2
H2(Ω) + ε̄

{
‖∂td̃‖2

H2(Ω) + ‖∇u‖
2
α

Lq(Ω)‖∇(∂td̃)‖2
L2(Ω)

}

where
2

α
=

2q

2q − 3
.

• If q ≥ 3, only supposing that ∇u ∈ L
2q

2q−3 (0, T ;Lq(Ω)), we cannot bound this term.

By simplicity, we will impose some additional regularity for ∂td̃ in order to get this

aim.

∫

Ω

(u · ∇)∇(∂td̃) · ∇(∂td̂) dΩ ≤ ‖u‖L6(Ω)‖D2(∂td̃)‖L3/2(Ω)‖∇(∂td̂)‖L6(Ω)

≤ ε̄‖∂td̂‖2
H2(Ω) + Cε̄‖u‖2

H1(Ω)‖∂td̃‖2
W 2,3/2(Ω)

(hence ∂td̃ ∈ L∞(0, T ;W2,3/2(Ω)) will be imposed).
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And therefore, the inequality obtained in the nonhomogeneous Dirichlet boundary

case is:

d

dt

(
λ−1‖∂tu‖2

L2(Ω) + ‖∂td̂‖2
H1(Ω)

)
+

ν

λ
‖∂tu‖2

H1(Ω) + ‖∂td̂‖2
H2(Ω)

≤ C

(
‖∇u‖

2q
2q−3

Lq(Ω) +
[
‖∇d‖

2p
p−3

Lp(Ω) or ‖∆d‖
2q

2q−3

Lq(Ω) + ‖d‖
2q

2q−3

L2(Ω

])

×
(
‖∂tu‖2

L2(Ω) + ‖∂td̂‖2
H1(Ω) + ‖∂td̃‖2

H1(Ω)

)

+C
{
‖u‖2

H1(Ω)‖∂td̃‖2
W 2,3/2(Ω)

+ ‖∂td̂‖2
L2(Ω) + ‖∂td̃‖2

L2(Ω)

+µ‖d‖2
H1(Ω)‖∂td̃‖2

W 1,3(Ω)

}
,

(30)

where µ = 0 if (H3) is supposed and µ = 1 if (H4).

4 Regularity for the periodic boundary condition case

(proof of Theorem 1.3 with (H1))

Attending to the development of the previous section, if we only impose the regularity

hypothesis (H1) on ∇u but not hypothesis (H3) for ∇d nor hypothesis (H4) for ∆d,

for the exponent q ∈ (3/2, 2) ∪ (3, +∞) we cannot assure that d ∈ L∞(0, T ;H2(Ω)) ∩
L2(0, T ;H3(Ω)), nor that u ∈ L∞(0, T ;H1(Ω))∩L2(0, T ;H2(Ω)). In a attempt to improve

the regularity for d (without imposing additional regularity hypothesis for d) and in

the case of periodic boundary conditions for d, we will study a certain non-hilbertian

regularity. To this aim, we take −∇ · (|∇d|∇d) as test function in the system for d,

where separating term by term and integrating by parts (the boundary integral vanish

thanks to the periodic boundary conditions on d), we obtain:

−
∫

Ω

∂td · [∇ · (|∇d|∇d)]dΩ =

∫

Ω

∂t(∇d) · ∇d |∇d| dΩ =
1

3

d

dt
‖∇d‖3

L3(Ω),
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∫

Ω

∆d · [∇ · (|∇d|∇d)] dΩ = −
∫

Ω

∇(∆d)∇d |∇d| dΩ =

∫

Ω

D2d∇(∇d |∇d|) dΩ

=

∫

Ω

|D2d|2|∇d| dΩ +

(
2

3

)2 ∫

Ω

|∇ (|∇d|3/2
) |2 dΩ

∫

Ω

(u · ∇)d · ∇ · (|∇d|∇d) dΩ = −
∫

Ω

∇u · ∇d |∇d|∇d dΩ−
∫

Ω

(u · ∇)
|∇d|2

2
|∇d| dΩ

≤ C

∫

Ω

|∇u|∇d|3dΩ− 1

3

∫

Ω

(u · ∇)
(|∇d|3) dΩ

≤ C

∫

Ω

|∇u|∇d|3dΩ

We arrive to the inequality:

1

3

d

dt
‖∇d‖3

L3(Ω) + γ

∫

Ω

|D2d|2|∇d| dΩ + γ

(
2

3

)2

‖∇(|∇d|3/2)‖2
L2(Ω)dΩ

≤ C

∫

Ω

|∇u| |∇d|3 dΩ− γ

∫

Ω

fδ(d)∇ · (|∇d|∇d) dΩ

(31)

The bound for the first term on the right hand side is:
∫

Ω

|∇u||∇d|3 dΩ ≤ ‖∇u‖Lq(Ω)‖∇d‖
L

3q
q−1 (Ω)

≤ ‖∇u‖Lq(Ω)‖∇d‖3α
L3(Ω)‖∇d‖3(1−α)

L9(Ω)

≤ ‖∇u‖Lq(Ω)‖∇d‖3α
L3(Ω)‖∇(|∇d|3/2)‖2(1−α)

L2(Ω)

≤ ε̄‖∇(|∇d|3/2)‖2
L2(Ω) + Cε̄‖∇u‖1/α

Lq(Ω)‖∇d‖3
L3(Ω)

with
1

α
=

2q

2q − 3
. Here, we have used the inequality ([4]):

‖∇d‖9
L9(Ω) ≤ ‖|∇d|3/2‖6

L6(Ω) ≤ C ‖∇ (|∇d|3/2
) ‖6

L2(Ω) (32)

The bound we get for the term fδ(d) is:
∫

Ω

fδ(d)∇ · (|∇d|∇d) dΩ ≤ C

∫

Ω

|d|3 |∇d||D2d| dΩ ≤ C

∫

Ω

|∇d| |D2d| dΩ

≤ ε̄

∫

Ω

|∇d| |D2d|2 dΩ + Cε̄

∫

Ω

|∇d| dΩ
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Therefore, only imposing the additional regularity (H1) for ∇u, we can conclude that:




∇d ∈ L∞(0, T ;L3(Ω)),

∇(|∇d|3/2) ∈ L2(0, T ;L2(Ω)),

∫

Ω

|∇d||∆d|2 ∈ L1(0, T )

(33)

Moreover, from ∇(|∇d|3/2) ∈ L2(0, T ;L2(Ω)) and the inequality (32), one can be

deduced that ∇d ∈ L3(0, T ;L9(Ω)).

In consequence, in the periodic boundary condition case, the additional regularity

(H3) which was necessary in order to obtain the strong regularity for (LC), is verified for

the exponent p = 9. Therefore, the only additional hypothesis to impose is (H1), that is,

∇u ∈ L
2q

2q−3 (0, T ;Lq(Ω)) for any q > 3/2.

5 Uniqueness (proof of Theorem 1.4 with (H1))

We consider the systems verified by ū = u1−u2, d̄ = d1−d2 and π̄ = π1− π2, where

(u1,d1, π1) and (u2,d2, π2) are two solutions of the Nematic Liquid Crystal system (LC),

respectively. Then:




∂tū− ν∆ū + u2 · ∇ū

+λ(∇d2)
t ∆d̄ +∇p̄ = −ū · ∇u1 − λ(∇d̄)t ∆d1 in Q,

∇ · u = 0 in Q,

∂td̄− γ∆d̄ + ū · ∇d2 = −u1 · ∇d̄− γ
[
fδ(d2)− fδ(d1)

]
in Q,

ū = 0 on Σ,

d̄ = 0 or ∂nd̄ = 0 or d is space-periodic on Σ,

ū|t=0 = 0, d̄|t=0 = 0 in Ω.

(34)
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Arguing in a formal way, we take d̄ as test functions in the system for d̄ and use the

equality:

fδ(d2)− fδ(d1) = − 1

δ2

[
(|d1|2 − 1)d +

(
(d1 + d2) · d

)
d2

]
,

obtaining:

1

2

d

dt
‖d̄‖2

L2(Ω) + γ‖∇d̄‖2
L2(Ω) = −

∫

Ω

(ū · ∇)d2 · d̄ dΩ

− γ

∫

Ω

(|d1|2 − 1) |d̄|2 dΩ− γ

∫

Ω

[(d1 + d2) · d̄] (d2 · d̄) dΩ

which can be rewritten as (using that |d1| and |d2| ≤ 1):

1

2

d

dt
‖d̄‖2

L2(Ω) + γ‖∇d̄‖2
L2(Ω) ≤

∫

Ω

|ū| |∇d̄| |d2| dΩ + C ‖d̄‖2
L2(Ω)

≤ ε̄‖∇d̄‖2
L2(Ω) + Cε̄‖ū‖2

L2(Ω) + C ‖d̄‖2
L2(Ω)

Thus, we obtain:

d

dt
‖d̄‖2

L2(Ω) + γ‖∇d̄‖2
L2(Ω) ≤ C

(
γ‖d̄‖2

L2(Ω) + ‖ū‖2
L2(Ω)

)
(35)

Now, we add the estimates obtained taking λ−1 ū as test functions in the system for

ū, and −∆d̄ as test functions in the system for d̄. Observe that the terms

∫

Ω

ū ·∇d2 ·∆d̄

cancel. Moreover, adding (35) to the resulting estimate, we obtain:

d

dt

(
λ−1‖ū‖2

L2(Ω) + ‖d̄‖2
H1(Ω)

)
+

ν

λ
‖ū‖2

H1(Ω) + γ‖∇d̄‖2
H1(Ω) ≤

−λ−1

∫

Ω

ū · ∇u1 ū dΩ−
∫

Ω

ū · ∇d̄∆d1 dΩ +

∫

Ω

u1 · ∇d̄∆d̄ dΩ

+γ

∫

Ω

(
fδ(d2)− fδ(d1)

)
·∆d̄ dΩ + C

(
‖ū‖2

L2(Ω) + ‖d̄‖2
L2(Ω)

)

(36)

The terms on the right hand side of (36) can be bound as follows:

−
∫

Ω

ū · ∇u1 ū dΩ ≤
∫

Ω

|ū|2 |∇u1| dΩ ≤ ‖ū‖2

L
2q

q−1 (Ω)
‖∇u1‖Lq(Ω)

≤ ‖ū‖
2q−3

q

L2(Ω)‖∇ū‖
3
q

L2(Ω)‖∇u1‖Lq(Ω)

≤ ε̄‖ū‖2
H1(Ω) + Cε̄‖∇u1‖

2q
2q−3

Lq(Ω)‖ū‖2
L2(Ω)
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In order to bound the third term, we rewrite it in the form:

∫

Ω

u1 · ∇d̄∆d̄ dΩ = −
∫

Ω

∇u1 · ∇d̄∇d̄ dΩ ≤
∫

Ω

|∇u1| |∇d̄|2 dΩ

≤ ‖∇u1‖Lq(Ω)‖∇d̄‖2

L
2q

q−1 (Ω)

≤ ε̄‖∇d‖2
H1(Ω) + Cε̄‖∇u‖

2q
2q−3

Lq(Ω)‖∇d‖2
L2(Ω)

∫

Ω

(
fδ(d2)− fδ(d1)

)
|∆d| dΩ ≤ C

∫

Ω

|d| |∆d| dΩ ≤ ε̄‖∆d‖2
L2(Ω) + Cε̄‖d‖2

L2(Ω)

In order to bound the second term, we can proceed in two different ways (as in previous

arguments):

1. If we integrate directly, we obtain:

−
∫

Ω

ū · ∇d̄∆d1 dΩ ≤ ‖ū‖
L

2q
q−1 (Ω)

‖∇d̄‖
L

2q
q−1 (Ω)

‖∆d1‖Lq(Ω)

≤ ‖ū‖α
L2(Ω)‖∇ū‖1−α

L2(Ω)‖∇d̄‖α
L2(Ω)‖∇d̄‖1−α

H1(Ω)‖∆d1‖Lq(Ω)

≤ ε̄
(
‖∇ū‖2

L2(Ω) + ‖∇d̄‖2
H1(Ω)

)

+ Cε̄‖∆d1‖
1
α

Lq(Ω)

(
‖ū‖2

L2(Ω) + ‖∇d̄‖2
L2(Ω)

)

In this case, starting from (36), we obtain the following inequality:

d

dt

(
λ−1‖ū‖2

L2(Ω) + ‖d̄‖2
H1(Ω)

)
+

ν

λ
‖ū‖2

H1(Ω) + γ‖∇d̄‖2
H1(Ω)

≤ C

(
‖∇u1‖

2q1
2q1−3

Lq1 (Ω) + ‖∆d1‖
2q2

2q2−3

Lq2 (Ω) + 1

) (
‖ū‖2

L2(Ω) + ‖d̄‖2
H1(Ω)

) (37)

that thanks to the Gronwall’s Lemma allows us to conclude that ū = 0 and d̄ = 0.

Then, assuming that u1 verifies the additional regularity (H1) and d1 verifes (H4),

the uniqueness is attempt.
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2. If we integrate by parts, the third term can be written as:

−
∫

Ω

ū · ∇d̄∆d1 dΩ =

∫

Ω

∇ū · ∇d · ∇d̄1 dΩ +

∫

Ω

(ū · ∇)∇d̄ · ∇d1 dΩ

≤
∫

Ω

(|∇ū||∇d̄|+ |ū||D2d̄|) |∇d1| dΩ

≤
(
‖∇ū‖L2(Ω)‖∇d̄‖

L
2p

p−2 (Ω)
+ ‖ū‖

L
2p

p−2 (Ω)
‖D2d̄‖L2(Ω)

)
‖∇d1‖Lp(Ω)

≤ ε̄
(
‖∇ū‖2

L2(Ω) + ‖∆d̄‖2
L2(Ω)

)
+ Cε̄‖∇d1‖

2p
p−3

Lp(Ω)

(
‖ū‖2

L2(Ω) + ‖∇d̄‖2
L2(Ω)

)

In this case, the inequality (37) is obtained, replacing ‖∆d1‖
2p

2p−3

Lp(Ω) by ‖∇d1‖
2p

p−3

Lp(Ω).

In consequence, the Gronwall’s Lemma conclude the uniqueness, supposing the ad-

ditional regularity (H1) and (H3).

6 Variants for the Serrin’s class (H2).

Until now, we have supposed that u has regularity of Berselli type (H1), see[3]. Now,

our aim is to study the influence of the regularity hypothesis (H2) on u in order to obtain

strong regularity (global in time) and uniqueness of solution.

By simplicity, we focus on the Neumann case, remarking the Dirichlet case at the end.

6.1 Outline of the proof of Theorem 1.2

Following the same procedure then in Section 3, we obtain an estimate similar to (24)

but where J2 and J3 are replaced by:
∫

Ω

(u · ∇)∂td ·∆(∂td) dΩ− 1

λ

∫

Ω

(∂tu · ∇)u · ∂tu dΩ := J̃2 + J̃3

which can be bound as follows:

|J̃2| ≤ ‖u‖Lp(Ω)‖∇(∂td)‖
L

2p
p−2 (Ω)

‖∆(∂td)‖L2(Ω)

≤ ‖u‖Lp(Ω)‖∇(∂td)‖β
L2(Ω)‖∇(∂td)‖2−β

H1(Ω)

≤ ε̄‖∇(∂td)‖2
H1(Ω) + Cε̄‖u‖

2
β

Lp(Ω)‖∇(∂td)‖2
L2(Ω)
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where
2

β
=

2p

p− 3
. The J̃3-term can be rewritten as:

J̃3 =
1

λ

∫

Ω

(∂tu · ∇)∂tu · u dΩ

≤ 1

λ
‖u‖Lp(Ω)‖∂tu‖

L
2p

p−2 (Ω)
‖∇(∂tu)‖L2(Ω)

≤ C ‖u‖Lp(Ω)‖∂tu‖β
L2(Ω)‖∇(∂tu)‖2−β

L2(Ω)

≤ ε̄‖∇(∂tu)‖2
L2(Ω) + Cε̄‖u‖

2
β

Lp(Ω)‖∂tu‖2
L2(Ω)

Remark 6.1 In the nonhomogeneous Dirichlet boundary condition case, the only terms

that differs from the Neumann case is

∫

Ω

(u · ∇)∂td ·∆(∂td̂) dΩ, but it can be bounded in

a similar manner as follows:
∫

Ω

(u · ∇)∂td ·∆(∂td̂) dΩ ≤ ε̄
(
‖∂td̂‖2

H2(Ω) + ‖∂td̃‖2
H2(Ω)

)
+ Cε̄‖u‖

2
β

Lp(Ω)‖∇(∂td)‖2
L2(Ω)

6.2 Outline of the proof of Theorem 1.3

In this case, the difficulty arises in estimating the nonlinear term, that now is decom-

posed in a different manner as follows:∫

Ω

(u · ∇)d · [∇ · (|∇d| ∇d)] dΩ =

∫

Ω

(u · ∇)d ·∆d |∇d| dΩ

+

∫

Ω

(u · ∇)d · ∇d
∇d · ∇(∇d)

|∇d| dΩ

≤ C

∫

Ω

|u| |∇d|2 |D2d| dΩ

≤ ε̄

∫

Ω

|∇d| |D2d|2 dΩ + Cε̄

∫

Ω

|u|2 |∇d|3 dΩ

where ∫

Ω

|u|2 |∇d|3 dΩ ≤ ‖u‖2
Lp(Ω)‖∇d‖3

L
3p

p−2 (Ω)
≤ ‖u‖2

Lp(Ω)‖∇d‖3β
L2(Ω)‖∇d‖3(1−β)

L9(Ω)

≤ ‖u‖2
Lp(Ω)‖∇d‖3β

L3(Ω)‖∇(|∇d|3/2)‖2(1−β)

L2(Ω)

≤ ε̄‖∇(|∇d|3/2)‖2
L2(Ω) + Cε̄‖u‖

2
β

Lp(Ω)‖∇d‖3
L3(Ω)
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and
2

β
=

2p

p− 3
(recall that p > 3).

6.3 Outline of the proof of Theorem 1.4 (uniqueness)

Starting from the expression (36), we bound the terms on the right hand side using

the new additional regularity hypothesis (H2) for u and (H3) for d.

−
∫

Ω

(ū · ∇)u1 ū dΩ =

∫

Ω

ū · ∇ū u1 dΩ

≤ ‖ū‖
L

2p
p−2 (Ω)

‖∇ū‖L2(Ω)‖u1‖Lp(Ω)

≤ ‖ū‖β
L2(Ω)‖∇ū‖2−β

L2(Ω)‖u1‖Lp(Ω)

≤ ε̄‖∇ū‖2
L2(Ω) + Cε̄‖u1‖

2
β

Lp(Ω)‖ū‖2
L2(Ω)∫

Ω

u1 · ∇d̄∆d̄ dΩ ≤ ‖u1‖Lp(Ω)‖∇d̄‖
L

2p
p−2 (Ω)

‖∆d̄‖L2(Ω)

≤ ‖u1‖Lp(Ω)‖∇d̄‖β
L2(Ω)‖∇d̄‖2−β

H1(Ω)

≤ ε̄‖∇d̄‖2
H1(Ω) + Cε̄‖u1‖

2
β

Lp(Ω)‖∇d̄‖2
L2(Ω)

where
2

β
=

2p

p− 3
for p ≥ 3.

The second term on the right hand side of (36) can be bounded as in Section 5. In con-

sequence, we arrive to (37) replacing ‖∇u1‖
2q

2q−3

Lp(Ω) by ‖u1‖
2p

p−3

Lp(Ω), and eventually ‖∆d1‖
2q

2q−3

Lp(Ω)

by ‖∇d1‖
2p

p−3

Lp(Ω). Therefore, the uniqueness is hold if we impose the additional hypothesis

(H2) for u1, and (H3) or (H4) for d1.

A Auxiliary results

A.1 Proof of Lemma 2.1:

Multiplying the d-system by d, we obtain:

1

2
∂t(|d|2) + γ |∇d|2 − γ

2
∆(|d|2) + γfδ(d) · d + (u · ∇)

( |d|2
2

)
= 0 in Q.
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Therefore, it is easy to deduce that:

∂t(|d|2 − 1) + 2 γ fδ(d) · d− γ ∆(|d|2 − 1) + (u · ∇)(|d|2 − 1) ≤ 0 in Q.

Now, taking the inner product in L2(Ω) with (|d|2 − 1)+ := ψ(d), using that:

(fδ(d) · d) (|d|2 − 1)+ ≥ 0,

and that ∫

Ω

(u · ∇)
(|d|2 − 1

)
ψ(d) dΩ = 0,

we obtain the inequality:

d

dt
‖ψ(d)‖2

L2(Ω) + γ ‖∇ψ(d)‖2
L2(Ω) − γ

∫

∂Ω

∇ψ(d) · nψ(d) dσ ≤ 0 in (0, T ).

The boundary integral is zero since ψ(d)|∂Ω = 0 in the Dirichlet case, and∇ψ(d)·n
∣∣∣
∂Ω

= 0

in the Neumann case. Then,

d

dt
‖ψ(d)‖2

L2(Ω) + γ ‖∇ψ(d)‖2
L2(Ω) ≤ 0.

As ψ(d0) = (|d0|2 − 1)+ = 0 in Ω, therefore ψ(d) ≡ 0, and thus (|d|2 − 1)+ = 0. Hence,

|d| ≤ 1 in Q.

A.2 Proof of Lemma 2.2:

We focus on the inequality verified when taking Au as a test function in (LC)1 (which

corresponds with the Prodi’s estimates):

d

dt
‖∇u‖2

L2(Ω) + ‖Au‖2
L2(Ω) ≤ ‖(u · ∇)u‖2

L2(Ω) + ‖(∇d)t∆d‖2
L2(Ω). (38)

Now, we bound the terms on the right hand side of (38) as follows:

• for q = 3, we have:

‖(u · ∇)u‖2
L2(Ω) ≤ C‖u‖2

L6(Ω)‖∇u‖2
L3(Ω) ≤ C‖∇u‖2

L3(Ω)‖∇u‖2
L2(Ω)



A.3 Proof of Lemma 2.3: 31

• for 2 ≤ q < 3, using the same interpolation estimates than in (14), we have:

‖(u · ∇)u‖2
L2(Ω) =

∫

Ω

|u|2|∇u|2 dΩ ≤ C‖∇u‖2
Lq(Ω)‖u‖2

L
2q

q−2 (Ω)

≤ C‖∇u‖2
Lq(Ω)‖∇u‖2

L
6q

5q−6 (Ω)

≤ C‖∇u‖2
Lq(Ω)‖∇u‖2α

L2(Ω)‖∆u‖2(1−α)

L2(Ω)

≤ ε̄‖∆u‖2
L2(Ω) + Cε̄‖∇u‖2/α

Lq(Ω)‖∇u‖2
L2(Ω)

where
2

α
=

2q

2q − 3

On the other hand,

‖(∇d)t∆d‖2
L2(Ω) ≤ C‖∇d‖2

L6(Ω)‖∆d‖2
L3(Ω) ≤ C‖∇d‖3

H1(Ω)‖∆d‖H1(Ω) ∈ L2(0, T )

applying the regularity d ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)).

Hence, using the Gronwall’s Lemma we have that:

u ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

A.3 Proof of Lemma 2.3:

In order to estimate ∂td, we use the equation verified by d:

∂td− γ∆d + (u · ∇)d = −γfδ(d).

From the assumed regularity, we know that ∆d ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Next, we prove that the term (u · ∇)d belongs to the same space:

∫

Ω

|u|2|∇d|2 dΩ ≤ ‖u‖2
L3(Ω)‖∇d‖2

L6(Ω) ≤ ‖u‖L2(Ω)‖∇u‖L2(Ω)‖∆d‖2
L2(Ω) ∈ L∞(0, T ),

∫

Ω

|u|2|D2d|2 dΩ ≤ ‖u‖2
L6(Ω)‖∆d‖2

L3(Ω) ≤ ‖∇u‖2
L2(Ω)‖d‖H2(Ω)‖d‖H3(Ω) ∈ L2(0, T )

∫

Ω

|∇u|2|∇d|2 dΩ ≤ ‖∇u‖2
L6(Ω)‖∇d‖2

L3(Ω) ≤ ‖∆u‖2
L2(Ω)‖∇d‖L2(Ω)‖d‖H2(Ω) ∈ L1(0, T )
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Finally, fδ(d) ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)), because of:





‖fδ(d)‖2
L2(Ω) ≤ C‖d‖2

L2(Ω)

‖∇fδ(d)‖2
L2(Ω) ≤ C‖∇d‖2

L2(Ω)

‖D2fδ(d)‖2
L2(Ω) ≤ C‖D2d‖2

L2(Ω)

Therefore, we can conclude that ∂td ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Now, we focus our attention on ∂tu. Taking ∂tu as a test function in the system for

u, we obtain:

‖∂tu‖2
L2(Ω) + ν

d

dt
‖∇u‖2

L2(Ω) ≤ C

[∫

Ω

|u|2|∇u|2 dΩ +

∫

Ω

|∇d|2|∆d|2 dΩ

]

We bound the terms on the right hand side as follows:
∫

Ω

|u|2|∇u|2 dΩ ≤ ‖u‖2
L3(Ω)‖∇u‖2

L6(Ω)

≤ ‖u‖L2(Ω)‖∇u‖L2(Ω)‖∆u‖2
L2(Ω) ∈ L1(0, T )

∫

Ω

|∇d|2|∆d|2 dΩ ≤ ‖∇d‖2
L3(Ω)‖∆d‖2

L6(Ω)

≤ ‖∇d‖L2(Ω)‖∆d‖L2(Ω)‖∆d‖2
H1(Ω) ∈ L1(0, T )

Then, applying the Gronwall’s Lemma, we conclude that ∂tu ∈ L2(0, T ;L2(Ω)). Finally,

we look again at the equation for u and we can easily deduce that ∇p ∈ L2(0, T ;L2(Ω)),

and, therefore, that p ∈ L2(0, T ; H1(Ω)).

A.4 Proof of Lemma 3.1:

Thanks to the Lemmas 2.1 and 2.2, it suffices to prove that u ∈ L2(0, T ;H2(Ω)) and

d ∈ L2(0, T ;H3(Ω)). To this aim, we argue as follows:

1. We obtain the regularity ∆d ∈ L2(0, T ;H1(Ω)) using the Prodi’s estimates for d.

2. Once the regularity for d is known, we obtain u ∈ L2(0, T ;H2(Ω)), using also the

Prodi’s estimates for u.
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Estimates for ∆d: In the homogeneous Neumann boundary condition case, we take

∆2d as test functions in the d-system, obtaining:

1

2

d

dt
‖∆d‖2

L2(Ω) + γ‖∇(∆d)‖2
L2(Ω) ≤

∫

Ω

|∇u||∇d||∇(∆d)| dΩ

+

∫

Ω

|∇u||∆d|2 dΩ + γ

∫

Ω

∇(fδ(d)) · ∇(∆d) dΩ

(39)

For the first term we have (using hypothesis ‖∇u‖L2(Ω) ≤ C and ‖∇d‖H1(Ω) ≤ C):
∫

Ω

|∇u||∇d||∇(∆d)| dΩ ≤ C‖∇u‖L2(Ω)‖∇d‖L∞(Ω)‖∇(∆d)‖L2(Ω)

≤ C‖∇d‖1/2

H1(Ω)‖∇d‖1/2

H2(Ω)‖∇(∆d)‖L2(Ω)

≤ C‖∇d‖3/2

H2(Ω) ≤ ε̄‖∇d‖2
H2(Ω) + Cε̄.

In a similar way, we obtain for the second term:
∫

Ω

|∇u||∆d|2 dΩ ≤ ‖∇u‖L2(Ω)‖∆d‖2
L4(Ω) ≤ C‖∆d‖1/2

L2(Ω)‖∆d‖3/2

H1(Ω)

≤ C ‖∆d‖3/2

H1(Ω) ≤ ε̄‖∆d‖2
H1(Ω) + Cε̄

And the last term can be bound as follows:

γ

∫

Ω

∇(fδ(d)) · ∇(∆d) dΩ ≤ ε̄‖∇(∆d)‖2
L2(Ω) + Cε̄‖∇d‖2

L2(Ω)

Therefore, integrating in time (39), we arrive at d ∈ L2(0, T ;H3(Ω)).

The estimates for the nonhomogeneous Dirichlet boundary condition case do not

present any additional difficulty.

Estimates for u: In the case of Prodi’s estimates for u, we take Au as test functions,

obtaining :

d

dt
‖∇u‖2

L2(Ω) + ‖Au‖2
L2(Ω) ≤

∫

Ω

|u|2|∇u|2 dΩ +

∫

Ω

|∇d|2|∆d| dΩ

The terms on the right hand side can be bound in the following way:
∫

Ω

|u|2|∇u|2 dΩ ≤ ‖u‖2
L∞(Ω)‖∇u‖2

L2(Ω) ≤ C ‖u‖H1(Ω)‖u‖H2(Ω)

≤ C‖Au‖L2(Ω) ≤ ε̄‖Au‖2
L2(Ω) + Cε̄
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∫

Ω

|∇d|2|∆d|2 dΩ ≤ ‖∇d‖2
L∞(Ω)‖∆d‖2

L2(Ω) ≤ C ‖∇d‖H1(Ω)‖∇d‖H2(Ω)

≤ C‖∇d‖H2(Ω) ≤ C‖d‖H3(Ω)

Using the regularity obtained previously, we can conclude that u ∈ L2(0, T ;H2(Ω)).
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