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1. Introduction. In this work we consider the optimal harvesting control of a
species whose state is governed by the degenerate elliptic logistic equation, i.e.,

{ −∆u = (a− f)uα − buβ in Ω,
u = 0 on ∂Ω,(1.1)

where Ω is a bounded and regular domain of IRN , N ≥ 1. Here a, f and b are bounded
functions. In particular, a is strictly positive, b is nonnegative and nontrivial, a − f
can change sign and α and β satisfy

0 < α < 1, α < β.(1.2)

The solutions of (1.1) can be regarded as the steady states solutions of the correspond-
ing time dependent model. In such case, u(x) stands for the population density and
Ω for the inhabiting area. Since the population is subject to homogeneous Dirichlet
boundary conditions, we are assuming that the environment surrounding Ω is lethal.
In such model, the positive function b(x) describes the intro-specific pressure of the
species and a(x) represents the growth rate of the species. The function f(x) will
be considered non-negative and denotes the distribution of control harvesting of the
species by reducing the growth rate. Equation (1.1), under the change of variables
wm = u, is a particular case of

{ −∆wm = (a− f)w − bw2 in Ω,
w = 0 on ∂Ω.(1.3)

This model was introduced in populations dynamics by Gurtin and MacCamy in
[11] for describing the dynamics of biological populations whose mobility depends
upon their density. In this context, m > 1 (nonlinear slow diffusion) means that the
diffusion is slower than in the linear case m = 1, giving rise to more realistic biological
results, see [11].

One of the main differences between the degenerate case (m > 1) and the non-
degenerate one (m = 1) is that in the first case the strong maximum principle does not
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hold in general. So, unlike the non-degenerate case, three kinds of solutions appear:
the trivial solution, the strictly positive solutions (the species can survive in the whole
domain) and the nonnegative and nontrivial solutions, which are zero in a region of
Ω. This region is called in the literature dead core.

Equation (1.1) has been studied previously for b = 0 in [1] and [2] and for b strictly
positive in [8] and [19] and references therein. However, very little is known in the
case that b can vanish in some region. In our knowledge, this problem has been only
analyzed in [9] in the particular case a− f equals to a constant. We generalize these
results and prove that there exists a maximal nonnegative solution of (1.1), which will
be denoted by uf . Moreover, when f is such that the function a − f is positive, we
show that (1.1) possesses a unique positive solution which is linearly asymptotically
stable.

After studying in detail the state equation, our main goal is to analyze the optimal
control criteria, that is, maximize the payoff functional

J(f) :=
∫

Ω

(λufh(f)− k(f)),(1.4)

where h and k are regular functions, and λ > 0 will be considered as a parameter.
Here, J represents the difference between economic revenue measured by

∫
Ω

λufh(f)
and the control cost measured by

∫
Ω

k(f). The parameter λ describes the quotient
between the price of the species and the cost of the control. This functional includes
the special case (quadratic functional)

h(t) = t and k(t) = t2,

which seems to have been introduced in population dynamics in [17] (see also [6], [15]
and references therein).

We say that f ∈ L∞+ (Ω) is an optimal control if

J(f) = sup
g∈L∞+ (Ω)

J(g).

This control problem is a generalization of the one studied in detail in [6], [17]
and [18], where α = 1, β = 2, h(t) = t and k(t) = t2.

In [7], the authors analyzed the case 0 < α < 1 ≤ β, b strictly positive and the
cost functional (1.4) under more restrictive monotony assumptions on functions h, k.
There, the controls are restricted to the set

D := {f ∈ L∞+ (Ω) : f ≤ a a.e. in Ω}.

If f ∈ D, then the maximal solution of (1.1) is strictly positive. In such case, It is
proved the existence and uniqueness of optimal control in D for λ sufficiently small.

In this work, we only assume (1.2), b nonnegative and nontrivial and our control
space is L∞+ (Ω). So, uf can have dead cores depending on the control f ∈ L∞+ (Ω)
chosen. In this framework, we show that there exists an optimal control in L∞+ (Ω) for
any λ > 0. When λ is smaller than a determined bound, we can express the optimal
control in terms of uf and, if λ is small enough then the optimal control is unique. In
such case, our assumptions imply that if f is an optimal control, then the dead core
for uf is empty. See [20], where a related problem is studied and where the dead core
is allowed to exist.
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In order to obtain the uniqueness result, we will use two different ways. Firstly,
we follow an argument described in [6] proving that the map f 7→ J(f) is Fréchet
differentiable and strictly concave. The Fréchet derivability of the map f 7→ J(f) is
rather more difficult than in the case m = 1, because it involves both linear elliptic
and eigenvalue problems with potentials which blow-up in a neighborhood of ∂Ω.
These difficulties have been solved by using results of singular eigenvalue problems
from [4], see also [12]. Secondly, we express the unique optimal control in terms of the
solution of the optimality system, and we give an alternative proof of the uniqueness
for the optimal control via the optimality system. This is an interesting point in
the optimal control problems, because it let us approximate the optimal control by
a constructive scheme which provides us a sequence of functions converging to some
special solutions of the optimality system. The uniqueness of solution of the optimality
system was not considered in [17], but it was studied in [6] in the particular case
m = 1 and the quadratic functional. Here, we present an alternative and shorter
proof of the uniqueness, which can be applied to the case studied in [6]. Again, the
second alternative presents another technical difficulty that must be overcome: the
optimality system is a reaction-diffusion system with a singular reaction term. We
present the sub-supersolution method for this kind of systems which provides us an
iterative method to approach the solution of the nonlinear system; see [5], [12] for the
case of one equation.

An outline of this work is as follows: in Section 2 we introduce some notations
and we collect some results concerning the existence and uniqueness of the principal
eigenvalue and the corresponding solution for linear elliptic problems with unbounded
potentials. In Section 3 we study the equation (1.1). We show the existence of a
maximal non-negative solution, and under stronger restrictions on the coefficients,
the existence and uniqueness of a positive solution of (1.1). In Section 4, we prove the
existence of optimal control for functional J and we show that for λ sufficiently small
the functional J is Fréchet differentiable and strictly concave. Then, we deduce easily
the uniqueness of optimal control. In the last Section we characterize the optimal
control. This characterization provides us the optimality system. Finally, we prove
the uniqueness of positive solution of the optimality system and an iterative scheme
based on alternating monotone sequences, to approach its solution. As it is remarked
in recent related works ([16], [17, Remark 4.1]), it is interesting to give conditions
to guarantee the convergence of the method to the solution of the optimal control
problem.

2. Preliminaries and notations. Let Ω be a bounded domain in IRN with a
smooth boundary ∂Ω. For any f ∈ L∞(Ω) we denote

fM := ess sup f fL := ess inf f,

and define the sets

L∞+ (Ω) := {f ∈ L∞(Ω) : fL ≥ 0} L∞− (Ω) := {f ∈ L∞(Ω) : fM ≤ 0}.

Moreover, we denote C1
0 (Ω) = {u ∈ C1(Ω) : u = 0 on ∂Ω} and by P+ its non-

negative cone, whose interior is

int(P+) := {u ∈ C1
0 (Ω) : u > 0 in Ω, ∂u/∂n < 0 on ∂Ω}
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where n is the outward unit normal at ∂Ω.
In this section we primarily consider the singular eigenvalue problem

{ −∆u + M(x)u = σu in Ω,
u = 0 on ∂Ω,(2.1)

where

(HM) M ∈ L∞loc(Ω) verifying M(x)dΩ(x) ∈ L∞(Ω),

and dΩ(x) := dist(x, ∂Ω).
The following result, whose proof can be found in [13], shows that (2.1) is well

defined in H1
0 (Ω).

Lemma 2.1. Let ϕ ∈ W 1,q
0 (Ω) for some 1 < q < ∞. Then there exists a constant

C > 0 such that
∥∥∥∥

ϕ

dΩ

∥∥∥∥
q

≤ C‖ϕ‖W 1,q(Ω).

Although (2.1) is not included in the singular eigenvalue problem studied in [4],
we can do some minor changes to the proofs of Theorem 3.4 and Lemma 3.5 in [4]
to conclude the existence and uniqueness of the principal eigenvalue of (2.1) and its
associated eigenfunction. In the following result, we collect these results and some
properties of the principal eigenvalue, see [7].

Theorem 2.2. Assume that M satisfies (HM). Then there exists a unique
principal eigenvalue (i.e., a real eigenvalue with an associated positive eigenfunction
ϕ1(−∆ + M)). We denote it by σ1(−∆ + M). Moreover, ϕ1(−∆ + M) ∈ W 2,p(Ω)
for all p > 1, and so ϕ1(−∆ + M) ∈ int(P+). Furthermore,

1. Assume that Mi, i = 1, 2 satisfy (HM) and M1 ≤ M2. Then

σ1(−∆ + M1) ≤ σ1(−∆ + M2).

2. Assume that Mn,M , n ∈ IN satisfy (HM) with
∫

Ω

Mnϕ2 →
∫

Ω

Mϕ2, as n →∞ and for all ϕ ∈ H1
0 (Ω).(2.2)

Then,

σ1(−∆ + Mn) → σ1(−∆ + M) as n →∞.

In the particular case M ≡ 0, we denote σ1 := σ1(−∆) and ϕ1 = ϕ1(−∆)
normalized such that ‖ϕ1‖∞ = 1.
When M verifies (HM), the following strong maximum principle is satisfied.

Lemma 2.3. Let u ∈ W 2,p(Ω) ∩ C1(Ω), p > 1, be such that u ≥ 0 in Ω, u 6= 0
and

(−∆ + M)u ≥ 0 a.e. in Ω, u ≥ 0 on ∂Ω.

Then u(x) > 0 for all x ∈ Ω and (∂u/∂n)(x0) < 0 for all x0 ∈ ∂Ω where u(x0) = 0.
Proof. Assume there exists x0 ∈ Ω such that u(x0) = 0. By hypothesis, we can

take x1 ∈ Ω where u(x1) > 0 and a subdomain regular Ω1 ⊂ Ω such that x0, x1 ∈ Ω1.
But M ∈ L∞(Ω1), and so the strong maximum principle leads us to a contradiction.
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On the other hand, applying the Lemma 3.6 in [4] with ρ(s) = s−1, we get that
(∂u/∂n)(x0) < 0 for all x0 ∈ ∂Ω such that u(x0) = 0.

The following technical result will help us to prove the positivity of the some
principal eigenvalue.

Proposition 2.4. Assume that M satisfies (HM) and that there exists ϕ ∈
W 2,p

loc (Ω) ∩ C0
0 (Ω), p > N , such that ϕ > 0 in Ω and for all subdomain Ω′ ⊂ Ω

′ ⊂ Ω
it holds (−∆ + M)ϕ := F with FL > 0 in Ω′. Then, σ1(−∆ + M) > 0.

Proof. From Krein-Rutman theorem, it is well-known that if −∆ + M satisfies
the strong maximum principle in Ω, then σ1(−∆+M) > 0. Let v ∈ W 2,p(Ω)∩C1(Ω)
be such that v 6= 0, and

(−∆ + M)v ≥ 0 in a.e. Ω, v ≥ 0 on ∂Ω.

We have to prove that v > 0 in Ω and ∂v/∂n(x) < 0 for all x ∈ ∂Ω such that v(x) = 0.
For each ε > 0 and K > 0, we define

w := v + ε + εKϕ ∈ C0(Ω).

and so, for any ε > 0, there exists γ(ε) > 0 such that w > 0 in Ωε := {x ∈ Ω : dΩ(x) <
γ(ε)}. Moreover

(−∆ + M)w ≥ ε(M + KF ) > 0 a.e. in Ω\Ωε,(2.3)

for K sufficiently large. Moreover, since ϕ is a strict supersolution in Ω\Ωε, we can
apply the Corollary 2.4 in [3] and we obtain that w > 0 in Ω\Ωε. Thus, we get that
w > 0 in Ω\Ωε. Hence, w > 0 in Ω for all ε > 0, and we obtain that v ≥ 0 in Ω. Now,
it suffices to apply Lemma 2.3.

Given M verifying (HM) and f ∈ L∞(Ω) we consider the problem

{ −∆u + M(x)u = f in Ω,
u = 0 on ∂Ω.(2.4)

Observe that by Lemma 2.1, (2.4) is well defined in H1
0 (Ω). The following result

(whose proof can be found in [7]) shows that (2.4) possesses a unique solution in
C1

0 (Ω), it provides us of an useful estimate and properties of the solution.
Theorem 2.5. Assume that M satisfies (HM) and σ1(−∆ + M) > 0. Then,

there exists a unique solution u ∈ C1,κ(Ω), for some κ ∈ (0, 1) of (2.4). Moreover,
there exists a constant K > 0 (independent of f) such that

‖u‖C1,κ(Ω) ≤ K‖f‖∞.(2.5)

Furthermore, the following properties hold:
1. Consider fi ∈ L∞(Ω), i = 1, 2 with f1 ≤ f2 and let ui, i = 1, 2 be the

respective solutions of (2.4). Then, u1 ≤ u2.
2. Assume that Mi, i = 1, 2 satisfy (HM), σ1(−∆ + M1) > 0 and M1 ≤ M2.

Let ui, i = 1, 2 be the respective solutions of (2.4) with f ∈ L∞+ (Ω). Then,
u2 ≤ u1.

Note: Similar results to the previous ones have been obtained in [12] when M ∈
C1(Ω), Mdγ

Ω ∈ L∞(Ω) for γ ∈ (0, 2) and the operator is not necessarily selfadjoint.
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3. The state equation. Consider the equation
{ −∆u = (a− f)uα − buβ in Ω,

u = 0 on ∂Ω,(3.1)

and assume that

(H1) 0 < α < 1, α < β, a, b ∈ L∞+ (Ω)\{0}, f ∈ L∞(Ω),
aL > 0, (a− f)M > 0.

Observe that if (a− f)M ≤ 0 then, by the maximum principle, (3.1) does not possess
nonnegative and nontrivial solution. This justifies the hypothesis (a− f)M > 0.
In order to study (3.1), we consider the porous medium equation

{ −∆w = µwα in Ω,
w = 0 on ∂Ω,(3.2)

where µ ∈ IR. It holds:
Lemma 3.1. Assume 0 < α < 1. The porous medium equation (3.2) has a

nontrivial and nonnegative solution if, and only if, µ > 0. If µ > 0, there exists a
unique solution, denoted wµ, which is strictly positive and wµ ∈ C2,α(Ω). Moreover,
it verifies

ε0ϕ1 ≤ wµ ≤ K0e, in Ω,(3.3)

where e is the unique positive solution of

−∆e = 1 in Ω, e = 0 on ∂Ω,

and ε1−α
0 = µ/σ1, K1−α

0 = µ‖e‖α
∞.

The results of existence and uniqueness of positive solution of (3.2) are well-
known, see [1] for instance. The estimate (3.3) can be obtained easily by the sub-
supersolution method.
The following result shows that (3.1) has a maximal nonnegative solution.

Theorem 3.2. Assume (H1). There exists a unique maximal nonnegative solu-
tion uf of (3.1). Moreover, by elliptic regularity uf ∈ W 2,p(Ω), for all p > 1, and so
uf ∈ C1,κ(Ω), with 0 < κ ≤ 1 − N/p. Furthermore, we have the following a priori
bound,

‖uf‖∞ ≤ ((a− f)M‖e‖∞)1/(1−α).(3.4)

Finally, the map f 7→ uf is non-increasing.
Proof. Let u be a weak solution of (3.1), then by (H1) and elliptic regularity it

follows that u ∈ C1
0 (Ω). So, there exists K > 0 sufficiently large such that

u ≤ Ke in Ω,

and the pair (u,Ke) is a sub-supersolution of (3.2) with µ = (a − f)M . By the
uniqueness of positive solution of (3.2) it follows that

u ≤ w(a−f)M
.

The existence of positive a priori bounds and that u ≡ 0 is a solution of equation
(3.1) imply the existence of a nonnegative maximal solution of (3.1). By (3.3) we get
the bound (3.4).
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Let f1, f2 ∈ L∞(Ω) be such that f1 ≤ f2. It is clear that the pair (uf2 ,Ke) is
a sub-supersolution of (3.1) for f = f1 for K > 0 sufficiently large. So, there exists
a solution u such that uf2 ≤ u ≤ Ke. The maximality of uf1 completes the proof.

Note: From (3.4) we get, for each maximal nonnegative solution of (3.1), a uniform
upper bound, i.e.,

uf ≤ ((a− f)M‖e‖∞)1/(1−α) ≤ (aM‖e‖∞)1/(1−α) := K,(3.5)

for any f ∈ L∞+ (Ω).
Observe that uf would be eventually the trivial solution. The following result

shows that this can not occur in a subset of L∞(Ω). We define

C := {f ∈ L∞(Ω) : (a− f)L > 0}.
In the following result we prove the existence and uniqueness of positive solution of
(3.1) when f ∈ C.

Proposition 3.3. Assume (H1) and let f ∈ C. Then, there exists a unique
nontrivial and nonnegative solution, uf , of (3.1). Moreover, uf is strictly positive, in
fact,

εfϕ1 ≤ uf , in Ω,(3.6)

where εf satisfies

ε1−α
f σ1 + εβ−α

f bM = (a− f)L.(3.7)

Moreover, uf is linearly asymptotically stable, i.e.,

σ1(−∆ + Mf ) > 0,(3.8)

where

Mf := −α(a− f)uα−1
f + βbuβ−1

f .(3.9)

Furthermore, the map f ∈ C 7→ uf is continuous.
Note: Observe that by (H1), (3.7) possesses a unique positive solution.
Proof. For the existence of solution, it is not hard to show that (εfϕ1, w(a−f)M

)
is a sub-supersolution of (3.1) for εf > 0 defined in (3.7).
Observe that by the strong maximum principle for f ∈ C, any nontrivial and nonneg-
ative solution u of (3.1) is strictly positive, this means that u ∈ int(P+).
The uniqueness of positive solution follows as in Theorem 1 of [9] and the continuity
of the map f 7→ uf as in Theorem 3.3 of [7].

It remains to prove (3.8). Firstly observe that Mf satisfies (HM). Indeed, by
(3.6), there exists a positive constant C (independent of f) such that

CεfdΩ ≤ uf in Ω.(3.10)

Thus, since α < 1, we have that

|Mf |dΩ = uα−1
f dΩ| − α(a− f) + βbuβ−α

f |
≤ Cα−1εα−1

f dα−1
Ω dΩ| − α(a− f) + βbuβ−α

f | ≤ K,

for some K > 0. Therefore, Mf satisfies (HM) and σ1(−∆ + Mf ) is well defined.
Observe that uα

f ∈ W 2,p
loc (Ω) ∩ C0

0 (Ω) for all p > 1 and it satisfies

(−∆ + Mf )(uα
f ) = α(1− α)uα−2

f |∇uf |2 + (β − α)buα+β−1
f > 0, in Ω,

and thus, we can apply Proposition 2.4 and conclude that σ1(−∆ + Mf ) > 0.
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4. Existence and uniqueness of optimal control. For λ > 0 we consider
the functional J : L∞+ (Ω) 7→ IR,

J(g) :=
∫

Ω

(λh(g)ug − k(g)),

where h ∈ C1(IR+; IR+), k ∈ C2(IR+; IR+); h(s) = 0 if and only if s = 0, and k(s) = 0
if and only if s = 0. Function h is concave and k is a strictly convex function satisfying
k′′(s) ≥ k0 > 0 for some k0. Note that h′, k′ are Lipschitz continuous functions on
bounded set. We assume:

(H2) lim
t→0

k(t)
h(t)

= 0, lim
t→+∞

k(t)
h(t)

= +∞.

Observe that the particular case h(t) = t and k(t) = t2, studied in [6], [15], [17]
and [18], is in the setting of our functional. Also, we remove some hypotheses of
monotonous type involving functions k and h considered in [7]. The idea will be to
show that the integrand of functional J(f) must be positive if f is an optimal control.

In the first part of this Section we want to prove the existence of the optimal con-
trol under hypothesis (H2). Firstly, we prove that the optimal controls are bounded.

Lemma 4.1. Assume (H2). If f ∈ L∞+ (Ω) is an optimal control, then

λuf (x)h(f(x)) ≥ k(f(x)), a.e. in Ω.(4.1)

Moreover, if f ∈ L∞+ (Ω) is an optimal control, then

0 ≤ f ≤ Tλ

where

Tλ := sup{t ∈ IR+ :
k(t)
h(t)

= λK},

and K is the uniform bound defined in (3.5).
Note: By the hypotheses imposed to h and k and (H2), it follows that Tλ > 0

and that Tλ → 0 as λ ↓ 0.
Proof. Suppose that f ∈ L∞+ (Ω) be an optimal control and (4.1) is not true.

Then, ∃Ω1 ⊂ Ω with |Ω1| > 0 (positive measure) such that

λuf (x)h(f(x)) < k(f(x)), ∀x ∈ Ω1(4.2)

Now, by defining a new control f as

f(x) =
{

f(x) if x ∈ Ω \ Ω1,
0 if x ∈ Ω1,

and taking into account that uf ≥ uf in Ω, we obtain

J(f) =
∫

Ω1

λuf (x)h(f(x))− k(f(x)) +
∫

Ω\Ω1

λuf (x)h(f(x))− k(f(x))

<

∫

Ω\Ω1

λuf (x)h(f(x))− k(f(x)) ≤
∫

Ω\Ω1

λuf (x)h(f(x))− k(f(x))

=
∫

Ω\Ω1

λuf (x)h(f(x))− k(f(x)) = J(f).
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But f is an optimal control. So, previous inequality shows that (4.2) is absurd. Also,
that f ≤ Tλ follows from the definition of Tλ, Theorem 3.2 and (4.1).

Theorem 4.2. Assume (H2). There exists an optimal control, i.e., f ∈ L∞+ (Ω)
such that

J(f) = sup
g∈L∞+ (Ω)

J(g).

Moreover, the benefit is positive, i.e., sup
g∈L∞+ (Ω)

J(g) > 0.

Proof. By (3.5) and Lemma 4.1, it follows that

s := sup
g∈L∞+ (Ω)

J(g) < +∞,

and so, there exists a maximizing sequence fn ∈ L∞+ (Ω). By a similar reasoning to
the used in the previous Lemma, we can suppose that 0 ≤ fn ≤ Tλ. Then, there
exists a subsequence, relabelled by fn, such that

fn ⇀ f ∈ [0, Tλ] in L2(Ω).

By (3.5), we can prove that

ufn → u∗ in H1
0 (Ω),(4.3)

where u∗ is a positive solution of (3.1) (possibly no the maximal positive solution).
In any case, we have uf ≥ u∗.

Now, taking into account the concavity of the functions h and −k, it follows that

J(f) ≥ lim sup
∫

Ω

λh(fn)ufn − k(fn) = s,

and so the existence of an optimal control.
The optimal benefit is positive by following an argument like the used in [7]. In

fact, it is clear, from the asymptotic properties of the functions h and k, that J(ε) > 0
by taking ε ∈ IR+ small enough.

Now, we are going to prove that, for λ sufficiently small, there exists a unique
optimal control. For that we will use the argument described in Section 6 in [6]. In
summary, by Lemma 4.1 we know that the optimal controls belong to a convex, [0, Tλ].
Moreover, we will show that J is Fréchet continuously differentiable and strictly con-
cave in [0, Tλ]. Hence, the uniqueness of optimal control is a direct consequence. The
first step is the following result which provides us the Gâteaux derivative of the map
f ∈ C 7→ uf ∈ int(P+). Its proof is similar to Lemma 3.5 in [7], and so we omit it.

Lemma 4.3. Let f ∈ C, g ∈ L∞(Ω), and ε ' 0 be such that f + εg ∈ C. Then,

uf+εg − uf

ε
⇀ ξf,g in H1

0 (Ω) as ε → 0,

where ξf,g is the unique solution of
{ −∆ξ + Mf (x)ξ = −guα

f in Ω,
ξ = 0 on ∂Ω.

(4.4)
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Observe that (4.4) has a unique solution because σ1(−∆ + Mf ) > 0 (see (3.8))
and Theorem 2.5.

Now, we can prove (see Proposition 4.4 in [7])
Proposition 4.4. Let J : C ⊂ L∞(Ω) 7→ IR be. Then J is Fréchet continuously

differentiable and

J ′(f)(g) =
∫

Ω

(λh′(f)uf − λuα
f Pf − k′(f))g, ∀f ∈ C, ∀g ∈ L∞(Ω),(4.5)

where for any f ∈ C, Pf ∈ C1
0 (Ω) is the unique solution of

{ −∆Pf + Mf (x)Pf = h(f) in Ω,
Pf = 0 on ∂Ω,(4.6)

and Mf is defined in (3.9).
Note: Since Mf satisfies (HM) and by (3.8), it follows from Theorem 2.5 the

existence and uniqueness of Pf ∈ C1
0 (Ω).

Observe that by Note following Lemma 4.1, there exists λ0 > 0 such that

aL > Tλ for λ < λ0.(4.7)

Following the argument of Theorem 3.1 in [17] (using now (4.7) and Proposi-
tion 4.4) we obtain.

Corollary 4.5. Assume (H2). Let f ∈ L∞+ (Ω) be a optimal control. Then for
λ < λ0,

k′(f) = λ(h′(f)uf − uα
f Pf )+.

In order to prove that J is strictly concave in [0, Tλ], we will show that maps
involved in J ′ are Lipschitz continuous. This result was proven in [7] when β ≥ 1.
Since the Lipschitz character of the maps involved is crucial in this work (see for
example the proof of Lemma 5.4), we present a complete proof of this result for the
reader’s convenience.

Theorem 4.6. Assume (H2). There exists Λ > 0 such that for 0 < λ < Λ the
maps

f ∈ [0, Tλ] 7→ uf , Pf , uα
f Pf ∈ L∞(Ω)

are Lipschitz continuous, with the Lipschitz constants independent of λ.
Proof. Let f, g ∈ [0, Tλ] be, by the monotony of the map f 7→ uf , it follows that

uTλ
≤ uf , ug ≤ u0. Moreover, for λ < λ0 (defined in (4.7)), uTλ

> 0 and so,

0 < uTλ
≤ uf , ug ≤ u0

for λ < λ0. Hereafter, we take λ < λ0. By the Mean Value Theorem,

uα
f − uα

g = αθα−1(f, g)(uf − ug), uβ
f − uβ

g = βηβ−1(f, g)(uf − ug) with

0 < uTλ
≤ min{uf , ug} ≤ θ(f, g), η(f, g) ≤ max{uf , ug} ≤ u0.

(4.8)

Let w := uf − ug be. Then, w satisfies
{

(−∆ + N(f, g))w = (g − f)uα
g in Ω,

w = 0 on ∂Ω,
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where

N(f, g) := −α(a− f)θα−1(f, g) + βbηβ−1(f, g).

Using f ≥ 0 and (4.8), it follows that

N(f, g) ≥ −αaθα−1(f, g) + βbηβ−1(f, g) ≥ mλ,

where

mλ :=

{
−αauα−1

Tλ
+ bβuβ−1

Tλ
if β ≥ 1,

−αauα−1
Tλ

+ bβuβ−1
0 if β < 1.

(4.9)

It is not hard to show that mλ satisfies (HM). Moreover, we claim that as λ ↓ 0,
∫

Ω

mλϕ2 →
∫

Ω

(−αauα−1
0 + bβuβ−1

0 )ϕ2 ∀ϕ ∈ H1
0 (Ω),(4.10)

Indeed, for ϕ ∈ H1
0 (Ω) and using (3.10) we have

∫

Ω

(uα−1
Tλ

− uα−1
0 )ϕ2 =

∫

Ω

(uα
Tλ
− uTλ

uα−1
0 )

ϕ

uTλ

ϕ ≤ Cε−1
Tλ
‖uα

Tλ
− uTλ

uα−1
0 ‖∞

∫

Ω

ϕ

dΩ
ϕ,

where εTλ
is defined in (3.7). By the continuity of the map f 7→ uf , Lemma 2.1 and

the fact that εTλ
does not tend to 0 as λ ↓ 0, we obtain that

∫

Ω

(uα−1
Tλ

− uα−1
0 )ϕ2 → 0 as λ ↓ 0.

Reasoning similarly with the other terms, (4.10) is proved. So, by Theorem 2.2 we
obtain that

σ1(−∆ + N(f, g)) ≥ σ1(−∆ + mλ) → σ1(−∆− αauα−1
0 + bβuβ−1

0 ) > 0(4.11)

as λ ↓ 0. This last inequality follows by (3.8) because f ≡ 0 ∈ C. Hence, using the
monotony of the map λ 7→ Tλ, there exists λ1 > 0 such that

N(f, g) ≥ mλ ≥ mλ1(4.12)

and

σ1(−∆ + N(f, g)) ≥ σ1(−∆ + mλ1 > 0, for λ < λ1(4.13)

So, by (4.12) we get

(−∆ + mλ1)w ≤ (g − f)uα
g ,

and hence, using (4.13), Theorem 2.5 and (3.5), it follows that

‖uf − ug‖∞ = ‖w‖∞ ≤ ‖w‖C1(Ω) ≤ C‖f − g‖∞.(4.14)

This shows that the map f 7→ uf is Lipschitz.
Now, take f ∈ [0, Tλ]. Using the monotony of the map f 7→ uf , we have that

Mf ≥ mλ1 .(4.15)
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Thus, by Theorem 2.5 we obtain that

Pf ≤ P in Ω,(4.16)

where P ∈ C1
0 (Ω) is the unique solution of

{ −∆u + mλ1u = T in Ω,
u = 0 on ∂Ω,

and T := max
r∈[0,Tλ1 ]

h(r).

We will prove now that the map f 7→ Pf is Lipschitz. Let f, g ∈ [0, Tλ] and
z := Pf − Pg be. Then z satisfies

−∆z + Mfz = T (f, g), in Ω, z = 0 on ∂Ω,

where

T (f, g) = h(f)−h(g)+Pg[α(a−f)(uα−1
f −uα−1

g )−βb(uβ−1
f −uβ−1

g )]+α(g−f)Pgu
α−1
g .

Applying again the Mean Value Theorem, we get

uα−1
f − uα−1

g = (α− 1)ξα−2(f, g)(uf − ug),
uβ−1

f − uβ−1
g = (β − 1)ηβ−2(f, g)(uf − ug)

0 < uTλ
≤ min{uf , ug} ≤ ξ(f, g), η(f, g) ≤ max{uf , ug} ≤ u0.

(4.17)

Hence,

T (f, g) = h(f)−h(g)+Pg[α(α−1)(a−f)ξα−2−β(β−1)bηβ−2](uf−ug)+α(g−f)Pgu
α−1
g .

By a similar argument to the used in the proof of (4.14), we obtain

‖Pf − Pg‖∞ = ‖z‖∞ ≤ C‖T (f, g)‖∞.(4.18)

Since P ∈ C1
0 (Ω), it follows that

|P(x)| ≤ dΩ(x)‖P‖C1(Ω).(4.19)

So, using (3.10), (4.16) and (4.19) , we obtain

‖(f − g)Pgu
α−1
g ‖∞ ≤ C‖f − g‖∞‖Pgu

α−1
Tλ

‖∞ ≤ C‖f − g‖∞‖Pdα−1
Ω ‖∞

≤ C‖f − g‖∞‖dα
Ω‖∞‖P‖C1(Ω) ≤ C‖f − g‖∞,

with C independent of f and g.
On the other hand, since uf − ug ∈ C1

0 (Ω) and using (4.14), (4.16), (4.17) and (4.19)

‖(a− f)Pgξ
α−2(uf − ug)‖∞ ≤ C‖Pξα−2(uf − ug)‖∞

≤ C‖P‖C1(Ω)‖dα
Ω‖∞‖uf − ug‖C1(Ω) ≤ C‖f − g‖∞

with C independent of f and g.
Analogously it can be treated the term Pgη

β−2(uf−ug). Then, since h is Lipschitz
in [0, Tλ] and by (4.18), it follows that the map f 7→ Pf is Lipschitz.

Let f, g ∈ [0, Tλ] be. By (4.8), we have

‖(uα
f − uα

g )Pf‖∞ = ‖αξα−1Pf (uf − ug)‖∞ ≤ C‖P‖C1(Ω)‖f − g‖∞ ≤ C‖f − g‖∞,
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and so,

‖uα
f Pf − uα

g Pg‖∞ ≤ ‖(uα
f − uα

g )Pf‖∞ + ‖uα
g (Pf − Pg)‖∞ ≤ C‖f − g‖∞.

This completes the proof.
We can conclude the main result about uniqueness of optimal control of this

Section:
Theorem 4.7. Assume (H2). Then, there exists Λ0 > 0 such that if λ < Λ0

there exists a unique optimal control.

5. The optimality system and the approximation to the optimal con-
trol. In this section, we deduce the optimality system in the special case h(t) = t
and k(t) = t2, which satisfy clearly (H2). The optimality system will be used to
demonstrate the uniqueness of the optimal control in a different way and provides an
iterative method to approach it. In this case, we know that

Tλ = λK and λ0 =
aL

K ,

where K is defined in (3.5). Moreover, by Corollary 4.5, for λ < λ0, if f is an optimal
control, then

f =
λ

2
uf (1− uα−1

f Pf )+.(5.1)

Let ψ be the unique positive solution of
{ −∆ψ + mλ1ψ = K in Ω,

ψ = 0 on ∂Ω,(5.2)

where mλ1 is defined in (4.9) and satisfies (4.12) and (4.13). So, if f is an optimal
control it follows by Lemma 4.1 that f ∈ [0, λK]. On the other hand, by (4.15) and
Theorem 2.5, we get that

Pf ≤ λψ for λ ≤ λ1.(5.3)

As consequence of (5.3) we obtain (see Proposition 5.2 and Corollary 5.3 in [7])
Proposition 5.1. Assume (H1). There exists a constant Λ1 > 0 such that if

λ ≤ Λ1, then

Pf ≤ u1−α
f .(5.4)

So, if f is an optimal control, we have that

f =
λ

2
uf (1− uα−1

f Pf ).(5.5)

As consequence, any optimal control f may be expressed as in (5.5), where the pair
(uf , Pf ) := (u, P ) satisfies





−∆u = uα(a− λ
2 u + λ

2 uαP − buβ−α) in Ω,

−∆P + (−αauα−1 + βbuβ−1)P = λ
2 (u− uαP (1 + α) + αu2α−1P 2) in Ω,

u = P = 0 on ∂Ω,

(5.6)

and u > 0.
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The former result says that, when λ is small enough, if f is an optimal control,
then (uf , Pf ) is a solution of (5.6). We are going to prove now that, for a range of λ,
there exists a unique positive solution of (5.6) verifying u1−α ≥ P and so the unique
optimal control will be

f =
λ

2
(u− uαP ).

Theorem 5.2 (Uniqueness of optimal control). Assume (H1). There exists
Λ2 > 0 such that for λ ≤ Λ2, (5.6) possesses a unique positive solution (u, P ) satisfying
u1−α ≥ P .

Proof. We define the following map:

T : I := [0, λK] ⊂ L∞+ (Ω) 7→ L∞+ (Ω), f 7→ T (f) =
λ

2
(uf − uα

f Pf ).

By Theorem 4.6, for λ < Λ, T is a Lipschitz continuous function with Lipschitz
constant of type λL/2, where L is the corresponding one for the function f 7→ uf −
uα

f Pf . So, we can choose Λ2 := min{Λ, 2
L} such that for λ ≤ Λ2, T is a contractive

function.
Assume that there exist two positive solutions (ui, Pi), i = 1, 2 of (5.6) with u1−α

i ≥ Pi.
We define

fi =
λ

2
(ui − uα

i Pi) ∈ I, i = 1, 2.

Hence, by (5.6) and Proposition 3.3 we have that

ui = ufi , Pi = Pfi , ⇒ T (fi) = fi i = 1, 2.

Since T is contractive, it follows that f1 = f2, and again by Proposition 3.3 we have
that uf1 = uf2 , hence u1 = u2, and so P1 = P2. This completes the proof.

Now, we use the optimal control characterization obtained by formula (5.5) to
give an iterative procedure to approach it. The idea is to be near to the solution
of the optimality system by sub and super solutions (see other papers related with
similar problems [6], [14], [15], [17]). The interest here, besides the degeneration of
second equation of the optimality system, is that we prove the convergence of the
method by a different argument that used in the mentioned references. We start this
part with some of notation. We define, for simplicity, the following functions,

B(x, u, p) = [a(x)− λ

2
(u− uαp)]uα − b(x)uβ , for x ∈ Ω

and, taking into account the monotony properties of the second equation of optimality
system (5.6), we define

D(x, u, p) =





λ
2 u− βpb(x)uβ−1 if β < 1, 2α− 1 < 0,
λ
2 u− βpb(x)uβ−1 + λ

2 αu2α−1p2 if β < 1, 2α− 1 ≥ 0,
λ
2 u if β ≥ 1, 2α− 1 < 0,
λ
2 u + λ

2 αu2α−1p2 if β ≥ 1, 2α− 1 ≥ 0,
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and

C(x, u, p) =





p(αa(x)uα−1 − λ
2 uα(α + 1)) + λ

2 αu2α−1p2 if β < 1, 2α− 1 < 0,

p(αa(x)uα−1 − λ
2 uα(α + 1)) if β < 1, 2α− 1 ≥ 0,

p(αa(x)uα−1 − βb(x)uβ−1−
−λ

2 uα(α + 1)) + λ
2 αu2α−1p2 if β ≥ 1, 2α− 1 < 0,

p(αa(x)uα−1 − βb(x)uβ−1 − λ
2 uα(α + 1)) if β ≥ 1, 2α− 1 ≥ 0.

We are interested in the solutions, (u, p), of optimality system (5.6) that satisfy
uλK ≤ u ≤ u0 and 0 ≤ p ≤ λψ (recall (5.3)). Consequently, we can reduce the study
for solutions that satisfy (u, p) ∈ [uλK, u0]× [0, λψ]. Therefore, there exist a constant
K > 0 and a function M1(x), x ∈ Ω, satisfying hypothesis (HM), such that

B(x, u, p) + Kuα (↗ u,↗ p) ,
C(x, u, p) + M1(x)p (↘ u,↗ p) ,
D(x, u, p) + M1(x)p (↗ u,↗ p) ,

i. e., B(x, u, p)+Kuα is increasing in u for fixed x ∈ Ω and 0 ≤ p ≤ λψ and increasing
in p for fixed x ∈ Ω and uλK ≤ u ≤ u0. The other terms are interpreted analogously.

Definition 5.3 (Sub-super solutions). The functions u1, p1, u
1, p1 ∈ L∞(Ω) ∩

H1(Ω) are said to be a system of sub-super solutions for the optimality system (5.6),
if they verify

{
u1(x) ≤ u1(x), p1(x) ≤ p1(x), a.e. in Ω,

p1 ≤ 0 ≤ p1, on ∂Ω,
(5.7)

and there exists a positive constant k such that

0 < kdΩ(x) ≤ u1(x) ≤ u1(x), a.e. in Ω(5.8)

and, for any φ ∈ H1
0 (Ω), φ ≥ 0,

∫

Ω

∇u1 · ∇φ ≥
∫

Ω

B(x, u1, p1)φ,

∫

Ω

∇u1 · ∇φ ≤
∫

Ω

B(x, u1, p1)φ,

∫

Ω

∇p1 · ∇φ ≥
∫

Ω

C(x, u1, p
1)φ +

∫

Ω

D(x, u1, p1)φ,

∫

Ω

∇p1 · ∇φ ≤
∫

Ω

C(x, u1, p1)φ +
∫

Ω

D(x, u1, p1)φ.

Recall that a function v ∈ H1(Ω) is said to be less or equal than w ∈ H1(Ω) on
∂Ω when (v − w)+ = max{0, v − w} ∈ H1

0 (Ω).
It is not difficult to prove that, under the hypothesis of Theorem 5.2, there exists

a Λ3 > 0, such that, if λ ≤ Λ3, then the functions

u1 = uλK, p1 ≡ 0, u1 = u0, p1 = λψ,(5.9)

are a system of sub-super solutions for the optimality system (5.6) in the sense of
Definition 5.3. We show only the case p1 = λψ when β ≥ 1, 2α − 1 ≥ 0. The other
cases are similar. It is not hard to show that p1 = λψ is a supersolution if

λ(K −mλ1ψ) ≥ λψ

[
αauα−1

λK − βbuβ−1
λK − λ

2
uα

λK(α + 1)
]

+
λ

2
u0 +

λ

2
αu2α−1

0 (λψ)2,
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or equivalently,

K ≥ ψ
[
mλ1 + αauα−1

λK − βbuβ−1
λK

]
− λ

2
uα

λK(α + 1)ψ +
1
2
u0 +

α

2
λ2u2α−1

0 ψ2.

Recalling the definition of mλ1 , for λ ≤ λ1 we have that mλ1 +αauα−1
λK −βbuβ−1

λK ≤ 0,
and by (3.5) u0 ≤ K, it is enough to take λ small to obtain that p1 is a supersolution.

Now, we define by induction, for n ≥ 2, the sequences {un}, {un}, {pn}, {pn} ∈
H1

0 (Ω), as

−∆un + K(un)α = B(x, un−1, pn−1) + K(un−1)α in Ω,(5.10)
−∆un + K(un)α = B(x, un−1, pn−1) + K(un−1)α in Ω,(5.11)

−∆pn + M1(x)pn = C(x, un, pn−1) + D(x, un, pn−1) + M1(x)pn−1 in Ω,(5.12)
−∆pn + M1(x)pn = C(x, un, pn−1) + D(x, un, pn−1) + M1(x)pn−1 in Ω.(5.13)

Observe that sequences {un}, {un}, are well defined because the map u 7→ Kuα

is continuous and strictly increasing and such that B(x, u, p)+Kuα is also increasing
in u, when the other variables are fixed. (See more details in [5], [10]).

On the other hand, fixed u1, u
1 and thanks to (5.8), the problems (5.12) and (5.13)

are in the setting of (2.4) and so by Theorem 2.5 it follows the existence and uniqueness
of p2 and p2 and such that p2 ≤ p2 and so on. We note that for (5.10)-(5.11) and
(5.12)-(5.13), the sub-super solutions method works (cf. [12]). The standard method
gives us the following order relation

u1 ≤ u2 ≤ ... ≤ un ≤ un ≤ un−1 ≤ ... ≤ u1,
p1 ≤ p2 ≤ ... ≤ pn ≤ pn ≤ pn−1 ≤ ... ≤ p1,

and

un ↗ u, un ↘ v, pn ↗ p, pn ↘ q,

(pointwise), where u, v, p, q belong to C1,δ(Ω), for any δ ∈ (0, 1), and satisfy the
system





−∆u = B(x, u, p) in Ω,
−∆v = B(x, v, q) in Ω,
−∆p = C(x, v, p) + D(x, u, p) in Ω,
−∆q = C(x, u, q) + D(x, v, q) in Ω,
u = v = p = q = 0, on ∂Ω

(5.14)

and

u1 = uλK ≤ u, v ≤ u1 = u0 in Ω
p1 = 0 ≤ p, q ≤ p1 = λψ ≤ u1−α

λK in Ω.
(5.15)

Clearly, if (u, p) is the solution of the optimality system (5.6), then (u, u, p, p) is a
solution of (5.14). So, to complete the iterative approximation and the convergence of
the sequences {un}, {un}, {pn}, {pn} to the unique solution, (u, p), of the optimality
system, it is sufficient to prove the uniqueness of the solution for the system (5.14),
under the conditions (5.15). To do it, we need the following technical lemma.

Lemma 5.4. Assume (H1). Then

∀f, g ∈ [0, λK] ⊂ L∞+ (Ω),
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it is possible to define the function Pf,g as the unique positive solution of the problem
{ −∆P = C(x, uf , P ) + D(x, ug, P ), in Ω

P = 0, on ∂Ω,
(5.16)

satisfying

0 ≤ Pf,g ≤ λψ,(5.17)

provided that the parameter λ is small enough and the function ψ is defined in (5.2).
Moreover, the map defined before, (f, g) ∈ [0, λK] × [0, λK] 7→ Pf,g ∈ L∞(Ω) is
Lipschitz continuous.

Analogous result is obtained interchanging uf and ug in (5.16).
Proof. We consider the case β ≥ 1, 2α − 1 ≥ 0. The other cases have similar

proofs. Observe that, in this case, equation (5.16) is
{
−∆P +

[
−αauα−1

f + βbuβ−1
f + λ

2 uα
f (1 + α)

]
P = λ

2 ug + λ
2 αu2α−1

g P 2 in Ω,

P = 0 on ∂Ω.
(5.18)

Taking into account the Theorem 2.5, the condition (5.17) and the definition of the
function ψ, we can use the sub-super solution method with p∗ ≡ 0 as subsolution
and p∗ ≡ λψ as supersolution, provided λ > 0 small. Thus, the existence of positive
solution of (5.18) is proved. The uniqueness follows of a contradiction argument.
Suppose that P , Q are two solutions under above requirements, then P −Q satisfies

(−∆ + M1(x))(P −Q) = 0,

where

M1 = −αauα−1
f + βbuβ−1

f +
λ

2
uα

f (1 + α)− λ

2
αu2α−1

g (P + Q).

Observe that M1 satisfies (HM). Now, using that P, Q ≤ λψ, we obtain that

M1 ≥ −αauα−1
Tλ

+ βbuβ−1
Tλ

+
λ

2
uα

Tλ
(1 + α)− λ2αu2α−1

0 ψ,

and so we can prove the existence of a function N satisfying (HM) and λ0 > 0 such
that for λ ≤ λ0

M1 ≥ N in Ω and σ1(−∆ + N) > 0.(5.19)

Hence, the previous equation has the unique solution (P −Q) ≡ 0.
To show the lipschitzian character of the map (f, g) 7→ Pf,g, let Pf,g be the

solution of problem (5.18) satisfying (5.17). Denote q = Pf,g and q = Pf,g. Then,
some calculus give

(−∆ + M(x))(q − q) = Rf,f,g,g := αaq(uα−1
f − uα−1

f
)−

βbq(uβ−1
f − uβ−1

f
)− λ

2 (α + 1)q(uα
f − uα

f
) + λ

2 (ug − ug) + λ
2 αq2(u2α−1

g − u2α−1
g ),

where

M = −αauα−1

f
+ βbuβ−1

f
+

λ

2
(α + 1)uα

f
− λ

2
α(q + q)u2α−1

g .



18 M. DELGADO, J. A. MONTERO AND A. SUÁREZ

As in the proof of (5.19), we can prove the existence of a function N satisfying (HM)
such that for M ≥ N in Ω and σ1(−∆ + N) > 0 for small λ. Thus, by Theorem 2.5
we get that

‖q − q‖∞ = ||Pf,g − Pf,g||∞ ≤ ‖Pf,g − Pf,g‖C1(Ω) ≤ C‖Rf,f,g,g‖∞

Now, we can use a similar argument to the used in the proof of Theorem 4.6 to obtain
a bound of ‖T (f, g)‖∞, we have

||αaq(uα−1
f − uα−1

f
) + βbq(uβ−1

f − uβ−1

f
) + λ

2 (α + 1)q
(
uα

f − uα
f

)
||∞ ≤ C||f − f ||∞,

||λ2 (ug − ug) + λ
2 αq2

(
u2α−1

g − u2α−1
g

)
||∞ ≤ C||g − g||∞,

and so, ‖Rf,f,g,g‖∞ ≤ C
{||f − f ||∞ + ||g − g||∞

}
. Finally, we have

||Pf,g − Pf,g||∞ ≤ C
{||f − f ||∞ + ||g − g||∞

}
,(5.20)

for a convenient positive constant C.
Theorem 5.5. Assume (H1). There exists a positive constant Λ4, such that, if

λ ≤ Λ4, then the system (5.14)-(5.15) has a unique solution.
Proof. The main idea is simple. We will use the lipschitzian character of the

solutions of the system (5.14)-(5.15) with respect to the controls and an argument
similar to the used in Theorem 5.2.

Suppose (ui, vi, pi, qi), for i = 1, 2, are two solutions of the system (5.14)-(5.15).
We define, for i = 1, 2,

fi =
λ

2
[ui − uα

i pi] gi =
λ

2
[vi − vα

i qi].(5.21)

Now, taking into account the previous notation, we have for i = 1, 2,

ui = ufi , vi = ugi , pi = Pgi,fi , qi = Pfi,gi

and

fi =
λ

2
[ufi − uα

fi
Pgi,fi ] gi =

λ

2
[ugi − uα

gi
Pfi,gi ].

We know, recall Theorem 4.6 and Lemma 5.4, that the operator T : [0, λK]×[0, λK] →
L∞(Ω)× L∞(Ω), defined as,

T (f, g) =
(

λ

2
[uf − uα

f Pg,f ],
λ

2
[ug − uα

g Pf,g]
)

,

is Lipschitz continuous, with constant λC/2, where C > 0 is the Lipschitz constant of
map (f, g) 7→

(
uf − uα

f Pf,g, ug − uα
g Pg,f

)
and verifies T (fi, gi) = (fi, gi). Therefore,

by taking λ < min{Λ1,
2
C }, T is a contraction and consequently has an unique fixed

point. So, (f1, g1) = (f2, g2). Then, we have u1 = u2, v1 = v2 and finally p1 = p2 and
q1 = q2.
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[8] M. Delgado and A. Suárez, On the existence of dead cores for degenerate Lotka-Volterra
models, Proc. Royal Society of Edin. A, 130 (2000), pp. 743-766.

[9] , On the structure of the positive solutions of the logistic equation with nonlinear diffu-
sion, J. Math. Anal. Appl., 268 (2002), pp. 200-216.

[10] J.I. D́ıaz , Nonlinear partial differential equations and free boundaries, Vol I Elliptic equations,
London, Pitman 1985.

[11] M.E. Gurtin and R.C. MacCamy, On the diffusion of biological populations, Math. Biosci.,
33 (1977), pp. 35-49.

[12] J. Hernández, F. Mancebo and J.M. Vega de Prada, On the linearization of some singular
nonlinear elliptic problems and applications, Ann. Inst. H. Poincare Anal. Non-Lineaire,
19 (2002), pp. 777-813.

[13] A. Kufner, Weighted Sobolev Spaces Text zur Mathematik, 31, Teubner, Leipzig (1980).
[14] S. Lenhart, V. Protopopescu and S. Stojanovic, A two-sided game for nonlocal competitive

systems with control on source terms, IMA Vol. Math. Appl., 53 (1993), Springer, New
York, pp. 135-152.

[15] A.W. Leung, Optimal harvesting-coefficient control of steady-state prey-predator diffusive
Volterra-Lotka systems, Appl. Math. Optim., 31 (1995), pp. 219-241.

[16] , Positive solutions for systems of PDE and optimal control, Nonlinear Analysis, 47
(2001), pp. 1345-1356.

[17] A.W. Leung and S. Stojanovic, Optimal control for elliptic Volterra-Lotka type equations,
J. Math. Anal. Appl., 173 (1993), pp. 603-619.

[18] J.A. Montero, A uniqueness result for an optimal control problem on a diffusive elliptic
Volterra-Lotka type Equation, J. Math. Anal. Appl., 243 (2000), pp. 13-31.

[19] M.A. Pozio and A. Tesei, Support properties of solutions for a class of degenerate parabolic
problems, Comm. Part. Diff. Eqns., 12 (1987), pp. 47-75.

[20] S. Stojanovic, Modeling and minimization of extinction in Volterra-Lotka type equations with
free boundaries, J. Diff. Eqns., 134 (1997), pp. 320-342.


